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This paper extends the Hartman model to study the optimal rotation age of
two interdependent stands when the stream of amenities produces from the
two stands may be complements or substitutes, both in space and over time.
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1. Introduction

Forest ecosystems comprise complex site-specific interactions between plant

and animal species. One aspect of forest ecosystems rarely acknowledged in

economics models is the notion of stand interdependence, rather, the majority of

models consider management of only a single stand in isolation.  In practice, the

management of each stand in a given region should not be undertaken independently

of other stands.  Biologists have long known this, arguing that trees of many age

classes and species mixes are necessary for conservation of biodiversity or contiguous

habitat for certain animal species. Stand interdependence may also be anthropogenic

in nature. For instance, the recreational opportunities of larger forest areas may be

dependent on the interaction or coordinated management of several stands. 

Managing the interdependent multiple-stand forest is a challenging task.

Harvesting even one stand may sometimes pose a threat to the maintenance of an

entire ecosystem. While the task is difficult enough for one manager, it becomes even

more difficult under the reality of nonindustrial private landownership. Land property

rights usually do not follow forest cover types.  This means management of adjacent

stands is likely not coordinated among landowners.  At the extreme, landowners

owning one piece of an ecosystem will neglect, knowingly or unknowingly, the

impact of their private harvesting on the whole ecosystem or on other nearby

landowners.  

The behavior of landowners who have no incentives to coordinate actions will

be socially costly. In fact, the impact of one landowner’s decisions on the forest

ecosystem used by another landowner represents a type of economic externality

associated with private forest management.  Only a social planner who manages the

entire forest ecosystem has incentives to solve for the rotation age of each stand,

conditional on its impacts to all other stands.

In this paper we examine several issues not addressed in the economic

management of interdependent forest stands. We first review the concept of

interdependent stands as it appears in the literature. This amounts to having timber

and non-timber amenity benefits which depend on rotation ages of an adjacent stand.

We then examine various assumptions for the timing of adjacent landowner decisions.

The timing of decisions follows from each landowner’s ability to credibly commit to a

harvesting action. If landowners are unable to commit, then they effectively make
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forest management decisions simultaneously, i.e., landowners play a Nash game. The

Nash equilibrium reflects private ownership in practice, where landowners typically

border a small number of neighbouring landowners and make decisions without

regard to the other landowners.  An alternative setting is examined where one

landowner commits to moving first, making decisions with the reaction of another

landowner in mind. Finally, we examine the rotation age decision for a sole owner

who makes forest management decisions taking into account the interdependence

between all stands. Comparison of this outcome with the simultaneous and first-

mover outcomes will show the importance of coordination, and thereby hint at the

social cost of not coordinating forest management actions. 

There are very few analytical treatments of the economics problem behind

stand interdependence. Stand interdependence was originally discussed in Bowes and

Krutilla (1985, 1989), who proposed a linear programming approach to maximize the

rents associated with multiple stands under a single (government) owner. Swallow

and Wear (1993) and Swallow et al. (1997) were the first to formulate explicit spatial

interactions for non-timber amenity benefits between two adjacent stands, but their

analysis relies on numerical approximations. Koskela and Ollikainen (2001b)

examined the rotation age decision for a single landowner making decisions for a

single stand, under the assumption of a purely exogenous adjacent stand. Their work

does not focus on the different landowner commitment assumptions that we examine,

nor do they examine the important sole owner outcome.  All of these issues are

critical to understanding the private landowner case. 

There is a large literature on stand interdependence in other settings, such as

species conservation. This work, when taken in the context of forested areas,

promotes the idea that multiple stands are needed to sustain certain species (see e.g.

Csuti et al. 1997, Ando et al. 1998, Polasky et al. 2000). Also, an increasing number

of empirical studies on conservation, ecosystem management, and forest management

exists, but these are typically undertaken only from the viewpoint of a benevolent

social planner (see e.g. Beavers et al. 1995, Albers 1996, Beavers and Hopf 1999,

Haight and Travis 1997, Montgomery 1998). Unlike our paper, this literature either

considers only the case of the sole owner, or it is based on site-specific empirical data.

Hence it too abstracts from the interesting practical problems that follow from private

landowners with no incentives to coordinate management of their forests.  
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The rest of our paper is organized as follows. In section 2 we introduce an

extended Hartman model of forest management and make specific the definition of

spatial dependence between stands and its evolution over time, i.e. temporal

dependence. We then analyse rotation age under simultaneous move, first-mover and

sole owner timing assumptions. Section 3 characterizes the qualitative dependence of

rotation ages on important parameters. Finally, in section 4 we provide some

concluding remarks.

2. A model of interdependent stands

We first describe a basic framework for the determination of rotation ages for

two adjacent stands, denoted by stand ''a  and stand ''b . It is assumed that landowners

value net harvest revenue and the non-timber amenity services produced from the

stand, just as in the conventional Hartman model of forest management (Hartman

1976).  Following Swallow and Wear (1993) and Koskela and Ollikainen (2001b), we

assume that stands are interdependent in terms of amenities, but independent with

regard to timber production.

The growth of stands a and b is an S-shaped function of rotation age. Timber

volume at harvest is denoted by )(Tf  and )(τg , where T refers to the rotation age for

stand a and τ refers to the rotation age of the stand b. Timber prices p  and q and

regeneration costs Tc  and τc  for stand a and b, respectively, are allowed to differ

between the stands. These assumptions reflect the typical situation in which stands

differ inherently due to site characteristics (such as slope, tree species, aspect, or

access).  Prices, costs, and the real interest rate r are assumed to be constant over

time, as with the basic Hartman model. The present values of timber production over

an infinite cycle of rotations for each stand are, respectively,

[ ]T
rTrTa ceTpfeV −−= −−− )()1( 1  (1a)

[ ]τττ τ ceqgeV rrb −−= −−− )()1( 1  .  (1b)

We now introduce amenity values in a manner that reflects stand

interdependence. Let ),( τsF a  describe valuation of amenity benefits provided by
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stand a at time s when the adjacent stand b has a rotation age of τ . Likewise,

),( xTF b  denotes valuation of amenity benefits of stand b at time x when stand a has

a rotation age of T. Using this notation, the present value of amenities over an infinite

series of rotations of length T and τ for both stands are written,

dsesFeE rsT arTa −−−
∫−=
0

1 ),()1( τ  (2a)

 dxexTFeE rxbrb −−− ∫−=
τ

τ

0

1 ),()1( . (2b)

For subsequent analysis we must also characterize how the amenity values in

equations (2a) and (2b) behave in terms of changes in their own rotation age and

changes in the adjacent stand’s rotation age.  In describing these effects, we will use

the label own-stand to refer to the stand in question, and adjacent stand to refer to the

other stand. 

Neglecting for a moment the present value terms in (2a) and (2b), and

differentiating the integrals for each stand with respect to the own rotation age, we

can obtain a marginal amenity valuation function defined at harvest times for both

stand a and b: ),( τTF a  and ),( τTF b , respectively. 

We now present two definitions from the literature which characterize  spatial

dependence of stands, as well as the evolution of this over time, i.e., temporal

dependence. Differentiating each stand’s marginal amenity valuation function with

respect to the rotation age of the adjacent stand indicates how the marginal amenity

valuation changes with respect to changes in the rotation age of the other stand. These

derivatives are termed spatial dependence in the literature and are summarized in:1

 

Definition 1 (Koskela and Ollikainen 2001b). Spatial Dependence 

0),(









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

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=
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ττ TF a  and 0),(
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














>
=
<

τTF b
T  if stands are 









amenities wrt scomplement
amenities wrt tsindependen

amenities wrt ssubstitute
 

                                                          
1 In what follows, derivatives of functions will be denoted by subscripts unless otherwise
noted. 
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Definition 1 is consistent with ALEP complementarity/substitutability first

formalized by Samuelson (1974) and others in a different context.2 If the stands are

spatial substitutes, then the marginal amenity valuation of each stand decreases with

the rotation age of the adjacent stand.  If the stands are spatial complements, then the

opposite is true, i.e., marginal amenities of each stand increase with the rotation age of

the adjacent stand. 

It is also important to know how spatial dependence is affected by rotation age

choices. This is obtained by differentiating the functions in Definition 1 with respect

to own-stand rotation ages. The resulting second derivatives define how spatial

dependence between stands evolves with own rotation age.  This is called ‘temporal

dependence’ in the literature. That is,  

Definition 2 (Koskela and Ollikainen 2001b). Temporal Dependence

0),(












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

>
=
<

ττ TF a
T ; 0),(





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





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

>
=
<

ττ TF b
T  if 









age stand with increasesdependence stand
age stand with unchanged dependence stand

age stand  with decreasesdependence stand

From Definition 2, the temporal interdependence between two stands may be

constant, increasing or decreasing depending on how spatial dependence between the

stands changes with increases in the rotation age of each stand. Temporal

independence results when ),( ττ TF a
T 0== ),( ττ TF b

T .  This is the case if spatial

substitutability or complementarity (from Definition 1) is merely associated with site-

specific properties which remain the same regardless of own-stand rotation age.

Increasing temporal dependence between the stands means that, for spatial

complements, the complementarity between stands increases with own-stand rotation

age. But for spatial substitutes, the substitutability between stands decreases with

own-stand rotation age. Decreasing temporal dependence implies just the opposite:

complementarity weakens while substitutability becomes stronger for increases in

own-stand rotation age.3 

                                                          
2 For the concept of the Auspitz-Liebig-Edgeworth-Pareto (ALEP) complementarity/
substitutability, see Samuelson (1974) and further discussions in Chipman (1977), Kannai
(1980) and Weber (2000).  
3 Ecologists have shown that amenity production depends on inter-stand relationships which
form the basis of Definitions 1 and 2.  See, for example Franklin and Forman (1987) and
Giles (1978).
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2.1 Three models for rotation age

We now depart from the literature and consider rotation age solutions for

different ownership structures and timing of decisions. The first rotation age solution

comes from a Nash game, where there are two different landowners who own stands a

and b, and these landowners make their harvesting decisions simultaneously taking

the other’s action as given. This mimics the private market solution where landowners

are both price takers, and it requires no commitment to actions on the part of either

landowner.  The second rotation age solution follows when there are two landowners,

but one is a first-mover, i.e., landowners play a traditional two-stage Stackelberg

game.  One landowner here is able to credibly commit to a harvesting decision before

the other landowner moves, so that a leader-follower relationship is established.

Finally, the third rotation age solution is derived under the assumption of a sole owner

of both stands a and b. 

In all cases, landowners are assumed to be price takers and, as such, do not

account for price-induced demand changes when making rotation age choices.  Each

landowner does, however, utilize amenities produced by the other stand. Therefore,

the sole owner model, by yielding the efficient solution, provides a hint at the social

costs associated with uncoordinated harvesting.

2.2. Rotation ages in the Nash game

Here each landowner chooses rotation age taking the other landowner’s rotation

choice as given. The solution to the Nash game can be obtained for each landowner

by solving the following simultaneous choice problem:

aaaN

T
EVMax +=Ω

}{
      (3a)

bbbN EVMax +=Ω
}{τ

 , (3b)

where the terms in the objective functions are defined in (1) and (2).  The labels a and

b again refer both to the stand and landowner, and N denotes the Nash game. 

The following first-order conditions characterize the optimal rotations T and τ:
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aaaaN
T rErVTrpfTFTfp ++=+′=Ω )(),()(: τ0  (4a)

bbbbN rErVrqgTFgq ++=+′=Ω )(),()(:0 ττττ . (4b)

These suggest that both landowners equate their private marginal benefit of delaying

harvest (LHS) to the marginal opportunity cost of delaying harvest (RHS). Notice

there is an externality evident in the first-order conditions (affecting the last terms on

the LHS and RHS of (4a) and (4b)).  This arises because landowners do not account

for the effect of their rotation age choice on the other landowner’s utility and

behavior.  

The second-order conditions for both landowners are given by

0),()(')('' <+−=Ω τTFTrpfTpf a
T

aN
TT  (5a)

0),()(')('' <+−=Ω τττ τττ TFrqgqg bbN (5b)

We assume that the second-order conditions (5a) and (5b) hold. They hold

automatically when the landowner’s marginal amenity valuation decreases or remains

constant with increasing own-stand rotation age, i.e., for 0≤a
TF and 0≤bFτ  They

may not always hold when the landowner’s amenity valuation increases with own-

stand rotation ages, i.e., for 0>a
TF and 0>bFτ  (see Strang 1983). 

As for the dynamics of the Nash equilibrium, we assume that landowners

adjust their rotation ages in order to increase the sum of net present value of harvest

revenue and amenities, taking the behavior of the other landowner as given. These

dynamics are represented by the following derivatives,










∂
Ω∂

=Ω
T

aT
TaN λ&   and  









∂
Ω∂

=Ω
τ

λτ
bT

bN&        (5c)

where the parameters 0, >τλλT  indicate the speed of adjustment, and dots indicate

derivatives of the target function with respect to (calendar) time. 

The uniqueness and stability condition for the Nash game can be expressed as
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0>ΩΩ−ΩΩ=∆ bN
T

aN
T

bNaN
TT

N
ττττ , (5d)

where ∫ τ−−τ=Ω −
τ

−−
ττ

T
rsarTaaN

T dsesFerTF
0

1 ),()1(),(  

and ∫−−τ=Ω
τ

−−τ−
τ

0

1 ),()1(),( dxexTFerTF rxb
T

rb
T

bN
T ,

so that the determinant of the second-order derivatives matrix in (5d) must be

positive.4 The second order conditions (5a) – (5b) imply that the first part of (5d) is

positive.  Therefore, the uniqueness and stability of the Nash game depends on the

product of cross-derivatives bN
T

aN
T ττ ΩΩ , which jointly with the second-order conditions

define the slopes of the reaction functions for the landowners.  

The reaction functions for landowner a  and b respectively can be obtained

from the first-order conditions by totally differentiating them with respect to the

rotation age of the adjacent stands,

aN
TT

aN
T

a

a
d
dT

Ω
Ω

−=≡ ττ
τ

)( , bN

bN
T

b

Tb
dT
d

ττ

ττ
Ω
Ω

−=≡ )( .  (6)

Lemma 1 characterizes how the cross derivatives of the reaction functions depend on

properties of the amenity valuation functions.

Lemma 1. 00
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Ω b
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T Fif ττ .

Proof. See Appendix 1.

According to Lemma 1 and equation (6), the reaction functions have different slopes

depending on temporal stand interdependence (Definition 2). There are three cases,

which we summarize in:

                                                          
4 Dixit (1986) and Vives (1999, pp. 49-58) discuss further details of the uniqueness and
stability analysis we use here.
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Result 1. Properties of the reaction functions 

a) Under temporally independent stands, the reaction functions are vertical lines

in (T,τ) space and the equilibrium is stable.

b) Under increasing temporal dependence, the reaction functions are increasing

in (T,τ) space.  Stability of the equilibrium requires that the reaction function

for stand a is steeper than the reaction function for stand b.

c) Under decreasing temporal dependence, the reaction functions are decreasing

in (T,τ) space.  Stability of the equilibrium requires that the reaction function

for stand a is steeper than the reaction function for stand b.

Result 1 is illustrated in Figures 1-4 for both decreasing and increasing temporal

dependence.  Drawn in the figures are the reaction functions for the landowner of

stand a and b, )(τa  and )(Tb , each of which is a function of the rotation age choice of

the other landowner.  In Figures 1–2 the reaction functions are downward-sloping,

reflecting decreasing temporal dependence between the stands. The upward sloping

reaction functions in Figures 3 and 4 reflect increasing temporal dependence between

the stands.  As we explain later, Figures 1 and 3 are drawn assuming the stands are

spatial substitutes, while Figures 2 and 4 are drawn assuming the stands are spatial

complements. The unique and stable Nash equilibrium solution satisfying (4a) and

(4b) occurs at the point where the reaction functions for the landowners cross. 

2.3. Rotation ages in the Stackelberg game

In the Stackelberg game, the leader moves with knowledge of how the following-

landowner responds; the follower takes the rotation age of the leader as given. While

this model may mimic some private market situations, the leader might be interpreted

as a government formally setting a long run harvest policy, effectively leading.

Assume the leader is the landowner holding stand a. This landowner

maximizes the following objective function, 

aaaS

T
EVMax +=Ω

}{
 (7a)

),,,(.. τττ crqTts SS = , (7b)
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Figure 1. Decreasing temporal dependence when the stands are spatial substitutes

Figure 2. Decreasing temporal dependence when the stands are spatial complements
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Figure 3. Increasing temporal dependence when the stands are spatial substitutes

Figure 4. Increasing temporal dependence when the stands are spatial complements
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where the superscript S refers to the Stackelberg game, and ),,,( τττ crqT SS =

describes the reaction function of the follower (who holds stand b). Utilizing the Nash

first-order condition (3a) for the follower’s reaction function, the leader and the

follower first-order conditions are, respectively,

0
0

=+Ω=Ω ∫ −
T

rsa
T

rTaN
T

aS
T dsesFe ),((.) ττ τ ,  (8a)

0)(),()( =−−−+′=Ω bbbbS rErVrqgTFgq ττττ . (8b)

We assume that the second-order condition holds for this problem. In reality, whether

it holds depends again on the amenity valuation function and on the properties of the

follower’s reaction function ),,,( τττ crqT SS = .5

Consider first the follower’s behavior given in (8b). This condition is

qualitatively the same as the necessary condition for landowner b in the Nash game;

that is, given TS, the follower chooses the rotation age τ . This is not so for the leader

(eqn (8a)). Compared to the Nash game, there is an additional term in the Stackelberg

first order condition, reflecting the impact of the follower’s rotation choice on the

leader’s marginal amenity benefits. The presence of this additional term implies that

the leader partly accounts for the externality that arises from the effect of the

follower’s rotation age on the amenities of the leader’s stand. This interesting

difference between Stackelberg and Nash outcomes will become important later when

we study comparative statics effects.  

Whether the leader has a longer or shorter rotation age compared to the Nash

equilibrium rotation age depends on the last term in (8a), i.e., on the slope of the

follower’s reaction curve and the integral term.  To sign this integral term and make

the analysis tractable, we assume that the amenity function has a quadratic shape, and

                                                          
5  This can be seen from

),())()(( τTFeTrpfTfpre arTrTaN
TT

aS
TT +−′−Ω=Ω −−

0),(2),(),(
0

2

0

<+++ −−− ∫∫ rTa
T

T
rsa

T

T
rsa

TT eTFdsesFdsesF ττττττ ττττ
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we use a second order approximation for ))2/1(1(1 22TrrTe rT ++=− .6 The quadratic

shape happens to be convenient, because it allows for all relevant cases described in

Definitions 1 and 2.

Lemma 2. Under the quadratic amenity valuation function, 
2

2
1 )()(),( γτβτατ +−+= TTTF a , we have

 0),(
0 







<
>−

∫ dsesF rsT a ττ  as 0),0(







<
>

ττ
aF .

Proof. See Appendix 2.

According to Lemma 2 the sign of the integral term depends how the rotation

age of the follower’s stand affects the marginal amenity valuation of the leader’s

stand at the margin, when .0=T  Returning to Figures 1-4, consider now the iso-net-

present-value-of-revenue curves.  Iso-net-present-value-of-revenue curves are lines

along which net present value is constant for given interest rates, timber prices and

regeneration costs. A family of these therefore exist for each set of constant

parameters. 

When the stands are spatial substitutes, the iso-net-present-value-of-revenue

curves are decreasing in the rotation age of the other stand, while spatial complements

implies the iso-net-present-value-of-revenue curves are increasing in the rotation age

of the other stand.  This means that, for complements (substitutes) the net present

value of profits for the forest landowner is increasing when moving up (down) the

reaction functions. In the figures, the Stackelberg rotation age for leader and follower

corresponding to (8a) – (8b) above is defined by the point where the leader’s highest

iso-net-present-value-of-revenue curve is tangent to the follower´s reaction function,

b(T).

Using Figures 1-4, Lemma 2, Lemma 1, and Result 1, we can now examine

the relationship between the Nash and the Stackelberg rotation ages. Consider first the

leader. If the stands are temporally independent, then 0(.) =a
TFτ  and the reaction

functions are vertical lines.  Here, the sign of ),( ττ TF a  does not matter, therefore, the

Stackelberg rotation age coincides with the Nash rotation age. Under decreasing

                                                          
6  We can show that higher order approximations for the discount factor will not change the
nature of the results in Lemma 2 below.
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(increasing) temporal dependence and spatial substitutability between the stands, we

have 0<ΩaN
T  ( 0>ΩaN

T ), because now the last term in (8a) is positive (negative). In

this case, the leader’s rotation age, ST , is longer (shorter) than the Nash rotation age,
NT . If the stands are spatial complements, then under decreasing (increasing)

temporal dependence we have 0>ΩaN
T  ( 0<ΩaN

T ); now the leader’s rotation age is

shorter (longer) than the Nash rotation age. 

For spatial substitutes (complements), the follower’s rotation age is shorter

(longer) than the Nash rotation age under decreasing temporal dependence. The

interpretation is as follows. The follower observes the rotation age of the leader prior

to moving. When the stands are substitutes, the follower’s rotation age must be

shorter because, under decreasing temporal dependence, the leader’s rotation age will

be longer than the Nash rotation age, and the follower’s reaction curve will be

downward-sloping (Figure 1). Intuitively, the longer rotation age of the leader allows

the follower to harvest sooner but still derive foregone amenity benefits from the

leader’s stand. For spatial complements, the leader’s rotation age is shorter than the

Nash age, and the best response of the follower is to lengthen the rotation age relative

to Nash age, because that decreases stand complementarity. Similar reasoning can be

applied to increasing temporal dependence.

We can summarize the above discussion in: 

Proposition 1. The relationship between Nash and Stackelberg rotation ages depends

on the nature of stand interdependence:

a) Under temporal  independence, SN TT =  and SN ττ = .

b) Under decreasing temporal dependence, SN TT >  and SN ττ <  for spatial

complements, while SN TT <  and SN ττ >   for spatial substitutes.

c) Under increasing temporal dependence, SN TT <  and SN ττ <   for spatial

complements, while SN TT >  and SN ττ > for spatial substitutes. 

2.4. Rotation ages for the sole owner 

The sole owner chooses rotation ages of both stands to maximize joint

economic rents,
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The first-order conditions characterizing sole owner rotation age choices can

be expressed using a modification of the Nash conditions,
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The second-order conditions 0<TTW , 0<ττW , and 0>∆SO are presented in

Appendix 3 and are assumed to hold. 

Equations (10a) and (10b) imply that the sole owner chooses rotation ages for

both stands taking into account how amenities are affected by rotation age, not only of

stand a (as in the Stackelberg game) but also of stand b (see the last term in 10a and

10b). Hence, all potential externalities arising from the effects of harvesting one stand

on the other stand’s amenities are internalised.  The sole owner outcome is therefore

the efficient solution for our problem.

The last terms in equations (10a) and (10b) determine how the sole-owner

rotation age of both stands compares to Nash and Stackelberg rotation ages. From

Lemma 2 we know that these last terms are positive when the stands are spatial

complements and negative when the stands are spatial substitutes. Thus, relative to the

Nash rotation age, the sole owner chooses longer rotation ages for both stands when

they are spatial complements, but shorter rotation ages when they are spatial

substitutes.  

How does the sole owner rotation age compare to the Stackelberg rotation

age? The sole owner first order conditions differ from the Stackelberg conditions by

the last term (compare (10a) with (8a)). Due to the symmetric sole owner first-order

conditions (10a) and (10b), we can graphically distinguish the sole owner optimum in

Figures 1-4 as points where the iso-net-present-value-of-revenue-curves from both

stands are tangent to each other. Referring to the figures, for spatial complements



1717

(substitutes) the sole owner rotation age is longer (shorter) than the Stackelberg age

for both leader and follower. 

The important driving factor in the comparison of the sole owner’s rotation

age with Nash and Stackelberg rotation ages is the spatial complementarity or

substitutability of stands.  The sole owner internalizes all externalities associated with

amenities. When stands are temporally independent, it is natural that the sole owner

rotation age coincides with the other rotation ages because there is no external effect

of harvesting one stand on the other stand.  However this is not the case when stands

are temporally interdependent.  Now the comparison of rotation ages depends on how

the two stands are related spatially; if they are spatial complements, the sole owner

increases rotation ages, while the opposite is true under spatial substitutes.  We can

express the relationship between Nash, Stackelberg and sole owner rotation ages as

follows

Proposition 2. 

a) Under temporal independence, the spatial complementarity or substitutability

between the stands does not matter and Nash and Stackelberg rotation ages

coincide with the sole owner rotation ages.

b) Under temporal dependence, the sole owner rotation age is longer (shorter) than

Nash and Stackelberg solutions when stands are spatial complements

(substitutes).

The differences in rotation ages under our various solutions will undoubtedly lead

to differences in welfare for forest landowners.  Obviously, landowners are by

definition better off at the sole owner optimum relative to the other outcomes. An

interesting comparison of welfare under the other outcomes can be obtained from

Figures 1-4, by noting the position of the equilibria on the iso-net-present-value-of-

revenue curves. Figures 3-4 show that when temporal dependence is increasing, the

welfare of both landowners is higher under the Stackelberg solution than under the

Nash equilibrium.  This result occurs because in the Stackelberg game, the leader

partially accounts for the effects of his rotation age decision on the follower

landowner, and this increases the welfare of both leader and follower.  In the case of

decreasing temporal dependence, Figures 1-2 show that the welfare comparison
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between Nash and Stackelberg solutions is ambiguous. Thus, we have an additional

Corollary:7

Corollary 1.   Under increasing temporal independence, both landowners are better

off when rotation ages are chosen according to the Stackelberg game, relative to the

case when rotation ages are solved under a Nash equilibrium. 

3. Comparative Static Analysis

 

We have shown that the Nash, Stackelberg, and sole owner rotation ages differ from

each other in the presence of amenity benefits. Now we study the qualitative

properties of these rotation ages.  An important point to realize is that market

parameters for both stands can differ given that site characteristics inherent to both

stands could differ, and their rotation ages are not generally equivalent, as we showed

above.   The results of this section are condensed in Table 1. 

3.1 Nash game

For the effect of a timber price p of stand a on both rotation ages we obtain, through

total differentiation of the first order conditions,
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A ,  (12a)

{ }bN
T

aN
Tp

NN
p ττ ΩΩ∆=

−1
 , (12b)

                                                          
7 Hamilton and Slutsky (1990) have shown, in models of endogenous timing regarding the
decisions of firms, there are incentives for firms to move sequentially if there is one
Stackelberg equilibria that Pareto dominates all other simultaneous move Nash equilibria.
With two firms, the necessary condition for the Stackelberg to obtain is that the leader’s
profits are higher when moving first, compared to it profits in the Nash game, otherwise no
firm would choose to move first and both would, effectively, play a Nash game.  A sufficient
condition for this is that both leader and follower profits in the sequential move game is at
least high as their Nash profits.     
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where )1()()()( rTrTaN
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T  (see Koskela-Ollikainen 2001b). 

Given that the present value of regeneration costs is always positive, we have the

conventional effect of a shorter rotation age due to an increase in the own-stand

harvesting price when 0),( ≥τTF a
T  (i.e., the marginal amenity valuation increases or

remains constant with the age of trees). 

Interestingly, (12b) reveals that the rotation age of stand b may also be

affected by a change in stand a’s price. Only if the stands are temporally independent,

i.e., 0=ΩbN
Tτ , will the landowner of stand b not change his rotation age if the price of

stand a changes. Assuming that the marginal amenity valuation does not decrease

with the age of the own stand, the other landowner will shorten (lengthen) his rotation

age as a result of a rise in p  when temporal dependence between stands is increasing

(decreasing). Note that the signs of N
qT  and N

qτ  are symmetric given (12a) and (12b). 

To assess the impacts of a change in regeneration costs Tc  on rotation ages,

we obtain
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Thus, the effect of an increase in the own-stand regeneration cost is qualitatively the

same as in the Faustmann and Hartman model-based literature. However, with respect

to the adjacent stand, the Nash solution brings a new result, from (13b). The reaction

of the adjacent stand’s landowner to a change in the regeneration costs of the other

landowner depends on the temporal dependence between stands. More specifically, if

the dependence between the stands increases (decreases) with a longer rotation age for

the own stand, then the owner of the adjacent stand lengthens (shortens) his rotation

age. Again, the signs of N
cT
τ

 and N
cτ

τ  are symmetric given (13a) and (13b).
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Finally, for a change in the real interest rate, we totally differentiate the Nash

first order conditions to obtain,

{ }aN
T

bN
r

bNaN
Tr

NN
rT ττττ ΩΩ−ΩΩ∆−=

−1
 (14a)

{ }bN
T

aN
Tr

aN
TT

bN
r

NN
r τττ ΩΩ−ΩΩ∆−=

−1
, (14b)

where 0<ΩaN
Tr  and 0<ΩbN

rτ . Under increasing temporal dependence both rotation

ages will unambiguously shorten from (14a) and (14b). However, under decreasing

temporal dependence the effect is a priori ambiguous. Naturally, a sufficient condition

for a shorter rotation age here is that the own-stand direct effect of the interest rate

dominates all other effects. Summarizing we have

Result 2. In a symmetric Nash equilibrium with interdependent stands, 

a) A higher own-stand price shortens the rotation age under increasing temporal

dependence, but may increase rotation age under strong decreasing temporal

dependence.  The effect of own-stand regeneration cost on rotation age is positive. 

b) The effects of higher adjacent-stand timber price and regeneration costs on the

own-stand rotation age depend on the nature of temporal dependence between the

stands.

c) A higher interest rate decreases rotation ages under increasing temporal

dependence, but is a priori ambiguous under decreasing temporal dependence 

3.2 Stackelberg game

In the Stackelberg game we have only to solve the comparative statics for the leader’s

rotation age.8 A change in the timber price for stand a impacts the leader’s rotation

age as follows

                                                          
8 Comparative statics for the follower has been analyzed in Koskela-Ollikainen (2001b).
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where )1()()()( rTrTaS
Tp eeTrfTrfTf −− −−−′=Ω  and A  is defined in (12a). 

Recall from Result 1 that the sign of the reaction function Tτ (.) depends on

temporal dependence between the stands, and that from Lemma 2 the sign of the

integral term depends on whether the stands are spatial complements or substitutes.

We can first see that if the stands are temporally independent ( 0=a
TF τ ), then the last

term in (15) is zero and the price effect on the Stackelberg rotation age is identical to

the price effect on rotation age in the single stand Hartman model. Second, a

combination of increasing marginal valuation, spatial complements and increasing

temporal dependence, or spatial substitutes with decreasing temporal dependence,

implies unambiguously the conventional effect of a shorter rotation age. 

Given that the Stackelberg game is not symmetric like the Nash game, we next

solve for the effect of the price of stand b on the leader’s rotation age. Differentiating

the first-order condition (8a) with respect to this price ( q ) and noting that all effects

emerge from the follower’s response function, we obtain

aS
TT

aS
TqS

qT
Ω
Ω

−= .  (16)

We show in Appendix 4 that, while this price effect is a priori ambiguous for both

decreasing and increasing temporal dependence, it is zero for temporally independent

stands. The ambiguity under non-constant temporal dependence results from the fact

that the direct and indirect effects of timber price q  are offsetting (via a shift in the

follower’s reaction function and its slope).

The effect of higher regeneration cost of the leader’s stand on the leader’s

rotation age is given by

0
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0=S
cT
τ

,   (17b)

Hence, the leader’s rotation age unambiguously lengthens. The interpretation of this

finding is the same as before. If the regeneration cost of the follower’s stand

increases, it affects the leader’s first-order condition only via the reaction function of

the follower.  Given that 0=(.)
τ

τ Tc , there is no effect on the rotation age of the

leader’s stand. 

Finally, turning to the effect of a higher interest rate on the leader’s rotation

age, we can show that
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According to this expression for aS
TrΩ , the interest rate effect arises through three

channels: directly i) through the profitability of the leader’s stand, and indirectly both

ii) via the slope of the reaction function, and iii) through the position of the follower’s

reaction function. In Appendix 3 we show that these effects counter each other, so that

the overall impact of the interest rate is ambiguous.

We can now summarize our findings in

Result 3. In a Stackelberg equilibrium with interdependent stands,

a) Under increasing marginal amenity valuation, an increase in the leader’s own-

stand price will shorten the leader’s rotation age when the stands are spatial

complements with increasing temporal dependence, or spatial substitutes with

decreasing temporal dependence.  A higher own-stand regeneration cost

increases the leader’s rotation age unambiguously.  

b) An increase in the follower’s own-stand price has an a priori ambiguous effect on

rotation age when stands are not temporally independent, while higher own-stand

regeneration costs for the follower have no effect on the leaders’ rotation age.
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c) A higher interest rate has an a priori ambiguous effect on the leader’s rotation

age.

3.3. Sole owner solution

Finally, we move on to the comparative static effects in the sole owner case.  For the

effect of higher timber price of stand a on both rotation ages we have
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We can show that sgn TpW  = -sgn 



 + ∫

−τ

0
),( dxexTFA rxb

T , where

aarT rETFercA −+−= − ),()1( τ .  The sufficient conditions for TpW < 0, and the

impact of own-stand price on the rotation age to be negative, are that marginal

amenity valuations are non-decreasing with the rotation age of the stand )0(.)( ≥a
TF

and the stands are spatial complements )0(.)( >b
TF (see Lemma 2).    Under the

sufficient condition for TpW < 0, the effect of the adjacent stand price on own-stand

rotation age is negative under increasing temporal dependence and positive under

decreasing temporal dependence; because according to Lemma 1 0,<>TWτ , as the

temporal dependence between stands increases, or decreases, respectively.   Thus, the

price effects resemble the classic case of complements and substitutes, except in our

model complementarity is specified in a temporal sense. 

The effect of a change in the own-stand regeneration costs of stand a on the

rotation age is given by,
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A higher own-stand regeneration cost lengthens its rotation age, while the effect on

the other stand depends again on the temporal dependence between stands. The

rotation age of the other stand lengthens under increasing temporal dependence and

shortens under decreasing temporal dependence.  

Finally, for the effects of an increase in the real interest rate we have
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We know that the first terms in TrW  and rWτ  are negative. In Appendix 5 we show

that, under plausible assumptions concerning the interest rate and rotation ages the

braced terms are negative if the stands are spatial complements. Thus, under

increasing temporal dependence and spatial complementarity of stands, both rotation

ages will unambiguously shorten; otherwise the effects are a priori ambiguous. We

therefore have,

 

Result 4. In the case of a sole owner with interdependent stands,

a) A higher own-stand price shortens rotation age if stands are either spatial

complements, and temporal dependence is either unchanged or increasing.  A

higher own-stand regeneration cost unambiguously lengthens the rotation age 

b) Under a certain sufficient condition, the effect of the adjacent stand price on own-

stand rotation age depends on the nature of temporal dependence. The effect of
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the adjacent stand’s regeneration cost will increase (decrease) the own-stand

rotation age under increasing (decreasing) temporal dependence.  

c) If stands are spatial complements and temporal interdependence is increasing,

then a higher interest rate will shorten the rotation ages. 

4. Discussion and Policy Implications

Sustaining forest ecosystems requires that stands are managed in concert

rather than in isolation.  Most forest economics models, however, consider only a

single isolated stand or a single landowner.  This is not necessarily the case for private

land ownership, where individual property rights make the proper coordination of

management decisions across large numbers of landowners very difficult.  The lack of

coordination among landowners can be detrimental to amenities that depend on the

ecosystem as a whole, such as those derived from recreational experiences or the

existence of certain wildlife species. 

We examine the possibility that stands can be temporally or spatially

interdependent in different ways regarding the production of amenities.  We then

allow for several cases of landowner decision timing and commitment, including

landowners making simultaneous decisions or one acting as a first mover. Our results

extend the basic Hartmann model of forest management that first introduced

amenities for the case of an isolated stand, as well as other models of multiple stands

based on numerical simulations or the assumption of only sole ownership. 

We demonstrate that rotation age decisions depend on how adjacent stands are

spatially and temporally dependent with regards to amenity valuation, and on the

structure of landowner decision timing. Sole ownership represents the social optimum

in our model. Comparing this with the Nash and Stackelberg outcomes gives a

qualitative indication of the social costs associated with landowners who do not seek

to jointly maximize total revenue and amenity rents from owning forests. 

The collective results from our paper are summarized in Propositions 1, 2,

Corollary 1, and Table 1.  The sole owner’s rotation age is longer than the Nash and

Stackelberg rotation ages if the stands are spatial complements, but shorter if they are

spatial substitutes with regard to marginal amenity valuation. Additionally, the

relationship between the Nash and Stackelberg rotation ages also depends on how this

substitutability and complementarity evolves over time. The differences between
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these solutions largely reflect the ability (or inability) of landowners to either benefit

from another landowner’s decisions. Interestingly, we show that under increasing

temporal interdependence, it can be the case that one landowner moving first may

make both landowners better off relative to the case where they do not coordinate at

all and play a Nash game. 

As a basis for policy analysis, we also characterize in these new models how

rotation ages depend on timber prices, interest rates, and regeneration costs. We find

that the conventional wisdom regarding effects of these parameters, derived in single

stand models, does not usually hold. Instead, the results depend on the spatial and

temporal dependence between the stands, the ability of landowners to commit to

harvesting, and whether the parameters changing are for the stand in question or the

adjacent stand.  By and large, most of the differences between our models and

existing models occur for two reasons. First, the possibility of increasing or

decreasing temporal dependence often determines the signs of comparative statics

results, for instance, the interest rate effect on rotation age (for instance) is not

necessarily negative like in existing models with one forest stand (see Table 1).

Second, stand interdependence implies that parameters from one stand can affect the

choices made in the other stand, as exemplified by our price and regeneration cost

effects. 

Our new results and approach to studying landowner behavior suggests that

existing models of policy design should be revised.  We demonstrate that both Nash

and Stackelberg equilibrium rotation ages are longer than sole owner rotation ages

when stands are spatial substitutes, but Nash and Stackelberg ages are shorter than

sole owner ages when stands are spatial complements.  Clearly the scope for using

taxes or subsidies to adjust rotation ages toward their efficient levels depends on the

nature of stand interdependence regarding amenities, and also on the ability of

landowners to commit to rotation age actions.  These ideas have not been previously

uncovered, even within the spatial forestry literature.  In the end, the design of a

proper Pigouvian tax system which mimics the efficiency of the sole owner solution

will be much more complicated than previously thought. Results obtained depend on

critically on the nature of interdependence between stands.  What we can learn from

empirical work regarding this interdependence will be crucial to practical policy

work.  
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TABLE 1. Comparative statics of the rotation age in Nash, Stackelberg, and sole owner

Solutions for stand a.*  A ‘+’ indicates an increase in rotation age, while ‘-‘ indicates a
decrease in rotation age.  Marginal amenity function signs correspond to Definitions 1
and 2 in the text.  

Exogenous
Parameter

Nash Rotation Age

( NT )

Stackelberg
Rotation Age
Leader 
( ST )   

Sole Owner
Rotation Age

( SOT )

Own stand price

 
-      if 0≥a

TF

+/-   otherwise

-

if 0>a
TF , 0>a

TF τ ,

0>aFτ or

if 0>a
TF , 0<a

TF τ ,

0<aFτ

- if

0;0 >≥ b
T

a
T FF

+/-   otherwise

Own-stand
regeneration cost

+ + +

Adjacent stand
price as 0≥a

TF
+    if 0>a

TFτ

-     if  0<a
TFτ

+/- +   if

0

;0;0

<

>≥
a
T

ab

F

FF

τ

ττ

- if

0

;0;0

>

>≥
a
T

ab

F

FF

τ

ττ

Interest rate

-     if 0>a
TFτ

+/-  otherwise

+/-                 -  if

0>τ
b

TF , 0>b
TF

+/- otherwise

Adjacent stand
regeneration cost

+  if 0>a
TFτ

-  if 0<a
TFτ

0
+ if 0>a

TFτ

-  if 0<b
TFτ

*By symmetry, the comparative statics results in the table would also hold for stand b,
with the parameters redefined for this stand.  
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Appendix 1.  Proof of Lemma 1

The proof is given only for aN
TτΩ , because the proof for bN

TτΩ  is analogous. The cross-
derivative aN

TτΩ  can be re-expressed as

∫



















−
−

∫
=Ω −

−

−
T

rTT
rsa

a
rsaaN

T e
r

dsesF

TF
dsesF

0

0

1),(

),(
),(

τ

τ
τ

τ

τ
ττ   A.1

• Temporal Independence: 0=a
TFτ   ⇒   0=

τd
dT

Proof. If 0=a
TFτ , aN

TτΩ  reduces to

[ ]rTaarTaa
T eTFFeTF −−− −−−=Ω ),(),0()1(),( 1 τττ ττττ . There are two possibilities. If

0=aFτ , then trivially 0=ΩaN
Tτ . Under 0≠aFτ , 0=a

TFτ  implies that

[ ] )1(),(),0( rTarTaa eFeTFF −− −=− τττ ττ ⇒

0)1)(,()1(),( 1 =−−−=Ω −−− rTrT
T eTFeTF ττ τττ . Hence, 0=

τd
dT .

• Increasing Temporal Dependence: 0>a
TFτ   ⇒   0>

τd
dT

Proof.  i) Assume that 0>aFτ  ⇒  0>ΩaN
Tτ  ⇔  rTT

rsa

a

e
r

dsesF

TF
−

− −
>

∫
1),(

),(

0
τ

τ

τ

τ .

0>a
TFτ  ⇒

∫>∫ −−
T

rsa
T

rsa dsesFdseTF
00

),(),( ττ ττ  ⇔  ∫>
− −

− T
rsa

rTa

dsesF
r

eTF
0

),(
)1)(,(

τ
τ

τ
τ

⇔   rTT
rsa

a

e
r

dsesF

TF
−

− −
>

∫
1),(

),(

0
τ

τ

τ

τ . Hence, 0>ΩaN
Tτ  so that 0>

τd
dT .

ii) Assume that 0<aFτ  ⇒  0<ΩaN
Tτ  ⇔  rTT

rsa

a

e
r

dsesF

TF
−

− −
<

∫
1),(

),(

0
τ

τ

τ

τ .

0>a
TFτ  ⇒



3131

∫>∫ −−
T

rsa
T

rsa dsesFdseTF
00

),(),( ττ ττ ⇔ ∫>
− −

− T
rsa

rTa

dsesF
r

eTF
0

),(
)1)(,(

τ
τ

τ
τ

⇔ rTT
rsa

a

e
r

dsesF

TF
−

− −
<

∫
1),(

),(

0
τ

τ

τ

τ . Hence, 0>ΩaN
Tτ  so that 0>

τd
dT .

• Decreasing Temporal Dependence: 0<a
TFτ   ⇒   0<

τd
dT

Proof. i) Assume that 0>aFτ  ⇒ 0>ΩaN
Tτ  ⇔  rTT

rsa

a

e
r

dsesF

TF
−

− −
<

∫
1),(

),(

0
τ

τ

τ

τ .

0<a
TFτ  ⇒

∫<∫ −−
T

rsa
T

rsa dsesFdseTF
00

),(),( ττ ττ ⇔ ∫<
− −

− T
rsa

rTa

dsesF
r

eTF
0

),(
)1)(,(

τ
τ

τ
τ

⇔ rTT
rsa

a

e
r

dsesF

TF
−

− −
<

∫
1),(

),(

0
τ

τ

τ

τ .  Hence, 0<ΩaN
Tτ  so that 0<

τd
dT .

ii) Assume that 0<aFτ  ⇒  0<ΩaN
Tτ  ⇔  rTT

rsa

a

e
r

dsesF

TF
−

− −
>

∫
1),(

),(

0
τ

τ

τ

τ .

0<a
TFτ  ⇒

∫<∫ −−
T

rsa
T

rsa dsesFdseTF
00

),(),( ττ ττ  ⇔ ∫<
− −

− T
rsa

rTa

dsesF
r

eTF
0

),(
)1)(,(

τ
τ

τ
τ

⇔ rTT
rsa

a

e
r

dsesF

TF
−

− −
>

∫
1),(

),(

0
τ

τ

τ

τ . Hence, 0<ΩaN
Tτ  so that 0<

τd
dT . Q.E.D.

  
Appendix 2. Proof of Lemma 2

Integrating the term dsesF rs
T

a −∫=Ψ ),(
0

ττ  in (8a) by parts and assuming that the third

derivative of the amenity function is zero, i.e. 0=a
TTFτ , we get







 −+−=Ψ −− )),(),0((1),(),0(1 rTa

T
a
T

rTaa eTFF
r

eTFF
r

ττττ ττττ  A2.1
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Assume that the amenity valuation function is quadratic
2

2
1 )()(),( γτ+β−τ+α=τ TTTF , A2.2

with 0>β , 0)(<>γ , so that )(),( γτ+βγ−α=ττ TTF ,  and βγ−=ττ ),(TF T .

Moreover, we assume that 
















<
>

−=
ssubstitutearestands

scomplementarestands
as0),0( 2τβγαττF  A2.3

Hence, we can express A2.1 as







 −

−+−−=Ψ
−

−−

r
eTee

r

rT
rTrT )1()1)((1 2 βγ

βγτβγα   A2.4

Using second-order approximation 22)2/1(1
1

TrrT
e rT

++
=−  yields









+
−

−
=









+
−−

−
=Ψ

−−

rT
TF

r
e

rT
T

r
e a

rTrT

2
),0()1(

2
)()1( 2 βγτβγτβγα τ  A2.5

Now,

• For complements 0<γ , and under increasing temporal dependence
0),( 2 >−−= TTF a βγτβγαττ , while decreasing temporal dependence implies

that 0),( 2 <−−= TTF a βγτβγαττ . Thus A2.5 is positive in both cases: the first

one automatically, the second one, because 
rT

TT
+

>
2

.

• For substitutes 0>γ . Thus A2.5 is automatically negative for decreasing
temporal dependence; and negative also under increasing temporal dependence,

because 
rT

TT
+

>
2

.

QED.

Appendix 3: Second order conditions for the sole owner

The second order conditions rely on the following derivatives, from (10a) and (10b),

0
)1(

),(

)1()1(
0 <

−
+








Ω−Ω

−−
−= −

−

−−
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τ
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rxb
TT

aN
TT

aN
TrTrT

rT

TT e

dxexTF

e
r

e
eW    
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0 <
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
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0>−=∆ TTTT
SO WWWW ττττ ,  

Appendix 4.  Comparative statics of adjacent stand’s timber price and interest rate 
in Stackelberg model

• Price (q):

By differentiation we get









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−=Ω ∫∫ −−

−

−
−

T
rs

T
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rT

rT
rT

q
aS
Tq dsesFdsesF

e
reeTF

001
),((.)),(

)(
),((.) τττττ ττττ      A4.1  

                     ∫ −+
T

rs
Tq dsesF

0

),((.) ττ τ
, 

where the term Tqτ  is defined as follows:
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



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grgdxeFerF
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ττ

τ
τ ττ

τ .          A4.2

Thus aS
TqΩ  consists of a shift in the follower’s reaction function as well as a change in

its slope. The sign of all terms depends on the nature of temporal dependence between
the stands. On the basis of our previous analysis the sum of the first two terms of eqn
A3.1 in brackets are negative (positive) for increasing (decreasing) temporal
dependence. The third and fourth terms are of opposite sign, being positive (negative)
for increasing (decreasing) temporal dependence, indicating that the sign of aS

TqΩ  is a
priori ambiguous for both decreasing and increasing temporal dependence. For
temporally independent stands we have 0=ΩaS

Tq .

• Interest rate (r):

We first develop the cross-derivative of the follower’s reaction function, Trτ (.).
Recalling equation (8b), the derivative with respect to r is,












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A4.3.

where 0)()( <+′−′′= bFgrqgq τττφ  and 







−

−
−

=
−

−

− τ

τ

τ

τ
ω r

r

r e
re

e 1
1

1
1 .

The sign of the first two terms in braces depends on the sign of b
TF τ  by Lemma 1.

Approximating the ω term using 22)2/1(1
1

ττ
τ

rr
e r

++
=−  implies that

0
)2/1(1)1

1
22

22
2
1

>







++−

= − ττ
τ

ω τ rr
r

e r . We determine the sign of the integral term

∫ −
T

rxb
T dxexF

0

 by using the quadratic amenity valuation function given in A.2.2 in

Lemma 3. 

Lemma 3. If the amenity valuation function is quadratic, then

 0
0 













<
=
>
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Proof. See Appendix 5. 

Hence, we have established that 0as0
















<
=
>

















<
=
>

a
TTr Fττ . Now the overall sign of the

three latter terms in aS
TrΩ  can be revealed. The first term is positive, but the last two

terms are negative when the stands exhibit increasing temporal dependence, while the
opposite holds for decreasing temporal dependence. Hence, the interest rate effect in
the Stackelberg game is genuinely ambiguous.

Appendix 5. Proof of Lemma 3

Integrating ∫ −
τ

0

dxexF rxb
T  by parts and assuming that the third derivative of the amenity

function is zero, i.e. that 0=ττTF , we get 

∫ −
τ

0

dxexF rxb
T  = ∫∫ −− +

τ

τ

τ

00

dxexFdxeF rxb
T

rxb
T  A5.1

Assume the quadratic amenity valuation function
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1 )()(),( γτ+β−τ+α=τ TTTF ,  A5.2

Applying this to A5.1 yields ∫ βγ−β−α=∫
τ

−
τ

−

00
)( dxxexTdxexF rxrxb

T . Noting that the

term )( Tβ−α is independent of the integral we have
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By integrating the first RHS of A5.3 one gets 



 −−−= −−−

∫ )1(11
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and using second-order approximation 22)2/1(1
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For the second term we get via integration by parts that
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Given the positivity of A4.4, the sign of the integral ∫ −
τ

0

dxexF rxb
T  depends on the sign

of )( Tβα − . Hence, we have shown that
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QED.

Appendix 6. 

Given (21a) and (21b) in the text, the first terms in TrW  and rWτ  are negative. Next we
study sign of TrW  brace terms (by symmetry this holds also for the sign of the brace
terms in rWτ ). According to Lemma 2 we have
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Using Lemma 3 we have 

 
))2/1(1(2

)0,(
))2/1(1(2

)( 22

2

22

2

0 ττ
τ

ττ
τ

βα
τ

rrr
TF

rrr
TdxexF b

T
rxb

T
++

=
++

−=∫ −

A6.9

Combining A6.8. and A6.9  gives
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Analogously we can write 
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A6.11
Under plausible assumptions concerning the interest rate and rotation ages the last
term in equations A6.10 and A6.11 dominates.Q.E.D.
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