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Abstract

We characterize the unique Markov perfect equilibrium of a tug-of-war without exogenous
noise, in which players have the opportunity to engage in a sequence of battles in an attempt
to win the war. Each battle is an all-pay auction in which the player expending the greater
resources wins. In equilibrium, contest effort concentrates on at most two adjacent states of
the game, the "tipping states’, which are determined by the contestants relative strengths,
their distances to final victory, and the discount factor. In these states battle outcomes are
stochastic due to endogenous randomization. Both relative strength and closeness to victory
increase the probability of winning the battle at hand. Patience reduces the role of distance in
determining outcomes.

Applications range from politics, economics and sports, to biology, where the equilibrium
behavior finds empirical support: many species have developed mechanisms such as
hierarchies or other organizational structures by which the allocation of prizes are governed
by possibly repeated conflict. Our results contribute to an explanation why. Compared to a
single-stage conflict, such structures can reduce the overall resources that are dissipated
among the group of players.
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1 Introduction

Final success or failure in a conflict is often the result of the outcomes of
a series of potential battles. An illustrative example is the decision making
process in many organizations. Resources, jobs and other goods that invol-
ve rents to individuals inside the organization are frequently allocated in a
process that has multiple decision stages. For instance, hiring decisions often
involve a contest between candidates in which a hiring committee makes a
decision and forwards this decision to another committee. This committee
approves to the initial decision and forwards the case further until a final
decision stage is reached, or may return the case to the previous committee.
Candidates could expend effort trying to influence the decision process in
each stage, but if at all, typically serious efforts are expended by the candi-
dates only in early stages of the decision process. Such multi-layered decision
processes obviously cause delay in decision making and this can be seen as
a cost. We will argue here that, compared to a single stage decision process
in which the rival players spend effort in a single stage all-pay auction, the
multi-stage decision process can be advantageous as it may improve alloca-
tive efficiency and reduce effort that is expended by rival contestants in the
conflict.

In more general terms we describe the multi-stage contest as a tug-of-
war. As a modeling device, the tug-of-war has a large number of applications
in diverse areas of science, including political science, economics, astronomy,
history and biology.! It consists of a (possibly infinite) sequence of battles
between two contestants who accumulate stage victories, and in which the

1To give a few examples: In politics, Whitford (2005) describes the struggle between the
president and legislature about the control of agencies as a tug-of-war. Yoo (2001) refers
to the relations between the US and North-Korea and Organski and Lust-Okar (1997) to
the struggle about the status of Jerusalem as cases of tug-of-war. According to Runciman
(1987), at the time of the Crusades, when various local rulers frequently attacked one
another, they sometimes succeeded in conquering a city or a fortification, only to lose this,
or another, part of their territory to the same, or another, rival ruler later on. The conflict
between two rival rulers can be seen as a sequence of battles. They start at some status
quo in which each rules over a number of territories with fortified areas. They fight each
other in battles, and each battle is concerned with one fortress or territory. In the sequence
of successes and failures, the fortresses or territories are destroyed or reallocated, and the
conflict continues until one of the rulers has lost all his fortresses or territories and is thus
finally defeated. If battle success alternates more or less evenly, then such a contest can go
on for a very long time, possibly even forever. The end comes only when one of the rulers
has been more successful than his rival sufficiently often.



contestant who first accumulates a sufficiently larger number of such victories
than his rival is awarded the prize for final victory.>

To our knowledge, Harris and Vickers (1987) were the first to look for-
mally at the tug-of-war. They analyse an R&D race as a tug-of-war in which
each single battle is determined as the outcome of a contest with noise. Such
exogenous noise makes the problem less tractable and has so far ruled out a
fully analytic description of the equilibrium. Budd, Harris and Vickers (1993)
apply a somewhat more complicated stochastic differential game approach to
a dynamic duopoly, seen as a tug-of-war involving a continuum of advertizing
or R&D battles that determine the firms’relative market positions. Using a
complementary pair of asymptotic expansions for extreme parameter values
and numerical simulations elsewhere, they isolate a number of effects that
govern the process. Several of these appear in our analysis which, unlike
their framework, derives an analytical solution for the unique Markov per-
fect equilibrium. Morever, our analysis explicitly solves for equilibrium for
both symmetric and asymmetric environments.

The term ‘tug-of-war’ has also been used in biology. In the context of
within-group conflict among animals, subjects could struggle repeatedly.® For
instance, the formation of hierarchies and their dynamic evolution occurs in
repeated battle contests. As Hemelrijk (2000) describes for several examp-
les, individuals may try to acquire a high rank, but the differentiation and
asymmetry that is created by this can also reduce future conflict. Winning
or losing a particular contest in a series of conflictual situations is known to
change future conflict behavior (Bergman et al. (2003), Beacham (2003) and
Hsu and Wolf (1999)). This may partially be the result of information about
own fighting skills and the fighting experience gained, but it may also arise

2 According to Wikipedia the term tug-of-war refers to a rope pulling contest in which
two contestants (or groups) pull a rope in different directions until one of the sides pulled
the rope (and the opponent group) across a certain limit. In more abstract terms, the
contest consists of a series of battles, where a battle victory of one player makes both
move one unit towards the winner’s preferred terminal state, and where one contestant
wins the war if the difference between the winner’s number of such battle victories exceeds
the other contestant’s number of battle victories by some absolute number.

3The term also refers to contests between different species. Ehrenberg and McGrath
(2004) refer to the interaction of microtubule motors, Larsson, Beignon and Bhardwaj
(2004) and Zhou et al. (2004) refer to the interaction between viruses and the dendritic
cells or other parts of the immune system as tugs of war. Tibbetts and Reeve (2000)
consider the role of the amount of reproductive sharing within a group for the likelihood
of within-group conflict among the social wasp Polistes dominulus.



from the change in strategic position with respect to future conflict about
rank, territory, access to food, or opportunities to reproduce.

Evidence from biology and political science shows that violent conflict
often does not take place, or, at least, the intensity of a conflict varies si-
gnificantly as a function of the conflicting parties’ actual strengths, previous
experience, and the strategic symmetry or asymmetry of the particular si-
tuation in terms of territorial or other advantages. Parker and Rubenstein
(1981) and Hammerstein (1981) emphasize the role of asymmetry in determi-
ning whether a conflictual situation turns into a resource wasteful or violent
conflict. Different advantages and disadvantages may determine the over-
all asymmetry of a conflictual situation, and counterbalance or add to each
other. Schaub (1995) describes the conflict over food that occurs between
long-tailed macaque females. Differences in strength and in the distances
between the animals and the location of the food govern their behavior. Su-
perior strength or dominance of one contestant can be compensated by a
greater distance she has to the location of the food. Relative strength, to-
gether with the actual payoffs from winning determine contestants’ stakes
at any given stage of a tug-of-war and determine the degree of asymmetry
between the rival players.

We examine how the players’ respective fighting abilities, rewards from
final victory, and the distances in terms of the required battle win differential
to achieve victory interact to determine Markov perfect equilibrium behavior
in the tug-of-war. For notational convenience we concentrate on the asymme-
try in the valuations of the final prize and assume equal fighting ability, but
as will be shown this is equivalent to the more general case with asymmetric
valuations of the prize and asymmetric fighting abilities. We show that the
contest effort that is dissipated in total and over all battle periods crucial-
ly depends on the starting point of the tug-of-war, and, for many starting
points, is negligible, even if the asymmetry in the starting conditions is very
limited. Hence, the multi-battle structure in a tug-of-war reduces the amount
of resources that is dissipated in the contest, compared to a single all-pay
auction, which has been studied by Hillman and Riley (1989) and Baye, Ko-
venock and deVries (1993, 1996) for the case of complete information and
by Amann and Leininger (1995, 1996), Krishna and Morgan (1997), Kura
(1999), Moldovanu and Sela (2001) and Gavious, Moldovanu and Sela (2002)
in the context of incomplete information.*

4For further applications of the all-pay auction see Arbatskaya (2003), Baik, Kim and



Our results may contribute to explaining why mechanisms such as hierar-
chies or other organizational structures have evolved by which the allocation
of prizes is governed by a multi-stage conflict.> Such structures may delay the
allocation of a given prize, compared to a single stage conflict, but can con-
siderably reduce the overall resources that are dissipated among the group
of players. Compared to a standard all-pay auction, a tug-of-war that is not
rigged in favor of one of the players also improves allocative efficiency; the
probability with which the prize is awarded to the player who values it more
highly is higher in the tug-of-war than in the standard all-pay auction.

In the next section we outline the structure of the tug-of-war and cha-
racterize the unique Markov perfect equilibrium. In section 3 we discuss the
efficiency properties of the tug-of-war and compare it with the all-pay aucti-
on. Section 4 concludes.

2 The analytics of the tug-of-war

A tug-of-war is a multi-stage game with a potentially infinite horizon which
is characterized by the following elements. The set of players is { A, B}. The
set of states of the war is given by a finite ordered grid of m + 1 points
M = {0,1,...m} in R!. The tug-of-war begins at time t = 1 with players
in the intitial state j(1) = m4, 0 < ma < m, which may either be chosen
by nature, or may be a feature of the institutional design. In each period
t = 1,2,3... a battle takes place between the players in which A (resp. B)
expends effort a; (resp. b;). A victory by player A (B) in state ¢ at time ¢
moves the war to state i — 1 (4 1) at time ¢ 4 1. The state in period ¢t + 1 is
therefore j(t + 1) = ma + np; — nar, where ny; and np; denote respectively,

Na (2001), Baye, Kovenock and De Vries (2005), Che and Gale (1998, 2003), Ellingsen
(1991), Kaplan, Luski and Wettstein (2003), Konrad (2004), Moldovanu and Sela (2004),
and Sahuguet and Persico (2005).

5There are, of course, other explanations for hierarchies more generally, which, however,
focus on different aspects of a hierarchy (see, e.g., the survey in Radner 1992). Radner
(1993) for instance, considers a problem of efficient information aggregation, asking what is
the efficient decision tree. Closer to the issue of allocation of goods in a conflict, Wirneryd
(1998) and Miiller and Wirneryd (2001) consider distributional conflict between rival
groups followed by distributional conflict within the winning group as a type of hierarchical
conflict. Both these approaches focus on the "tree-6r "pyramidproperty of hierarchies that
reduces the number of players when moving to the top, whereas our approach does not use
this property. We consider only two contestants throughout and focus on the sequential,
repeated nature of decision process.



the number of battle victories that A and B have accumulated by the end
of period ¢. This continues as long as the war stays in some interior state
jeM™={1,2,..,(m—1)}. The war ends when one of the players achieves
final victory by driving the state to his favored terminal state, j = 0 and
j = m, for player A and B respectively. A prize (for final victory) of size Z4
is awarded to A if the terminal state j = 0 is reached and, alternatively, a
prize of Zp is awarded to B if the terminal state j = m is reached. Without
loss of generality we assume that Z4 > Zp5. Figure 1 depicts the set of states.

o—0— @ @ o— v —@—@ dates]
0 1 m-1 m mtl ml m
Figure 1:

Player A’s (B’s) period t payoff ma(ay, j(t)) (mp(b, j(t))) is assumed to
equal Z, (Zp) if player A (B) is awarded the prize in that period, and
—ay (=b;) if t is a period in which effort is expended.® We assume that
each player maximizes the expected discounted sum of his per-period payoffs.
Throughout we assume that 0 < § < 1 denotes the common, time invariant,
discount factor.”

The assumption that the cost of effort is simply measured by the effort
itself is for notational simplicity only. Since a player’s preference over income
streams is invariant with respect to a positive affine transformation of utility,
if player A (B) has a constant unit cost of effort c4 (cp) we may normalize
utility by dividing by ¢4 (¢p) to obtain a new utility function representing
the same preferences in which the unit cost of effort is 1 but player A (B) has
a prize value Z4/ca (Zp/cp). Therefore, our model with asymmetric prizes
can be interpreted as one with both asymmetric prizes and fighting abilities.

Each single battle in the tug-of-war is a simultaneous move all-pay auc-
tion with complete information. A player’s action in each period in which
the state is interior is his effort, a; € [0, K] and b, € [0, K], for A and B,

6Since the per-period payoffs do not depend directly on time, we have dropped a time
index.

Tt is straightforward to extend our results to cases in which players have different,
time invariant discount factors 64 and dg.



respectively, where K > Z,4.8 The player who spends the higher effort in a
period wins the battle. We choose a deterministic tie-breaking rule for the
case in which both players choose the same effort, by which the ”advantaged”
player wins. Given m, Z4, Zg and 0, we say that player A is advantaged in
state j if 0’ Z4 > 8™ 7 Zp, and B is advantaged if 8 Z4 < 8™ Zp. We define
Jo = min{j € Mt WZA < 6™ Zp} where this is non-empty, and jo = m
otherwise: player B is advantaged for j € M™ such that j > j, and A is
advantaged otherwise.

If m =2 and my = 1, the tug-of-war reduces to the well-known case of
the standard all-pay auction with complete information at time ¢ = 1, as in
Hillman and Riley (1989), Ellingsen (1991) or Baye, Kovenock and deVries
(1996). In this case, one single battle takes place at state j = my = 1. The
process moves from this state in period 1 to j = 0 or to j = 2 at the beginning
of period 2, and the prize is handed over to A or B, respectively. Accordingly,
the contest at period ¢ = 1 in state j = 1 is over a prize that has a present
value of 074 and 0 Zp for A and B, respectively, and the payoffs in the unique
equilibrium of this game (which are in nondegenerate mixed strategies) are
d(Z4 — Zg) for A and zero for B. In what follows, we consider the case with
m > 2.

For each period t, if a terminal state has not yet been reached by the
beginning of the period, players simultaneously choose efforts with common
knowledge of the initial state m 4 and the full history of effort choices, denoted
as (a;_1,bi—1) = ((a1, ..., a1-1), (b1, ...,0—1)). Players also know the current
state j(t) of the war and the state in any past period j(7), 7 < t. We define
Je = (J(1),4(2),...5(t)), where j(1) = ma. Hence, we will summarize the
history at time ¢ along any path which has not yet hit a terminal state by
ht = (a;_1,by_1,j;). We will call such a path a non-terminal period t history
and will denote the set of such histories by H’. A history of the game that
generates a path that reaches a terminal state at precisely period ¢ is termed
a terminal period t history. Denote the set of terminal period ¢ histories by
T*, and the set of (a;_1,b; 1) generating elements of T by T7.

If for an infinite sequence of effort choices, a = (ay,as,...) and b =
(b1, bg, ...) no terminal state is reached in finite time, we will call the cor-
responding history A = (a, b, j) a non-terminal history and denote the set

8This upper limit makes the set of possible effort choices compact, but does not lead
to a restriction that could be binding in any equilibrium, as an effort choice larger than
Z 4 in some period is strictly dominated by a choice of effort of zero in this and all future
periods.



of such histories as H°.

Given these constructions, we define a behavior strategy o; for player
| € {A, B} as a sequence of mappings o;(h') : H' — X g1, that specifies for
every period ¢t and non-terminal history h' an element of the set of probabi-
lity distributions over the feasible effort levels [0, K. Each behavior strategy
profile 0 = (0 4,0p5) generates for each ¢ a probability distribution over his-
tories in the set |J ., 77 U H'. It also generates a probability distribution
over the set of all feasible paths of the game, |27, T7 U H™.

Since we assume that each player’s payoff for the tug-of-war is the expec-
ted discounted sum of his per-period payoffs, the payoff for player A from a
behavioral strategy profile o is denoted va(c) = E,(X!_,0" 'ma(as, j (1)) =
E,(m(a;_1,b;_1,j;)) where # is the hitting time at which a terminal state is
first reached.” If a terminal state is never reached, t = co. Note that for a
given sequence of actions (a;_; b; ),  arises deterministically, according to
the non-random transition rule embodied in the all-pay auction, so that the
randomness of ¢ is generated entirely by the non-degenerate nature of the
probability distributions chosen by the behavioral strategies. If A"t = (a,
b, jir1) € T denotes a sequence of efforts that leads to a terminal state at
precisely period ¢ =t + 1, then, the payoffs for A and B are

t
_ Zéiilai —|—(5tZA if j(t + 1) =0

WA((at,bmth)) = 71 (1)

—Zéiilai if jt+1)=m

i=1

and, respectively,

t
= 07t +0'Zp if j(t+1)=m
=1 (2)

7-‘-B((ahbt?jﬁ—l)) - t"
= 5 if j(t+1)=0.
=1

9We adopt a notational convention throughout this paper that the action set available
to each player in a terminal state is the effort level zero, so that for any hitting time £,
a; = by = 0. Hence, in these states w4 (at,j) and 7wp(bt, j) include only the prize awarded
to the victor, and we suppress the terms a; and b; in the notation Xf_, 6" 1r 4 (ar, j(t)) =
ma(az_y,b;_1,Jf)-



If for an infinite sequence of effort choices, a = (ay, as,...) and b = (by, b, ...)
no terminal state is reached in finite time, payoffs are

ma((a,b,j)) Zétlt and 73((a,b,j)) Zétlbt

For a given behavior strategy profile o = (04, 0p) each player’s payoff in the
tug-of-war can be derived from calculating the expected sum of discounted
per period payoffs generated by the probability distribution over histories in
the set | J>7, 77 U H*. Moreover, for any ¢ and h' € H', one may define each
player’s expected discounted value of future per-period payoffs (discounted
back to time ¢) conditional on the history h' by deriving the conditional
distribution induced byal|,, over |J72,,, T7 U H*. We shall refer to this as
a player’s continuation value conditional on ' and denote it by v;(o |h") =
E ot (3L_,0° "7 a(as, j(s))). Note that this has netted out any expenditures
accrued on the history h'.

Since the players’ objective functions are additively separable in the per-
period (time invariant) payoffs and transitions probabilities depend only upon
the current state and actions, continuation payoffs from any sequence of
current and future action profiles depend on past histories only through the
current state j. It therefore seems natural to restrict attention to Markov
strategies that depend only on the current state j and examine the set of
Markov perfect equilibria. Indeed, this partition of histories is that obtained
from the more formal analysis of the determination of the Markov partition
in Maskin and Tirole (2001). For any ¢, we may partition past (non-terminal)
histories in H* by the period t state j(t), inducing a partition H*(-), and define
the collection of partitions, H(-) = { H(-)}$2;. It can be demonstrated that in
our game the vector of collections (H4(-), HP(-)) = (H(-), H(-)) is the unique
maximally coarse consistent collection (the Markov collection of partitions) in
the sense of Maskin and Tirole (2001, p. 201). For any time ¢, the current state
j(t) therefore constitutes what they call the payoff-relevant history. Since
our game is stationary, we may partition the set of all finite non-terminal
histories by the same state variables, j € M™ = {1,2,...(m — 1)}, removing
any dependence of the partition on the time ¢. We label this partition {j(t) =
i}icarine. This is the stationary partition defined by Maskin-Tirole, (2001, p.
203).

In the continuation, we restrict attention to (stationary) Markov strate-
gies measurable with respect to the payoff relevant history determined by

8



the stationary partition {j(t) = i};cprine. A stationary Markov strategy o,
for player | € {A, B} is a mapping oy(j) : M™ — Xy g, that specifies for
every interior state j a probability distribution over the set of feasible ef-
fort levels [0, K. If in the continuation game starting in period ¢ and state
j, 0 = (0a,0p) is played, then the continuation value for player i at t is
denoted as v;(c|j) and can be calculated as the discounted sum of future
expected period payoffs in a well-defined manner similar to that described
above.

In this context we are interested in deriving the set of Markov perfect
equilibria; that is a pair of Markov strategies that constitute mutually best
responses for all feasible histories. In Propositions 1-3 below we demonstrate
that the tug-of-war has a unique Markov perfect equilibrium for any combi-
nation of ma, m, Z4, Zp and 4.

Before stating these propositions, it is useful to derive some simple proper-
ties that must hold in any Markov perfect equilibrium of our model. Suppose
o* = (0%, 0%) is a Markov perfect equilibrium and denote player i’s continua-
tion value in state j under o* by v;(c*|j) = v;(j). Subgame perfection and
stationarity imply that competition in any state j, j € {1,2,...m — 1}, may
be viewed as an all-pay auction with prize z4(j) = dva(j —1) —dva(j+1) for
player A and zp(j) = dvg(j + 1) — dvp(j — 1) for player B. In equilibrium,
the continuation value to player [ of being in state j at time ¢ is equal to the
sum of the value of conceeding the prize without a fight (and thereby moving
one state away from the player’s desired terminal state) and the value of
engaging in an all-pay auction with prizes z4(j) = dva(j — 1) — dva(j + 1)
for player A and zp(j) = dvp(j + 1) — dvp(j — 1) for player B. An imme-
diate consequence of the characterization of the unique equilibrium in the
two-player all-pay auction with complete information (see Hillman and Riley
(1989) and Baye, Kovenock, and De Vries (1996)) is that local stategies are
uniquely determined and the continuation value for the two players in any
state j € {1,...m — 1} at any time ¢ is

UA( ) = 5UA(] + 1) + maX(O ZA( ) - ZB( )) = (] + 1)+ (3)
+max(0,0[(va(j — 1) —va(j + 1)) — (v(j + ) vB(J —1)])

and

vp(j) = ovp(j — 1) + max(0, zp(j) — 2a(j)) = dvp(j — 1)+ (@)
+max(0,0[(vp(j + 1) —vp(j = 1)) = (va(y = 1) = valG + 1))



Rearranging (3) and (4) we obtain

va(j) = 6va(j+1) +max(0,0[(va(j —1)+vp(i—1)) — (UA(J'+1)+UB(J'+1)()]§
5

and

vp(j) = dvp(j—1)+max(0, 5[(UA(J'+1)+UB(J'+1))—(UA(j—l)JrUB(j—l)()];
6
Note that the first summand in (5) and (6) is the discounted value of losing
the contest at j and the second summand in each of these expressions is
the expected gain arising from the contest at j. For at least one player this
gain will be zero and for the other player it will be non-negative and strictly
positive as long as J(j — 1) # J(j + 1), where J(I) = va(l) + vp(l) is the
joint present value of being in state [.
Three immediate implications of the above construction are

(1) za(j) — zB(j) = 0 if and only if J(j — 1) — J(j + 1) > 0 with strict
inequality in one if and only if in the other.

(i) z4(j)—zp(j) > 0ifand only if vp(j) = dvg(j—1) and z4(j)—25(j) <0
if and only if v4(j) = dva(j + 1).

(iii) If z4(j) — 2zp(j) = 0 then va(j) = 6lva(j — 1) +vp(j —1)) —vp(j +1)],
and if z4(j)—zp(j) < 0thenvg(j) = d[va(j+1)+vp(j+1))—va(i—1)].

By assumption 0 and m are terminal states so that v4(0) = Z4 > Zp =
vg(m) and vs(m) = vp(0) = 0. Moreover, since player A can only receive a
positive payoff in the state 0, player B can only receive a positive payoff in the
state m, and both players have available the opportunity to always expend
zero effort, in any Markov perfect equilibrium the following inequalities hold
for all j:

0 <wa(j) <62y (7)
0<wg(j) <™ Zg (8)

and
va(j) +vp(j) < max(6'Z4, 6™ Zp) 9)

10



We can now prove the following

Proposition 1 Consider a tug-of-war with m > 3. Suppose jo € {2,..m—1}
exists such that

507 7,0 > 500D 70 and §0 7,4 < 870 7. (10)

Then a unique Markov perfect equilibrium exists which is characterized as
follows:

For all interior states j ¢ {jo — 1,70}, the equilibrium effort choices are
a(j) =0b(j) = 0. Only at jo—1 and jo does a battle with a positive probability
of stricty positive effort choices take place Payoffs for A in the continuation
game at j are & Z 4 for j < jo—1, = 52 (0907 7, — om0V 7] for j = jo—1,
and 0 forj > jo; payoffs for B are 5m 175 forj > jo, (1_62)[5’” 07 p—6"7 4]
for j =70 and 0 for j < jo— 1.

Proof. We consider existence here and relegate the proof of uniqueness
to the Appendix. We consider the following candidate equilibrium: For all
interior states j ¢ {jo—1, jo}, the effort choices are a(j) = b(j) = 0. At jo—1
and jy players choose efforts according to cumulative distribution functions
F; and G for players A and B in states j as follows:

a SA0
F‘ (a) . = 62)AJO fOT' a < {07 (1*}(35?)] (11)
st
1 for a> )
5 AJO
(1—62) 7 BA b SA0
Gio-1(b) = 1- 653’0‘2&; t5n 2z, ;or b: 0. Aljogéq)] (12)
or > —L&4
(1-6%)
S Aj()*l jo—1
1_ (1_52) AB a e O 6AAB
Fjy(a) = s G0tz T sgm oz, JOr A€l 5 (Aljﬁézl) | (13)
1 for a>—4&
(1-6%)
and -
5 AJ-
% fOT b & [0, (1_“‘513) ]
Gj,(b) = =% Tan _ (14)
Jo 1 b 5 A340};1
for >

11



VA:5jo_zzA va="? va=0 va=0
VB = 5m_(10+1)ZB

VB =0 VB:O VB =7
@ @ @ ®
i,—2 j-1 i Jo+1
Figure 2:

where
AR = [0 7 — 5907, and ALt = [%071 2, — s U Z5]0 (15)

Note first that this equilibrium candidate has the properties described in
Proposition 1. Players’ continuation values can be stated as functions of the
respective state j as follows:

874 for j<jo—1
va(j) = (1552) (09071 Z, — om0 Z,] for j=jo—1 (16)
0 for  j = Jjo
and .
5m_]ZB for j > jg
vp(j) = (17152) (6" Zg = 670 Z4) for  j=jo (17)
0 for j <gjo—1.

These constitute the payoffs stated in the proposition. For 0 < j < j, — 1,
player A wins the next j battles without any effort. This takes j periods and
explains why the value of the final prize must be discounted to 6’ Z4. Also,
B does not expend effort in these j battles and finally loses after j battles.
Hence, B’s payoft is equal to zero. For m > j > jg, players A and B simply
switch roles.

Turn now to the states jo — 1 and jy as in Figure 2. We call these states
"tipping states", because of their pivotal role in determining the outcome
of the contest. Consider jo — 1. From there, if A wins, the game moves to
jo — 2 with continuation values va(jo — 2) = 6°"?Z4 and vp(jo — 2) = 0.
If B wins, the game moves to jo with continuation values v4(jo) = 0 and
vp(jo). Assuming that 6°"2Z, > vp(jo) (which can be confirmed later),
and applying the results on the standard all-pay auction, the continuation
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values are
va(jo — 1) = za(jo — 1) — 28(jo — 1) = 0[6"° 2 Zs —vs(jo)]  (18)

and vg(jo — 1) = 0, where z4(jo — 1) and zp(jo — 1) denote the prizes that
A and B respectively attribute to winning the battle at j, — 1, given the
continuation of the game as described in the candidate equilibrium. Similarly,
at jo, if A wins, the game moves to jo — 1 with continuation values v4(jo—1)
as in (18) and vp(jo — 1) = 0. If B wins, the game moves to jo + 1 with
continuation values v4(jo+ 1) = 0 and vp(jo+1) = §m~o+) 7 This yields
a continuation value for player B of

vs(jo) = 25(jo) — 24(jo) = 6[6™ 9V Zp — va(jo — 1), (19)

and v4(jo) = 0. The solution to this system of equations yields the posi-
tive equilibrium values in the middle lines of (16) and (17), and the zero
continuation value in the respective state for the other player.

It remains to be shown that the choices described in the candidate equi-
librium indeed describe equilibrium behavior. The one-stage deviation prin-
ciple applies here.!” The continuation values (16) and (17) can be used to
consider one-stage deviations for A and for B.

A deviation '(j) > 0 at a state 0 < j < jo — 1 changes the path from
moving to j—1 in the next period to j+1. However, vg(j—1) = vg(j+1) =0.
Hence, this deviation reduces B’s payoff by #'(j) compared to b(j) = 0. A
deviation b'(j) > 0 at j > jo does not change the state in ¢ + 1 compared to
b(7) = 0 in the candidate equilibrium, due to the tiebreaking rule employed.
The deviation reduces B’s payoff by ¢/(j) compared to b(j) = 0. An equivalent
logic applies for a(j) at states j ¢ {jo — 1, jo}-

Turn now to the state jy. In the candidate equilibrium, in state jo con-
testant A randomizes on the support [0, (1_552) (090717, — ™D Z50]. All
actions in the equilibrium support for A at jy yield the same expected payoff
equal to G,y (z)0va(jo — 1) + (1 — G,y(2))0 — 2 = 0. A possible one-stage

deviation for A at jy is an da'(jo) > (1_552) (0507172, — o™~ Uo=D 7], Compared

0To confirm this it is sufficient to show that the condition of continuity at infinity is
fulfilled for this game. We may then apply Theorem 4.2 in Fudenberg and Tirole (1993).
This condition requires that the supremum of the payoff difference that can emerge from
strategies that differ after period ¢ converges to zero as t — co. However, a supremum for
this is §'[Z; + 25 K] for i = A, B, and this converges to zero as t — oco.
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to the action a(jy) =

077 24 — 0™ D Zp] that is inside A’s equili-
brium support, this also leads to state jo— 1, but costs the additional amount
a'(jo) — a(jo) > 0. The deviation is therefore not profitable for A. The same
type of argument applies for b(jo).

A similar argument applies to the state jo — 1. In the candidate equilibri-
um, in state jo—1 contestant A randomizes on the support [0, = 52 (6"~ o7 p—

6707 4)]. All actions in the equilibrium support for A at jo — 1 yield the sa-
rne expected payoff equal to Gj,_1(z)0va(jo — 2) + (1 — Gj—1(2))0 — 2z =
-5 (070717, — gm— oV 7] = UA<j0 —1).11 A possible one-stage deviation
for A at jo — 1 is an a’(jo —1)> g 62 (6™ 7 — 67 Z 4]. Compared to the

action a(jo — 1) = = 62 (0™ ”ZB - (WOZA] that is the upper bound of A’s
equilibrium support, thls also leads to state jo — 2, but costs the additional
amount a’(jo — 1) — a(jo — 1) > 0. The deviation is not profitable for A. The
same type of argument applies for b(jo — 1). =

Intuitively, outside of the states jo — 1 and jy, one of the players is indif-
ferent between winning and losing the component contest. For instance, in
the state jo — 2, the best that player B could achieve by winning the next
component contest is to enter the state jo—1 at which B’s continuation value
is still zero and smaller than player A’s continuation value. As B does not
gain anything from reaching jo — 1, B should not spend any effort trying to
reach this state. But if B does not spend effort to win, it is easy for A to
win.

The states jo — 1 and jy are different. Battle victory or defeat at one of
these points leads to different continuation games and allocates a considerable
rent between A and B. This makes competition particularly strong at these
states. We call these states "tipping states"because success of an advantaged
player at each of these two states "tips"the game so that victory is obtained
without further effort. A loss by the advantaged player throws the system
back into a competitive state where the player becomes disadvantaged.

Proposition 1 also shows that the allocation of a prize in a tug-of-war
leads to a seemingly peaceful outcome whenever the conflict starts in a state
other than a tipping state. This will be important for drawing conclusions
in section 3 about the efficiency properties of a tug-of-war as an allocation

'More formally, all actions in the support of A’s equilibrium local strategy that are not
mass points of B’s local strategy yield the same expected payoff. Since B has a mass point
at zero, this does not hold at a = 0, but for every a in a neighorhood above zero.
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mechanism.

Proposition 1 does not consider all possible parameter cases. Before tur-
ning to the remaining cases, note that the case jo = 1 cannot emerge, as this
requires 074 < 0™ 'Zp, and this contradicts Z4 > Zp for m > 2. However,
player A’s dominance could be sufficiently large that no interior j, exists that
has the properties defined in Proposition 1. This leads to

Proposition 2 Suppose that 6™ ' Z, > 6 Z5. Then a unique Markov perfect
equilibrium ezists with vp(j) = 0 and va(j) = 6’ Z4 for all j € {1,...,m —2},
and va(m —1) = 8""Zy — 6Zp and vg(m —1) =0 at j =m — 1.

Proof. We show that the following effort choices constitute an equilibrium
and yield the payoffs described in the proposition. Uniqueness follows the
argument in the Appendix.

Effort is a(j) = b(j) = 0 for all j € M™\{m—1} and for j = m—1 efforts
are chosen according to the following cumulative distribution functions:

2 for a€l0,0Z5]
_J) 5z
Fna(a) = { 1 for a>dZp (20)
[ a- J‘E,LZ!TZZ’ ) for be|0,0Zg]
Cm-1(b) = { 7 for b>dZp. (21)

Note that this behavior yields the payoffs that are characterized in Propositi-
on 2. For states j = 1,2, ..., (m — 2), A wins after j further battles, and none
of the players expends effort. This confirms v4(j) = ¢’ Z4 and vp(j) = 0 for
all j = 1,..m — 2. For j = m, the payoffs are vs(m) = 0 and vg(m) = Zp.
Finally, for j = m — 1, given the mixed strategies described by (20) and (21),
the payoffs are va(m — 1) = 8" ' Z4 > §Zp and vp(m — 1) = 0.

Now we confirm that the effort choices in the candidate equilibrium are
indeed mutually optimal replies. For interior states j < m — 1, a deviation
b'(j) > 0 makes B win the battle, instead of A. It leads to j + 1, instead
of j — 1, but vp(j +1) = vp(j — 1) = 0. Hence, this deviation reduces B’s
payoff by ¥/(j) compared to b(j) = 0. For A, for j < m — 1, contestant
A reaches j = 0 along the shortest possible series of battle victories and
does not spend any effort. Any positive effort can therefore only decrease
A’s payoff. For j = m — 1, the battle either leads to j = m where B finally
wins the prize, or to j = m — 2. The values the players attribute to reaching
these states are vy(m) = 0, vg(m) = Zp, and va(m — 2) = 6™ 2Z, and
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vp(m — 2) = 0. Using the results in Hillman and Riley (1989) and Baye,
Kovenock and deVries (1996) on a complete information all-pay auction with
prizes §[6™ ?Z4 — 0] = §™ ' Z4 for A and §[Zp — 0] = 0Zp for B, it is
confirmed that (20) and (21) describe the unique equilibrium cumulative
distribution functions of effort for this all-pay auction. m

Proposition 2 shows that a very strong player has a positive continuation
value regardless of the interior state in which the tug-of-war starts and wins
with probability 1 without expending effort for every interior state except
j=m—1.

So far we have ruled out the case of equality of continuation values at
interior states, and we turn to this case now which exhausts the set of possible
cases.

Proposition 3 The tug-of-war with §°Z, = 6925 = Z for some jo €
{2,...(m—1)} has a unique subgame perfect equilibrium in which players spend
a(j) = b(j) = 0 in all interior states j # jo. They choose efforts a(j) and
b(j) at j = jo from the same uniform distribution on the range [0, Z|. Payoffs
are va(j) = & Z4 and vp(j) =0 for j < jo, va(j) = 0 and vp(j) = 6™ 7 Z
for j > jo and v(j) = ve(j) =0 for j = jo.

Proof. We again construct an equilibrium to demonstrate existence. Un-
iqueness follows from arguments similar to those appearing in the Appendix.
In the candidate equilibrium each contestant expends zero effort at any
state 7 # jo and expends effort at j = jy according to a draw from the

distribution ; 0.7
| 7 for z €0,
F(z) = { 1 for x>7Z. (22)

At j = jo the expected effort of each player equals Z/2, and each wins this
battle with a probability of 1/2 and, in this case, eventually wins the overall
contest jo — 1 or (m — jo) — 1 periods later, respectively, without spending
any further effort. This determines the continuation values in the candidate
equilibrium. These continuation values are

va=vp =0 if 7=7o
va=086Zyandvp=0 if j<jo (23)
va=0and vg =86""7Zg if j> jo.

It remains to show that the candidate equilibrium describes mutually
optimal replies. Consider one-stage deviations for A and B for some state
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J < Jjo- A choice da/(j) > 0 will not change the equilibrium outcome in the
battle in this period and hence will simply reduce A’s payoff by da'(j). A
choice '(j) > 0 will make B win. If j < jo — 1, following the candidate
equilibrium A will simply win a series of battles until final victory occurs.
Hence, b/(j) > 0 reduces B’s payoff by this same amount ¢'(0) of effort. If
7 = jo — 1, B’s battle victory will lead to j = jg, and candidate equilibrium
play from here on will yield a payoff equal to zero to B. Accordingly, the
deviation b'(j) > 0 yields a reduction of B’s payoff by this same amount.
Consider one-stage deviations for A and B in some state j > jo. The same
line of argument applies, with A and B switching roles. Finally, consider
one-stage deviations for A and B at j = jo. Any such deviation for A must
be a choice a/(j) > Z. Compared to a(j) = Z, this choice makes A win with
the same probability 1, but yields a reduction in A’s payoff by a'(j) — Z,
compared to a(j) = Z. The same argument applies for deviations by B at
this state. m

The intuition for Proposition 3 is as follows. The two contestants enter
into a very strong fight whenever they reach the state ;7 = jy. In this state
they are perfectly symmetric and they anticipate that the winner of the battle
in this state moves straight to final victory. In the battle that takes place in
this case, they dissipate the maximum feasible rent from winning this battle.
This maximum rent is what they get if they can move from there through
a series of uncontested battles to final victory. Once one of the contestants,
say A, has acquired some advantage in the sense that the contest has moved
to j < jo, the only way for B to reach victory passes through the state with
j = Jjo. As all rent is dissipated in the contest that takes place there, B
is simply not willing to spend any effort to move the contest to that state.
Hence, the considerable effort that is spent at the point at which the tug-of-
war becomes symmetric in terms of the prizes that are at stake for the two
contestants prevents the contestant who is lagging behind in terms of battle
victories from spending positive effort.

Discounting played two important roles in our analysis. First, discounting
leads to payoff functions that are continuous at infinity, allowing the applica-
tion of the one-stage deviation principle, which greatly facilitates our proofs.
Moreover, discounting is essential in giving a meaningful role to the distance
to the state with final victory. The following holds:

Proposition 4 For a given value of % > 1, the tipping state jo is an incre-
asing step function of 6. Moreover, as 0 — 1, A wins the tug-of-war without
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effort starting from any state j < m — 1.

Proof. The tipping state jg is by definition the smallest state j for which
player B is advantaged: jo = min{j € M™* ‘(V Z4 < 6™ 7Zp} when this set is
non-empty, and j, = m otherwise. For § > 0, the inequality 6" Z4 < 6™ Zz
is equivalent to 6% " Z4 < Zg. Since m > 3, for § sufficently close to zero the
inequality is clearly satisfied for j = m — 1, so that jy is interior. Moreover,
since 6%7™ > 1 for j < %, it must be the case that jo > 4. As § — 1, the
inequality is violated at all interior states, even at j = m — 1. In this case,
by definiton j, = m, and from Proposition 2 player A wins the war from

any state j < m— 1. Forany 0 < § < 1, 6% ™7, < Zp is equivalent to
2] —m > l()li;?, so that jy is the smallest index j satisfying the inequality.
Since the left hand side of this inequality is positive, and both the numerator
and denominator of the right hand side are negative, as ¢ increases, the
right hand side monotonically increases, eventually diverging to oo as § — 1.
Hence, as ¢ increases, the smallest index j satisfying the inequality must
increase in steps until it hits m. =

As the discount factor increases, relative prize value or player strength
plays a greater role in the determination of the outcome than distance. For
any given value of g—i < 1, as 0 increases the tipping state jo moves in discrete
jumps towards m. Player A may suffer a greater distance disadvantage and

still win the prize with certainty:.

3 Expenditure, allocative efficiency and the
cost of delay

The tug-of-war with m > 2 resolves the allocation problem along a sequence
of states, where a violent battle may, but need not take place at each state.
Only in the tipping states is positive effort expended with positive probability.
Once the process leaves the tipping states, the war moves to a terminal state,
without further effort being expended. A tug-of-war that starts in a tipping
state will therefore be called "violent". A tug-of-war that starts outside a
tipping state will be called "peaceful".

Compared to the standard all-pay auction, the tug-of-war could be inter-
preted as an institution that saves cost of effort in the problem of allocating a
prize between rivals who are prepared to expend resources in fighting for the
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prize. Suppose for instance that Z, and Zp are independent random draws
from a continuous distribution with support [0, k], where x < K. Suppose
that these values are known to the contestants but are not observable by the
designer of the institution at the time that it must be implemented. Consider
the following tug-of-war as an anonymous mechanism in the case in which
m is an even number, so that % is integer valued. Start the tug-of-war in

the symmetric state 2 and assume, as we have throughout, that player A

2
attempts to move the state to j = 0 and player B attempts to move the
state to 7 = m. Then the following result derives the probability of peaceful

resolution:

Proposition 5 Let I'(g) be the continuous cumulative distribution function
of g = Za/Zp, with support [0,00|. The allocation is peaceful in the Markov
perfect equilibrium with a probability T'(6%) + (1 — I'(5)), and lims_1(T'(6%) +
(1-T(5)) =1.

Proof. For a proof we show that I'(6?)+ (1 —T'(5z)) is the probability that
the symmetric state m/2 is not a tipping state. Suppose that g > 6%. Then
Zy4 > Zp and 5%“2/; > (5m*(%+1)ZB. Hence, jo — 1 > 3. By Propositions
1-3 this implies that the tug-of-war that starts in m/2 consecutively moves to
j = 0 with no effort being expended. Let ¢ < 6%. Then Z4 < Zg. Applying the
results in Propositions 1-3 with A and B and j = 0 and j = m switching roles
shows that the tug-of-war that starts in m/2 moves to j = m with no effort
being expended. Suppose now that g € (1, 5%) In this case jo — 1 = m/2.
Accordingly, a battle with positive expected efforts takes place at m/2 if
ERE A ™2+ 7. No expected effort is expended in this case only if
627, = om G 7, However, the set of values of ¢g for which 602t 7, =
™~ (3 7, holds has a measure of zero. A similar argument applies for
g € (6%,1), again with A and B and j = 0 and j = m switching roles. m

Proposition 5 characterizes conditions on the asymmetry in the valuations
of the prize that are sufficient to make the tug-of-war evolve peacefully if it
starts in the symmetric state j = m/2. A sufficient condition for this to
happen is that j = % is not a tipping state. If tipping states are jo and jo—1
with jo —1 > m/2 then the equilibrium process moves from j = % further
away from the tipping states towards the terminal state j = 0. If Z4 < Zp,
and, hence, tipping states are jo and jo + 1, with jo + 1 < m/2, then the
equilibrium process moves further away from these states and towards the
terminal state j = m.
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Note that the number of states is irrelevant for whether the tug-of-war
that starts in state j = 3 is resolved peacefully or not, provided that m > 2.
Whether the tug-of-war is resolved peacefully or not depends only on the ratio
of the two prizes and the discount factor. For a given continuous distribution
of g, as the discount factor becomes large, the tug-of-war is resolved almost
surely peacefully.

Of course, offsetting the potential gains from the tug-of-war in promoting
the peaceful resolution of resource contests are the potential costs of delay
arising from the multi-stage nature of the conflict. The all-pay auction is re-
solved in a single stage (m = 2) and hence reduces this delay to the minimum
attainable in a non-trivial contest. On the other hand, from Proposition 5
it is apparent that adding more states beyond m = 4 does not increase the
chance of peaceful resolution and only adds potential delay when a peaceful
outcome arises. Moreover, if % is a tipping state, for a given draw of Z, and
Zp the sum of expected payoffs at this state is simply

6m/2
1-¢°

max{(Za — Zp),(Zp — Za)} (24)

which is a strictly decreasing function in m. We state this as

Proposition 6 The sum of expected payoffs in the tug-of-war with m > 4
which have a symmetric state 3 is mazimized at m = 4.

Using Proposition 5 we may compare the cases m = 2 and m = 4. When
m = 4 we know that there is a probability I'(6%) + (1 — I'(§"?)) that the
allocation is peaceful and a probability of I'(6~2) — I'(6?) that the allocation
is violent. We know that in the case m = 2 the allocation is always violent and
the sum of the players’ payoffs is 6(Z1) — Z(2)), where Z1y = max(Z4, Zp)
and Z(3) = min(Z4, Zp). Ignoring discounting, the loss due to conflict, Zy),
can be decomposed into the expected loss due to effort expended, %Z(g)[l +
(Z(2)/Z1)], and the expected loss due to misallocation of the prize, 5 Z)[1—
(Z(2)/Z(1y)]- The loss due to delay then comes when the factor § is applied.

In the case where m = 4 the allocation is peaceful when (Z(1)/Z()) > 6 °.
In this case, starting from the state 3t = 2 it takes two periods for the player
with the higher value to win and no effort is expended. Hence, the sum of the
payoffs of the two players in this case is 622(1). The only inefficiency in this
case is due to delay. For realizations of (Z4, Zp) satisfying (Za)/Z()) > 6 2,
the tug-of-war is more efficient than the all-pay auction if and only if 52Z(1) >
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8(Zny — Zz)) or, equivalently, (Z(1y/Z2) < (1 —d)~*. Since by assumption
we are in the range where the tug-of-war is peaceful, (Z(1)/Z ) > 6 >. Note
that 62 > (1 —6)"'if 6 < 6" = @ In this case, the all-pay auction is
more efficient than the tug-of-war in this range of values of (Z(1)/Z)). For
§>6%, 62 < (1-6)"" and the tug-of-war is more efficient than the all-pay
auction for values of (Z1)/Z(2)) in the interval (672, (1—4)~!) and the all-pay
auction is more efficient for values of (Z1)/Zs)) in the interval ((1—4§)~*, o0).

When 1 < (Z1)/Z2)) < 62, in the tug-of-war the state 2 is a tipping
state and the allocation involves active effort expenditure. The expected sum
of the payoffs in this case can again be compared to those in the all-pay
auction. For m = 4 the expected sum of the payoffs in the tug-of-war can be
calculated from equation (24) and is equal to %(Z(l) — Z()). Comparing
this to the expected sum of payoffs in the all-pay auction we find that for
Z(l) #* Z(Q), %(Z(l) — Z(g)) > (5(2(1) — Z(g)) if and only if 52 +0—-1>0
or§ >4 = % Therefore, when the realization of (Z4, Zp) is such that
the initial state % is a violent state in the tug-of-war, the tug-of-war is more
efficient than the all-pay auction when § > ¢ and the all-pay auction is
more efficient than the tug-of-war when § < 6.

We may summarize these results in the following proposition:

Proposition 7 When § < 67 = %, for any realization of (Za,Zp), the
all-pay auction (m = 2) is more efficient than a tug-of-war with m = 4. When
§ > 67 the tug-of-war with m = 4 is more efficient than the all-pay auction
for (Za,Zp) such that % € (1,(1 = &)1 and the all-pay auction is more
efficient for % € (1 —=0), 00). In particular, for any given continuous
joint distribution of (Za,Zp), for sufficiently large § the tug-or-war is more
efficient than the all-pay auction.

4 Conclusions

We studied the strategic behavior of players who compete in a series of single
battles. A prize is allocated as a function of the sequence of battle successes. A
sufficient lead in the number of battle victories is needed to win the final prize.
We showed that there is a unique subgame perfect equilibrium in Markov
strategies and we characterized this equilibrium. Contest effort concentrates
on at most two states. Such states are characterized by three factors: the
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‘distance’ which the two contestants need to win the overall contest, the
relative strength or dominance of contestants, and the discount factor. The
critical distance that determines the tipping states in which the contest effort
is focussed turns out to be a function of the contestants’ relative strengths
(or, equivalently, in the relative valuations of the prize from final victory)
and the discount factor. The larger one player’s dominance in strength, the
higher must be this player’s distance to final victory, compared to the other
player’s distance.

Many animal species and economic institutions have developed mecha-
nisms such as hierarchies, or other organizational structures to govern the
allocation of prizes, such as preferential food access and the right to reprodu-
ce in the biological context, or prized jobs and contracts in the organizational
context. Behavior in these mechanisms could be interpreted as a conflict that
consists of a series of battles, or repeated opportunities to struggle. Our re-
sults help explain why these structures may have evolved. The tug-of-war
delays the allocation of a given prize, compared to a single stage conflict, but
can considerably increase the efficiency of allocation of the prize and reduce
the overall resources that are dissipated among the group of players.

5 Appendix

Consider a tug-of-war with m > 3 and jy € {2,...,m — 1} with the property
that 67°Z4 < 8™ 70 Z5 and 6174 > §™~Uo~Y 75 Then the Markov perfect
equilibrium characterized in the Proposition 1 is unique in the class of Markov
perfect equilibria.

We will demonstate the uniqueness of continuation values for every state
J. For given state-contingent continuation values we have already argued that
the problem reduces to a standard all-pay auction for both players at each in-
terior state. Hence, uniqueness results from the uniqueness of the equilibrium
in the standard two-player all-pay auction with complete information.

Our proof will start by assuming that m > 3 and jo € {2,...m — 1}. (The
case of m = 2 corresponds trivially to the all-pay auction.) We claim the
following:

Claim 8 In any Markov perfect equilibrium, for all k < jo — 1, vg(k) =0
and for all k < jo — 2, va(k) = 6FZ 4.
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Proof. At k = 0 by construction v4(0) = Z4 and vp(0) = 0, so the claim
holds for k = 0. Since Z4 > Zp and m > 3, from (9) evaluated at k = 2
it follows that J(0) = Z4 > max(6°Z4,6™ 2Zp) > va(2) +vp(2) = J(2).
Hence from (i) z4(1) > zp(1) and from (3) and (4) va(l) = §[Z4—vp(2)] and
vp(1l) = 0. It immediately follows that J(1) = 0[Z4 — vp(2)]. This implies
that the claim holds when j, = 2, which by definition of j, implies that
m = 3.

So assume that jo € {3,...m — 1}. We will now prove the claim by induc-
tion on k. Suppose that for some &k, 1 < k < jo—2, vp(l) = 0 for all | < k and
va(l) = 6'Z4 for all I < k — 1. (Note that the supposition holds for k = 1)
We claim that vs (k) = 6% Z 4 and vp(k+1)=0.

To demonstrate this observe that by (5)

va(k) = dva(k+1)+max(0,0[(va(k—1)+vp(k—1))—(va(k+1)+vp(k+1))])

Since vg(k) = 0, by (6) zp(k) — za(k) = o[(va(k + 1) + vp(k + 1)) —
(va(k — 1) + vp(k — 1))] < 0, which implies by (i) that

va(k) = 6[va(k — 1) +vg(k — 1)) —vp(k +1)] = 6[6" " Z4 — vp(k +1)]

Moreover, vg(k+1) = dvg(k)+dmax(0, (va(k+2)+vp(k+2))— (va(k)+
vp(k))) = 6 max(0, (va(k +2) +vp(k +2)) — 0[6F 1 Z4 — vp(k + 1)]).

Suppose by way of contradiction that vg(k 4+ 1) > 0. Then vg(k + 1) =
S[va(k 4+ 2) + vp(k +2) — §(6" 1 Z4) + dvg(k + 1)] > 0,which implies that
valk +2) +up(k +2) —6"Z4y = (67 = 6)vs(k + 1) > 0. However, by (9)
va(k+2) +vp(k+2) < max(0512Z,, 6™ "+ 7). Moreover, by definition of
Jo, 07071 24 > o™= 7, which, since k + 2 < jo, implies that 6*2712Z, >
5m_(k+2)+1ZB, or 8°Z4 > 6™ 2 7, This in turn implies that va(k +2) +
vp(k 4 2) < max(8"2 2,4, 6™ "2 Z5) < 6" Z,,contradicting the claim that
vak+2)+up(k+2)—6"Zy = (07 —6)vp(k+1) >0 Hence, vg(k+1) =0,
which immediately implies that v (k) = dva(k — 1) = 6" Z4.

This induction argument therefore shows for all k£ < jo — 1, vg(k) =0
and for all k < jo — 2,v4(k) = 6*Z4. An immediate consequence is that

va(jo—1) = 8[(va(jo —2) +vr(jo —2)) —vs(jo)] = 86" Za —vs(jo)] (25)
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This equation will be used in the continuation to derive values at jo — 1 and

Jo-
To address equilibrium behavior in states greater than or equal to jy,we

start in state m. Note that since m is a terminal state vg(m) = Zp and
va(m) = 0.If jo = m — 1, then by definition ™17, < 675 and 6™ 27, >
6%Zp. Moreover, by Claim 1 vg(m—2) = 0 and by (25) va(m—2) = 8™ 2Z,—
dvp(m — 1). Hence,

va(m —1) = dva(m)+ dmax(0,v4(m — 2) + vg(m — 2) — va(m) — vg(m))
0 + 0 max(0, J(m — 2) — Zp)
6 max(0, max(6™ 2724, 8°Zp) — Zp)

<
< 0

where the final inequality follows from the fact that o, = 67z, <
gmiol gy = gm(m=b-lz — 7. Hence, va(m — 1) = 0. It follows that
vp(m—1) = dvg(m—2)+0 max(0, Zg—va(m—2)—vp(m—2)) = 6(Zp—va(m—2))
Hence,

valm—2) = 6™ 2Zy—6vg(m—1) and
vg(m—1) = 06(Zp —va(m —2))

Solving simultaneously implies

S, — 6% Zp
va(m —2) = 5 >0
and 5 st
g —0"" 7
vp(m—1) = Bl 52 450

where both inequalities follow from j, = m — 1.
This completes the case for jo = m — 1. So suppose jo € {3,...,m — 2}
and look at k& > jq.

Claim 9 In any subgame perfect equilibrium in stationary Markov strategies,
for all k> jo, va (k) =0 and for all k > jo + 1, va(k) = 8™ " Zp.
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Proof. By an argument similar to that above, vg(m) = Z and va(m) =
0 imply J(m) > J(m—2), which in turn implies v4(m—1) = 0+¢ max(0, J(m—
2) — Zp) =0.

Suppose now that for some k, jo+1 < k < m,va(l) =0 for all | > k
and vp(l) = 60" Zg for all | > k + 1. We will now demonstrate that this
implies that vg(k) = 8™ *Zp and v (k — 1) = 0. Since the supposition holds
for k = m — 1, this will then prove claim 2 by induction.

So assume that for some k, jo+1 < k < m, va(l) = 0 for all [ > k
and vg(l) = 6™ 'Zp for all I > k + 1. Since va(k) = 0, we know that
valk—1)4+vp(k —1) —va(k+1) —vp(k+ 1) <0, so that

vp(k) = dvp(k—1)+ dmax(0,va(k+ 1) +vp(k+1) —va(k —1) —vp(k —1))
= dva(k+1)+vp(k+1)—va(k —1)]
S0 F D Zp — vk — 1)

Moreover, v (k—1) = dva(k)+0 max(0,v4(k—2)+vg(k—2)—va(k)—vp(k)).
Since v4 (k) = 0 by assumption and vg(k) = 6™ *Zp — dvs(k — 1), we have
va(k—1) = 6 max(0,va(k —2) +vp(k —2) — 6™ *Zp +6v(k —1)). Suppose
by way of contradiction that v4(k — 1) > 0. Then

valk —1) = 6[va(k —2) +vg(k —2) — 0™ *Zp + dva(k — 1)] > 0.

or

valk = D)0 =8 =valk —2) +vp(k —2) — 6™ " Zz > 0.

where the last expression is greater than zero because § < 1.

However, from equation (9), v4(k—2)4vp(k—2) < max(6¥ 22,4, 0™ 2 7).
Since k > jo + 1 implies K — 2 > j, — 1, and by definition of jy, 67°Z4 <
M 75 we know 60717, < ™71 75 and hence 6" 7?74 < §071Z, <
gl < sk g Hence, since both 6274 and 8™ *2 75 are strictly
less than 6™ *Zp, we have a contradiction to va(k—2)+vp(k—2)—6™""Zp >
0. Hence, v (k — 1) = 0. It immediately follows that vg(k) = 6™ " Zp.

We have hence showed by induction that for every k > jo, va(k) =0 and
for every k > jo + 1,up(k) = 6™ " Zp. An immediate consequence is that

vB(jo) = 0vp(jo—1)+0max(0,vp(jo+1)+va(jo+1)—va(jo—1)—vB(jo—1))
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Since v4(jo) = 0 implies J(jo — 1) — J(jo + 1) < 0, the maximand in the
expression is nonnegative and

(7) vs(jo) = Olvs(jo+1)+valjo+1) —va(jo—1)]
S[0m Ut Z — wa(jo — 1)]

Since from (25) va(jo — 1) = §[6"°2Z4 — v(jo)], we have a system of
two linearly independent equations in two unknowns. These have a unique
solution which is

5]’071214 _ 5mfjo+1ZB
va(jo—1) = >0
8"y — 607y
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