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1 Introduction
Exchange rate modelling is still dominated by the rational-expectations-efficient-
market (REEM) paradigm. One of the implications of the REEM paradigm
is that the exchange rate can only change if there is news in the underlying
fundamentals. The accumulated empirical evidence, however, suggests that this
paradigm cannot be maintained. There are too many empirical anomalies that
contradict the predictions that can be derived from this model.
The first and foremost empirical puzzle has been called the “disconnect”

puzzle, i.e. the exchange rate appears to be disconnected from its underly-
ing fundamentals most of the time. Goodhart (1989), Goodhart and Figlioli
(1991) and more recently Faust et al. (2002) found that most of the changes in
the exchange rates occur when there is no observable news in the fundamental
economic variables.
Other empirical anomalies have been uncovered over the years. One is the

puzzle of “excess volatility” of the exchange rate, i.e. the volatility of the ex-
change rate by far exceeds the volatility of the underlying economic variables
(Baxter and Stockman (1989) and Flood and Rose (1995)).
Another puzzle is that the distribution of the exchange rate returns is not

normal. Most of the empirical findings document that the exchange rate returns
have fat tails and excess kurtosis (see de Vries(2001), Lux T. (1998), Lux and
Marchesi (1999). This evidence is difficult to rationalise in existing exchange
rate models, since there is little evidence of fat tails in the fundamental variables
that drive the exchange rate in these models.
Implicit in the REEM model is the view that agents (at least some of them)

understand the structure of the underlying model and that they use this infor-
mation to make predictions. In a way this is an extraordinary assumption. It
implies that individual agents can store and process all available information,
including the knowledge of how the world functions, in their individual brains.
It seems quite unreasonable to assume that an individual brain is large and
complex enough to master the full complexity of the outside world. Such an ex-
traordinary assumption could still be maintained if it led to powerful empirical
predictions about financial markets. The truth is that it does not.
In this paper we will take the view that agents have a limited capacity for

understanding and processing the complex information. In order to cope with the
complexity of the world agents use relatively simple behavioral rules. However,
they are not stupid. They compare the rule they currently use to alternative
rules and decide to switch to the alternative if it turns out that this is more
profitable. In other words they check the “fitness” of these rules. In this sense
these agents are boundedly rational. Their strategy of trial and error is the best
possible response to a highly uncertain environment
This approach is also very much influenced by the literature of “behavioural

finance” (Tversky and Kahneman(1981), Thaler(1994), Shleifer(2000), Kahne-
man(2002)).
We will show that in a model with boundedly rational agents two types of

regimes exist, a fundamental and a bubble one. Both of them will be shown
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to be fixed point solutions of the underlying deterministic model. We will then
analyse the nature of these “bubble equilibria” and the conditions in which they
are working as attactors. The model will be formulated in the context of the
exchange market1.

2 The model
In this section we develop a simple exchange rate model. As will be seen, the
model can be interpreted more generally as a model describing any risky asset
price. The model consists of three building blocks. First, utility maximising
agents select their optimal portfolio using a mean-variance utility framework.
Second, these agents make forecasts about the future exchange rate based on
simple but different rules. In this second building block we introduce concepts
borrowed from the behavioural finance literature. Third, agents evaluate these
rules ex-post by comparing their risk-adjusted profitability. Thus, the third
building block relies on an evolutionary economics.

2.1 The optimal portfolio

We assume agents of different types i depending on their beliefs about the
future exchange rate. Each agent can invest in two assets, a domestic asset and
foreign assets. The agents’ expected utility can be represented by the following
equation:

U(W i
t+1) = Ei

t(W
i
t+1)−

1

2
µV i

t (W
i
t+1) (1)

where W i
t+1 is the wealth of agent of type i at time t + 1, E

i
t is the expecta-

tion operator, µ is the coefficient of risk aversion and V i
t (W

i
t+1) represents the

conditional variance of wealth of agent i. The wealth is specified as follows:

W i
t+1 = (1 + r∗) st+1di,t + (1 + r)

¡
W i

t − stdi,t
¢

(2)

where r and r∗ are respectively the domestic and the foreign interest rates
(which are known with certainty), st+1 is the exchange rate at time t + 1, di,t
represents the holdings of the foreign assets by agent of type i at time t. Thus,
the first term on the right-hand side of (2) represents the value of the foreign
portfolio expressed in domestic currency at time t + 1 while the second term
represents the value of the domestic portfolio at time t+ 12 .
Substituiting equation (2) into (1) and maximising the utility with respect to

di,t allows us to derive the standard optimal holding of foreign assets by agents

1 Its basic structure can also be applied to other asset markets.
2The model could be interpreted as an asset pricing model with one risky asset (e.g. shares)

and a risk free asset. Equation (2) would then be written as
W i
t+1 = (st+1 + yt+1) di,t+(1+r)

¡
W i
t − stdi,t

¢
where st+1 is the price of the share in t+1

and yt+1is the dividend per share in t+ 1.
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of type i3 :

di,t =
(1 + r∗)Ei

t (st+1)− (1 + r) st
µσ2i,t

(3)

where σ2i,t = (1+r
∗)2V i

t (st+1). The optimal holding of the foreign asset depends
on the expected excess return (corrected for risk) of the foreign asset. The market
demand for foreign assets at time t is the sum of the individual demands, i.e.:

NX
i=1

ni,tdi,t = Dt (4)

where ni,t is the number of agents of type i.
Market equilibrium implies that the market demand is equal to the market

supply Zt which we assume to be exogenous4. Thus,

Zt = Dt (5)

Substituting the optimal holdings (3) into the market demand (4) and then into
the market equilibrium equation (5) and solving for the exchange rate st yields
the market clearing exchange rate:

st =

µ
1 + r∗

1 + r

¶
1

NP
i=1

wi,t
σ2i,t

"
NX
i=1

wi,t
Ei
t (st+1)

σ2i,t
− ΩtZt

#
(6)

where wi,t. =
ni,t
NP
i=1

ni,t

is the weight (share) of agent i, and Ωt =
µ

(1+r∗)
NP
i=1

ni,t

.

Thus the market clearing exchange rate is determined by the forecasts of the
agents, Ei

t , about the future exchange rate.
Note also that the forecasts are weighted by their respective variances σ2i,t.

When agent’s i forecasts have a high variance the weight of this agent in the
determination of the market exchange rate is reduced.

2.2 The forecasting rules

We now specify how agents form their expectations of the future exchange rate
and how they evaluate the risk of their portfolio.

3 If the model is interpreted as an asset pricing model of one risky asset (shares) and a risk
free asset, the corresponding optimal holding of the risky asset becomes

di,t =
Ei
t (st+1 + yt+1)− (1 + r) st

µσ2i,t

where st+1 and yt+1 are the price and the dividend at t + 1, respectively, and σ2i,t ≡
V i
t (st+1 + yt+1).

4The market supply is determined by the net current account and by the sales or purchases
of foreign exchange of the central bank. We assume both to be exogenous here.
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We start with an analysis of the rules agents use in forecasting the exchange
rate. We take the view that individual agents are overwhelmed by the complex-
ity of the informational environment, and therefore use simple rules to make
forecasts. Here we describe these rules. In the next section we discuss how
agents select the rules.
We assume that two types of forecasting rules are used. One is called a

“fundamentalist” rule, the other a “technical trading” rule5. The agents using
a fundamentalist rule, the “fundamentalists”, base their forecast on a compari-
son between the market and the fundamental exchange rate, i.e. they forecast
the market rate to return to the fundamental rate in the future. In this sense
they use a negative feedback rule that introduces a mean reverting dynamics in
the exchange rate. The speed with which the market exchange rate returns to
the fundamental is assumed to be determined by the speed of adjustment in the
goods market which is assumed to be in the information set of the fundamental-
ists (together with the fundamental exchange rate itself). Thus, the forecasting
rule for the fundamentalists is :

Ef
t (∆st+1) = −ψ

¡
st−1 − s∗t−1

¢
(7)

where s∗t is the fundamental exchange rate at time t , which is assumed to follow
a random walk and 0 < ψ < 1. We assume that the fundamental exchange rate
is exogenous.
The timing of the forecasts is important. When fundamentalists forecast

the future exchange rate they use publicly available information up to period
t− 1. This implies that fundamentalists make their forecasts before the market
clearing exchange rate st has been revealed to them6. This assumption is in
the logic of the model used here in which agents do not know the full model
structure. As a result, they cannot compute the market clearing exchange rate
of time t that will be the result of their decisions made in period t7 .
The timing assumption underlying the agents’ forecasts in (7) allows us to

derive the market clearing exchange rate in (6) as a unique price for which
demand equals supply (see Brock and Hommes (1998)). An issue that arises
here is how this timing assumption can be made consistent with the optimi-
sation process described in the previous section. There we assumed that when
computing their optimal holdings of foreign assets in period t, agents have infor-
mation about the exchange rate in period t. The inconsistency is only apparent.
The optimal holdings derived in equation (3) can be interpreted as a Marshalian
demand curve in which an auctioneer announces a price, st. Agents then decide
on their optimal holdings conditioned on this announced price. The auctioneer
then collects the bids and offers, and computes the market clearing price. The

5The idea of distinguishing between fundamentalist and technical traders rules was first
introduced by Frankel and Froot(1987).

6When we consider agents’ expectations, at time t, of the exchange rate change we define
Ei,t(∆st+1) ≡ Ei,t(st+1 − st−1), i = f, c.

7 In an environment with fully and perfectly informed agents , agents know the underlying
model and are capable of making such calculations. As a result, in such models agents use
information about the exchange rate at time t.
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latter is not in the information set of the agents when they make their forecasts
for the exchange rate in period t+ 1.
The chartists are assumed to follow a positive feedback rule, i.e. they ex-

trapolate past movements of the exchange rate into the future. The chartists’
forecast is written as:

Ec,t(∆st+1) = β
HX
h=1

ρh∆st−h (8)

Here Ec,t is the forecast made by the chartists using information up to time t−1,
and β is the coefficient expressing the degree with which chartists extrapolate the
past change in the exchange rate; we assume that 0 < β < 1 to ensure dynamic
stability. Thus, the chartists compute a moving average of the past exchange
rate changes and they extrapolate these changes into the future exchange rate
change. We set ρh = [(1− ρ)ρh−1]/(1− ρH), where 1− ρH =

PH
h=1(1− ρ)ρh−1.

Thus we assume an exponential decay in the weights given to the past exchange
rate changes. In our base simulation we assume a finite number of lags (H = 5).
Note that in the limiting case H → ∞, the assumption of exponential decay
allows us to rewrite equation (8) as

Ec,t(∆st+1) = ρEc,t−1(∆st) + (1− ρ)β∆st−1 (9)

Thus, technical traders take into account information concerning the funda-
mental exchange rate indirectly, i.e. through the exchange rate itself. In addi-
tion, technical rules can be interpreted as rules that attempt to detect “market
sentiments”. In this sense the technical trader rules can be seen as reflecting
herding behaviour8. Note that the same assumption about the timing of the
information set is used here as in the case of fundamentalist forecasting.
We now analyse how fundamentalists and technical traders evaluate the risk

of their portfolio. The risk is measured by the variance terms in equation (6),
which we define as the weighted average of the squared (one period ahead)
forecasting errors made by technical traders and fundamentalists, respectively.
Thus we assume σ2i,t = (1 + r∗)2V i

t (st+1) where

V i
t (st+1) =

KX
k=1

θk
£
Ei
t−k−1 (st−k)− st−k

¤2
(10)

and where θk = θ(1 − θ)k−1/
³PK

k=1 θ(1− θ)k−1
´
are geometrically declining

weights (0 < θ < 1), K is a finite number of lags, and i = f, c. Note that in the
limit when K →∞, eq. (10) can be rewritten in the recurrent form

V i
t (st+1) = θ

£
Ei
t−2 (st−1)− st−1

¤2
+ (1− θ)V i

t−1(st) (11)

8There is a large literature on the use of technical analysis. This literature makes clear that
technical trading is widely used in the foreign exchange markets. See Cheung and Chinn(1989),
Taylor and Allen(1992), Cheung et al(1999), Mentkhoff(1997) and (1998).

6



2.3 Fitness of the rules

The next step in our analysis is to specify how agents evaluate the fitness of
these two forecasting rules. The general idea that we will follow is that agents
use one of the two rules, compare their (risk adjusted) profitability ex post and
then decide whether to keep the rule or switch to the other one. Thus, our
model is in the logic of evolutionary dynamics, in which simple decision rules
are selected. These rules will continue to be followed if they pass some “fitness”
test (profitability test). Another way to interpret this is as follows. When great
uncertainty exists about how the complex world functions, agents use a trial
and error strategy. They try a particular forecasting rule until they find out
that other rules work better. Such a trial and error strategy is the best strategy
agents can use when cannot understand the full complexity of the underlying
model.
In order to implement this idea we use an approach proposed by Brock and

Hommes(1997) which consists in making the weights of the forecasting rules a
function of the relative profitability of these rules, i.e. 9 :

wc,t =
exp

£
γπ0

c,t

¤
exp

£
γπ0

c,t

¤
+ exp

h
γπ0

f,t

i (12)

wf,t =
exp

h
γπ0

f,t

i
exp

£
γπ0

c,t

¤
+ exp

h
γπ0

f,t

i = 1− wc,t (13)

where π0
c,t and π0

f,t are the risk adjusted net profits computed by technical
traders and fundamentalists who forecast the exchange rate in period t using
information up to t−1, i.e. π0

c,t = πc,t−µσ2c,t and π0
f,t = πf,t−µσ2f,t, while πc,t

and πf,t are the net profits, to be defined later.
Equations (12) and (13) can be interpreted as switching rules. When the

risk adjusted profits of the technical traders’ rule increases relative to the risk
adjusted net profits of the fundamentalists rule, then the share of agents who
switches and use technical trader rules in period t increases, and vice versa.
This parameter γ measures the intensity with which the technical traders and
fundamentalists revise their forecasting rules. With an increasing γ agents react
strongly to the relative profitability of the rules. In the limit when γ goes to
infinity all agents choose the forecasting rule which proves to be more profitable.
When γ is equal to zero agents are insensitive to the relative profitability of the
rules. In the latter case the fraction of technical traders and fundamentalists
is constant and equal to 0.5. Thus, γ is a measure of inertia in the decision to

9This specification of the decision rule is often used in discrete choice models. For an
application in the market for differentiated products see Anderson, de Palma, and Thisse
(1992). The idea has also been applied in financial markets, by Brock and Hommes (1998)
and by Lux (1998).
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switch to the more profitable rule10 . As will be seen, this parameter is of great
importance in generating bubbles.
We depart from the Brock-Hommes approach in the way we define profits. In

Brock-Hommes profits are defined as the total earnings on the optimal foreign
asset holdings. We define the profits as the one-period earnings of investing $1
in the foreign asset. More formally11 ,

πi,t = [st−1 (1 + r∗)− st−2 (1 + r)] sgn
£
(1 + r∗)Ei

t−2(st−1)− (1 + r)st−2
¤
(14)

Thus, when agents forecasted an increase in the exchange rate and this
increase is realized, their per unit profit is equal to the observed increase in the
exchange rate (corrected for the interest differential). If instead the exchange
rate declines, they make a per unit loss which equals this decline (because in
this case they have bought foreign assets which have declined in price).
We use a concept of profits per unit invested for two reasons. First, our

switching rules of equations (13) and (12) selects the fittest rules. It does not
select agents. To make this clear, suppose that technical traders happen to
have more wealth than fundamentalists so that their total profits exceeds the
fundamentalists’ profits despite the fact that the technical rule happens to be
less profitable (per unit invested) than the fundamentalist rule. In this case,
our switching rule will select the fundamentalists rule although the agents who
use this rule make less profits (because their wealth happens to be small) than
agents using chartist rules. Second, in our definition of profits agents only have
to use publicly available information, i.e. the forecasting rules and the observed
exchange rate changes. They don’t have to know their competitor’s profits.

3 Stochastic simulation of the model
Assuming the process of the fundamental exchange rate s∗t as exogenously given,
the system of the dynamic equations (6), (7), (8), (10), (12), (13), (14), some of
which are high order equations, defines a high-dimensional nonlinear discrete-
time model. The non-linear structure of our model does not allow for a simple
analytical solution. As a result we have to use numerical simulation methods.
One drawback of this approach is that we cannot easily derive general conclu-
sions. We will compensate for this drawback in two ways: first by presenting
sensitivity analyses of the numerical solutions (section 5), and second by char-

10The psychological literature reveals that there is a lot of evidence of a ”status quo bias”
in decision making (see Kahneman, Knetsch and Thaler(1991). This implies γ <∞. Thus we
set 0 < γ <∞.
11where sgn[x] is defined as

sgn[x] =

⎧⎨⎩ 1 for x > 0
0 for x = 0
−1 for x < 0

and i = c, f
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acterizing the steady states and the basins of attraction within a simplified de-
terministic version of the model (sections 7 and 8). The simulations we perform
are stochastic. Stochastic shocks occur in the model because the fundamental
exchange rate is assumed to be driven by a random walk, i.e.

s∗t = s∗t−1 + εt (15)

We will assume that εt is normally distributed with mean equal to 0, and
standard deviation equal to 0.1.
We present two examples of stochastic simulations that are quite typical for

the kind of dynamics predicted by our model (see figure 1). The two upper
parts of figure 1 present the simulated market and fundamental exchange rates
obtained in two different simulation runs, using the same parameter configura-
tions12. The two lower parts present the corresponding shares of the chartists.
The most striking features of these simulations are the following. First, it

appears that the exchange rate is very often disconnected from the fundamental
exchange rate. This means that the market exchange rate follows movements
that are dissociated from the fundamental rate. This is especially obvious in
the first simulation run (left panels), where we find that the exchange rate is
disconnected from the fundamental most of the time. In the right hand panel
there are many periods of disconnection, but these are less frequent. This leads
to a second feature of these exchange rate movements. There appear to be two
regimes. In one regime the exchange rate follows the fundamental exchange rate
quite closely. These “fundamental regimes” alternate with regimes in which the
fundamental does not seem to play a role in determining the exchange rate.
We will call these “non-fundamental regimes”. We will also call the latter ones
“bubble regimes”. The nature of the latter can be seen in the lower panels
of (1) Non-fundamental regimes are characterized with situations in which the
chartists’ weights are very close to 1. In contrast, fundamental regimes are those
during which the chartists weights are below 1 and fluctuating significantly.
These two regimes appear to correspond to two types of equilibria. Thus, a
fundamental regime seem to occur when the exchange rate stays within the
basin of attraction of a fundamental equilibrium. In such a regime the exchange
rate movements stay very close to the fundamental exchange rate. Conversely,
a non-fundamental regime seems to occur when the exchange rate moves within
the basins of attraction around bubble equilibria. We will analyse the nature of
these two equilibria in more detail in sections 4 and 7.2.
We also note from figure (1) that fundamental and non-fundamental regimes

alternate in unpredictible ways. The left hand panels show a simulation dur-
ing which bubble regimes tend to dominate, while the right hand panels show
a simulation during which fundamental regimes are more frequent. The two
simulations, however, were run with exactly the same parameters. The only
difference is the underlying stochastics of the fundamental exchange rate. Again
we will return to this feature and we will show that it has something to do

12Both the market and the fundamental exchange rates are represented in terms of deviation
from the starting value s∗0 of the fundamental.
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Figure 1:
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with the structure of the basins of attraction and with the discontinuities that
characterize the border between fundamental and non-fundamental equilibria.
As mentioned earlier the numerical solutions are sensitive to the parameter

values chosen. We illustrate this sensitivity by presenting simulations assuming
different parameter values. Figure (2) shows the results of stochastic simulations
of the model for different values of γ. It will be remembered that γ measures
the sensitivity of the switiching rule to risk adjusted profits. Thus when γ is
high agents react strongly to changing profitabilities of the forecasting rules they
have been using. Conversely when γ is small they do not let their forecasting
rules depend much on these relative profitabilities. The results shown in figure
(2) are quite remarkable. We find that when γ is high, i.e. when agents are
very sensitive to the relative profitability of the forecasting rules, the exchange
rate tends to deviate strongly from the fundamental value most of the time.
Thus, when γ is high the exchange rate seems to be attracted most of the time
by non-fundamental equilibria. Conversely, when agents are not very sensitive
to relative profitabilities (low γ) the exchange rate follows the fundamental rate
closely, suggesting that it is then attracted by the fundamental equilibrium most
of the time.
Another important parameter in the model is the degree of risk aversion.

We performed a similar sensitivity analysis and present the results in figure (3).
We observe a remarkable phenomenon. When the degree of risk aversion is low
the exchange rate remains very close to its fundamental value. As the degree of
risk aversion µ increases the exchange rate starts to deviate increasingly from
its fundamental value and the periods of disconnection tend to last longer. This
suggests that when risk aversion is high the exchange rate seems to be attracted
by non-fundamental equilibria. We will analyze this phenomenon in greater
detail in the next sections. Here we briefly discuss the intuition behind this
result. This can be explained as follows. When agents who use fundamentalist
rules are very risk avert, they will not be willing to use the profit opportunities
that arise during bubbles. For example when the exchange rate increases relative
to its fundamental, fundamentalists expect to be able to make profits in the
future from selling the overpriced foreign currency If they are very risk avert,
they may not be willing to do so. As a result, there is a failure of arbitrage13 .
This weakens the mean reverting forces in the model.
In order to be a little more systematic about the sensitivity of the results

of the model with respect to the parameters we performed the following exper-
iment. We simulated the model for different values of the parameters µ and β.
In each simulation of 10000 periods we computed the percent of the time the
exchange rate deviated from the fundamental by more than 3 standard devia-
tions of the fundamental variable during 20 consecutive periods or more. The
presumption is that if the exchange rate diverges for so long and by so much it is
attracted by a non-fundamental equilibrium. This conclusion may not be clear to
the reader now, but it will become so when whe have analysed the deterministic
13There are other sources of failure of arbitrage that have been identified in the literature.

For example, transaction costs or limits to borrowing can be reasons why arbitrage fails (see
Shleifer (2000), Brunnermaier (2001)).
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Figure 2:
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   µ=0.1     µ=0.5 

   µ=0.75     µ=1 

Figure 3:
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part of the model. We show the result of this exercise in the three-dimensional
figure (4) . On the x- and y-axes we set out the parameters µ and β respectively.
On the vertical axis we show the percent of the time the exchange rate was at-
tracted by a non-fundamental equilibrium, as defined previously. Each point
corresponds to one simulation of 100000 periods for a particular combination of
µ and β. We find that when µ increases the probability that the exchange rate
is attracted by a non-fundamental equilibrium increases. The same conclusion
holds for increases in β. The intuition of the latter result is that when chartist
extrapolate past changes more, the exchange rate is likely to diverge from its
fundamental for longer periods of time. We return to this point in section 8.

Figure 4:

4 Numerical analysis of deterministic dynamics
We now examine the dynamics of the deterministic part of the model, obtained
by assuming a constant fundamental, which we normalize to zero14. The strong
non-linearities make an analytical study of the model impossible. Therefore,
we use simulation techniques which we will present in this and the following
sections. We select “reasonable” values of the parameters, i.e. those that come
close to empirically observed values. In appendix 2 we present a table with the

14This is equivalent to interpreting st as the deviation of the market exchange rate from
the constant fundamental.
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numerical values of the parameters of the model and the lags involved. We will
analyse how sensitive the solution is to different sets of parameter values.
In figure 5 we show the long-run behavior of the exchange rate for differ-

ent initial conditions. On the horizontal axis we set out the different initial
conditions. These are initial shocks to the exchange rate in the period before
the simulation is started15. The vertical axis shows the fixed point solutions
corresponding to these different initial conditions. These were obtained from
simulating the model over 10000 periods. We found that after such a long pe-
riod the exchange rate had stabilized to a fixed point (a fixed attractor). We
find numerically two types of fixed point solutions, that will be characterized
analytically in section 7. First, for small disturbances in the initial conditions
the fixed point solutions coincide with the fundamental exchange rate. As men-
tioned earlier, we call these solutions the fundamental equilibria. Second, for
large disturbances in the initial conditions, the fixed point solutions diverge
from the fundamental. These are the non-fundamental (bubble) equilibria. The
larger is the initial shock (the noise) the farther the fixed points are removed
from the fundamental exchange rate. The border between these two types of
fixed points is characterised by discontinuities. This has the implication that
in a neighbourhood of the border a small change in the initial condition (the
noise) can have a large effect on the solution. We return to this issue. The dif-
ferent nature of these two types of fixed point attractors can also be seen from
an analysis of the technical traders’ weights that correspond to these different
fixed point attractors. We show these technical traders’ weights as a function of
the initial conditions in figure 6.
We find, first, that for small initial disturbances the technical traders’ weight

converges to 50% of the market. Thus when the exchange rate converges to the
fundamental rate, the weight of the technical traders and the fundamentalists
are equal to 50%. For large initial disturbances, however, the technical traders’
weight comes close 1. Thus, when the technical traders take over most of the
market, the exchange rate converges to a bubble attractor16 . The meaning
of a bubble attractor can now be understood better. It is an exchange rate
equilibrium that is reached when the number of fundamentalists has become
sufficiently small (the number of technical traders has become sufficiently large)
so as to eliminate the effect of the mean reversion dynamics. It will be made
clearer in section 7.2 why fundamentalists drop out of the market. Here it suffices
to understand that such equilibria exist. It is important to see that these bubble
attractors are fixed point solutions. Once we reach them, the exchange rate is
constant. The technical traders’ expectations are then model consistent, i.e.
technical traders who extrapolate the past movements, forecast no change. At

15We assume five lags in our base simulation. Thus we set the exchange rates with a lag
of more than one period before the start equal to the constant fundamental. This means that
what we call “initial condition” in Fig. 5 is the size of one-period shocks in the exchange rate
prior to the start of the simulation. All the other lagged dynamic variables are set equal to
the fundamental when the simulation is started.
16 In section 7 we will show that such a bubble exists when the “risk adjusted” weight of

the chartists is equal to one.
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Figure 5:

Figure 6:
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the same time, since the fundamentalists have all but left the market, there is no
force acting to bring back the exchange rate to its fundamental value. Thus two
types of equilibria exist: a fundamental equilibrium where technical traders and
fundamentalists co-exist, and a bubble equilibrium where the technical traders
have almost crowded out the fundamentalists. In both cases, the expectations
of the agents in the model are consistent with the model’s outcome.

5 Sensitivity analysis
In this section we perform a sensitivity analysis of the deterministic model. This
will allow us to describe how the space of fundamental and bubble equilibria is
affected by different values of the parameters of the model. In this section we
concentrate on three parameters, i.e.µ, (the coefficient of risk aversion), β (the
extrapolation parameter of technical traders) and γ (the sensitivity of technical
traders and fundamentalists to relative profitability).

5.1 Sensitivity with respect to β

We show the result of a sensitivity analysis with respect of β in figure (7),
which is a three-dimensional version of figure (5). The attractors (i.e. the fixed
point solutions of the exchange rate) are shown on the vertical axis. The initial
conditions are shown on the x-axis and the different values for µ on the z-axis.
Thus, the two-dimensional figure (5) is a ’slice’ of figure (7) obtained for one
particular value of β (0.8 in figure (5)).
We observe that for sufficiently low values of β we obtain only fundamental

equilibria whatever the initial conditions. As β increases the plane which repre-
sents the collection of the fundamental equilibria narrows. At the same time the
space taken by the bubble equilibria increases, and these bubble equilibria tend
to increasingly diverge from the fundamental equilibria. Thus as the extrapo-
lation parameter increases, smaller and smaller shocks in the initial conditions
will push the exchange rate into the space of bubble equilibria. Put differently,
as β increases, the probability of obtaining a bubble equilibrium increases.
Note also that the boundary between the fundamental and the bubble equi-

libria is a complex one. The boundary has a fractal dimension. We return to
this issue in section 8.

5.2 Sensitivity with respect to γ

The parameter γ is equally important in determining whether fundamental or
bubble equilibria will prevail. We show its importance in figure 8, which presents
a similar three-dimensional figure relating the fixed attractors to both the ini-
tial conditions and the values of γ. We find that for γ = 0 or close to 0, all
equilibria are fundamental ones. Thus, when agents are not sensitive to chang-
ing profitability of forecasting rules, the exchange rate will always converge to
the fundamental equilibrium whatever the initial condition. As γ increases, the
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Figure 7:

space of fundamental equilibria shrinks. With sufficiently high values of γ, small
initial disturbances (noise) are sufficient to push the exchange rate into a bub-
ble equilibrium. Put differently, as γ increases, the probability of obtaining a
bubble equilibrium increases. Finally, as in the case of β, we also observe that
the boundary between the bubble and fundamental equilibria is complex.

5.3 Sensitivity with respect to µ

Finally, we study the sensitivity of the equilibria with respect to the coefficient
of risk aversion, µ. Figure (9) shows the results. We find that when the agents
become more risk averse the space of fundamental equilibria shrinks while the
space of non-fundamental equilibria becomes larger. This result forms the basis
for understanding the stochastic simulations that uncovered that bubbles are
larger and more likely to occur when agents are more risk averse. The intuition
can now be understood better. When fundamentalists are willing to take large
risks they will use the profit opportunities that arise when a bubble develops. As
a result they will tend to move the exchange back towards the fundamental. This
reinforces the mean reverting forces in the model thereby eliminating bubbles.
Conversely, when these fundamentalists are not willing to take risks, they will
not use the profit opportunities during a bubble. As a result, they will not
sell when the exchange rate is overvalued (or buy when the exchange rate is
undervalued), thereby eliminating the mean revering dynamics in the model.
Thus in this interpretation bubble (non-fundamental) equilibria emerge because
of a failure to arbitrage which itself is the result of excessive risk aversion from
the part of fundamentalists.
The analysis of the basins of attraction which will be performed in section

8 will confirm the results of the above sensitivity analysis, and improve our
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Figure 8:

understanding from a different perspective.

6 Why crashes occur
The model makes clear why bubbles arise in a stochastic environment. It may
not be clear yet why bubbles are always followed by crashes. Here again shocks
in the fundamental are of great importance. In order to analyse this issue we
performed the following experiment. We fixed the initial condition at some value
(+5) that produces a bubble equilibrium (for a given parameter configuration).
We then introduced permanent changes in the fundamental value (ranging from
-10 to +10) and computed the attractors for different values of β. We show the
results of this exercise in figure 10. On the x-axis we show the different fun-
damental values of the exchange rate, while on the y-axis we have the different
values of β. The vertical axis shows the attractors (exchange rate solutions). The
upward sloping plane is the collection of fundamental equilibria. It is upward
sloping (45%) because an increase in the fundamental rate by say 5 leads to an
equilibrium exchange rate of 5. For low values of β we always have fundamental
equilibria. This result matches the results of figure (7) where we found that for
low β’s all initial conditions lead to a fundamental equilibrium.
The major finding of figure (10) is that when permanent shocks in the fun-

damental are small relative to the initial (temporary) shock, (+5) we obtain
bubble equilibria. The corollary of this result is that when the fundamental
shock is large enough relative to the noise, we obtain a fundamental equilib-
rium. Thus if an initial temporary shock has brought the exchange rate in a
bubble equilibrium, a sufficiently large fundamental shock will lead to a crash.
In a stochastic environment in which the fundamental rate is driven by a ran-
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Figure 9:

dom walk (permanent shocks), any bubble must at some point crash because
the attactive forces of the fundamental accumulate over time and overcome the
temporary dynamics of the bubble.
The interesting aspect of this result is that the crash occurs irrespective of

whether the fundamental shock is positive or negative. Since we have a positive
bubble, it is easy to understand that a negative shock in the fundamental can
trigger a crash. A positive shock has the same effect though. The reason is
that a sufficiently large positive shock in the fundamental makes fundamentalist
forecasting more profitable, thereby increasing the number of fundamentlists in
the market and leading to a crash (to the new and higher fundamental rate).
Put differently, while in the short run, technical traders exploit the noise to
start a bubble, in the long run when the fundamental rate inexorably moves in
one or the other direction, fundamentalists forecasting becomes attractive.
It is also interesting to note that as β increases, the size of the shocks in the

fundamental necessary to bring the exchange rate back to its fundamental rate
increases. In a stochastic environment this means that bubbles will be stronger
and longer-lasting when β increases.
In conclusion, it is worth noting that shocks in fundamentals both act as

triggers for the emergence of a bubble (see sections 4 and 5) and as triggers
for its subsequent crash. The intuition can be explained as follows. When the
exchange rate is in a fundamental equilibrium, an unexpected and permanent
increase in the fundamental, sets in motion an upward movement of the ex-
change rate towards the new fundamental. This is the result of the action by
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Figure 10:

fundamentalists. This upward movement, however, also makes extrapolative
forecasting (technical trading) increasingly profitable and can lead to a bubble.
When the exchange rate is in a bubble equilibrium, a large enough (positive

or negative) shock in the fundamental strenghtens the hand of fundamentalists’
forecasting, and attracts agents towards this forecasting rule. This then leads
to a crash.
As in the case of the bubble, the prediction of the timing of the crash is made

difficult because of the fuzziness (complexity) of the border between bubble
and fundamental equilibria (figure (10)). Thus, although crashes are inevitable,
their exact timing is unknown. The remarkable aspect of this result is that it is
obtained in a deterministic model.
Though the foregoing numerical study of the deterministic part of the model

helps us to understand the results of the stochastic simulations, these results
can be better understood by looking at the “simplified” deterministic version
developed in the next section, which allows a simple analytical characterization
of the steady states as well as a graphical representation of their basins of
attraction.

7 A simplified deterministic model
In this section we investigate the analytical properties of a simplified determin-
istic model which is obtained by setting the stochastic error term εt equal to 0,
by assuming that the variance is computed according to the adaptive equation
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(11)17, and by assuming that technical traders only take one lag into account
(i.e. we assume ρ = 0 in eq. (9))18. In addition, we set r = r∗ = 0, Z = 0,
and normalize the fundamental rate, s∗t = s∗ = 019. In other words, we build
a “minimal” deterministic dynamical system which is intended to represent the
simplest form of the model, though capturing and reproducing closely the quali-
tative features of a class of richer and more complicated models. This will make
it easier to understand the nature of the dynamics produced in the stochastic
simulations.

7.1 The dynamical system

Equations (10), which define the variance terms can be rewritten as adaptive
updating rules as follows:

σ2c,t = (1− θ)σ2c,t−1 + θ
£
Ec
t−2 (st−1)− st−1

¤2
(16)

σ2f,t = (1− θ)σ2f,t−1 + θ
h
Ef
t−2 (st−1)− st−1

i2
(17)

and using the definition of the forecasting rules 7 and 8 (with ρ = 0), this yields

σ2c,t = (1− θ)σ2c,t−1 + θ [(1 + β)st−3 − βst−4 − st−1]
2 (18)

σ2f,t = (1− θ)σ2f,t−1 + θ [(1− ψ)st−3 − st−1]
2 (19)

On the other hand, using again the forecasting rules 7 and 8, the profits can be
rewritten as follows

πf,t = (st−1 − st−2) sgn [(1− ψ)st−3 − st−2]

πc,t = (st−1 − st−2) sgn [(1 + β)st−3 − βst−4 − st−2]

Now define the “risk-adjusted” weights of fundamentalists and technical traders

Θf,t =
wf,t/σ

2
f,t

wf,t/σ2f,t + wc,t/σ2c,t
Θc,t = 1−Θf,t =

wc,t/σ
2
c,t

wf,t/σ2f,t + wc,t/σ2c,t
(20)

where

wf,t =
exp

h
γ(πf,t − µσ2f,t)

i
exp

£
γ(πc,t − µσ2c,t)

¤
+ exp

h
γ(πf,t − µσ2f,t)

i (21)

17This allows to reduce the number of dynamic variables. One could assume a finite number
of lags, instead of the adaptive rule (11), without altering the steady state analysis.
18One can easily add additional lags without altering the steady state analysis.
19These semplification do not alter the qualitative behavior of the general model with pos-

itive interest rates, supply, and fundamental. Indeed, using simple changes of variables and
interpreting st as the deviation of the exchange rate from the fundamental, one could easily
reduce the general model to the simplified case presented in this section.
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or equivalently

Θf,t =
wf,t(σ

2
c,t/σ

2
f,t)

wf,t(σ2c,t/σ
2
f,t) + (1− wf,t)

Θc,t = 1−Θf,t (22)

We can then write the market clearing equation (6) as follows:

st = st−1 −Θf,tψst−1 +Θc,tβ(st−1 − st−2) = (23)

= [1 + β −Θf,t(ψ + β)]st−1 − β(1−Θf,t)st−2

With suitable changes of variables it is possible to write the dynamical sys-
tem as a 6-dimensional system. Set

ut = st−1; yt = ut−1(= st−2); zt = yt−1(= st−3)

Then the 6 dynamic variables of the model are (st, ut, yt, zt, σ2c,t, σ
2
f,t). The

state of the system at time t − 1, i.e. (st−1, ut−1, yt−1, zt−1, σ2c,t−1, σ2f,t−1) de-
termines the state of the system at time t, i.e. (st, ut, yt, zt, σ2c,t, σ

2
f,t) through

the following 6-D dynamical system:

st = [1 + β −Θf,t(ψ + β)]st−1 − (1−Θf,t)βut−1 (24)

ut = st−1 (25)

yt = ut−1 (26)

zt = xt−1 (27)

σ2c,t = (1− θ)σ2c,t−1 + θ [(1 + β)yt−1 − βzt−1 − st−1]
2 (28)

σ2f,t = (1− θ)σ2f,t−1 + θ [(1− ψ)yt−1 − st−1]
2 (29)

where

Θf,t =
wf,t(σ

2
c,t/σ

2
f,t)

wf,t(σ2c,t/σ
2
f,t) + (1− wf,t)

(30)

and

wf,t =
exp

h
γ(πf,t − µσ2f,t)

i
exp

£
γ(πc,t − µσ2c,t)

¤
+ exp

h
γ(πf,t − µσ2f,t)

i (31)

πf,t = (st−1 − ut−1)sgn [(1− ψ)yt−1 − ut−1)] (32)

πc,t = (st−1 − ut−1) sgn [yt−1 + β(yt−1 − zt−1)− ut−1] (33)

We are now able to derive analytically the steady states of the simplified
model.
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7.2 Analytical characterization of the steady states

The steady states are obtained by setting

(st−1, ut−1, yt−1, zt−1, σ
2
f,t−1, σ

2
c,t−1) = (st, ut, yt, zt, σ

2
f,t, σ

2
c,t) = (s, u, y, z, σ

2
f , σ

2
c)

(34)
in the dynamical system (24)-(29). Notice however that this implies, first of all,
σ2c = 0 at a steady state. Note also that the points for which σ2c = σ2f = 0 (de-
note by Ω the set of such points) do not belong to the state space of the system,
because in this case the ratio σ2c,t/σ

2
f,t is not defined. This fact does not exclude

that, for a given set of initial conditions, trajectories converge to some point in
the set Ω, provided that the ratio pt ≡ σ2c,t/σ

2
f,t admits a limit

20. Indeed for a
wide set of initial conditions, as our numerical simulations reveal, trajectories
do converge to such a point, while the ratio between variances converges to a
positive value (to 1 in our simulations21). This allows the algebraic manipula-
tion of this “boundary solution” as a “steady state” where σ2f = σ2c = 0, but
p ≡ σ2c/σ

2
f > 0. Such an heuristic will be useful in order to characterize the

“steady states” of the underlying deterministic model, though the deterministic
model can only be interpreted as an unrealistic limiting case of the stochas-
tic model22 . With this preliminary remark, using (34), we can write a set of
conditions that a steady state must satisfy

s = u = y = z (35)

πf = πc = 0 (36)

σ2c = 0 σ2f = ψ2s2 (37)

wf =
exp

£
−γµσ2f

¤
1 + exp

£
−γµσ2f

¤ Θf =
wf p

wf p+ (1− wf )
(38)

Θfψs = 0 (39)

In particular eq. (39) is obtained from (24). It can now be shown that the model
produces two types of “steady state” solutions. We analyse these consecutively.

7.2.1 Fundamental steady state

First of all, the model allows for a steady state where the exchange rate is
equal to the fundamental (which is normalised to 0). In order to see this, note
that when s = 0, condition (39) is fulfilled with any (non negative) Θf . In
particular, we look for steady states characterized by Θf > 0. From (38) this
implies p ≡ σ2c/σ

2
f > 0 at the “steady state”. Given that σ2c = 0, condition

20For a deep analytical and numerical investigation of the behavior of dynamical systems
where at least one equation has a component which takes the form 0/0 in some points, see
Bischi et al. (1999).
21We show this in appendix 1 where we plot the ratio as a function of time
22Note, for instance, that the agents’ demand (3) is defined only when the variance term is

strictly positive.
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p > 0 can only occur when also σ2f = 0. Therefore, from (38) we get wf = 1/2

and Θf = p/(p + 1) (in particular Θf = 1/2 if p = 1, as is the case of our
numerical experiments).
The “fundamental” steady state is characterized by the exchange rate being

at its fundamental level, by zero profits and zero risk, and by fundamentalist
and technical trader fractions equal to 1/223.

7.2.2 Non-fundamental steady states

The model allows for a second type of steady state solution. This is a solution
in which the exchange rate is constant and permanently different from its (con-
stant) fundamental value. In other words the simplified deterministic model24

allows for constant non-zero exchange rates in the steady state. The existence
of such equilibria can be shown as follows. From condition (39) it can easily be
seen that if Θf = 0 any constant exchange rate s will satisfy this equation, i.e.
the exchange rate is not required to be at the fundamental. From (38) we find
that a necessary and sufficient condition for Θf to be zero is that σ2c = 0 and
σ2f > 0 (i.e. p = 0). Note that in this case Θc ≡ 1−Θf = 1, and σ2f = ψ2s2. Put
differently, there exist steady state solutions with the following characteristics:
the exchange rate deviates from the fundamental by a constant amount; thus,
fundamentalist forecasting rules lead to a constant error and therefore the risk
adjusted share of fundamentalist rules is zero25. The latter is necessary, other-
wise agents would still be using the rule so that their forecast of a reversion to
the fundamental would move the exchange rate.
As mentioned earlier, we call a non-fundamental equilibrium a “bubble equi-

librium”. We call it a bubble equilibrium because it is an equilibrium in which
fundamentalists exert no influence on the exchange rate. It should be stressed
that this definition of a bubble is very different from the “rational bubble” which
is defined as an unstable path of the exchange rate. It comes closer to the no-
tion of “sunspots” which is also an equilibrium concept in rational expectations
models (see Blanchard and Fischer(1989), p255). We will come back to this in
section 9 where we will contrast our bubble equilibria with sunspot equilibria.
With this dynamical system it is not possible to perform the local stability

analysis of the steady state with the usual techniques, based upon the analysis

23As an alternative, we could characterize a fundamental steady state as one where the
ratio between variances is positive. This allows to derive it in an alternative way. Assume
that p ≡ σ2c/σ

2
f > 0. Given that σ2c = 0, this can only occur provided that σ2f = 0, which

in turn implies s = 0 from (37). Furthermore from (38) we get wf = 1/2, and therefore
Θf = p/(p+1) > 0. Again, this necessarily implies s = 0 in order condition (39) be satisfied.
24Where the fundamental value is normalized to zero
25Note that this does not imply that the share of the fundamentalists wf is zero, as can be

seen from the first equation in (38), which becomes

wf =
exp

£
−γµψ2s2

¤
1 + exp

£
−γµψ2s2

¤
However, the more the exchange rate deviates from the fundamental at the steady state, the
closer to zero is the share of the fundamentalists.
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of the eigenvalues of the Jacobian matrix evaluated at the steady state. Apart
from the high dimension of the dynamical system, a first problem arises from
the fact that what we call “fundamental steady state” is a point which does
not belong to the state space of the deterministic system, though it attracts the
trajectories of the system. Furthermore, in general the “map” whose iteration
generates the dynamics is not differentiable in the points which belong to the
locus s = u = y = z (see the equations of the profits (32) and (33)), which
includes the set of the steady states of the model.

8 A graphical inspection of the basins of attrac-
tion

In this section we return to the results of the numerical experiments performed in
the previous sections, and interpret them from a different point of view, namely
the perspective of the deterministic structure of the basins of attraction26. In
particular, this approach provides a better understanding of the bubbles and
crashes of the stochastic model (sections 3 and 6), and of the sensitivity with
respect to the key parameters β, γ, and µ (section 5).
As remarked in section 7, the analytical derivation of the steady states

demonstrates that a fundamental equilibrium coexists in the phase-space of
the deterministic model with bubble equilibria. Given that in our numerical
study of the deterministic part (sections 4 and 5) the exchange rate is attracted
towards the fundamental or towards a bubble depending on the initial condition,
we can conclude that these co-existing equilibria are both locally stable, at least
for wide ranges of the key parameters, though the non-differentiability of the
dynamical system prevents analytical results about the local asymptotic stabil-
ity properties of the steady states. Although changes of the parameters do not
affect the local stability properties of the equilibria, they do modify the “size”
of the basins of attraction and the structure of the basin boundary between the
two kinds of equilibria. An analysis of the parameter dependence of the basins in
a high-dimensional nonlinear system like the present one can only be performed
via numerical simulation and graphical inspection. In a two-dimensional system
with coexisting steady states (or other attractors), a graphical visualization of
the basins of attraction can be easily obtained by letting the initial condition
(X0, Y0) vary in the phase-plane, and marking the point (X0, Y0) with differ-
ent colors according to the asymptotic behavior of the trajectory generated by
the initial condition (i.e. according to which steady state attracts that initial
condition).
In the case of a n-dimensional dynamical system, both the phase-space and

the basins of attraction are n-dimensional. In order to get a two-dimensional
representation of the basins in this case, one needs to fix the initial values of
(n−2) state variables and vary the initial values of the remaining two variables.
26The basin of attraction of an attractor A is the subset of the phase space whose points

generate trajectories converging to A.
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In our model, though the phase-space is 6-dimensional, we represent the basins
in the two-dimensional (u, s) plane27, by arbitrarily fixing the initial values y0,
z0, σ2f,0, σ

2
c,0 of the state variables y, z, σ

2
f , σ

2
c , while the initial values of u and

s (u0 and s0) are let to vary in the (u, s) plane, with u0 on the horizontal axis
and s0 on the vertical axis. Given the initial condition (u0, s0, y0, z0, σ2f,0, σ

2
c,0),

we run a sufficiently high number of iterations. If the state vector converges to
(i.e. arrives sufficiently close to) the fundamental steady state, the initial point
(u0, s0) is marked with light grey; while if the state vector converges to a non
fundamental steady state, then we mark the initial point (u0, s0) with dark grey.
Of course the representation that we obtain also depends on the fixed initial
values of y, z, σ2f , σ

2
c : under a different choice of y0, z0, σ

2
f,0, σ

2
c,0, we would get

different pictures, because in this case we would represent the basins taking the
initial condition along a different slice or section of the high-dimensional phase-
space. Note that in general changes of the parameters can affect the structure
of the basins. For computational reasons, the following analysis of the basins
of attraction is performed on the dynamics of the simplified model (24)-(29).
The parameters ψ and θ are set to the values ψ = 0.2 and θ = 0.6, respectively,
while the parameters β, γ and µ are allowed to vary. Though we are going to
present only a few meaningful examples, similar qualitative results can be easily
found by choosing different ranges of the parameters.

8.1 Basins of attraction around the fundamental steady
state: the frequency of bubbles

We start with the basins of attraction around the fundamental steady state.
The basins of attraction represented in Figs. 11, 12, 13 provide an intuitive
explanation of the sensitivity of the long-run behavior of the exchange rate with
respect to β, γ, µ, respectively. In Fig. 11 the basins of the fundamental and
bubble equilibria are represented under increasing values of β. What emerges
is that the both the size of the basins and the shape of the basin boundary are
greatly affected by the change of the parameter. Similar changes are observed
under increasing values of γ and µ (Figs. 12, 13). We now describe these changes
and discuss the effect on the dynamics of the stochastic model. The effect is
twofold. On one hand the size of the basin of the bubble equilibria increases, and
the basin boundary comes closer and closer to the fundamental equilibrium. In
the stochastic model, this increases the probability that a bubble starts: indeed,
the noise in the underlying fundamental has the effect of displacing (in the phase-
space) the point which represents the state of the system28. If the state of the

27 I.e. the plane (st−2, st−1).
28Consider the system at time t. For fixed values of st−2, st−3, σ2f,t, σ

2
c,t, a particular state

(st, st−1, st−2, st−3, σ2f,t, σ
2
c,t) of the system at time t can be represented by a point in the

two-dimensional (u, s)-plane. Since the fundamental is set equal to zero in the deterministic
model (which is equivalent to interpreting st as the deviation of the exchange rate from the
fundamental s∗t ) an exogenous upward (downward) shock in the fundamental s

∗
t−1 is equivalent

to a shift to the left (right) of the point in the (u, s)-plane, while an upward (downward) shock
in s∗t is equivalent to a downward (upward) shift of the same point. As a consequence of these
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system at time t is in the basin of attraction of the fundamental and even close to
the fundamental itself, a fundamental shock may push the phase point beyond
the basin boundary, in the basin of the bubble equilibrium: a quick look at the
basin representation suggests that the probability of crossing the boundary and
starting the bubble (for equal size of the shock) is higher for higher values of
β, γ, or µ. On the other hand, the boundary between the basins becomes more
and more complex, and takes a fractal structure. This makes more and more
difficult to predict the final outcome determined by a given initial condition,
even in the deterministic model where the noise term is set equal to zero (as
already shown in section 4). Examples of the fractal structure of the boundary,
which emerges for sufficiently high values of β and γ, are in Figs. 11c,d, 12c,d.

8.2 Basins of attraction around bubble equilibria: why
crashes occur

Let us now consider the structure of the basins of attraction around “bubble”
equilibria. Figs. 14 and 15 provide a graphical explanation of why a crash
occurs: the reason of crash is related to the structure of the basins of attraction
around a bubble equilibrium. In order to see this, in Figs. 14 and 15 we select a
particular bubble equilibrium with s(= u = y = z) = 10, σ2c = 0, σ

2
f = ψ2s2 = 4,

and we represent the basins of attraction by varying the initial condition in a
neighborhood of this particular bubble equilibrium. In order to get a two-
dimensional representation we let u0 and s0 vary in the (u, s)-plane and fix the
initial values of the other variables to their (bubble) equilibrium levels. Starting
from a given parameter configuration, we obtain the representation of the basins
under increasing values of β (Fig. 14) and γ (Fig. 15). For sufficiently low values
of β and γ, we get that the bubble equilibrium lies very close to the boundary
of its basin of attraction (see Figs. 14a,b, Figs. 15a,b), which means that once
the system is close to a bubble equilibrium a small fundamental shock may push
the system again in the basin of attraction of the fundamental equilibrium, thus
causing a crash. Also, it is clear from the same pictures that the crossing of
the boundary may be caused both by a negative fundamental shock and by a
positive one. Moreover, similar to the basin structure in a neighborhood of a
fundamental steady state, also around bubble equilibria the boundary of the
basins may have a complex structure.
However, the structure of the basins is highly affected by the parameters

β and γ. Precisely, as shown in Figs. 14c,d, Fig. 15c,d, higher values of β
and γ determine an enlargement of the basin around the bubble29, so that the
distance between the steady state and the basin boundary is greater. In a
stochastic environment this will determine stronger and longer-lasting bubbles
for higher β and γ.
We have obtained graphical representations of the basins around bubble

equilibria characterized by different stationary exchange rates, with very similar

shocks, the exchange rate at time t may be moved into a different basin of attraction, so that
the trajectory starts to move towards a different kind of attractor.
29Through a kind of “connection” with other portions of the basin.
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Basins of attraction around the fundamental steady state:
sensitivity with respect to β

initial condition
y0 = z0 =  0     σ2

f,0 = σ2
c,0 = 0.05    u0  and s0  varying parameters

ψ = 0.2   µ = 1  γ = 1   θ = 0.6

β =0.83 β =0.84

β =0.85 β =0.851

(a) (b)

(c) (d)

enlargement

bubble
fundamental

Basins of attraction

Figure 11:
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Basins of attraction around the fundamental steady state:
sensitivity with respect to γ

initial condition
y0 = z0 =  0     σ2

f,0 = σ2
c,0 = 0.05    u0  and s0  varying

parameters
ψ = 0.2   µ = 1  β = 0.83   θ = 0.6

γ =1

(a) (b)

(c) (d)

γ =2

γ =3 γ =5

Figure 12:
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µ =1µ = 0.1

(a) (b)

Basins of attraction around the fundamental steady state
sensitivity with respect to µ

initial condition
y0 = z0 =  0     σ2

f,0 = σ2
c,0 = 0.05    u0  and s0  varying

parameters
ψ = 0.2   β = 0.8   γ = 5   θ = 0.6

Figure 13:

results, i.e. with a basin boundary which is quite close to the bubble equilibrium,
at least for sufficiently low values of β and γ30. We could say that a “fully
developed” bubble represents a kind of locally stable state, but “practically”
unstable once exogenous noise is added to the deterministic dynamical system.

9 Rational versus ”behavioural” bubbles
We can now contrast the difference between ”rational bubbles” and the bubbles
obtained in our model, which we will label ”behavioural” bubbles. A ”rational
bubble” is obtained in a model in which agents use all available information
including the underlying structure of the model and in which they know the
distribution of the underlying stochastic variables. In such a model bubbles
are movements of the exchange rate (asset price) along an explosive path. The
latter is one of the infinitely many unstable solutions obtained in a rational
expectations model where agents are fully and perfectly informed.
In models with perfectly and fully informed agents modeling a crash is a

challenging task. In a perfect foresight model a bubble with a crash cannot exist
because when the timing of the crash is known (and by definition this is known in
a perfect foresight model) agents will anticipate this and by backward induction

30For instance, qualitatively similar pictures can be obtained by representing the basins of
attraction around the bubble equilibrium with stationary levels s(= u = y = z) = 5, σ2c = 0,
σ2f = ψ2s2 = 1, under the following parameter configuration: β = 0.85, γ increasing from
0.25 to 2.
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Basins of attraction around a “bubble equilibrium”:
sensitivity with respect to β
initial condition
y0 = z0 =  10    σ2

f,0 = 4   σ2
c,0 = 0     u0  and s0  varying

β = 0.83 β = 0.835 

parameters
ψ = 0.2   γ =1   µ = 1   θ = 0.6

β = 0.84 β = 0.85 

(a) (b)

(c) (d)

Figure 14:
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Basins of attraction around a “bubble equilibrium”:
sensitivity with respect to γ parameters

ψ = 0.2   β = 0.83  µ = 1   θ = 0.6

γ =1 γ =1.5

γ =2 γ =2.5

initial condition
y0 = z0 =  10    σ2

f,0 = 4   σ2
c,0 = 0     u0  and s0  varying

(a) (b)

(c) (d)

Figure 15:
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prevent the bubble from happening. The insight provided by Blanchard and
Watson(1982) was to show that a bubble followed by a crash is possible in
a stochastic rational expectations model. The crash occurs in such a model
because agents attach some positive probability of a future crash. As a result,
inevitably at some point a probable event becomes reality and a crash occurs.
Agents, however, cannot predict when this will happen. The uncertainty about
the exact time of the crash is necessary to make a ”rational bubble” possible.
The problem with this ”rational bubble” theory is that while it provides

a sensible explanation of why bubbles can arise, it has no good explanation
of why crashes occur31. The only reason why the latter occur is that they are
assumed to occur. The assumption that crashes must occur sounds reasonable
since whe have not observed an everlasting bubble. It is, however, imposed in an
ad-hoc way, from outside the model32. In models where rational and irrational
agents interact (DeLong, Shleifer, Summers and Waldmann(1990), Shleifer and
Vishny(1997), and Abreu and Brunnermeier(2003)), bubbles arise because of
a failure of arbitrage by the rational agents. These models also assume that
crashes occur for exogenous reasons.
Another implication of the ”rational bubble” model is that the exchange rate

(asset price) is always on a bubble path. The reason is that the fundamental
solution has a knife-edge property (saddle path). This means that the slightest
deviation from the fundamental path brings the exchange rate on an unstable
path. In a stochastic environment these slight deviations are inevitable. Thus
the ”rational bubble” theory predicts that the exchange rate will permanently
be on a bubble path.
In our model a bubble is a locally stable equilibrium (a fixed point attractor)

to which the exchange rate is attracted if exogenous shocks brings it in the basin
of attraction of the bubble equilibrium. At the same time also the fundamental
equilibrium is locally stable. This makes the ”behavioural” bubble fundamentally
different from the ”rational bubble”. First, in our behavioural model one needs
a sufficiently large shock away form the fundamental to move the exchange rate
towards a bubble attractor. Thus in ”normal” times the exchange rate is driven
by its fundamental value. This contrasts with the ”rational bubble” theory in
which the fundamental equilibrium is unstable, so that the exchange rate is
always on an unstable bubble path. Second, the forces that lead to a bubble
are the same as the forces that lead to a crash. We showed that large shocks

31The Blanchard-Watson rational bubble model can also be criticised for the fact that it
predicts the occurrence of bubbles whose features are not found in empirical evidence. For
example, it predicts that the bubbles are exponentially distributed, whereas the empirical
evidence suggests that there are fat tails in the distribution of bubbles (see Mandelbrot(1997)
and Lux and Sornette (2002)). In addition, the rational bubble model predicts that there is
symmetry between bubble and crash phases, i.e. that after the crash the asset price returns
to its fundamental value. Again, this does seem to square with the empirical evidence (see
Sornette(2003)).
32There is an important literature analysing the conditions under which rational bubbles

occur in general equilibrium models. In general, the conditions for such bubbles to occur
are tighter in these models than in partial equilibrium models because of some finiteness
condition(e.g. a finite number of individuals, see Tirole(1982)). Typically these models have
not been concerned with an explicit modelling of the crash.
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in the fundamental increase the probability of the occurrence of a bubble. Once
in a bubble equilibrium a sufficiently large shock in the fundamental leads to
a crash. In this sense our model provides for a theory of both the occurrence
of a bubble and its subsequent crash. Third, the timing of the bubble and of
the crash is uncertain. This uncertainty is not imposed exogenously but comes
from the structure of the model. For we have shown that a bubble equilibrium
of the underlying deterministic model is only locally stable, and in general it
lies very close to the boundary of its basin of attraction; furthermore, the basins
of attraction around the fundamental and the bubble equilibrium have often a
fractal nature. As a result, the exact timing of the bubble and of the crash is
dependent on ”trivial events”.
The view of a bubble as an equilibrium concept is reminiscent of the notion of

”sunspots” which is also an equilibrium concept in rational expectations models
(see Blanchard and Fischer(1989), p255, and Azariadis and Guesnerie(1984)).
Sunspot equilibria arise because some agents believe that an arbitrary variable
(sunspots) influences the asset price. As a result, rational agents who know
this, attach some probability that a sunspot equilibrium will be reached. In our
model a bubble equilibrium exists because some agents use extrapolative fore-
casting rules which under certain conditions can crowd out agents who believe
in the existence of a fundamental value of the exchange rate. Thus, a bubble
equilibrium is possible not because some agents are irrational and believe that
sunspots affect the exchange rate, but because these agents are agnostic about
the existence of fundamentals (including sunspots), and therefore rely only on
the past exchange rate movements as the source of their information.

10 Conclusion
Up to now theoretical analysis of bubbles and crashes has been done almost ex-
clusively in the context of models with perfectly and fully informed agents. This
has led to the theory of ”rational bubbles”. In this paper we use an alternative
framework in which agents are boundedly rational. We apply this framework
to analyse the emergence and the subsequent disappearance of bubbles in the
foreign exchange market. The analysis could easily be extended to other asset
markets.
The special feature of our model is that individual agents recognize that

they are not capable of understanding and processing the complex information
structure of the underlying model. As a result, they use simple rules to forecast
the exchange rates. These agents can be said to be boundedly rational That is,
agents check the ’fitness’ (profitability) of the forecasting rule at each point in
time and decide to reject the rule if it is less profitable (in a risk adjusted sense)
than competing rules. Our model is in the tradition of evolutionary dynamics
where agents use trial and error strategies. We assume that some of the forecast-
ing rules are based on extrapolating past exchange rate movements (technical
trading) and others are based on mean reversion towards the fundamental rate
(fundamentalism).
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The model generates two types of equilibria. The first one, which we called a
fundamental equilibrium, is one in which the exchange rate converges to its fun-
damental value. The exchange rate, however, can also converge to a second type
of equilibrium, which we called a non-fundamental (bubble) equilibrium, and
which is reached in a self-fulfilling manner. An important feature of the bubble
equilibrium is that technical traders (extrapolative forecasting) take over most
of the market, so that fundamental influences on the exchange rate disappear.
We simulated the model in a stochastic environment and generated complex
scenarios of bubbles and crashes. One interesting aspect of the model is that
it explains both the emergence of the bubble and its subsequent crash. That is,
we found that the forces that trigger the emergence of a bubble are the same as
those that lead to its collapse. This contrasts with the ”rational bubble” model
that has not found a satisfactory explanation for a crash to occur yet.
We also analysed under what conditions bubbles and crashes occur. We

found that when agents react strongly to changing relative profitabilities of the
different forecasting rules, the frequency of bubbles increases. Similarly, when
technical analysts tend to extrapolate past movements of the exchange rate
aggressively, the probability of bubbles and crashes increases. Finally, when
agents are very risk averse bubbles will occur more frequently.
The theory of bubbles and crashes that we propose in this paper is different

from the ”rational bubble” theory. The difference exists at two levels. First, in
our model bubbles are locally stable equilibria (fixed point attractors). These
can be reached because certain shocks lead ”fundamentalists” to be crowded
out by technical traders in a self-fulfilling manner. One needs a sufficiently large
shock in the fundamental variables, however, for this to happen. This contrasts
with the ”rational bubble” theory which defines a bubble as an explosive path of
the asset price. Since the fundamental equilibrium path is unstable (knife-edge)
the asset price will be permanently involved in an explosive bubble and crash
dynamics in a stochastic rational expectations model.
Our bubble equilibria are also different from sunspot equilibria which arise

in models where some (irrational) agents give importance to some arbitrary
variables (sunspots) in the determination of the asset price. In contrast to these
sunspot equilibria, our bubble equilibria arise because sometimes the market
is dominated by agents who are agnostic about the fundamental variables that
drive the asset price.
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6256.

A Appendix 1: The variance ratio σ2f,t/σ
2
c,t at the

steady state
In this appendix we show the ratio of the variance of the fundamentalist and
chartists σ2f,t and σ2c,t as it converges to its steady state value. We simulated
the model for different parameter configurations and different initial values of
the exchange rate. In each case we found that the variance ratio converged to
1 as the system approached the steady state.
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B Appendix 2 : Numerical values of the para-
meters used in the base simulation

In the following table we present the numerical values of the model. In the first
column we listed the parameters of the model, in the second column we present
the numerical values in the base simulations. The last column indicates whether
or not we have performed a sensitivity analysis on these numerical values. If
not, we use the same numerical value in all simulations.

Table 1: Numerical values of parameters
Parameters values sensitivity analysis

ψ 0.2 No
ρ 0.6 No
β 0.8 Yes
θ 0.6 No
γ 1 Yes
µ 1 Yes

H = K (lags) 5 No
r and r∗ 0 No
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