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technologies. The analysis is tractable and the MPE unique. The framework is used to derive 
optimal incomplete contracts in a dynamic setting. While the noncooperative equilibrium is 
very inefficient, short-term contracts can be worse due to hold-up problems. The optimal 
long-term contract is more ambitious if its length is relatively short and the technological 
spillover large. The optimal length increases in this externality. With renegotiation, the 
outcome is first best. The results have several implications for how to design a climate treaty. 
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1. Introduction

This paper develops a dynamic model of private provision of public goods. The agents
can also invest in cost-reducing technologies, leading to n + 1 stocks, but the analysis
is nevertheless tractable. I characterize a unique Markov perfect equilibrium (MPE),
compare it to scenarios in which the agents can contract on contributions, and derive the
optimal incomplete contract.
The model is general and could �t various contexts. The leading example is climate

change, and the results have clear implications for how to design an e¢ cient treaty. Con-
sistent with the model�s assumptions, environmental agreements (e.g. the Kyoto Protocol)
typically specify emission levels but not investments in technology, since such investments
would be hard to verify. They often have a limited time horizon and leave future com-
mitments to be negotiated.1 To �x ideas, I thus refer to the agents as "countries", the
public bad (i.e., the negative of a public good) as "greenhouse gas" and contributions
as "emissions." All countries su¤er from the cumulated pollution level, but each country
faces a private cost when cutting its own emission. This cost, however, can be reduced
by investing in technology (such as abatement technology or renewable energy sources).
There might also be technological spillovers when a country makes such investments, since
other countries may be able to utilize the knowledge thereby generated.
The real investment cost function may be convex or concave (if there are increasing

returns to scale). By assuming it is linear, I analytically derive a unique MPE, even though
there is a large number of stocks in the model. This MPE is stationary and coincides
with the unique subgame perfect equilibrium if time were �nite but approached in�nity.
Since the MPE is unique, agreements enforced by trigger strategies are not feasible. But
in reality, even domestic stakeholders might act as enforcers if the agreement must be
rati�ed by each country. While abstracting from domestic politics, I vary the countries�
possibilities or negotiating, contracting and committing, and derive the best agreement
for each situation. Since each equilibrium contract is also the constrained optimum, the
results can be interpreted normatively.
To begin with, countries act noncooperatively at all stages. If one country happens

to pollute a lot, the other countries are, in the future, induced to pollute less since the
problem is then more severe. They will also invest more in technology to be able to
a¤ord the necessary cuts in emissions. On the other hand, if a country invests a lot in
abatement technology, it can be expected to pollute less in the future. This induces the
other countries to increase their emissions and reduce their own investments. Anticipating
these e¤ects, each country pollutes more and invests less than it would in an otherwise
similar static model. This dynamic common pool problem is thus particularly severe.
Short-term agreements on immediate emission levels can nevertheless be worse. A

hold-up problem arises when the countries negotiate emission levels: if one country has
better technology and can cut its emissions fairly cheaply, then its opponents may ask it

1According to the UN, "The major feature of the Kyoto Protocol is that it sets binding targets...for
reducing greenhouse gas (GHG) emissions... over the �ve-year period 2008-2012...By the end of the �rst
commitment period of the Kyoto Protocol in 2012, a new international framework needs to have been
negotiated" (http://unfccc.int/kyoto_protocol/items/2830.php). The more recent Copenhagen Accord
also requests the speci�cation of emission levels, but not of levels of R&D.
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to bear the lion�s share of the burden when collective emissions are reduced.2 Anticipating
this, countries invest less when negotiations are coming up. This makes everyone worse
o¤, particularly if the length of an agreement is short and the number of countries large.
Long-term agreements may better mitigate the hold-up problem. If commitments are

negotiated before a country invests, it cannot be held up by the other countries - at least
not before the agreement expires. Thus, countries invest more when the agreement is
long-term. Nevertheless, countries under-invest if (i) the agreement does not last forever
or (ii) the technological spillover is large. To encourage more investments, the best (and
equilibrium) long-term agreement is tougher and stipulates lower emissions compared to
the optimum ex post, particularly if the technological spillover is large and the length
of the agreement relatively short. Since investments decrease toward the end of the
agreement, the agreement should become tougher over time to motivate investments.
The optimal length of an agreement increases in the technological spillover, I �nd.
However, such long-term agreements are not renegotiation-proof. Once the invest-

ments are sunk and the state of the world realized, countries have an incentive to nego-
tiate ex-post optimal emission levels rather than sticking to an overambitious long-term
agreement. When renegotiation is possible and cannot be prevented, an investing country
understands that it does not, in the end, have to comply with overambitious contracts.
Nevertheless, with renegotiation, all investments and emissions are �rst best. Intuitively,
emission levels are renegotiated to ex-post optimal levels. Countries with poor technol-
ogy �nd it particularly costly to comply with an initial ambitious agreement and will
be quite desperate to renegotiate it. This gives them a weak bargaining position and a
bad outcome. To avoid this fate, countries invest more in technology, particularly if the
initial agreement is very ambitious. Taking advantage of this e¤ect, the agreement should
be tougher if its length is short and the technological spillover large, just as in the case
without renegotiation.
In reality, the externalities from investments are related to international trade and

law. Poor protection of intellectual property rights allow countries to bene�t without
having to pay. If trade in abatement technology is possible, import tari¤s may reduce the
exporter�s price and increase the externality for free-riders. International subsidies, either
on investments or trade in abatement technologies, do the opposite. Thus, with small
subsidies, high tari¤s and poor protection of intellectual property rights, the externality
is larger and countries under-invest. In these circumstances, the results suggest that the
climate treaty should be tough and long-lasting. Vice versa, if the countries can only
commit to short-lasting and weak climate treaties, investment subsidies, tari¤ reductions
and intellectual property rights become more important. This way, the externality is
endogenized.
The next section clari�es the paper�s contribution to the literature on dynamic games,

incomplete contracts, and environmental agreements. The model is presented in Section
3. When solving the model in Section 4, I gradually increase the possibilities for ne-
gotiations and contracts: (i) no cooperation, (ii) short-term agreements, (iii) long-term

2Financial Times reports that "Leaders of countries that want concessions say that nations like Den-
mark have a built-in advantage because they already depend more heavily on renewable energy" (October
17, 2008, p. A4). Although the Kyoto Protocol aimed for uniform cuts relative to the 1990 levels, excep-
tions were widespread and there is currently no attempt to harmonize cuts.
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agreements, and (iv) long-term agreements with renegotiation. I start out by assuming
that investments are noncontractible, technologies nontradable, quotas nontradable, �rms
nonexistent, and countries homogeneous. All these assumptions are relaxed in Sections 5
and 6. Section 7 concludes, while the Appendix contains all proofs.

2. Contributions to the Literature

By developing a (i) dynamic (di¤erence) game permitting (ii) incomplete contracts in-
terpreted as (iii) environmental agreements, the paper contributes to three strands of
literature.

2.1. Dynamic games

Private provision of public goods is often studied in di¤erential games (or a di¤erence
game, if time is discrete) where each player�s action in�uences the future stock or state
parameter.3 Given the emphasis on stocks, the natural equilibrium concept is Markov
perfect equilibrium. As in this paper, the typical conclusion is that public bads (goods)
are over-provided (under-provided).4

Di¤erential games are, however, often di¢ cult to analyze. This has several implica-
tions: First, many authors restrict attention to linear-quadratic functional forms (Engw-
erda, 2005). Second, while some papers arbitrarily select the linear MPE (e.g., Fershtman
and Nitzan, 1991), multiple equilibria typically exist (Wirl, 1996; Tutsui and Mino, 1990).
Consequently, many scholars, like Dutta and Radner (2009), manage to construct more
e¢ cient nonlinear MPEs.5 Third, few bother complicating their model further by adding
investments in technologies. One exception is Dutta and Radner (2004), who do add
explicit investments in technology. But since the cost of pollution (as well as the cost
of R&D) is assumed to be linear, the equilibrium is �bang-bang�where countries invest
either zero or maximally in the �rst period, and never thereafter.
The �rst contribution of this paper is to develop a tractable model, with a unique

MPE, that can be used to analyze investments as well as emissions. This is achieved by
assuming that technology has a linear cost and an additive impact. This trick simpli�es
the model tremendously, and it may also be used when studying unrelated topics. In the
literature on industry dynamics, for example, analytical solutions are rare and numerical
simulations necessary.6

3For overviews, see Başar and Olsder (1999) or Dockner et al. (2000).
4This follows if private provisions are strategic substitutes (as in Fershtman and Nitzan, 1991, and

Levhari and Mirman, 1980). If they were complements, e.g. due to a discrete public project, e¢ ciency is
more easily obtained (Marx and Matthews, 2000).

5See also Dockner and Long (1993), Dockner and Sorger (1996), and Sorger (1998).
6See the survey by Doraszelski and Pakes (2007). A �rm typically over-invests in capacity to get a

competitive advantage. While Reynolds (1987) restricts attention to the linear MPE in a linear-quadratic
model, a simple two-stage game is used by d�Aspremont and Jacquemin (1988) to discuss the bene�ts of
cooperation and by Gatsios and Karp (1992) to show that �rms may invest more if they anticipate future
merger negotiations. When allowing negotiations on price (but not on investments) in a more general
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My second contribution, made possible by the �rst, is to incorporate incomplete con-
tracts in dynamic games. Few papers allow for policies or negotiation in di¤erential
games.7 In Battaglini and Coate (2007), legislators negotiate spendings on pork and a
long-lasting public good. The equilibrium public-good level is suboptimally but strate-
gically low to discourage future coalitions from wasting money on pork. This argument
relies on majority rule, however, and the contract incompleteness is related to future
policies rather than current investments.

2.2. Incomplete contracts

By permitting contracts on emissions but not on investments, this paper is in line with the
literature on incomplete contracts (e.g., Hart and Moore, 1988).8 I show that investments
decrease toward the end of a contract, the best contract becomes tougher over time, and
the optimal length increases in the spillover.9 The result that short-term agreements can
be worse than no agreement at all is certainly at odds with the classical literature that
focuses on bilateral trade.
When renegotiation is possible, moral hazard problems are often expected to worsen

(Fudenberg and Tirole, 1990). But Chung (1991) and Aghion et al. (1994) have shown
how the initial contract can provide incentives by a¤ecting the bargaining position as-
sociated with particular investments. While these (and related) models have only one
period, Guriev and Kvasov (2005) present a dynamic moral hazard problem emphasizing
the termination time. Their contract is renegotiated at every point in time, to keep the
remaining time horizon constant. Contribution levels are not negotiated, but contracting
on time is quite similar to contracting on quantity, as studied by Edlin and Reichelstein
(1996): if the externality increases, Guriev and Kvasov �nd that the contract length
should increase, while Edlin and Reichelstein show that the contracted quantity should
increase. In this paper, agents can contract on quantity (emissions) as well as on time,
allowing me to study how the two interact. I also allow an arbitrary number of agents, in
contrast to the buyer-seller situations in these papers.

setting, Fershtman and Pakes (2000) use numerical analysis.
7Hoel (1993) studies a di¤erential game with an emission tax, Yanase (2006) derives the optimal

contribution subsidy, Houba et al. (2000) analyze negotiations over (�sh) quotas lasting forever, while
Sorger (2006) study one-period agreements. Although Ploeg and de Zeeuw (1992) even allow for R&D,
contracts are either absent or complete in all these papers.

8In dynamic settings, hold-up problems may be solved if the parties can invest while negotiating and
agreements can be made only once (Che and Sakovics, 2004), or if there are multiple equilibria in the
continuation game (Evans, 2008). Neither assumption is satis�ed in this paper, however.

9Very few papers study the optimal length of contracts. Harris and Holmstrom (1987) discuss length
when contracts are costly to rewrite, but uncertainty about the future makes it necessary. Ellman (2006)
studies the contract "length" (the probability for continuing the contract) and �nds that it should last
longer if speci�c investments are important. This is related to my result on the optimal time horizon,
but Ellman has only two agents, one investment period, and uncertainty is not revealed over time.

5



2.3. Environmental agreements

There is a growing literature on climate policy and environmental agreements.10 My
main contribution to this literature is to add dynamics and incomplete contracts. This
generates several novel results, including my �nding that short-term agreements are bad
while long-term agreements better mitigate hold-up problems. Karp and Zhao (2009),
for example, recommend decade-long short-term agreements, partly to ensure �exibility.
The present paper demonstrates, however, that �exibility is better assured by long-term
agreements with renegotiation.
Assuming nonveri�able R&D is quite standard.11 Thus, the result that agreements

should be ambitious in order to induce R&D has been observed also in two-stage games
(Golombek and Hoel, 2005). But my result that (short-term) agreements can reduce R&D
is at odds with most of the literature, which instead emphasizes the positive impacts of
regulation on technological change.12 Hoel and de Zeeuw (2009) also �nd that R&D
can decrease if countries cooperate because they then reduce pollution even without new
technology, although there is no negotiation (and their analysis hinges on a "breakthrough
technology" and binary abatement levels). That R&Dmight decrease prior to negotiations
was �rst noted by Buchholtz and Konrad (1994). More recently, Beccherle and Tirole
(2010) generalized my one-period model and showed that anticipating negotiations can
have adverse e¤ects also if the countries, instead of investing, sell permits on the forward
market, allow banking, or set production standards. With only one period, however, these
models miss dynamic e¤ects and thus consequences for agreement design.13

3. The Model

3.1. Stocks and Preferences

This section presents a game where n players over time contribute to a public good and
invest in technology. The purpose of the technology is to reduce the cost of providing
public goods in the future. While the model is general, let climate change �x ideas. I will
thus refer to the players as countries, the public good (or its negative: the public bad) as
the stock of greenhouse gases, and to contributions as emissions.14

The public bad is represented by the stockG of greenhouse gases in excess of its natural

10See Kolstad and Toman (2005) on climate policy and Barrett (2005) on environmental agreements.
Aldy et al. (2003) and Aldy and Stavins (2007) discuss alternative climate agreement designs.
11If trying to contract on R&D, Golombek and Hoel (2005, p. 202) note that "it will be relatively easy

for the country to have less R&D than required by the agreement, but to report other expenditures as
R&D activities."
12See, e.g., Ja¤e et al. (2003) or Newell et al. (2006). Even when investments are prior to negotiations,

Muuls (2009) �nds that they increase investments.
13Many dynamic models of climate treaties focus on the number of participants (see, e.g., Barrett

and Stavins, 2003; Rubio and Ulph, 2007; and their references). In my model, however, all countries
participate in equilibrium since I do not allow them to commit to not negotiating with the others.
14Nevertheless, I abstract from heterogeneities within countries and oil exhaustability. The strategic

e¤ects studied below would survive if these complications were added to the model.
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level. Since the natural level is thus G = 0, G tends to approach zero over time (were it
not for emissions), and 1� qG 2 [0; 1] measures the fraction of G that "depreciates" every
period. G may increase, nevertheless, depending on the emission level gi from country
i 2 f1; :::; ng:

G = qGG� + � +
X
i

gi: (3.1)

G� represents the stock of greenhouse gases left from the previous period; subscripts for
periods are thus skipped. The shock �, arbitrarily distributed with mean 0 and variance
�2, captures Nature�s stochastic impact onG. I abstract from country-speci�c uncertainty.
The other type of stock is technology. The technology stock in country i is measured

by Ri, and it depreciates over time at the rate 1� qR 2 [0; 1]. If country i invests ri units
in technology, Ri increases directly by dri units and, allowing for technological spillovers,
Rj may increase by eri, 8j 6= i.15

Ri = qRRi;� + dri +
X
j 6=i

erj: (3.2)

Assuming the spillover is imperfect, d > e. The total e¤ect on R �
P

iRi is de�ned by
the primitive constant D � d+ e (n� 1).
With only one type of technology, I cannot distinguish among innovation, development,

di¤usion, and learning by doing. Thus, several interpretations of Ri are consistent with
the model. For example, Ri may measure i�s abatement technology, i.e., the amount by
which i can at no cost reduce (or clean) its potential emissions. If energy production,
measured by yi, is generally polluting, the actual emission level of country i is given by:

gi = yi �Ri. (3.3)

Alternatively, Ri may measure the capacity of country i�s renewable energy sources (or
"windmills"). If the windmills can generate Ri units of energy, and the alternative is to
use polluting fossil fuels, the total amount of energy produced is given by yi = gi +Ri )
(3.3).
Relying on (3.3), rather than focusing on technologies that reduce the emission content

of each produced unit (e.g., gi = yi=Ri), simpli�es the analysis tremendously. An equally
helpful assumption is to let the investment cost be linear and equal to Kri. In reality,
the cost of investing in technology can be a convex or a concave function (if there are
increasing returns to scale). Imposing linearity is thus a strong assumption, but it permits
a tractable model despite the n+ 1 stocks.
Let the bene�t of consuming (and producing) energy be given by the increasing and

concave function B (yi). If C (G) is an increasing convex function representing each coun-
try�s cost of the public bad, i�s utility in a period is:

ui = B (yi)� C (G)�Kri:

Remarks on �: The stochastic shock � has a minor role in the model and most of the
results hold without it (i.e., if � = 0). But the future marginal cost of emissions is in

15Such spillovers are empirically important (Coe and Helpman, 1995).
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reality uncertain, and this can be captured by �. In fact, the model would be identical
if the level of greenhouse gases were bG � qGG� +Pi gi and the uncertainty were in the
associated cost-function, a¤ecting C but not bG:

ui = B (yi)� C
� bG+���Kri; where � = qG�� + �:

Most results would continue to hold even if the e¤ects of bG and � were not additive.16

Note that, although � is i.i.d. across periods, it has a long-lasting impact through its
e¤ect on G.
Alternative interpretations: Instead of interpreting yi as "energy," we could substitute

(3.3) in B (:) and let B (gi +Ri) measure i�s direct bene�t of adding to the public bad
(e.g., due to saved abatement costs). Better technology is then a perfect substitute for
producing the public bad. The public bad does not, of course, have to be greenhouse gases.
Moreover, by de�ning a public good as �G and contributions as �gi, i�s marginal cost of
providing the public good is B0 (Ri � (�gi)), increasing in i�s contribution but decreasing
in i�s technology. Hence, the model �ts many situations (with private provision of public
goods or bads) beyond climate change.

3.2. The Timing

The investment stages and the pollution stages alternate over time. Somewhat arbitrarily,
I de�ne "a period" to be such that the countries �rst (simultaneously) invest in technology,
after which they (simultaneously) decide how much to pollute. In between, � is realized.
Information is symmetric at all stages.
Country i�s objective is to maximize the present-discounted value of its future utilities,

Ui =
1X
�=t

ui;��
��t;

where � is the common discount factor and Ui is i�s continuation value as measured at
the start of period t. As mentioned, subscripts denoting period t are often skipped.

Figure 1: The timing and de�nition of a period

3.3. The Equilibrium Concept

As in most dynamic games with stocks, attention is restricted to Markov perfect equi-
libria (MPE) as de�ned by Maskin and Tirole (2001). The MPE turns out to be unique
16The exceptions are Propositions 3 and 6 where I rely on quadratic utility functions.
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and coinciding with the unique subgame-perfect equilibrium if time were �nite and ap-
proaching in�nity.17 Maskin and Tirole (2001, pp. 192-3) defend MPEs since they are
"often quite successful in eliminating or reducing a large multiplicity of equilibria," and
they "prescribe the simplest form of behavior that is consistent with rationality" while
capturing that "bygones are bygones more completely than does the concept of subgame-
perfect equilibrium." While this rules out trigger strategies and related punishments, I will
nevertheless consider the possibility that countries can negotiate future emission levels.
Although I do not explain why countries comply with such promises, one explanation is
that the treaty must be rati�ed domestically and that certain stakeholders have incentives
to sue the government unless it complies. By increasing the possibilities for negotiating
and contracting, I derive results for each situation, making a comparison feasible.
If the countries are negotiating, I assume the outcome is e¢ cient and symmetric if

the payo¤-relevant variables are symmetric across countries. These assumptions are weak
and satis�ed whether we rely on (i) the Nash Bargaining Solution (with or without side
transfers) or (ii) take-it-or-leave-it o¤ers (with side transfers) if each country has the same
chance of being recognized as the proposer. All countries participate in equilibrium, since
there is no stage at which they can commit to not negotiate with the others.

4. Analysis

This section solves the game above, gradually increasing the possibilities for negotiating
and contracting. As a reference for the future, the �rst-best emission level g�i ex post
(taking R, G�, and � as given) satis�es

B0 � nC 0 + n�UG = 0; where (4.1)

B0 � @B (g�i +Ri) =@gi, C 0 � @C (G) =@G, UG = �qG (1� �qR)K=Dn:

The �rst-best investment level is given by

EB0 (gi +R�i ) =
K (1� �qR)

D
) (4.2)

EC 0 (G) =
(1� �qG) (1� �qR)K

Dn
: (4.3)

Expectations are w.r.t. the unknown realization of �. Combined with (3.1), (4.3) pins
down the

P
i gis. Given the gis, (4.2) determines the �rst-best R

�
i s which, with (3.2),

determine the �rst-best ris. Throughout the analysis, I assume gi � 0 and ri � 0 never
bind.18

17Fudenberg and Tirole (1991, p. 533) suggest that "one might require in�nite-horizon MPE to be
limits of �nite-horizon MPE."
18This is satis�ed if gi < 0 and ri < 0 are allowed, or if qG and qR are su¢ ciently small.
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4.1. No Agreement

First, assume that the countries act noncooperatively at every stage. This may be rea-
sonable if the countries cannot commit to future policies because e¤ective sanctions are
lacking.
Note that choosing gi is equivalent to choosing yi, once the Ris are sunk. Substituting

(3.3) into (3.1), we get:

G = qGG� + � +
X
i

yi �R, (4.4)

R �
X
i

Ri = qRR� +
X
i

riD. (4.5)

This way, the Ris are eliminated from the model: they are payo¤-irrelevant as long as
R is given, and i�s Markov Perfect strategy for yi is thus not conditioned on them.19 A
country�s continuation value Ui is thus a function of G� and R�, not Ri;��Rj;�, and we
can therefore write it as U (G�; R�), without the subscript i.
At the emission stage, when the technologies are sunk, i solves

max
yi
B (yi)� C (G) + �U (G;R) s.t. (4.4) )

B0 � C 0 + �UG = 0: (4.6)

First, note that, since (4.6) decreases in gi, each country pollutes too much compared
to the �rst best (4.1) when UG < 0: a country is not internalizing the cost for the others.
Second, (4.6) con�rms that each i chooses the same yi, no matter the Ris. While

perhaps surprising at �rst, the intuition is straightforward. Every country has the same
preference (and marginal utility) w.r.t. yi, and the marginal impact on G is also the same
for every country: one more energy unit generates one unit of emissions.20

Substituting (4.4) in (4.6) implies that a larger R must increase every yi. This implies
that if Ri increases but Rj, j 6= i, is constant, then gj = yj � Rj must increase. Further-
more, substituting (3.3) in (4.6) implies that if Ri increases, gi must decrease. In sum: if
country i has better technology, i pollutes less but (because of this) other countries pollute
more. Clearly, this e¤ect discourages countries from investing. In addition, the Appendix
shows that, in equilibrium, ri increases in G� but decreases in R�. Thus, a country may
want to pollute a lot and invest little today in order to induce the other countries to invest
more tomorrow. With these dynamic e¤ects, this common pool problem is more severe
than its static counterpart (or the open-loop equilibrium).21

Proposition 1: There is a unique symmetric MPE. Countries pollute too much and

19This follows from the de�nition by Maskin and Tirole (2001, p. 202), where Markov strategies are
measurable with respect to the coarsest partition of histories consistent with rationality.
20This follows from (3.3) and would be false if technology a¤ected the marginal emission content of

energy production.
21This is also the case in Ploeg and de Zeeuw (1991), for example.
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invest too little. Furthermore:

ynoi = ynoj 8i; j 2 f1; :::ng8Ri; Rj;
@gnoi =@Ri < 0 < @gnoi =@Rj 8j 6= i;

@rnoi =@G� = qG=Dn, @rnoi =@R� = qR=Dn,

UnoR = qRK=Dn, UnoG = �qG (1� �qR)K=Dn: (4.7)

Conveniently, the continuation value U is linear in G� and R�: Thus, the n + 1
stocks collapse to one, making the analysis tractable. This is thanks to (3.3) and the
linear investment cost, which also ensures that the equilibrium is unique.22 Note that the
equilibrium is also stationary.
The dynamic paths are simple. Following a large �, every country pollutes less and,

in the next period, investments increase such that G+ returns to the original level. The
steady state is thus reached in one period.
The size of the externality e has no e¤ect, given D. Since only R matters for utilities

and strategies, Ri becomes a pure public good.23

For a given R, countries pollute more if qR is large and K=D small. Intuitively, if the
technology is e¢ cient, cheap, and long-lasting, one can pollute more today and let this
motivate investments in technology tomorrow. This, and other comparative statics can
be observed in the Appendix, which derives explicit formulae for the case where B (:) and
C (:) are quadratic functions.

4.2. Short-term Agreements

If countries can commit to the immediate but not the distant future, they may negotiate
a "short-term agreement." If the agreement is truly short-term, it is di¢ cult for the coun-
tries to develop new technology during the time-span of the agreement and the relevant
technology is given by historic investments. This interpretation of short-term agreements
can be captured by the timing of Figure 2.

Figure 2: The timing for short-term agreements

22As the proposition states, this is the unique symmetric MPE. Since the investment cost is linear,
there also exist asymmetric MPEs in which the countries invest di¤erent amounts. Asymmetric equilibria
may not be reasonable when countries are homogeneous, and they would cease to exist if the investment
cost were convex. Multiple equilibria never arise under long-term agreements.
23Thus, adding to the public good �G (by reducing gi) or to R (by increasing ri) has somewhat

similar e¤ects. However, they are not equivalent since a larger ri reduces emissions in every future
period. Increasing ri thus has longer-lasting impact than reducing gi, which is why ri is referred to as an
investment. Moreover, the remainder of this section lets gi be contractible while ri is not.
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Negotiating the gis is equivalent to negotiating the yis as long as the Ris are sunk and
observable (even if they are not veri�able). Just as in the previous section, (4.4)-(4.5)
imply that the Ris are payo¤-irrelevant, given R. Even if countries have di¤erent Ris,
they face the same marginal bene�ts and costs of yi whether negotiations succeed or not.
Symmetry thus implies that yi is the same for every country in the bargaining outcome.
E¢ ciency implies that the yis are optimal (all countries agree on this):

B0 � nC 0 + n�UG = 0) (4.8)

gsti = g�i ;

where both g�i and g
st
i are functions of existing technology and pollution levels.

Substituting (4.4) in (4.8) and (3.3) in (4.8) implies that if Ri increases, gi must
decrease - but gj increases, 8j 6= i. Intuitively, if i has better technology, i�s marginal
bene�t from polluting is less (and i is also polluting less in equilibrium). This gives i a
poor bargaining position, and the other countries can o¤er i a smaller emission quota.
At the same time, the other countries negotiate larger quotas for themselves, since the
smaller gi (and the smaller G) reduce the marginal cost of polluting. Anticipating this
hold-up problem, every country is discouraged from investing. The Appendix shows i
invests until

EB0
�
gi +R

st
i

�
=
K (n� �qR)

D
; (4.9)

so Rsti is smaller than the optimal one, given by (4.2). The equilibrium pollution level is

EC 0 (G) =
(1� �qG) (1� �qR)K

Dn
+
K (1� 1=n)

D
:

Thus, although emission levels are ex post optimal (4.8), once the investments are sunk,
G is larger compared to its �rst-best level (4.3) since the hold-up problem discourages
investments and makes it ex post optimal to pollute more.

Proposition 2: Proposition 1 continues to hold: There is a unique symmetric MPE.
Countries pollute too much and invest too little. Furthermore:

ysti = ystj 8i; j 2 f1; :::ng8Ri; Rj;
@gsti =@Ri < 0 < @gsti =@Rj 8j 6= i;

@rsti =@G� = qG=Dn, @rsti =@R� = qR=Dn,

U stR = qRK=Dn, U stG = �qG (1� �qR)K=Dn:

While its intuition is quite di¤erent, Proposition 2 is identical to Proposition 1. In
particular, UG and UR are exactly the same as in the noncooperative case. This does not
imply that U itself is identical in the two cases: its level can be di¤erent. But this does
imply that in deriving actions and utilities for one period, it is irrelevant whether there
will also be a short-term agreement in the next (or any future) period. This makes it
convenient to compare short-term agreements to no agreement.
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4.2.1. Are Short-Term Agreements Good?

Pollution is less under short-term agreements compared to no agreement. That may not
be surprising, since the very motivation for negotiating is to reduce pollution. But what
about equilibrium investments and utilities?
Unfortunately, a general comparison is not feasible. But some insight can be generated

by assuming B00 (:) and C 00 (:) are constants:

B (yi) = �
b

2
(y � yi)2 and C (G) =

c

2
G2: (Q)

Parameters b > 0 and c > 0 measure the importance of energy and climate change. The
bliss point y represents the ideal energy level if there were no concern for pollution: no
country would produce more than y due to the implicit costs of generating, transporting,
and consuming energy.

Proposition 3: Under (Q), short-term agreements reduce (i) pollution, (ii) investments,
and (iii) utilities if n is large and each period short (i.e., if (4.10) holds):

EGst = EGno � K
D

�
n� 1
b+ c

��
1� �qR

n

�
;

rsti = rnoi � K (n� 1)2

nD2 (b+ c)

�
1� �qR

n

�
;

(n� 1)2 � (1� �qR)2 > �2

"
(b+ c) (bcnD=K)2

(b+ cn2) (b+ cn)2

#
: (4.10)

Rather than being encouraging, short-term agreements impair the motivation to invest.
The reason is the following. Anticipating negotiations, the hold-up problem is exactly as
strong as the crowding-out problem in the noncooperative equilibrium: in either case, each
country only enjoys 1=n of the total bene�ts generated by its investments (no matter e).
In addition, when an agreement is expected, i understands that pollution will be reduced.
A further decline in emissions, made possible by new technology, is then less valuable.
Hence, each country invests less.24

Since investments decrease under short-term agreements, utilities can decrease as well.
This is the case, in particular, if the period for which the agreement lasts is truly short.
If so, � and qR are large, while there is not much uncertainty from one period to the
next. All changes make (4.10) reasonable, and it always holds when the agreement is very
short (� ! 0). Moreover, (4.10) is more likely to hold if n is large (it always holds if
n ! 1): the under-investment problem is then large, it becomes important to increase
investments, and this is achieved by having no agreement.
At the emission stage, however, once the investments are sunk, all countries bene�t

from negotiating an agreement. It is the anticipation of negotiations which reduces in-
vestments and perhaps utility. Thus, if (4.10) holds, the countries would have been better
o¤ if they could commit to not negotiate short-term agreements. In particular, it may be
better to commit to emission levels before the investments occur.
24A counter-argument is that, if an agreement is expected, it becomes more important to invest to

ensure a decent energy consumption level. While this force is smaller under (Q), it could dominate for
other functional forms.
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4.3. Long-term Agreements

The model can (and will) be used to analyze agreements of any length. If the countries can
negotiate and commit to future emission levels, it will be possible to develop technologies
within the time-frame of an agreement. The other countries are then unable to hold up
the investing country, since the quotas have already been negotiated, at least for the near
future.

4.3.1. One-period Agreements

This interpretation of "long-term agreements" can be captured simply by letting the
countries negotiate the gis in the beginning of each period, before the investments are
made. While these agreements last only one period, they are indeed "longer" than the
short-term agreements studied in Section 4.2. Moreover, each period can be arbitrarily
long in the model, since I have not speci�ed whether the discount factor, for example, is
large or small.

Figure 3: The timing for long-term agreements

For each period, the timing is now reversed. When investing, a country prefers a larger
stock of technology if its quota, glti , is small, since otherwise it is going to be very costly
to comply. Consequently, ri decreases in glti . The Appendix shows that ri increases until

B0
�
glti +R

lt
i

�
=
K (1� �qR=n)
D � e (n� 1) : (4.11)

Compared to (4.9), (4.11) suggests that countries invest more under long-term than under
short-term agreements (at least for the same gi). But compared to the �rst best (4.2),
countries still under-invest if e > 0 or �qR > 0. First, a country does not internalize the
spillover e on the other countries. Second, if the agreement does not last forever (� > 0),
a country anticipates that good technology worsen its bargaining position in the future,
once a new agreement is to be negotiated. At that stage, good technology leads to a lower
glti;+ since the other countries can hold up i when it is cheap for i to reduce its emissions.

25

This discourages i from investing now, particularly if the current agreement is relatively
short (� large) and the technology likely to survive (qR large). In sum, if e, �, and qR are
large, it is important to encourage more investments. This can be achieved by a small glti .
The Appendix shows that the equilibrium and optimal glti s must satisfy (4.3): the

equilibrium pollution level is similar to the �rst best! But since (4.11) implies that the

25Or, if no agreement is expected in the future, a large Ri;+ reduces gi;+ and increases gj;+, as proven
in Section 4.1.
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equilibrium Rlti s are less than optimal, the g
lt
i s are suboptimally low ex post. Combining

(4.3) and (4.11):

B0 � EnC 0 � n�UG =
K

D

�
e(1� �qR)(n� 1) + �qR (1� 1=n)

D � e (n� 1)

�
) (4.12)

glti = Eg
�
i �

K

D (b+ cn2)

�
e(1� �qR)(n� 1) + �qR (1� 1=n)

D � e (n� 1)

�
if (Q).

Taking the investments as given, optimally the glti should have satis�ed B
0�EnC 0 �

n�UG = 0 rather than (4.12). Only that would equalize marginal costs and bene�ts
of abatement. Relative to this ex post optimal level, the glti satisfying (4.12) must be
lower. If e and � are large, the right-hand side of (4.12) is large, and gi must decline.
This makes the long-term agreement more demanding or tougher to satisfy at the emis-
sion stage. The purpose of such an overambitious agreement is to encourage investments,
since these are suboptimally low when e and � are large.

Proposition 4: (i) There is a unique MPE. (ii) Each country invests more if the agree-
ment is tough (4.11). Therefore, (iii) the optimal agreement (4.12) is tougher if the
externality e is large and the time horizon short ( � large).

On the other hand, if e = �qR = 0, the right-hand side of (4.12) is zero, meaning that
the commitments under the best long-term agreement also maximize the expected utility
ex post. In this case, there are no externalities, and the countries are not concerned with
how current technologies a¤ect future bargaining power. Thus, investments are �rst best
and there is no need to distort the glti s downwards.
The continuation value U is linear in the stocks, making the analysis tractable. More-

over, U ltR = qRK=Dn and U
lt
G = �qG (1� �qR)K=Dn, just as in the two previous subsec-

tions. The predicted contract and investments are therefore robust to whether there is a
long-term agreement, a short-term agreement, or no agreement in the subsequent period.

4.3.2. Multiperiod Agreements

Assume now that at the beginning of period 1, countries negotiate the gi;ts for every
period t 2 f1; 2; :::; Tg. When investing in period t 2 f1; 2; :::; Tg, countries take the gi;ts
as given, and the continuation value in period T +1 is U(GT ; RT ). At the last investment
stage, i�s problem is the same as before and i invests until (4.11) holds. Anticipating this,
i can invest less in period T by investing more in period T � 1. The net investment cost
is thus K (1� �qR). The same logic applies to every previous period and, in equilibrium,

EB0 (gi;t +Ri;t) =
K (1� �qR)

d
=
K (1� �qR)
D � e (n� 1) for t < T: (4.13)

Thus, the incentives to invest are larger earlier than in the last period (4.11). In fact,
if e = 0, investments are �rst best for every t < T . In the last period, however, countries
invest less, anticipating the hold-up problem in period T + 1.26

26Or, if no agreement is expected in period T + 1, i anticipates @gj;T+1=@Ri > 0, j 6= i.
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All this is anticipated when the countries negotiate the gi;ts. As shown in the Appendix,
the optimal gi;ts must satisfy (4.3) for every t � T : the pollution level is similar to the
�rst best! The gi;ts are thus lower than what is optimal ex post when e > 0 and countries
under-invest. Combining (4.3) and (4.13) for t < T ,

B0 � EnC 0 � n�UG =
K

D

�
e (n� 1) (1� �qR)
D � e (n� 1)

�
) (4.14)

gi;t = Eg�i �
K

D (b+ cn2)

�
e (n� 1) (1� �qR)
D � e (n� 1)

�
if (Q).

Ex post, B0 � nC 0 � n�UG = 0 is optimal. Compared to this, gi;t satisfying (4.14) should
be smaller if e is positive and large. For t = T , however, (4.12) continues to hold and
since its right-hand side is less than that of (4.14), yi;T < yi;t for t < T . In words: in order
to encourage investments, the agreement should be tougher to satisfy toward the end.

Proposition 5: Suppose countries negotiate emission levels for T periods. (i) There is
a unique MPE. (ii) Investments decrease toward the end and, to encourage more invest-
ments, (iii) the equilibrium agreement becomes tougher over time compared to the ex post
optimum (4.12)-(4.14).

4.3.3. The Optimal Length of an Agreement

The optimal T trades o¤ two concerns. On the one hand, investments are particularly
low just before a new agreement is to be negotiated. This hold-up problem arises less
frequently if T is large. On the other hand, the stochastic � makes it hard to predict the
optimal gi;ts for the future, particularly when T is large. If � were known or contractible,
the agreement should last forever. Otherwise, one can show that the optimal T declines
as e # 0. The Appendix derives a large number of comparative statics for the case where
B and C are quadratic (Q):

Proposition 6: Under (Q), the agreement�s optimal length T increases in the externality
e and the number of countries n but decreases in b, c, and �:

Intuitively, the under-investment problem is particularly severe if e and n are large.
Reinforcing this problem by a small T is then especially harmful, and the optimal T is
larger. Naturally, T should be smaller if future optimal emissions are uncertain (� large)
and important (c large).27

4.4. Long-term Agreements with Renegotiation

The long-term agreements above are not renegotiation-proof. Not only are the commit-
ments made before the severity of the problem (determined by �) is known, but they also
specify emission levels that are less than what is expected to be optimal ex post. The

27If b is large, consuming energy is much more important than the concern for future bargaining power,
the hold-up problem vanishes, and the optimal T is smaller.
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countries may thus be tempted to renegotiate the treaty, after � and the investments are
realized. This section derives equilibria when renegotiation is costless.

4.4.1. One-period Agreements and Renegotiation

The timing in each period is now the following. First, the countries negotiate the initial
commitments, the gdei s, referred to as "the default." If these negotiations fail, it is natural
to assume that the threat point is no agreement.28 Thereafter, the countries invest and
� is realized. Before carrying out their commitments, the countries get together and
renegotiate the gdei s. Relative to the threat point g

de
i , the bargaining surplus is split

equally.29

Figure 4: The timing when renegotiation is possible

Renegotiation ensures that emission levels are ex post optimal, in contrast to the long-
term agreements in Section 4.3. When investing, a country anticipates that it will not, in
the end, have to comply with an overambitious long-term agreement. Will this jeopardize
the incentives to invest?

Proposition 7: (i) There is a unique MPE. (ii) The initial agreement satis�es (4.15):
the initial quota gdei is thus smaller if the spillover e is large and the time horizon short
( � large). (iii) All investments and emissions are �rst best.

B0
�
gdei +R

�
i

�
=

K

D � en ) (4.15)

gdei = Eg�i �
K

bD

�
en

D � en + �qR
�
under (Q).

When investing, the countries do anticipate that, after renegotiation, emissions will
be ex post optimal, just as they were under a short-term agreement. But for the short-
term agreement, countries with the poorest technology got the better deal, since these
countries were quite satis�ed with the (noncooperative) default outcome in which they
could pollute more. This made the "technology-losers" reluctant to negotiate, giving them
a better bargaining position. However, things are quite di¤erent when renegotiating an

28If the threat point were short-term agreements, negotiated after the investment stage, the outcome
would be identical.
29If instead the threat point at the renegotiation stage were that the countries would get upset and

revert to no cooperation, the renegotiation game would be identical to negotiations under short-term
agreements, and the incentives to invest would be as discussed in Section 4.2.
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ambitious agreement. Then, the technology-losers are desperate to reach a new agreement
that would replace the initial commitments. Such countries now have a poor bargaining
position, and they are, in equilibrium, going to get quite a bad deal (where they must pay
or accept a small gi). Fearing this, the countries are induced to invest more, particularly
if the default emission levels are small.
All this will be taken into account when negotiating the initial agreement, the gdei s.

The more ambitious this agreement is, the more the countries invest. This is desirable if
the countries are otherwise tempted to under-invest. Thus, the agreement should be more
ambitious if e and �qR are large. Formally, (4.15) implies that gdei decreases in e and �qR
sinceR�i is increasing in �qR but independent of e. Intuitively, if the length of the agreement
is short, countries fear that more technology today will hurt their bargaining position in
the near future. They thus invest less than what is optimal, unless the agreement is more
ambitious.30

Compared to (4.12), the initial agreement should be tougher than the optimal long-
term agreement (gdei < g

lt
i ). Intuitively, the long-term agreement (without renegotiation)

balances the concern for investments (by reducing glti ) and for ex post e¢ ciency (in which
gi should be larger). The latter concern is irrelevant when renegotiation ensures ex post
optimality, so the initial contract can be tougher - indeed so tough that investments are
�rst best.

4.4.2. Multiple Periods and Renegotiation

The �rst best is implemented by any long-term agreement lasting T � 1 periods if rene-
gotiation is possible. Suppose an agreement speci�es gdei;t, t 2 f1; :::; Tg. Investments at
t < T are �rst best if:

B0
�
gdei;t +R

�
i

�
=
K (1� �qR)
D � en ) gdei;t = Eg

�
i;t �

K

bD

�
1� �qR
D=en� 1

�
if (Q). (4.16)

Compared to (4.15), gdei;t is larger when T > 1 than when T = 1 (R
�
i is independent

of T ). Thus, agreements lasting one period should be more ambitious than if T > 1,
con�rming the earlier �nding that an agreement should be more ambitious if its length is
short.

Proposition 8: Suppose countries negotiate emission levels for T > 1 periods and rene-
gotiation is possible. At t < T , all investment and emission levels are �rst best if gdei;t is
given by (4.16). T and gdei;t0, t

0 > t, are irrelevant.31

30No contract can help if the externality dominates the direct e¤ect (e � d), as �rst pointed out by
Che and Hausch (1999) and later generalized by Segal and Whinston (2002).
31Since T and gdei;t0 , t

0 > t, are irrelevant, the predictions are not sharp when renegotiation is feasible.
With a small �xed cost of negotiating each gdei;t0 , however, the unique optimal contract would be described
by Proposition 7.
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4.4.3. Implementation

The optimal gdei;t+1s depend on �t and they must be (re)negotiated after �t is realized. But
instead of being negotiated at the start of period t + 1, the gdei;t+1s may equally well be
negotiated just before the emission stage in period t, since no information or individual
decisions are made in between. At this time, therefore, the countries may negotiate every
gdei;t+1 <Eg

�
i;t+1 while simultaneously renegotiating the g

de
i;ts and replacing them by the

optimal g�i;t+1s, which are expected to be larger than the g
de
i;ts negotiated in advance. This

might be observationally equivalent to a time-inconsistent policy where the countries make
ambitious plans for the future, while repeatedly backing down from promises made in the
past. But rather than verifying a time-inconsistency problem, this leads to the �rst best.

Corollary 1: In equilibrium, the countries repeatedly promise to pollute little in the
future but when the future arrives, they relax these promises. This procedure implements
the �rst best.

5. Trade, Tari¤s and Intellectual Property Rights

This section introduces a new externality, relates it to trade agreements and analyzes the
e¤ects of and for climate treaties.
Externalities: There are several ways in which spillovers could be formalized, but

many of them give similar results to those above.32 An alternative (or addition) to the
spillover above arises by assuming that j bene�ts directly by the externality xri when
i 6= j invests. If K continues to be the social net marginal investment cost, i�s private
investment cost is

k � K + (n� 1)x: (5.1)

The model is unchanged if we just write the utility as

ui = B (yi)� C (G)� kri +
X
j 6=i

xrj:

The externality x can be interpreted as a general technological spillover (a¤ecting ui
and not only i�s environmental technology) or as a spillover that reduces i�s cost of making
a particular investment ri (such that the cost is kri�

P
xrj).33 The Appendix allows for

both e and x and �nds them to play similar roles.
Trade in technologies: The externality x may re�ect international law. Suppose

that ri has the potential of reducing j�s cost (or increasing uj) by xri units. Of this, j can
copy a fraction 
 2 [0; 1] for free. The remaining fraction, 1 � 
, is available if j pays i
for transferring (or licensing) its technology. If i sets the price, i charges j�s willingness to

32For example, the spillover could be related to Ri rather than ri (as in Coe and Helpman, 1995). The
results would be similar, but i must then consider the impact of ri on Rj not only for the present, but
for all future periods.
33In fact, the cost would take exactly this form if countries simultaneously choose their targets for the

Ris and let the expenditures (the ris) follow residually from (3.2) rather than vice versa.
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pay, (1� 
)x, for each invested unit. Clearly, the net externality for j is x = 
x. Weaker
intellectual property rights mean larger 
, x and k.
Firms: Private �rms have been ignored so far in the analysis. But since �rms may

develop most of the technology in reality, it is comforting to note that the results would
not necessarily change if �rms were introduced. If the government can perfectly regulate
the �rms�investments in technologies by specifying conditional fees or grants, then �rms
are perfect agents for the government and it is su¢ cient to consider the government�s in-
centives. Even without regulation, if the governments are outsourcing the development of
technology and �rms compete by setting prices, anticipating the revenues (n� 1) (1� 
)x
when licensing to foreigners, technological units are provided at cost-price k and �rms are
not a¤ecting the game.
Tari¤s and subsidies: If the foreign individuals or �rms paying for the externality

(1� 
)x face an ad valorem tari¤ � , they are willing to pay only (1� �) (1� 
)x for each
imported unit. On the other hand, since trade is veri�able, one may consider encouraging
R&D by subsidizing trade in abatement technology.34 Let s represent this subsidy, paid
for by either the importing country or uniformly by the non-exporting countries. In either
case, the net externality for country j when country i decides to invest becomes

x = 
x� (s� �) (1� 
)x:

The private cost of investing faced by a country (or government) is k given by (5.1), just
as before. Thus, k and x are both higher with tari¤s, since the importing country is then
capturing more of the surplus, but lower if importers subsidize technological trade. The
role of s would be identical if directed to investments rather than the associated trade.

Proposition 9: If the subsidy ( s) is low, tari¤ ( �) high and the intellectual property
rights weak ( 
 large), (i) the agreement should be tougher and more long-lasting while (ii)
short-term agreements are likely to be worse than no agreement under (Q).

While the proof is in the Appendix, the intuition is straightforward. With tari¤s, small
subsidies and weak property right protection, �rms do not capture the bene�t experienced
by the foreigners. This forces the government to pay more to compensate the �rms when
investing, and they invest less. A further reduction in investment is then particularly bad,
making short-term agreements worse than the noncooperative equilibrium (under (Q)).
To encourage more investments, it is better to negotiate an agreement that is tougher and
more long-lasting.
If s, � or 
 can be speci�ed by international law, one may ask what their levels should

be. Does the optimal subsidy, tari¤ and intellectual property right protection depend on
the climate treaty?

Proposition 10: s should be larger while � and 
 smaller if the agreement is short-
lasting. The optimal s, � and 
 are given by (5.2) for short-term agreements, (5.3) for
long-term agreements (and the last period of multiperiod agreements), and by (5.4) for

34Stern (2007, p. 398) states "There are two types of policy response to spillovers... enforcement of
private property rights through patenting [and] government funding."
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multiperiod agreements (except for the last period).

�
sst � � st

� �
1� 
st

�
� 
st =

K

nx
> (5.2)�

slt � � lt
� �
1� 
lt

�
� 
lt =

K

nx

�
�qR +

en

D
(1� �qR)

�
> (5.3)�

st � � t
� �
1� 
t

�
� 
t =

Ke

xD
: (5.4)

It is more important to encourage investments by protecting intellectual property
rights, subsidizing technological trade and reducing tari¤s if the climate treaty is short-
lasting, since the hold-up problem is then larger. Such "trade agreements" are thus
strategic substitutes to climate treaties: Weakening cooperation on one area makes further
cooperation on the other more important.
If the subsidy can be freely chosen, short-term agreements are �rst best: while (5.2)

induces optimal investments, countries are negotiating the ex post optimal emissions. The
emission levels under long-term agreements (without renegotiation) are never �rst best,
however, due to the stochastic �.

Corollary 2: If s can be freely chosen, short-term agreements are �rst best while long-
term agreements (without renegotiation) are not.

If renegotiation is possible, the �rst best is feasible no matter s, � and 
 as long as the
initial agreement is more ambitious for large e and x (and thus large 
 and � but small
s). Under (Q), the gdei s should satisfy

35

gdei = Eg
�
i �

K

bD

�
x=K + e=D

1=n� e=D + �qR

�
: (5.5)

If the gdei s are exogenously given and high (e.g. because a tough climate treaty would
be impossible to enforce), e¢ ciency and (5.5) are still ful�lled if just x is su¢ ciently
small (requiring a large s and small � or 
). This suggests that less ambitious climate
treaties should be accompanied by technological subsidies, low tari¤s and property right
protection, con�rming that the two types of agreements are strategic substitutes.

Corollary 3: With renegotiation, the �rst best is implemented even if gdei increases, if
just s increases or � or 
 decreases.

6. Generalizations and Extensions

6.1. Tradable Permits

To simplify intuition and the reasoning, it has been assumed that quotas cannot be traded.
This is not a critical assumption, however.

35The general conditions are derived in the Appendix.
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Proposition 11: (i) All results survive with tradable permits, no matter whether side
payments are available. (ii) The equilibrium and optimal permit price is B0, thus increas-
ing in e and larger if T = 1 than if T > 1.

B0 (gi +Ri) is the value of being allowed to pollute one more unit, keeping G and R
constant. Proposition 11 follows by noting that, �rst, there is never any trade in permits
in equilibrium. Hence, if i invests as above, the marginal bene�t of more technology is
the same. Second, if i deviated by investing more (less), it�s marginal utility of a higher
technology decreases (increases) not only when permit-trade is prohibited, but also when
trade is allowed since more (less) technology decreases (increases) the demand for permits
and thus the equilibrium price. Hence, such a deviation is not attractive. When permits
are tradable, altering their allocation is a form of side transfer, making the feasibility of
explicit transfers irrelevant.36 ;37

6.2. Heterogeneity

So far, countries have been completely symmetric and there has been no heterogeneity. It
did turn out, however, that for a given R�, di¤erences in Ri;� (such as Ri;� �Rj;�) were
payo¤-irrelevant. It is therefore not necessary to assume that all countries start out with
the same technology.
Moreover, since the continuation values are linear in R, countries are risk-neutral in

that it would not matter if qR were random, as long as the expected depreciation rate is
1 � qR. The realized depreciation can also be di¤erent for every country, as long as the
expected depreciation rate is 1� qR for everyone.
A strong assumption has been that all countries had identical preferences. With

quadratic utility functions, for example, it is reasonable to assume that countries have
di¤erent bliss points (yi) for energy consumption. Generalizing the quadratic speci�cation,
we may write the bene�t function as B (yi � yi), where yi is a country-speci�c reference
point (not necessarily bliss). Recognizing the importance of such heterogeneity, all proofs
allow the reference point yi to vary. While a large yi increases the equilibrium gi, the
comparative statics are unchanged.38

36In a two-stage model, also Golombek and Hoel (2005) �nd that the permit price should be higher
than "the Pigouvian" level to induce R&D when there are spillovers.
37An earlier version of this paper analyzed emission taxes and derived similar results: for example, the

�rst best is feasible with renegotiation if the initial tax is higher than what is expected to be optimal ex
post, particularly if the spillover is large and the agreement�s length relatively short.
38Other types of heterogeneity would be harder to analyze. For example, suppose the cost of developing

technology, K, varied across countries. In equilibrium, only countries with a small K would invest. This
would also be optimal, but, just as before, the investing countries would invest too little. In a long-term
agreement, one could encourage these countries to invest more by reducing glti or, if renegotiation is
possible, gdei . Such small gis would not be necessary (or optimal) for noninvesting countries. Naturally,
the investing countries would require some compensation to accept the optimal emission targets. At the
same time, a small gi would not motivate i to invest if i were allowed to purchase permits from noninvesting
countries with higher gjs. Thus, with heterogeneity in investment costs, it matters a great deal whether
side transfers are possible and permits tradable: Proposition 11 would be false if such heterogeneity were
introduced. Evaluating political instruments under heterogeneity is thus an important task for future
research.
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Proposition 12: All results continue to hold with heterogenous bliss or reference points
in B (yi � yi).

7. Conclusions

This paper presents a novel dynamic game where n players contribute to a public bad
while also investing in cost-reducing technologies. By assuming linear investment costs,
the Markov perfect equilibrium (MPE) is unique, the continuation value linear, and the
analysis tractable, despite the 1 + n stocks. While the unique equilibrium rules out self-
enforcing agreements, the framework can be employed to analyze incomplete contracts in a
dynamic setting. I derive the optimal contract as a function of its length, and the optimal
length is discussed. When renegotiation is possible, I characterize contracts implementing
the �rst best.
While the method and the model are general, the assumptions are motivated by cli-

mate change and the implications for a treaty are important. First, agreements are not
necessarily good. In particular, one should be careful when recommending short-term
agreements since investments may fall. Second, an agreement should be more ambi-
tious if its length is short. Although perhaps counterintuitive at �rst, this is required to
motivate investments in new technology. Third, the agreement should be tougher and
longer-term if the technological spillover is large. Since spillovers are particularly large if
intellectual property rights are weak and tari¤s large, treaties for climate and trade might
be strategic substitutes. Fourth, if R&D can be subsidized internationally, the optimal
subsidy is larger if the agreement is short-term. Finally, �exibility regarding future emis-
sion levels are best ensured by renegotiating long-term agreements rather than by letting
them expire quickly. Since the commitments under the Kyoto Protocol expire in 2012,
the current default is no agreement at all. On the other hand, when the Doha-round trade
negotiations broke down, countries did not revert to the noncooperative equilibrium but
to the existing set of trade agreements. The procedure used for trade is more e¢ cient
than the one currently used for climate, according to the above analysis.
The results hold whether side transfers are available, permits tradable, �rms included,

and whether the technology can be traded, taxed, or subsidized. Nevertheless, this paper is
only one step toward a better understanding of good environmental agreements. I have not
distinguished between technological innovation and di¤usion, and I have abstracted from
domestic politics, heterogeneity, private information, monitoring, compliance, coalition
formation and the possibility of opting out of the agreement. Relaxing these assumptions
are the natural next steps.
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8. Appendix

All propositions are here proven with the generalizations discussed in Sections 5-6: the
value of yi is given by the increasing and concave function � (yi � yi), countries can have
di¤erent reference points yi, and ri generates a direct externality x = � � s= (n� 1) on
j 6= i in addition to the technological spillover e:

ui = � (yi � yi)� C (G)� kri + x
X
j 6=i

rj:

In Sections 3 and 4, B (yi) � � (yi � y) since yi = y, and x = 0) k = K:
While Ui is the continuation value just before the investment stage, letWi represent the

(interrim) continuation value at (or just before) the emission stage. To shorten equations,
use m � ��@Ui=@G�, z � �@Ui=@R�, eR � qRR�, eG � qGG� + � and eyi � yi + y � yi,
where y is the average yi: Note that by substitution,

G = eG+X
i

yi �
X
i

Ri = qgG� +
X
i

eyi �R; and
ui = B (yi � yi)� C (G)� kri + x

X
rj = B (eyi � y)� C (G)� kri + xX rj:

All i�s are identical w.r.t. eyi. The game is thus symmetric, no matter di¤erences in Ri
or yi, and the payo¤ relevant states are G and R. Analyzing the symmetric equilibrium
(where symmetric countries invest identical amounts), I drop the subscript for i on U and
W . The proof for the �rst best (4.1)-(4.3) is omitted since it would follow the same lines
as the following proof.

8.1. Proof of Proposition 1

At the emission stage, each country�s �rst-order condition for yi is:

0 = �0 (yi � yi)� C 0 (G) + �UG(G;R)
= �0 (eyi � y)� C 0 � eG�R +Xeyi�+ �UG( eG�R +Xeyi; R); (8.1)

implying that all eyis are identical and implicit functions of eG and R only. At the invest-
ment stage, i maximizes:

EW ( eG;R)� kri = EW  
qGG� + �; eR +X

i

Dri

!
� kri, (8.2)

implying that R is going to be a function of G�, given implicitly by E@W (qGG� +
�;R)=@R = k=D and explicitly by, say, R(G�). In the symmetric equilibrium, each
country invests (R(G�)� qRR�) =Dn. Thus:

U (G�; R�) = EW (qGG� + �; R(G�))� (k � (n� 1)x)
�
R(G�)� qRR�

Dn

�
)

z=� � @U

@R�
=
qRK

Dn
(8.3)
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in every period. Hence, URG = UGR = 0, m and UG cannot be functions of R and (8.1)
implies that eyi, G and thus � (eyi � y)�C (G) � 
 (:) are functions of eG�R only. Hence,
write G

� eG�R�. (8.2) rewritten:
E
 (qGG� + � �R)� kri + �U (G (qGG� + � �R) ; R)

and because UR is a constant, maximizing this w.r.t. ri makes qGG� �R a constant, say
�. This gives @ri=@G� = qG=Dn and U becomes:

U (G�; R�) = E
 (� + �)�Kr + �U (G (� + �) ; R)

= E
 (� + �)�K
�
qGG� � � � qRR�

Dn

�
+ �U (G (� + �) ; qGG� � �))

m=� = @U=@G� = �K
� qG
Dn

�
+ �URqG = �

KqG
Dn

(1� �qR) ; (8.4)

since G (� + �) and 
 (:) are not functions of G� when qGG� � R = �: Since UG is
a constant, (8.1) implies that if R increases, eyi increases but G must decrease. Thus,
@eyi=@R 2 (0; 1), so @gi=@Rj = @ (eyi � yi + y �Ri) =@Rj > 0 if i 6= j and < 0 if i = j.
Under (Q), (8.1) becomes

0 = �cG+ byi � byi �m) yi = yi �
m+ cG

b
: (8.5)

G =
X
j

(yj �Rj) + eG = eG+ n�y � m+ cG
b

�
�
X
j

Rj )

G =
byn�mn+ b

� eG�R�
b+ cn

, so (8.6)

yi = yi �
m

b
� c
b

0@byn�mn+ b
� eG�R�

b+ cn

1A = (yi � y) +
by �m� c

� eG�R�
b+ cn

and

gi = yi �Ri = (yi � y) +
by �m� c

� eG�Pj 6=iRj

�
b+ cn

� Ri (b+ cn� c)
b+ cn

:

Interrim utility (after investments are sunk) can be written as:

W no
i � �c (1 + c=b)G2=2�Gmc=b+ (by)

2 �m2

2b
+ �U(G;R): Thus,

@W no
i =@R = c (1 + c=b)G

�
b

b+ cn

�
+
bm (1 + c=b)

b+ cn
+ z: (8.7)
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At the investment stage, each country sets k=D =E@W no
i =@R. From (8.7):

k=D = Ec (G)
�
b+ c

b+ cn

�
+
m (b+ c)

b+ cn
+ z )

EG =
k (b+ cn)

cD (b+ c)
� m
c
� z
c

�
b+ cn

b+ c

�
, combined with (8.6): (8.8)

R = qGG� + ny � nm=b�
b+ cn

b
EG

= qGG� �
k (b+ cn)2

Dcb (b+ c)
+ yn+

z (b+ cn)2

cb (b+ c)
+
m

c
) (8.9)

rinD = �qRR + qGG� �
k (b+ cn)2

Dcb (b+ c)
+ yn+

z (b+ cn)2

cb (b+ c)
+
m

c
:

Since eG = qGG� + �, (8.6) gives G =EG+ �b= (b+ cn) : Substituting in (8.5) and (8.8):
yi = yi �

m+ cG

b
= yi �

(k=D � z) (b+ cn)
b (b+ c)

� �c

b+ cn
:

This is helpful when calculating unoi :

unoi = � c
2

�
k (b+ cn)

Dc (b+ c)
� m
c
� z (b+ cn)
c (b+ c)

+
�b

b+ cn

�2
� b

2

�
(k=D � z) (b+ cn)

b (b+ c)
+

�bc

b (b+ cn)

�2
� K

Dn

 
� eR + qGG� � k (b+ cn)2

Dcb (b+ c)
+ yn+

z (b+ cn)2

cb (b+ c)
+
m

c

!
)

Eunoi = �1
2

�
k

D
� z
�2�

b+ cn

b+ c

�2�
1

c
+
1

b

�
� m

2

2c
+
m

c

�
b+ cn

b+ c

��
k

D
� z
�

� K

Dn

 
qGG� � eR� (b+ cn)2

bc (b+ c)

�
k

D
� z
�
+ yn+

m

c

!
� bc (b+ c)�

2

2 (b+ cn)2
:

8.2. Proof of Proposition 2

At the emission stage, the countries negotiate the gis. gi determines eyi, and since countries
have symmetric preferences over eyi (in the negotiations as well as in the default outcome)
the eyis must be identical in the bargaining outcome and e¢ ciency (8.1) requires:

0 = �0 (eyi � y) =n� C 0 � eG�R +Xeyi�+ �UG( eG�R +Xeyi; R): (8.10)

The rest of the previous proof continues to hold: R will be a function of G� only, so
UR� = qRK=Dn. This makes E eG � R a constant and UG� = �qG (1� �qR)K=Dn, just
as before. The comparative static becomes the same, but the levels of gi, yi, ri, ui and Ui
are obviously di¤erent from the previous case.
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The envelope theorem can be used to calculate equilibrium investments:

max
ri
E
1

n

"
max
feyjg

X
j

� (eyj � y)� C (G) + �U (G;R)#� kri )

EC 0 (G)D � E�UGD + E�URD � k =

EC 0 (G)D � (1� �qG) (1� �qR)K=n� (K + xn) (1� 1=n) = 0:

Combined with (8.10),

(1� �qG) (1� �qR)K
Dn

+
(K + xn) (1� 1=n)

D
=

E�0 (eyi � y)
n

+ �UG )

(n� �qR)K
D

+
n (n� 1)x

D
=

E�0 (eyi � y)
n

:

Under (Q), the �rst-order conditions for the optimal eyis:
0 = �ncG+ by � beyi � nm) eyi = y � nm+ ncG

b
:

G =
X
j

(yj �Rj) + eG = eG+ n�y � nm+ ncG
b

�
�R) (8.11)

G =
byn�mn2 + b

� eG�R�
b+ cn2

, so (8.12)

yi = yi � y +
by �mn� cn

� eG�R�
b+ cn2

and

gi = yi � y +
by �mn� cn

� eG�R�
b+ cn2

�Ri:

Interrim utility is

W st
i = � c

2
G2 � b

2

�
nm+ ncG

b

�2
+ �U (G;R) , so

@W st
i =@R = cG+m+ z:

A country invests until the marginal costs of investment is

k = D (EcG+m+ z)) EG =
k

cD
� m+ z

c
: (8.13)

Subsituting in (8.11), after taking the expection of it, and solving for R gives

R = qGG� + ny +
m

c
�
�
b+ cn2

b

��
k

cD
� z
c

�
: (8.14)

27



From (8.12) and (8.13):

G =
k

cD
� m+ z

c
+

b�

b+ cn2
) (8.15)

y � eyi =
nm

b
+
nc

b

�
k

cD
� m+ z

c
+

b�

b+ cn2

�
=
n

b

�
k

D
� z + bc�

b+ cn2

�
)

usti = � c
2
G2 � b

2
(y � eyi)2 �Kr

= � c
2

�
k

cD
� m+ z

c
+

�b

b+ cn2

�2
� n

2

2b

�
k

D
� z + �bc

b+ cn2

�2
�Kr )

Eusti = �1
2

�
k

D
� z
�2�

1

c
+
n2

b

�
� m

2

2c
+
m (k=D � z)

c

� K

nD

�
qGG� � qRR� + ny +

m

c
�
�
b+ cn2

b

��
k

cD
� z
c

��
� �2bc

2 (b+ cn2)
:

8.3. Proof of Proposition 3

Comparing (8.9) with (8.14) and (8.8) with (8.15),

Rno �Rst = � k (b+ nc)
2

Dbc (b+ c)
+
z (b+ nc)2

bc (b+ c)
+

�
b+ cn2

b

��
k

cD
� z
c

�
=

k (n� 1)2

D (b+ c)

�
1� �qRK

nk

�
> 0:

Gno � EGst =

�
k

cD
� z
c

��
b+ nc

b+ c
� 1
�
=
k

D

�
n� 1
b+ c

��
1� �qRK

nk

�
=
Rno �Rst
n� 1 > 0:

Eusti � Eunoi = �1
2

�
k

D
� z
�2 

1

c
+
n2

b
�
�
1

c
+
1

b

��
b+ nc

b+ c

�2!
+m

k � zD
cD

�
1� b+ nc

b+ c

�

� K

Dn

�
k

D
� z
� 

(b+ nc)2

bc (b+ c)
� b+ cn

2

bc

!
+
�2bc

2

�
b+ c

(b+ cn)2
� 1

b+ cn2

�

=

 
�2bc

2 (b+ nc)2 (b+ cn2)
� (k=D � z)

2

2bc (b+ c)
+

K

Dnbc (b+ c)

�
k

D
� z
�!

�
�
(b+ c)

�
b+ cn2

�
� (b+ nc)2

�
� m (k=D � z)

b+ c
(n� 1)

=

 
(bc� [n� 1])2

2 (b+ nc)2 (b+ cn2)
� (k=D � z) [n� 1]

2

2 (b+ c)

�
k

D
� z � 2K

Dn

�!
� m (k=D � z) (n� 1)

(b+ c)
:
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Thus, we get U st > Uno if

Eusti � Eunoi +m
(k=D � z) (n� 1)

(b+ c)
� zk (n� 1)

2

D (b+ c)

�
1� �qRK

nk

�
= 

(bc�)2 [n� 1]2

2 (b+ nc)2 (b+ cn2)
� [n� 1]2

2 (b+ c)

"�
k

D
� z
�2
� 2K
Dn

�
k

D
� z
�
+
2zk

D

�
1� �qRK

nk

�#!
> 0

) (bc�)2 (b+ c)

(b+ nc)2 (b+ cn2)
>

�
K

D

�2 "�
k

K

�2
+

�
�qR
n

�2
� 2k

nK
+
2�qR
n2

� 2 (�qR)
2

n2

#

=

�
K

D

�2 "�
K + (n� 1)x

K

�2
�
�
�qR
n

�2
� 2 (K + (n� 1)x)

nK
+
2�qR
n2

� 1

n2

#

=

�
K

Dn

�2 �
(n� 1)2

�
1 +

nx

K

�2
� (1� �qR)2

�
:

8.4. Proof of Proposition 4

When gi is already negotiated, i invests until

k = �0 (gi +Ri � yi) d+ zD ) (8.16)

eyi � y = �0�1
�
k � zD
d

�
; Ri = �

0�1
�
k � zD
d

�
+ yi � gi;

dri = �0�1
�
k � zD
d

�
+ yi � gi � qRRi;� �

X
j 6=i

erj: (8.17)

Anticipating this, the utility before investing is:

Ui = �

�
�0�1

�
k � zD
d

��
� EC (G)� kri +

X
j 6=i

xrj + �U (G;R) :

If the negotiations fail, the default outcome is the noncooperative outcome, giving every-
one the same utility. Since the ris follow from the gis in (8.17), everyone understands that
negotiating the gis is equivalent to negotiating the ris. Since all countries have identical
preferences w.r.t. the ris (and their default utility is the same) the ris are going to be
equal for every i. Symmetry requires that ri, and thus � � [gi + qRRi;� � yi], is the same
for all countries. (8.17) becomes

Dri = �
0�1
�
k � zD
d

�
� �:

E¢ ciency requires (f.o.c. of Ui w.r.t. � recognizing gi = � � qRRi;� + yi and @ri=@� =
�1=D8i):

�nEC 0 (G) +K=D + n�UG � nD�UR (1=D) = 0)
EC 0 (G) +m+ z = K=Dn: (8.18)
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Combined with (8.17), neither G nor R can be functions of R� (Ri in (8.17) and (8.18) are
not functions of R�). Thus, UR� = qRK=Dn, just as before, and UG cannot be a function
of R (since URG = 0). (8.18) then implies that EG is a constant and, since we must have
� = (EG� qGG�) =n+qRR�=n�y, (8.17) gives @ri=@G� = (@ri=@gi) (@gi=@�) (@�=@G�) =
qG=Dn. Hence, UG� = �qGK=Dn+ �URqG = �qG (1� �qR)K=Dn, giving a unique equi-
librium, (8.3) and (8.4), just as before. Substituted in (8.18):

EC 0 (G) = (1� �qG) (1� �qR)K=Dn: (8.19)

This is the same pollution level as in the �rst best (4.3). But investments might be
suboptimally low. Combining (8.19) with (8.16),

�0 (gi +Ri � yi) =n� EC 0 (G)�m =
1

n

�
k

d
� K
D

�
+
�qRK

Dn

�
1� D

dn

�
=

K

Dn

�
1 + (n� 1)x=K
1� (n� 1) e=D � 1 + �qR

�
(D � en) (n� 1)
Dn� en (n� 1)

��
=
K

Dn

�
xD=K + e+ �qR (D=n� e)

D= (n� 1)� e

�
:

Under (Q), �0 = b (gi +Ri � yi) and EC 0 = c (qGG� +
P

i gi), so

(�0=n� EC 0)lt � (�0=n� EC 0)� = b
�
�glti + g�i

�
=n� cn

�
glti � g�i

�
)

Eg�i � glti =
K=D

b+ cn2

�
x=K + e=D + �qR (1=n� e=D)

1= (n� 1) + e=D

�
:

8.5. Proof of Proposition 5

At the start of t = 1, countries negotiate emission levels for every period t 2 f1; :::; Tg.
The investment level in period T is (8.17) for the same reasons as given above.
Anticipating the equilibrium Ri;T (and Rj;T ) i can invest qR less units in period T for

each invested unit in period T � 1. Thus, in period T � 1, i invests until:

k = d�0 (gi;T�1 +Ri;T�1 � yi) + �qRk ) (8.20)

Ri;T�1 = qRRi;T�1 + dri;T�1 +
X
j 6=i

erj;T�1 = yi � gi;T�1 � �0�1 (k (1� �qR) =d) :

The same argument applies to every period T � t, t 2 f1; :::T � 1g, and the investment
level is given by the analogous equation for each period but T .
In equilibrium, all countries enjoy the same yi � yi and default utilities. Thus, just

as before, they will negotiate the gis such that that they will all face the same cost of
investment in equilibrium. Thus, ri = rj = r and

Dr = (yi � gi � qRRi;t�1)� �0�1 (k (1� �qR) =d) :

For every t 2 (1; T ), Ri;t�1 is given by the gi in the previous period:

Dr =
�
yi � gi � qR

�
yi � gt�1i � �0�1 (k (1� �qR) =d)

��
� �0�1 (k (1� �qR) =d)

= yi (1� qR)� gi + qRgt�1i � (1� qR) �0�1 (k (1� �qR) =d) : (8.21)
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Since ri = rj, (8.20) implies that the equilibrium gi;t + qRRi;t�1 � yi;t is the same (say & t)
for all is:

gi;t + q
t��
R Ri;��1 � yi = & t; t 2 [1; T ]:

All countries have the same preferences over the & ts. Dynamic e¢ ciency requires that
the countries are not better o¤ after a change in the & ts (and thus the gi;ts), given by
(�& t;�& t+1), such that G is unchanged after two periods, i.e., �& tqG = ��& t+1, t 2
[1; T � 1]. From (8.21), this implies

�nEC 0 (Gt)�& t +�gtK=D + � (�& t+1 ��gtqR)K=D � �2�gt+1qRK=D � 08�& t )�
�EC 0n+K=D � � (qG + qR)K=D + �2qGdRK=D

�
�& t � 08�& t )

�EC 0n+ (1� �qR) (1� �qG)K=nD = 0:

Using (8.20),

�0 � EC 0 (G)n� nm =
k (1� �qR)

d
� (1� �qR) (1� �qG)K=D �

�qG (1� �qR)K
D

=
k (1� �qR)

d
� (1� �qR)K=D =

�
k

d
� K
D

�
(1� �qR) =

K

D

�
x=K + e=D

1= (n� 1)� e=D

�
(1� �qR) :

The gi;T satis�es (8.19) for the same reasons as in the previous proof (and since they do
not in�uence any Ri;t, t < T ). It is easy to check that UR and UG are the same as before.

Under (Q), �0 = b (yi � gi �Ri), EC 0 = c
�
E eG+P gj

�
, and since �0�EcGn�n�UG =

0 for g�i (R), we have

b (yi � gi �Ri)� nc
� eG+X gj

�
� n�UG

�
h
b (yi � g�i �Ri)� nc

� eG+X g�j

�
� n�UG

i
=

�
k

d
� K
D

�
(1� �qR))�

g�i � glti
� �
b+ cn2

�
=

�
k

d
� K
D

�
(1� �qR) =

K

D

�
x=K + e=D

1= (n� 1)� e=D

�
(1� �qR) :

8.6. Proof of Proposition 6

The optimal T balances the cost of under-investment and the cost of not knowing future
�s. In period T , countries invest suboptimally not only because of e and x, but because
of the hold-up problem: one more unit of Ri in period T +1 is not worth much to i, since
the other countries will take advantage of it and pollute more. When all countries invest
less, ui declines. The loss in period T , compared to the earlier periods, is under (Q):

H = � (yi;t � yi)� � (yi;T � yi)�K (ri;t � ri;T ) (1� �qR)

= � b
2

�
k (1� �qR)

bd

�2
+
b

2

�
k � zD
bd

�2
� K
D

�
�k (1� �qR)

bd
+
k � zD
bd

�
(1� �qR)

=
�qRK

2

bD2

�
k

K
� 1

n

���
k=K � d=D
d2=D2

��
1� �qR

2

�
+
�qR (d=D � 1=n)

2d2=D2

�
:
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Note that H increases in e (for given D), x (for given K) and n but decreases in b.
Another cost of the long-term agreement is associated with �. Although EC 0 and thus

EGt is the same for all periods,

E
c

2
(Gt)

2 = E
c

2

 
EGt +

tX
t0=1

�t0q
t�t0
G

!2
=
c

2
(EGt)

2 + E
c

2

 
tX

t0=1

�t0q
t�t0
G

!2

=
c

2
(EGt)

2 +
c

2
�2

tX
t0=1

q
2(t�t0)
G =

c

2

�
EG2t

�
+
c

2
�2
�
1� q2tG
1� q2G

�
:

For the T periods, the total present discounted value of this loss is L, given by:

L(T ) =

TX
t=1

c

2
�2�t�1

�
1� q2tG
1� q2G

�
=

c�2

2 (1� q2G)

TX
t=1

�t�1
�
1� q2tG

�
=

c�2

2 (1� q2G)

�
1� �T

1� � � q
2
G

�
1� �T q2TG
1� �q2G

��
) (8.22)

L0(T ) =
c�2
�
��T ln �

�
2 (1� q2G)

�
1

1� � �
q2T+2G (1 + ln (q2G) = ln �)

1� �q2G

�
:

If all future agreements last bT periods, the optimal T for this agreement is given by
min
T
L(T ) +

�
�T�1H + �TL

�bT�� 1X
�=0

��
bT 0
!
)

0 = L0(T ) + �T ln �
�
H=� + L

�bT�� = L0(T ) + �T ln � �H=� + L�bT��
= ��T ln �

24 c�2

2 (1� q2G)

�
1

1� � �
q2T+2G (1 + ln (q2G) = ln �)

1� �q2G

�
�
H=� + L

�bT�
1� � bT 0

35(8.23)
assuming some T satis�es (8.23). Since

�
��T ln �

�
> 0 and the bracket-parenthesis in-

creases in T , the loss decreases in T for small T but increases for large T , and there is
a unique T minimizing the loss (even if the loss function is not necessarily globally con-
cave). Since the history (G� and R�) does not enter (8.23), T satisfying (8.23) equals bT ,
assuming also bT is optimal. Substituting bT = T and (8.22) in (8.23) gives:

H=� =
c�2q2G

2 (1� q2G) (1� �q2G)

�
1� �T q2TG
1� �T

� q2TG
�
1 +

ln (q2G)

ln �

��
; (8.24)

increasing in T . T = 1 is optimal if the left-hand side of (8.24) is larger than the
right-hand side even when T !1:

c�2q2G
2 (1� q2G) (1� �q2G)

< H=�: (8.25)

If e (for given D), x (for given K) and n are large, but b small, H is large and (8.25) is
more likely to hold and if it does not, the T satisfying (8.24) is larger. If c or �2 are large,
(8.25) is less likely to hold and if it does not, (8.24) requires T to decrease.
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8.7. Proof of Proposition 7

In the default outcome, a country�s (interrim) utility is:

W de
i = �

�
gdei +Ri � yi

�
� C

� eG+X gdej

�
+ �U:

Since i gets 1=n of the renegotiation-surplus, in addition, i�s utility is:

W de
i +

1

n

X
j

�
W re
j �W de

j

�
� kri + x

X
j 6=i

rj; (8.26)

where W re
i is the utilities after renegotiation. Maximizing the expectation of this expres-

sion w.r.t. ri gives the f.o.c.

k = d�0
�
gdei +Ri � yi

�
(1� 1=n) +Dz (1� 1=n) (8.27)

+E
D

n
@
�X

W re
i

�
=@R�

X
j 6=i

1

n

�
e�0
�
gdej +Rj � yj

�
+Dz

�
:

Requiring �rst-best investments, ED (@ (
P
W re
i ) =@R) = K, and since �

0 �gdei +Ri � yi�
must be the same for all is,

k = �0
�
gdei +R

�
i � yi

�
(d�D=n) +K=n) �0

�
gdei +R

�
i � yi

�
=
kn�K
dn�D : (8.28)

Combined with the optimum, (4.2),

�0
�
gdei +R

�
i � yi

�
� E�0 (g�i +R�i � yi) =

kn�K
dn�D � K

D
(1� �qR)

=
K

D

�
x=K + e=D

1=n� e=D + �qR

�
: (8.29)

Since ydei � yi is the same for every i in equilibrium, the bargaining game (when renego-
tiating the gdei s) is symmetric and the renegotiated g

re
i s become e¢ cient (just as under

short-term agreements). Since the �rst best is implemented, UR and UG are as before.
Under (Q), �0

�
gdei +Ri � yi

�
�E�0 (g�i +Ri � yi) = b

�
Eg�i � glti

�
, so

Eg�i � gdei =
K

bD

�
x=K + e=D

1=n� e=D + �qR

�
:

Intuitively, the reason for achieving the �rst best is not that i receives 1=n of the joint
surplus. To see this, suppose i were recognized to make a take-it-or-leave-it o¤er (with
transfers) with probability pi. The expected utility of i could be written, replacing (8.26):

W de
i + pi

X
j

�
W re
j �W de

j

�
� kri + x

X
j 6=i

rj:

If pi = 1, this becomes X
j

W re
j �

X
j 6=i

W de
j � kri + x

X
j 6=i

rj
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and maximizing this w.r.t. ri is not identical to maximizing
P

jW
re
j , which would have

given the �rst best. In fact, pi = 1 leads to underinvestment from i since a larger ri
improves the other countries�threat point. On the other hand, pi = 0 could motivate i
to invest optimally, since the f.o.c. for the investment would be:

k = d�0
�
gdei +Ri � yi

�
+Dz;

and equilibrium investments can be arbitrarily large if just gdei is su¢ ciently small. Thus,
countries may invest a lot with this renegotiation design not because they share the total
surplus but because their starting point, or threat point, W de

i , is very sensitive to ri when
gdei is very small.
The intuition can be strengthened by considering an example with n ! 1 and, for

simplicity, x = � = 0 ) z = 0. If n ! 1, one can let the externality be positive but
�nite if this is equal to some constant E � D � d. By de�nition, D � d = e (n� 1), so
this requires that the externality per country, e = E= (n� 1) goes to zero, but the total
externality is still positive. In the limit, i is simply maximizing W de

i and the �rst-order
condition w.r.t. ri, (8.27), becomes:

k = d�0
�
gdei +Ri � yi

�
:

Nevertheless, the �rst-best is implemented by (8.29), which becomes:

�0
�
gdei +R

�
i � yi

�
� E�0 (g�i +R�i � yi) =

K

D

�
E

D � E

�
:

Intuition: In this case, each country internalizes the externality E simply by maximizing
W de
i because of the large marginal utility of a better technology in the default outcome,

@W de
i =@ri > @W

re
i =@ri. Countries are here investing as if they end up with the default

outcome, even if they receive a larger quota in equilibrium.
An alternative intuition based on transfers can be stated as follows. In equilibrium,

with the Nash Bargaining Solution, I can calculate the transfer to be ti to country i,
where:

ti =

 
W de
i � 1

n� 1
X
j 6=i

W de
j

!
n� 1
n

.

Thus, if ri changes marginally in a symmetric equilibrium, the transfer changes according
to:

@ti
@ri

=

�
n� 1
n

�
(d� e) �0de,

where �0de � �0
�
gdej +R

�
j � yj

�
8j in the symmetric equilibrium. In general, the transfer is

not equal to the externality on the other countries. But to motivate �rst-best investments,
these transfers must equal the externality, and this can always be achieved (if d > e) since
�0de is a function of g

de
i .

8.8. Proof of Proposition 8

Take period 1, and assume the countries renegotiate the gi;1s only (a similar logic holds
if they simultaneously renegotiate future emission levels). If T > 1, Ri;t for t = 2 is
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given by gi;2, nothwitstanding R1i and whether the renegotiation over gi;1 fails. Thus, the
equilibrium �rst-order condition w.r.t. r1i is:

k =
�
d�0
�
gdei;1 +Ri;1 � yi

�
+ �qRk

�
(1� 1=n)

+E
D

n
@
�X

W re
i

�
=@R� 1

n

X
j 6=i

e�0
�
gdej;1 +Rj;1 � yj

�
Requiring �rst-best investments, ED (@ (

P
W re
i ) =@R) = K, and since �

0 �gdei;1 +Ri;1 � yi�
must be the same for all is,

k [1� �qR (1� 1=n)] = (d� e)
�
�0
�
gdei;1 +R

�
i � yi

��
(1� 1=n) +K=n)

�0
�
gdei;1 +R

�
i � yi

�
=

k [n� �qR (n� 1)]�K
dn�D : (8.30)

Comparing (8.30) and (8.28) reveals that gdei is larger in the present case. Under (Q):

Eg�i � gdei =
K

Db

�
(1� �qR)

�
x=K + e=D

1=n� e=D

�
+
�qRx=Kn

1=n� e=D

�
:

Similar argument holds for t > 1, but since R� depends on the latest realization of �, gdei;t
must be renegotiated after � is realized in period t� 1:

8.9. Proofs of Proposition 9-10

Under short-term agreements (as well as under no agreement), if interrim utility is

W
� eG;R�, investments are given by EWR = k=D while they should optimally be EWR =

K=Dn, requiring K + x (n� 1) = K=n ) �x = K=n: Under long-term agreements, the
optimal Ri is given by �

0 (gi +Ri � yi)D + nzD = K;which is the same as the equilib-
rium �0d+zD = k if �x = K (�qR + en (1� �qR) =D) =n: For an agreement lasting T > 1
periods, Ri;t, t < T , should be D�0 (gi;t +Ri � yi) + �qRK = K; which is the same as
the equilibrium Ri;t if K (1� �qR) =D = k (1� �qR) =d ) �x = eK=D. Proposition 10
follows since x > 0 is allowed in the proofs above.

8.10. Proofs of Propositions 11-12

The proof of Proposition 11 is equivalent to the text following it, and thus omitted.
Proposition 12 follows since heterogeneity is allowed in the proofs above.
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