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maximization of total effort requires at least three players to be active. 
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1 Introduction
Competitive social situations are frequently modeled as contest games where contestants com-
pete for a fixed prize by exerting effort which increases their chances to win the prize. The
prominent application in this literature is rent-seeking which was introduced by Tullock in his
seminal paper [18]. Based on this framework an extensive literature followed, compare Congle-
ton et al. [4] for a collection of related works. Moreover, this framework is also successfully
applied in different contexts, like conflict, lobbying, patent races, sports tournaments, etc., see
Konrad [9] for a recent survey.

An important question in this literature is related with the aggregated effort level that is ex-
erted by contestants in equilibrium. If the objective of the contest designer is effort maximization,
as suggested by the mentioned examples, then the optimal design of the contest becomes cru-
cial, see for instance, Gradstein and Konrad [8] for the optimal number of stages in multistage
contests, Amegashie [1] for the optimal seeding of contestants, and Dasgupta and Nti [6] for the
optimal contest rule. This literature is based on the assumption that contestants are homogeneous,
or that there are only two contestants. While Dasgupta and Nti [6] search for the optimal contest
success function for n identical contestants, Nti [12] does so for two heterogeneous players.

Heterogeneity affects aggregated equilibrium effort because contestants with low valuation
will exert less effort to win the less valued prize. This is anticipated by contestants with higher
valuation such that overall effort in equilibrium is relatively low. In these cases the design of the
contest rule, or contest success function, is of importance because balancing the heterogeneity
by biasing the contest success function in favor of weak players might induce higher aggregated
equilibrium effort in comparison to an unbiased contest success function.

Extending this analysis to contest games with more than two heterogeneous players is far
from obvious. This is due to the fact that favoring very weak players might be too costly because
the incentives of strong players are distorted as well such that overall equilibrium effort might be
decreased. Hence, it might be profitable to exclude specific contestants, a question which cannot
arise in the two-player case studied by Nti [12].

The analysis of the n-player case is the focus of our study, i.e., our objective is to determine
the optimal contest success function that induces maximal aggregated equilibrium effort among
n heterogeneous contestants. From a technical perspective this extension is not trivial because in
the n-player contest the equilibrium is usually not interior, i.e., there are contestants that prefer
to remain inactive, see Stein [16]. The set of active contestants depends on the distribution of
the heterogeneous parameters but also on the respective contest success function. Hence, the
derivation of the optimally designed contest success function is a complex issue because not
only individual effort is affected by this contest rule but also the set of active contestants which
has an additional impact on equilibrium effort.

However, our results for the n-player contest game are straightforward: We can show that
there exists an optimal contest rule that maximizes aggregated equilibrium effort given the dis-
tribution of heterogeneous cost parameters and valuations. As in the two-player contest, weak
players are favored, however, not all contestants will be active. The crucial step in the analysis
is the characterization of the optimal set of active contestants. We provide an algorithm that
describes how this subset is determined for a given distribution of player characteristics and dis-
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cuss its properties based on numerical examples. Once this set is uncovered, the specification
of the optimal contest success function follows automatically. An important by-product of this
algorithmic construction is the result that at least three players are active in the effort maximizing
equilibrium, if n > 2 holds. Hence, the asymmetric two-player case and its solution properties
turn out to be special and do not generalize to more than two asymmetric contestants.

Biased contest rules are clearly relevant in practical applications. For instance, bid prefer-
ences in public procurement auctions, affirmative action policies in selection tournaments, biased
rules in sport tournaments in order to restore competitive balancedness, and political, e.g. na-
tional biases in international trade provide rich examples.

From a mathematical point of view, the problem we are dealing with in this paper is a bilevel
program or, more precisely, a mathematical program with equilibrium constraints. The latter is
of the general form

max
x,α

f (x, α) subject to x ∈ S(α),

where x, α denote the variables and S(α) is the solution set of another optimization or (Nash)
equilibrium problem, typically called the lower-level problem, cf. Luo et al. [10], Outrara et al.
[14], Dempe [7] and references therein for an extensive discussion. Note that this lower level
problem depends on α. In our case, the lower level problem is the contest game and has a unique
solution x(α) (depending on α) for which also an analytic expression is known. This allows us
to follow the so-called implicit programming approach from [13, 14] and to replace the unkown
x in the objective function f by the unique solution x(α) of the lower level problem. We then
obtain an unconstrained (but typically nonsmooth) optimization problem

max
α

f̃ (α) := f (x(α), α)

depending on α only. Standard solvers for the solution of such a kind of (usually nonconcave)
optimization problem find local maxima or certain stationary points of the objective function,
but not necessarily a global maximum. Here we exploit the special structure of our effort max-
imization problem in order to derive a very simple algorithm for the computation of a global
maximum.

The remainder of the paper is structured as follows. In the next section we introduce our
n-player contest game with heterogeneous players. The contest game is based on a contest suc-
cess function (CSF) with weighted efforts that is a simplified version of an asymmetric CSF as
axiomatized in Clark and Riis [3]. We derive some properties of the equilibrium in the under-
lying contest game that are helpful for the subsequent analysis in Section 2. In Section 3 we
prove that there exists a vector of weighting factors that yields a global maximum for aggregated
equilibrium effort. In Section 4 we present an algorithm to characterize the optimal set of active
contestants that determines the optimal set of weighting factors.

Notation: xν ∈ R denotes the variable of player ν, x := (x1, . . . , xn) is the vector of all
decision variables. In order to emphasize the role of player ν within this vector, we sometimes
write x = (xν, x−ν), where the symbol x−ν subsumes the variables of all other players. We further
denote by B(x; δ) the Euclidian ball of radius δ > 0 around a given point x ∈ Rn.
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2 The Underlying Contest Game
The contest game to be considered here is a special instance of a Nash equilibrium problem and
defined as follows: Let N := {1, . . . , n} be the set of players. Furthermore, let

θν(xν, x−ν) :=

 ανxν∑n
µ=1 αµxµ − βνx

ν, if x , 0,

0, if x = 0

be the expected payoff or utility of player ν ∈ N, where αν, βν are positive constants for all ν ∈ N
which are assumed to be fixed throughout this section. Then each player ν ∈ N chooses a strategy
x∗,ν from his strategy space Xν := [0,+∞) in such a way that

θν(x∗,ν, x∗,−ν) ≥ θν(xν, x∗,−ν) ∀xν ∈ Xν

holds for all ν ∈ N, i.e. player ν tries to maximize his utility function θν with respect to his own
strategy xν, whereas the strategies of all other players are fixed (at their optimal values).

The utility functions θν can be interpreted in the following way: All players take part in
a lottery, where a price with the value V = 1 can be won. Every player ν can increase his
probability of winning, which is given by the contest success function ανxν∑n

µ=1 αµxµ , by increasing his
effort xν, but he has to have in mind that this also increases his costs βνxν. We could extend our
model to the case where different players have different valuations Vν > 0 of the price. This
would lead to the following utility function

θ̃ν(xν, x−ν) :=

 ανxν∑n
µ=1 αµxµ Vν − β̃νxν, if x , 0,

0, if x = 0.

In this case, we can obtain utility functions of the form θν by multiplying the functions θ̃ν with
the factor 1

Vν
and defining βν := β̃ν

Vν
. Note that re-scaling the function θ̃ν(·, x∗,−ν) with a positive

multiplier does not change the location of its maximum, i.e. it does not change the optimal effort
x∗,ν. Hence, the case of inhomogeneous valuations of the price is included in our model.

We now summarize a number of properties of this Nash equilibrium problem. The following
existence and uniqueness result for the above problem was established in Cornes and Hartley [5],
Szidarovsky and Okuguchi [17], and Stein [16].

Theorem 2.1 The above Nash equilibrium problem has a unique solution x∗.

Note that the previous result holds for any fixed parameters αν and βν, but that, of course, the
solution depends on the exact values of these parameters. More precisely, we have the following
representation, see Cornes and Hartley [5] and Stein [16] for a proof of these statements.

Theorem 2.2 Let x∗ be the unique solution of the above equilibrium problem, let K := {ν ∈ N |
x∗,ν > 0} be the corresponding set of active players, and let k := |K| the number of active players.
Then:

(a) K consists of at least two elements.
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(b) The active players can be characterized as follows:

ν ∈ K ⇐⇒ (k − 1)
βν
αν

<
∑
µ∈K

βµ

αµ
. (1)

(c) The components x∗,ν of the solution satisfy the relation

x∗,ν = max

0,
1
αν

1 − βναν k − 1∑
µ∈K

βµ
αµ

 k − 1∑
µ∈K

βµ
αµ


for all ν ∈ N.

Theorem 2.2 characterizes the equilibrium based on an implicit description of the set K of active
players in (1). It should be noted that also the expression for the unique solution x∗ of the Nash
equilibrium problem is implicit because it depends on the set K of active players.

From expression (1) it is clear that the set K of active players consists of those players with the
lowest combined parameters βv

αv
. Hence, the following result due to Stein [16] allows an explicit

calculation of the set K. Together with Theorem 2.2, we are then in a position to compute the
unique solution of our Nash equilibrium problem.

Theorem 2.3 Assume without loss of generality that the players ν are ordered in such a way that

β1

α1
≤
β2

α2
≤ . . . ≤

βn

αn
. (2)

Furthermore, let x∗ be the unique solution of the Nash equilibrium problem. Then the corre-
sponding set K of active players is given by

K =

ν ∈ N

∣∣∣∣∣∣∣ (ν − 1)
βν
αν

<

ν∑
µ=1

βµ

αµ

 .
A simple consequence of the previous result is the following corollary that will be used later in
the proof of Lemma A.1.

Corollary 2.4 Assume without loss of generality that the players ν are ordered as in (2). Let x∗

be the unique Nash equilibrium and K be the corresponding index set of active players. Then

K ⊆
{
ν ∈ N

∣∣∣∣∣ βναν < β1

α1
+
β2

α2

}
.

Proof. Assumption (2) implies that K = {1, . . . , k}. Now, the inequality βν
αν
< β1

α1
+

β2
α2

obviously
holds for ν = 1, 2. For ν = 3, . . . , k, this inequality follows inductively taking into account the
inequality

(ν − 1)
βν
αν

<

ν∑
µ=1

βµ

αµ
for ν = 3, . . . , k,
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from Theorem 2.3. �

Note that the inclusion in this corollary can be an equality but, in general, will be a strict inclusion
as the following example illustrates.

Example 2.5 Consider a game with four players and α = (1, 1, 1, 1)T .

(a) If β = (2, 3, 3.5, 4)T , we have

K = {1, 2, 3, 4} =

{
ν ∈ N

∣∣∣∣ βν
αν

<
β1

α1
+
β2

α2
= 5

}
.

(b) If, however, β = (2, 3, 3.5, 4.5)T , we have

K = {1, 2, 3} $ {1, 2, 3, 4} =

{
ν ∈ N

∣∣∣∣ βν
αν

<
β1

α1
+
β2

α2
= 5

}
.

^

We next provide a characterization of the unique Nash equilibrium in terms of the subsets K ⊆ N.
This characterization will turn out to be useful for our analysis in the subsequent sections.

Theorem 2.6 Let L,M ⊆ N be subsets with l := |L| ≥ 2, m := |M| ≥ 2, and the property that(l − 1)
βν
αν

<
∑
µ∈L

βµ

αµ
⇐⇒ ν ∈ L

 and

(m − 1)
βν
αν

<
∑
µ∈M

βµ

αµ
⇐⇒ ν ∈ M

 .
Then L = M, hence the index set of active players corresponding to the unique Nash equilibrium
is the only subset of N with the properties mentioned above.

Proof. Let x∗ be the unique Nash equilibrium. Then we know from Theorem 2.2 (a), (b), that
the index set of active players

K := {ν ∈ N | x∗,ν > 0}

has the postulated properties. Hence we only have to verify that L = M follows for all sets
L,M ⊆ N with these properties. Assume now that there are two such sets with L , M. If we
assume without loss of generality that the players are ordered according to (2), this implies

L = {1, . . . , l} and M = {1, . . . ,m}.

Since L , M, we can assume without loss of generality that l > m. Then l < M, and together
with (2) it follows that

(l − 1)
βl

αl
= (l − m)

βl

αl
+ (m − 1)

βl

αl
≥

l∑
µ=m+1

βµ

αµ
+

m∑
µ=1

βµ

αµ
=

l∑
µ=1

βµ

αµ
,
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a contradiction to l ∈ L. Consequently, we have L = M. �

We summarize the previous results in the following note which, basically, says that we have a
Nash equilibrium if and only if we are able to find a set K satisfying the requirements (a) and (b)
from Theorem 2.2.

Remark 2.7 The following statements hold:

(a) If x∗ is the unique Nash equilibrium and K the corresponding set of active players, then K
has at least two elements and satisfies the conditions from (1).

(b) Conversely, if we have a subset K ⊆ N with at least two elements such that (1) holds, then
K is the set of active players corresponding to the unique Nash equilibrium of our game.

3 Effort Maximization: Existence of Solution
We consider once again the Nash equilibrium problem from Section 2. Recall that this problem
depends on two sets of parameters αν, βν which were assumed to be positive. For the rest of this
paper, we still view the parameters βν > 0 as being fixed, whereas the parameters αν > 0 will
be viewed as variables. Since the unique solution x∗ depends on αν (and βν which, however, are
fixed), we now write x(α) for this solution as well as K(α) for the corresponding set of active
players. Moreover, let k(α) := |K(α)| be the number of active players. In view of Theorem 2.2,
the components xν(α) satisfy

xν(α) = max

0,
1
αν

1 − βναν k(α) − 1∑
µ∈K(α)

βµ
αµ

 k(α) − 1∑
µ∈K(α)

βµ
αµ

 ∀ν ∈ N,

whereas the characterization

ν ∈ K(α) ⇐⇒
(
k(α) − 1

)βν
αν

<
∑
µ∈K(α)

βµ

αµ
(3)

holds for the set K(α).
The problem that we deal with in this and the next section is the following one:

max
n∑
ν=1

xν(α) s.t. α ∈ (0,∞)n. (4)

Recall that xν(α) is the (Nash) equilibrium effort of player ν, ν = 1, .., n, if the contest success
function uses the vector of weights α. A contest administrator - or more general, mechanism
designer - can now mediate the contest by choice of the weights α in order to elicit maximal total
effort from the n potential contestants (some of whom may choose to stay inactive). Hence, it is
the contest designer’s problem that is described by (4). Note also that the β-parameters describe
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personal characteristics of the contestants, which consequently cannot be altered neither by the
contestants themselves nor the contest designer.

Taking into account the previous representation of xν(α), the objective function of (4) can be
written in the following form:

f (α) :=
n∑
ν=1

xν(α) =
∑
ν∈K(α)

xν(α) =
k(α) − 1∑
µ∈K(α)

βµ
αµ

 ∑
µ∈K(α)

1
αµ
−

k(α) − 1∑
µ∈K(α)

βµ
αµ

∑
µ∈K(α)

βµ

α2
µ

 . (5)

The aim of this section is to show that the maximization problem (4) has a solution. This is not
clear a priori since the feasible set for α is both unbounded and open. The unboundedness turns
out to be less serious (and will be dealt with in Lemma 3.1), the really crucial part is the fact that
the objective function f is not defined as soon as αν = 0 for one player ν.

We begin with some results to show that both f (α) and K(α) remain unchanged under certain
manipulations of α. A first result of this kind is the following lemma which shows that both f (α)
and K(α) are homogeneous of degree zero in α. This is not surprising since the utility functions
θν themselves are homogeneous of degree zero in α, but the lemma can also be proven directly
using the definitions of f (α) and K(α).

Lemma 3.1 For all α ∈ (0,∞)n and all c > 0, we have

K(cα) = K(α) and f (cα) = f (α).

Proof. First note that cα is feasible (i.e., belongs to (0,∞)n) for all feasible α. The characteri-
zation (3) together with the uniqueness of the set K(α) by Remark 2.7 then immediately implies
K(cα) = K(α). Taking this into account and calculating f (cα) gives precisely the same value as
f (α) since the factor c can be cancelled. �

Another manipulation of α which leaves the function value f (α) unchanged is presented in the
following result which basically says that, given a fixed parameter α∗, we can replace the compo-
nents α∗ν of α∗ corresponding to the inactive players by arbitrary small numbers αν and still have
K(α∗) = K(α) and f (α∗) = f (α).

Lemma 3.2 Let α∗ ∈ (0,∞)n be arbitrarily given. Then K(α∗) = K(α) and f (α∗) = f (α) hold
for all α ∈ (0,∞)n satisfying the following properties:

(a) For all ν ∈ K(α∗), we have
αν = α∗ν.

(b) For all ν < K(α∗), we have

αν ∈

0, (k(α∗) − 1)βν∑
µ∈K(α∗)

βµ
α∗µ

 .
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Proof. Choose α ∈ (0,∞)n in such a way that the two properties (a) and (b) hold. Then Remark
2.7 shows that the corresponding index set K(α) is uniquely defined. Using property (a), we
obtain for all ν ∈ K(α∗)(

k(α∗) − 1
)βν
αν

=
(
k(α∗) − 1

)βν
α∗ν

<
∑

µ∈K(α∗)

βµ

α∗µ
=

∑
µ∈K(α∗)

βµ

αµ
.

On the other hand, property (b) implies for all ν < K(α∗)(
k(α∗) − 1

)βν
αν
≥

∑
µ∈K(α∗)

βµ

α∗µ
=

∑
µ∈K(α∗)

βµ

αµ
.

The uniqueness of K(α) therefore gives K(α) = K(α∗). Together with property (a) we then obtain
f (α) = f (α∗). �

So far, we are not able to prove the existence of a solution for the maximization problem (4).
However, Lemmas 3.1 and 3.2 show that such a solution (if it exists) is certainly not unique.
In order to verify the existence of a solution, we first verify the continuity of the function f on
(0,∞)n. Note that this continuity is not completely obvious since the index set K(α∗) may change
in points arbitrarily close to α∗.

Theorem 3.3 The objective function f is continuous on (0,∞)n. Moreover, this function is con-
tinuously differentiable in an open neighbourhood of any vector α∗ ∈ (0,∞)n having the follow-
ing property:

ν < K(α∗) =⇒
(
k(α∗) − 1

)βν
α∗ν

>
∑

µ∈K(α∗)

βµ

α∗µ
. (6)

Proof. The statement regarding the continuous differentiability is clear since condition (6)
guarantees that, locally, the index set K(α∗) is constant, hence K(α) = K(α∗) for all α from a
sufficiently small neighbourhood of α∗. In particular, f is continuous in these points.

In order to verify the continuity of f on the whole set (0,∞)n, it therefore remains to consider
a point α∗ ∈ (0,∞)n such that the index set

L :=

ν ∈ N

∣∣∣∣∣∣∣ (k(α∗) − 1
)βν
α∗ν

=
∑

µ∈K(α∗)

βµ

α∗µ


is nonempty. Now, it is not difficult to see that there is a neighbourhood U ⊆ (0,∞)n of α∗ such
that

K ⊆ K(α) ⊆ K ∪ L ∀α ∈ U,

where, for simplicity of notation, we use the abbreviation K := K(α∗). Let us further write
k := |K| und l := |L|. Then, for each α ∈ U, we have K(α) = M for one of the 2l sets M satisfying
K ⊆ M ⊆ K ∪ L. Setting m := |M| and using

βν
α∗ν

=

∑
µ∈K

βµ
α∗µ

k − 1
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for all ν ∈ M\K, we obtain for all these index sets M

fM(α∗) :=
m − 1∑
µ∈M

βµ
α∗µ

∑
µ∈M

1
α∗µ
−

m − 1∑
µ∈M

βµ
α∗µ

∑
µ∈M

βµ

(α∗µ)2


=

m − 1∑
µ∈K

βµ
α∗µ
·
(
1 + m−k

k−1

) ∑
µ∈K

1
α∗µ

+
∑
µ∈M\K

∑
λ∈K

βλ
α∗λ

(k − 1)βµ

−
m − 1∑

µ∈K
βµ
α∗µ
·
(
1 + m−k

k−1

)

∑
µ∈K

βµ

(α∗µ)2 +
∑
µ∈M\K

(∑
λ∈K

βλ
α∗λ

)2

(k − 1)2βµ




=
k − 1∑
µ∈K

βµ
α∗µ

∑
µ∈K

1
α∗µ

+

∑
µ∈K

βµ
α∗µ

(k − 1)

∑
µ∈M\K

1
βµ

−
k − 1∑
µ∈K

βµ
α∗µ

∑
µ∈K

βµ

(α∗µ)2 +


∑
µ∈K

βµ
α∗µ

k − 1


2 ∑
µ∈M\K

1
βµ




= f (α∗).

Since the 2l functions fM are continuous in α∗, we obtain for an arbitrary ε > 0 and all M a
suitable δM > 0 such that | fM(α) − fM(α∗)| < ε for all α ∈ B(α∗, δM). Define δ := min{δM | K ⊆
M ⊆ K ∪ L}. Then we obtain for all α ∈ B(α∗, δ) that K(α) = M for one of the above index sets
M and, therefore, ∣∣∣ f (α) − f (α∗)

∣∣∣ =
∣∣∣ fM(α) − fM(α∗)

∣∣∣ < ε.
This proves continuity of f in α∗. �

So far, we know that f is continuous on (0,∞)n. However, this set is still unbounded and open.
Based on the following argument the problem of unboundedness becomes irrelevant in our con-
text: Consider an arbitrary α ∈ (0,∞)n. Then Lemma 3.1 implies

f (α) = f
(

1∑n
µ=1 αµ

α

)
.

Therefore, defining the set

A :=

α ∈ (0,∞)n

∣∣∣∣∣∣∣
n∑
µ=1

αµ = 1

 , (7)

we obtain f ((0,∞)n) = f (A), and the function f attains a global maximum on (0,∞)n if and only
if it has a maximizer on the bounded set A. But this set A is still not closed, hence not compact.
However, Theorem 3.4 below shows that the function f can be extended continuously onto the
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closure Ā of A. This continuous extension of f then attains a maximum on Ā by a standard
compactness argument. We then show that this, in turn, implies the existence of a maximizer of
f on its original domain (0,∞)n.

In order to simplify our notation, let us define the index set

J(α) := {ν ∈ N | αν = 0}

corresponding to a given α ∈ [0,∞)n. Then the following existence result holds.

Theorem 3.4 The function f : A → R has a continuous extension onto the closure Ā of A and,
therefore, attains a global maximum on Ā. Moreover, no vector α ∈ Ā with |J(α)| = n − 1 is a
global maximum.

Proof. The fact that f can be continuously extended from A onto Ā follows from Lemmas A.1
and A.2 in the appendix, where, in particular, it is shown that this extension satisfies f (α) = 0
for all α ∈ Ā with |J(α)| = n − 1, hence none of these vectors is a global maximum of f since f
attains positive values on A. The existence of a global maximum then follows immediately from
the fact that Ā is a compact set. �

The global maximizer from Theorem 3.4 might belong to the set Ā\A. However, the feasible set
of our original maximization problem is the set A or (without scaling) the set (0,∞)n. Using a
suitable scaling together with a small perturbation, we now obtain the existence of a maximizer
for our original problem from (4). Note that the following result shows that we can choose the
maximizer in such a way that it also has some additional differentiability properties that will be
exploited in Section 4.

Corollary 3.5 The function f attains a global maximum in (0,∞)n. Moreover, this global maxi-
mum can be chosen in such a way that condition (6) from Theorem 3.3 holds.

Proof. By Theorem 3.4, the function f attains a global maximum in Ā, and this maximum
necessarily belongs to the set

{α ∈ Ā | |J(α)| ∈ {0, . . . , n − 2}}.

However, as a consequence of Lemma 3.1, we have f (cα) = f (α) for all α from this set and for
all scalars c > 0. Consequently, the function f attains a global maximum α∗ on the set

{α ∈ [0,∞)n | |J(α)| ∈ {0, . . . , n − 2}}.

If, for this maximum, we have |J(α∗)| ∈ {1, . . . , n − 2}, i.e. α∗ < (0,∞)n, Lemma 3.2 shows that
there is a point α∗∗ ∈ (0,∞)n with the same function value so that α∗∗ is also a global maximizer.
Consequently, f has a global maximum in the set (0,∞)n, too. If this maximum does not satisfy
condition (6) from Theorem 3.3, we can apply Lemma 3.2 once more and get another point in
(0,∞)n with the same function value (which, therefore, is also a maximum) such that (6) holds. �
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4 Effort Maximization: Computation of Solution
Corollary 3.5 shows that there exists at least one global maximum α∗ of the optimization problem
from (4). Moreover, this result tells us that the maximum can be chosen in such a way that the
objective function f is differentiable in a neighbourhood of this maximum. Since the feasible set
(0,∞)n is open, it follows that each such maximizer satisfies ∇ f (α∗) = 0 .

Basically, the aim of this section is to compute a global maximum by looking for all possible
solutions of the nonlinear system of equations ∇ f (α) = 0 at those points x where the deriva-
tive of f exists. The previous discussion shows that this technique will eventually provide us
a global maximum of (4). Moreover, our derivation will result in a particular algorithm for the
computation of such a global maximum.

Unfortunately, computing the zeros of ∇ f (α) = 0 is not an easy task, especially since the
derivative with respect to α leads to complicated formulas. In order to simplify our calculations,
we therefore use the transformation γ : (0,∞)n → (0,∞)n defined by

γν(α) :=
βν
αν

(8)

for all ν ∈ N. Since β ∈ (0,∞)n, the mapping γ is a diffeomorphism from (0,∞)n onto (0,∞)n.
We further write γ =

β

α
for the vector whose components are given by βν

αν
. For some γ ∈ (0,∞)n,

we also write

K(γ) :=

ν ∈ N

∣∣∣∣∣∣∣ (k(γ) − 1
)
γν <

∑
µ∈K(γ)

γµ


with k(γ) := |K(γ)|. Using Theorem 2.1, it follows that for each γ ∈ (0,∞)n, there is precisely
one such set K(γ). Based on the set K(γ) , we now define the function g : (0,∞)→ R by

g(γ) :=
k(γ) − 1∑
µ∈K(γ) γµ

 ∑
µ∈K(γ)

γµ

βµ
−

k(γ) − 1∑
µ∈K(γ) γµ

∑
µ∈K(γ)

γ2
µ

βµ

 .
Since

K(γ(α)) = K(α)

for all α ∈ (0,∞)n, we have g = f ◦ γ−1. Hence, for all global maxima α∗ of the function f
satisfying condition (6) of Theorem 3.3, the function g has a global maximum in γ∗ := β

α∗
and is

continuously differentiable in a neighbourhood of γ∗, since(
k(γ∗) − 1

)
γ∗ν =

(
k(α∗) − 1

)βν
α∗ν

>
∑

µ∈K(α∗)

βµ

α∗µ
=

∑
µ∈K(γ∗)

γ∗µ ∀ν < K(γ∗).

Conversely, if γ∗ denotes a global maximum of g with the property

ν < K(γ∗) =⇒
(
k(γ∗) − 1

)
γ∗ν >

∑
µ∈K(γ∗)

γ∗µ, (9)

then α∗ := β

γ∗
is a global maximum of f such that condition (6) of Theorem 3.3 holds. Hence we

have the following result.
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Lemma 4.1 α∗ ∈ (0,∞)n is a global maximum of f satisfying property (6) of Theorem 3.3 if and
only if γ∗ =

β

α∗
is a global maximum of g satisfying condition (9).

Consequently, if we find all global maxima of g satisfying (9), then a simple re-transformation
gives us all the global maxima of f satisfying condition (6) from Theorem 3.3.

If a global maximum γ∗ satisfies (9), then there is a neighbourhood of γ∗ such that K(γ) ≡
K(γ∗) for all γ from this neighbourhood and, hence, g is continuously differentiable in this neigh-
bourhood. Since γ∗ is a maximum, we therefore have ∇g(γ∗) = 0. Consequently, we have to
compute the zeros of ∇g. To this end, we first state two simple properties of the function g whose
analogues were already shown for the function f .

Lemma 4.2 (a) For all γ ∈ (0,∞)n and all c > 0, we have K(γ) = K(cγ) and g(γ) = g(cγ).

(b) Let γ∗ ∈ (0,∞)n be arbitrary. Then K(γ∗) = K(γ) and g(γ∗) = g(γ) hold for all γ ∈ (0,∞)n

satisfying

γν = γ∗ν ∀ν ∈ K(γ∗) and γν ≥
1

k(γ∗) − 1

∑
µ∈K(γ∗)

γ∗µ ∀ν < K(γ∗).

Lemma 4.2 shows that it suffices to compute maxima γ∗ of g such that
∑
µ∈K(γ∗) γ

∗
µ = 1. The fol-

lowing result summarizes some properties of global maxima satisfying this additional condition.

Theorem 4.3 Let γ∗ ∈ (0,∞)n be a global maximum of the function g satisfying
∑
µ∈K(γ∗) γ

∗
µ = 1

and (9). Then the following statements hold:

(a) For all ν ∈ K(γ∗), we have

γ∗ν =
1

2
(
k(γ∗) − 1

) [
1 + (k(γ∗) − 2)

βν∑
µ∈K(γ∗) βµ

]
.

(b) For all ν < K(γ∗), we have

γ∗ν >
1

k(γ∗) − 1
.

(c) For all ν ∈ K(γ∗), we have (
k(γ∗) − 2

)
βν <

∑
µ∈K(γ∗)

βµ.

(d) We have

g(γ∗) =
1
4

 ∑
µ∈K(γ∗)

1
βµ
−

(k − 2)2∑
µ∈K(γ∗) βµ

 .
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Proof. Since the maximum γ∗ satisfies condition (9), there is a neighbourhood U of γ∗ with

K(γ) = K(γ∗) =: K and k(γ) = k(γ∗) =: k.

Hence g is continuously differentiable in this neighbourhood of γ∗ and, therefore, being an (es-
sentially unconstrained) global maximum, we have ∇g(γ∗) = 0.

The only statement we obtain for the components γν with ν < K follows from (9):

γ∗ν >
1

k − 1

∑
µ∈K

γ∗µ =
1

k − 1
.

This shows that statement (b) holds.
Moreover, for all ν ∈ K, we have

0 =
∂

∂γν
g(γ∗)

= −
k − 1(∑
µ∈K γ

∗
µ

)2

∑
µ∈K

γ∗µ

βµ
+

k − 1∑
µ∈K γ

∗
µ

1
βν

+
2(k − 1)2(∑

µ∈K γ
∗
µ

)3

∑
µ∈K

(γ∗µ)
2

βµ
−

2(k − 1)2(∑
µ∈K γ

∗
µ

)2

γ∗ν
βν

= −(k − 1)
∑
µ∈K

γ∗µ

βµ
+ (k − 1)

1
βν

+ 2(k − 1)2
∑
µ∈K

(γ∗µ)
2

βµ
− 2(k − 1)2γ

∗
ν

βν
. (10)

Summing up equation (10) over all ν ∈ K, we get

−(k − 1)
∑
µ∈K

γ∗µ

βµ
+ 2(k − 1)2

∑
µ∈K

(γ∗µ)
2

βµ
=

1
k

2(k − 1)2
∑
µ∈K

γ∗µ

βµ
− (k − 1)

∑
µ∈K

1
βµ

 .
Inserting this into (10) and cancelling the factor k − 1, we obtain for all ν ∈ K:

2(k − 1)
k

∑
µ∈K

γ∗µ

βµ
−

1
k

∑
µ∈K

1
βµ

+
1
βν
− 2(k − 1)

γ∗ν
βν

= 0

⇐⇒ γ∗ν −
1
k

∑
µ∈K

βν
βµ
γ∗µ =

1
2(k − 1)

1 − βνk ∑
µ∈K

1
βµ

 .
Consequently, the vector γ∗K := (γ∗ν)ν∈K is a solution of the linear system of equationsIk×k −

1
k

(
βν
βµ

)
ν,µ∈K

 (γµ)
µ∈K

=
1

2(k − 1)

1 − βνk ∑
λ∈K

1
βλ


ν∈K

.

Using the abbreviations βK := (βν)ν∈K and β−1
K := ( 1

βν
)ν∈K , the matrix of this linear system can be

written as

Ik×k −
1
k

(
βν
βµ

)
ν,µ∈K

= Ik×k −
1
k
βK(β−1

K )T =: M.
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This matrix M is singular, more precisely, it has rank k − 1 and its null space (kernel) is given by
ker(M) = span{βK} (this singularity reflects the fact that the function value g(γ) is independent
of the scaling of γ, cf. Lemma 4.2, hence M cannot be expected to be nonsingular at an arbitrary
stationary point). Now it is easy to see that one particular solution of the above linear system of
equations is the vector from the right-hand side:

γ̃ν =
1

2(k − 1)

1 − βνk ∑
λ∈K

1
βλ

 ∀ν ∈ K.

Therefore, the vector γ∗K is of the form γ∗K = γ̃K + cβK , where c ∈ R has to be chosen in such a
way that

∑
µ∈K γ

∗
µ = 1. It follows that

c =
1

2(k − 1)

 k − 2∑
µ∈K βµ

+
1
k

∑
µ∈K

1
βµ


and, therefore,

γ∗ν =
1

2(k − 1)

[
1 + (k − 2)

βν∑
µ∈K βµ

]
(> 0)

for all ν ∈ K. Hence statement (a) holds.
By the definition of K = K(γ∗), we have for all ν ∈ K:

(k − 1)γ∗ν <
∑
µ∈K

γ∗µ = 1 ⇐⇒ (k − 2)βν <
∑
µ∈K

βµ.

This verifies statement (c). Inserting the representation of γ∗K gives the desired representation of
g(γ∗) from assertion (d). �

Based on Theorem 4.3 (a) a re-transformation of γ∗ν yields the optimal parameter for the original
set up:

α∗ν = 2(k − 1)
[

1
βν

+
k − 2∑
µ∈K(γ∗) βµ

]−1

, (11)

which is clearly increasing in βν. This implies that in a global maximum players with high costs
are favored relatively more than players with low costs. For a global maximum the heterogeneity
between active players is therefore reduced. A closer look at the formula from Theorem 4.3 (a)
reveals, however, that the quotient

βν
α∗ν

= γ∗ν =
1

2
(
k − 1

) [
1 + (k − 2)

βν∑
µ∈K(γ∗) βµ

]
.

is also increasing in βν, whenever there are more than two players active in the optimum. We will
show in Theorem 4.9 that this condition is met for all sets N consisting of more than two players.
Hence, the 2-player-case is the only one in which heterogeneity between the active players is
totally removed.
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Note also that Theorem 4.3 (c) does not say that the inequality(
k(γ∗) − 2

)
βν <

∑
µ∈K(γ∗)

βµ.

is violated for all ν < K(γ∗). The next lemma shows that, in some sense, the converse of Theorem
4.3 also holds.

Lemma 4.4 Let K ⊆ N be arbitrarily given, let k := |K| ≥ 2 and suppose that

(k − 2)βν <
∑
µ∈K

βµ ∀ν ∈ K. (12)

Define the vector γ∗ ∈ (0,∞)n in such a way that γ∗ν >
1

k−1 is arbitrary for all ν < K and

γ∗ν =
1

2(k − 1)

[
1 + (k − 2)

βν∑
µ∈K βµ

]
∀ν ∈ K.

Then the following statements hold:

(a)
∑
µ∈K γ

∗
µ = 1.

(b) K(γ∗) = K and γ∗ satisfies condition (9).

(c) The function g is continuously differentiable in a neighbourhood of γ∗ with ∇g(γ∗) = 0.

(d) g(γ∗) = 1
4

[∑
µ∈K

1
βµ
−

(k−2)2∑
µ∈K βµ

]
.

Proof. Statement (a) can be verified easily using the definition of γ∗µ for µ ∈ K. Assertions (c)
and (d), on the other hand, follow in essentially the same way as in the proof of Theorem 4.3
since our definition of γ∗ν is exactly the same as the representation of γ∗ν obtained in Theorem 4.3
for γ∗ν (ν ∈ K). To see that statement (b) holds, we verify that

(k − 1)γ∗ν <
∑
µ∈K

γ∗µ = 1⇐⇒ ν ∈ K. (13)

The definition of the index set K(γ∗) together with the uniqueness of this index set then shows
K = K(γ∗). Now, for ν ∈ K, we obtain from the definition of γ∗ν together with (12) that

(k − 1)γ∗ν =
1
2

[
1 + (k − 2)

βν∑
µ∈K βµ

]
<

1
2
[
1 + 1

]
= 1,

hence the implication “⇐=” holds in (13). On the other hand, for ν < K, we have (k − 1)γ∗ν > 1
which, by contraposition, shows that also the implication “=⇒” holds in (13). �

Lemma 4.4 and Theorem 4.3 are the foundation of the following algorithm for the computation of
all global maxima that satisfy the additional conditions from Theorem 4.3. Using the variations
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from Lemma 4.2, we obtain all global maxima of g in (0,∞)n since each global maximum can
be modified by these variations in such a form that the conditions from Theorem 4.3 hold.

For a better understanding of our algorithm, note that Theorem 4.3 allows the following inter-
pretation: If γ∗ is a global maximum of g satisfying

∑
µ∈K(γ∗) γ

∗
µ = 1 and (9), then we necessarily

have
|K(γ∗)| ≥ 2 and

(
k(γ∗) − 2

)
βν <

∑
µ∈K(γ∗)

βµ ∀ν ∈ K(γ∗)

by statement (c). (Assertions (a) and (b) only give the structure of the maximizer γ∗, whereas
statement (d) calculates the corresponding function value g(γ∗).) Now, Lemma 4.4 takes an
arbitrary index set K ⊆ N with

k := |K| ≥ 2 and (k − 2)βν <
∑
µ∈K

βµ ∀ν ∈ K, (14)

defines corresponding values for γ∗ν (ν ∈ N) and then states that, in particular, we have K = K(γ∗)
and that γ∗ν satisfies

∑
µ∈K(γ∗) γ

∗
µ = 1 as well as condition (9). Note that there are only finitely many

index sets K ⊆ N with (14), hence we necessarily get a global maximum among these candidate
points by comparing the corresponding function values g(γ∗). Since the γ∗ are specified by the
given index set K in Lemma 4.4, we define the function

h(K) :=
1
4

∑
µ∈K

1
βµ
−

(k − 2)2∑
µ∈K βµ


for all K ⊆ N with k := |K| ≥ 2 and (k−2)βν <

∑
µ∈K βµ for all ν ∈ K. We next state our algorithm

formally.

Algorithm 4.5 (S.0) Set hmax := 0 and L := ∅.

(S.1) Check for all K ⊆ N with k := |K| ≥ 2 and (k − 2)βν <
∑
µ∈K βµ for all ν ∈ K the following

conditions:

(a) If h(K) > hmax, then set hmax = h(K) and L = {K}.

(b) If h(K) = hmax, then set L = L ∪ {K}.

Basically, Algorithm 4.5 compares all sets K that could belong to a global maximum and re-
members those with the highest value h(K) found so far. In the end, the set L contains all sets K
such that the corresponding vector γ∗ from Lemma 4.4 is a global maximum. This procedure is
completely justified by Theorem 4.3 and Lemma 4.4. Via the transformation (8), we then obtain
a solution α∗ν := βν/γ

∗
ν of the original effort maximization problem from (4). Recall, however,

that the solution of (4) is always nonunique, and that any positive multiple of α∗ is also a solution
of the effort maximization game.

Note that Algorithm 4.5 reduces the original maximization problem (4), where the maximiza-
tion is taken over infinitely many values α ∈ (0,∞)n, to a finite procedure over certain subsets
K of N. In the worst case, the number of subsets that have to be checked in Algorithm 4.5 is
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large, depending exponentially on the number of players, but in practice it seems to work very
efficiently at least for n ≤ 25.

Now, we want to apply our results to two special cases that have already been discussed in
the literature, cf. Nti [12], Dasgupta and Nti [6].

Example 4.6 In the 2-player case, the set of active players in the global maximum is K = {1, 2}
and Theorem 4.3 implies that the optimal parameters are

γ∗ν =
βν
α∗ν

=
1
2
, hence α∗ν = 2βν ∀ν = 1, 2.

Therefore, heterogeneity between the players is completely removed in the optimum. The opti-
mal set of weighting parameters yields the following equilibrium results:

x∗,ν =
1

4βν
∀ν = 1, 2;

f (α∗) =
β1 + β2

4β1β2
;

θν(x∗,ν, x∗,−ν) =
1
4
∀ν = 1, 2.

The complete removal of heterogeneity is also reflected by the fact that expected payoff in equi-
librium is identical for both players. ^

Example 4.7 In the homogeneous n-player case, where βν = βµ (=: β) for all ν, µ ∈ N, all subsets
K ⊆ N with k := |K| ≥ 2 are feasible for Algorithm 4.5 and the set of active players in the global
maximum is the one that maximizes

h(K) =
1
4

∑
µ∈K

1
βµ
−

(k − 2)2∑
µ∈K βµ

 =
k − 1

kβ
.

Thus, the set of active players in the global maximum is K = N, and Theorem 4.3 shows that the
corresponding optimal parameters are

γ∗ν =
βν
α∗ν

=
1
n
, hence α∗ν = nβν ∀ν ∈ N.

In particular, all players are active in the optimum. Equilibrium results are the following:

x∗,ν =
n − 1
n2β

; f (α∗) =
n − 1

nβ
; θν(x∗,ν, x∗,−ν) =

1
n2 ∀ν ∈ N.

^

As we mentioned above, the number of subsets that have to be checked in Algorithm 4.5 can be
quite large. It is, however, possible to restrict the candidates for L further. This follows from the
subsequent result.
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Proposition 4.8 Let K,M ⊆ N be feasible subsets for Algorithm 4.5, i.e., let k := |K| ≥ 2,m :=
|M| ≥ 2, and suppose that

(k − 2)βν <
∑
µ∈K

βµ ∀ν ∈ K and (m − 2)βν <
∑
µ∈M

βµ ∀ν ∈ M.

Then, if M $ K, we have h(M) < h(K).

Proof. Using the well-known inequality between the arithmetic and harmonic mean together
with some elementary calculations, we obtain

h(K) − h(M)

=
1
4

 ∑
µ∈K\M

1
βµ
−

(k − 2)2∑
µ∈K βµ

+
(m − 2)2∑

µ∈M βµ


≥

1
4

[
(k − m)2∑
µ∈K\M βµ

−
(k − m)2 + 2(k − m)(m − 2) + (m − 2)2∑

µ∈K\M βµ +
∑
µ∈M βµ

+
(m − 2)2∑

µ∈M βµ

]

=
1
4


(
(k − m)

∑
µ∈M βµ − (m − 2)

∑
µ∈K\M βµ

)2∑
µ∈K\M βµ

∑
µ∈K βµ

∑
µ∈M βµ


≥ 0,

and equality h(K) = h(M) holds if and only if∑
µ∈K\M

1
βµ

=
(k − m)2∑
µ∈K\M βµ

and
∑
µ∈M

βµ = (m − 2)
∑
µ∈K\M βµ

k − m
.

Since all βµ (µ ∈ K\M) are positive, the harmonic mean and the arithmetic mean coincide if and
only if all βµ (µ ∈ K\M) coincide, i.e. if βµ = β for all µ ∈ K\M and a suitable β > 0. Hence, the
second equation implies that, for all µ ∈ K\M, we have

(k − 2)βµ = (k − m)β + (m − 2)β =
∑
µ∈K\M

βµ +
∑
µ∈M

βµ =
∑
µ∈K

βµ,

which, however, is a contradiction to the feasibility of K for Algorithm 4.5. �

Proposition 4.8 says that strict subsets of feasible sets for Algorithm 4.5 cannot be optimal. Thus,
all elements of K ∈ L have to be “maximal” subsets of N.

Now, consider the case of N ≥ 3 players. Further note that every subset M ⊆ N consisting
of two players is feasible for Algorithm 4.5. Then, take an arbitary element ν ∈ N\M and define
K := M ∪ {ν}. The so defined set K consists of three players containing M as a strict subset and
is feasible for Algorithm 4.5. In view of Proposition 4.8, it follows that M cannot be an optimal
set. Hence we obtain the following result.

Theorem 4.9 Consider the effort maximization problem (4) with |N| ≥ 3. Then there are at least
three active players in every solution K ∈ L.
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Note that the previous argument cannot be used in order to show that four or more players will
be active at a solution of the maximization problem (4). In fact, Example 4.12 below shows that
there exist instances of our problem with precisely three players being active in the optimum,
hence, from this point of view, Theorem 4.9 is optimal. The last Theorem is remarkable: it not
only improves on previous knowledge as summarized in Theorem 2.2 (a); it is also in marked
contrast to well-established results from contests, which are modeled as all-pay auctions; i.e. the
contest success function is such that the highest effort wins with certainty (in case of m highest
bids each wins with probability 1

m ). Then the equilibrium of the n-player complete information
contest is generically unique and exhibits precisely two active players. Moreover, in the non-
generic case with multiple equilibria, total effort in equilibrium is highest in the equilibrium with
only two active players (see Baye et al. [2]). Hence allowing for free entry into the contest cannot
improve the competitiveness of the contest as the equilibrium strategies of the two active players
do not depend on the number and identity of inactive players. This is not true in our model: a
third player can always improve on the effort levels obtained in a two-player contest from the
contest designer’s point of view.

Exploiting Theorem 4.9, we are now able to give an analytic solution also for the case of
three players. In particular, the optimality of evenness (Example 4.6) only applies to two-player
contests.

Example 4.10 In the 3-player case, Theorem 4.9 shows that the set of active players in the global
maximum is K = {1, 2, 3}, and Theorem 4.3 gives the corresponding optimal parameters

γ∗ν =
βν
α∗ν

=
1
4

1 +
βν∑3
µ=1 βµ

 , hence α∗ν = 4

 1
βν

+
1∑3

µ=1 βµ

−1

∀ν = 1, 2, 3.

Hence, heterogeneity between the players is not completely removed in the optimum, but is
relaxed. This is also indicated by the fact that expected equilibrium payoff is not identical among
players:

x∗,ν =
1
4

 1
βν
−

βν

(
∑3
µ=1 βµ)2

 ∀ν = 1, 2, 3;

f (α∗) =
1
4

 3∑
µ=1

1
βµ
−

1∑3
µ=1 βµ

 ;

θν(x∗,ν, x∗,−ν) =
1
4

1 − βν∑3
µ=1 βµ

2

∀ν = 1, 2, 3.

^
One of the “maximal” subsets mentioned above is

K∗ :=

ν ∈ N
∣∣∣∣ (|K∗| − 2)βν <

∑
µ∈K∗

βµ

 .
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One can prove analoguously to Theorem 2.6 that for all β there is at most one subset of N
satisfying this condition. Conversely, a simple calculation shows that there is always at least one
such set. If, furthermore, β1 ≤ . . . ≤ βn, then one can show similarly to Theorem 2.3 that

K∗ =

ν ∈ N
∣∣∣∣ (ν − 2)βν <

ν∑
µ=1

βµ

 .
Numerical tests indicate the following conjecture:

Conjecture 4.11 For every β, the set L generated by Algorithm 4.5 is L = {K∗}, hence K∗ is the
unique set such that the corresponding vector γ∗ from Lemma 4.4 is a global maximum.

Finally, let us consider some (nontrivial) examples.

Example 4.12 We applied Algorithm 4.5 to different instances of our effort maximization prob-
lem from (4). To this end, we consider problems with 7 players and take different values for
the parameters βν. Table 1 contains the precise values for βν together with the optimal set L
computed by our method. The corresponding values of the solution α∗ are calculated using (11)
for the active players. For the inactive players, the maximal possible values of α∗ν according to
Theorem 4.3 are given. In the last column, the total effort f (α∗) is given. Note that, in all the
instances computed in Table 1 as well as in many further calculations that we did (with up to 25
players), our conjecture holds. ^

β L α∗ f (α∗)
(1, 23, 33, 43, 53, 63, 73) {(1, 2, 3)} (3.8919, 26.1818, 61.7143, 128, 250, 432, 686) 0.2836
(1, 22, 32, 42, 52, 62, 72) {(1, 2, 3)} (3.73̄, 12.4̄, 21.9130, 32, 50, 72, 98) 0.3224

(1, 2, 3, 4, 5, 6, 7) {(1, 2, 3, 4)} (5, 8.5714, 11.25, 13.3̄, 15, 18, 21) 0.4208
(1, 1, 1, 1, 1, 1, 1) {(1, 2, 3, 4, 5, 6, 7)} (7, 7, 7, 7, 7, 7, 7) 0.8571

( 1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 ,

1
1 ) {(1, 2, 3, 4, 5)} (0.8209, 0.9148, 1.0329, 1.1860, 1.3925, 2, 4) 4.1912

( 1
72 ,

1
62 ,

1
52 ,

1
42 ,

1
32 ,

1
22 ,

1
1 ) {(1, 2, 3, 4)} (0.0964, 0.1218, 0.1568, 0.2050, 1

3 ,
3
4 , 3) 24.8637

( 1
73 ,

1
63 ,

1
53 ,

1
43 ,

1
33 ,

1
23 ,

1
1 ) {(1, 2, 3)} (0.0098, 0.0143, 0.0211, 1

32 ,
2

27 ,
1
4 , 2) 154.9177

( 1
74 ,

1
64 ,

1
53 ,

1
44 ,

1
34 ,

1
24 ,

1
1 ) {(1, 2, 3)} (0.0014, 0.0024, 0.0041, 1

128 ,
2
81 ,

1
8 , 2) 990.8331

Table 1: Numerical illustration of Algorithm 4.5

5 Final Remarks
We have analyzed contest games with players characterized by heterogeneous valuations as well
as heterogeneous cost functions, which are based on asymmetric variants of the arguably most
popular contest success function in the literature: Tullock’s [17] lottery model, which deter-
mines a contestant’s success probability to be equal to the ratio of his effort and total efforts.
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These variants apply weight biases to the individual efforts in the original Tullock specification.
We summarize known existence results and further develop equilibrium characterizations in or-
der to address the general problem of total effort maximization from a contest designer’s point
of view, who has control over the bias weights; i.e., the choice of the contest success function.
The designer’s choice of the optimal contest success function leads to a nonsmooth optimization
problem as the number of contestants contributing to total efforts is endogenous and depends on
the weights (given valuation and cost parameters). Nevertheless, we are able to show that an op-
timal contest success function always exists; i.e., for any given distribution of valuation and cost
parameters there is a solution to the contest designer’s problem. Moreover, this solution is easily
computable once the set of active players in the effort maximizing equilibrium is determined.
The latter is the crucial task; i.e., we infer the optimal contest success function from the set of
in the effort maximizing equilibrium active players, not vice versa. The determination of this
set of players is a finite search problem, which can be solved algorithmically. It is shown that
our algorithm cannot end at a set containing only two players; hence the optimal contest success
function always activates at least three players in the total efforts maximizing equilibrium. An
open question is whether the optimal weights αν of the active players are unique up to a positive
scalar factor; i.e., whether relative weights αν

αµ
, ν, µ ∈ K(α), are uniquely determined by the aim

of effort maximization.
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A Proof of Theorem 3.4
Here we give a proof of Theorem 3.4 which is the central existence result from Section 3. In
particular, we have to show that the function f : A → R from (5) has a continuous extension
from the set A defined in (7) onto its closure

Ā =

α ∈ [0,∞)n

∣∣∣∣∣∣∣
n∑
µ=1

αµ = 1

 .
To this end, we first recall the definition of the index set

J(α) := {ν ∈ N | αν = 0}

for a given α ∈ [0,∞)n. We already know from Theorem 3.3 that f is a continuous function on A,
i.e. f is continuous at any point α ∈ Ā such that |J(α)| = 0. In a first step, we will show in Lemma
A.1 that f has a continuous extension to all α ∈ Ā with |J(α)| ≤ n − 2. Then, we will prove in
Lemma A.2 that f can also be extended continuously to all points α ∈ Ā such that |J(α)| = n − 1
by defining f (α) := 0 in these points. Since the case |J(α)| = n cannot occur for α ∈ Ā, this
yields Theorem 3.4.

Here is our first result regarding the extension of f to points α with |J(α)| ≤ n − 2.

22



Lemma A.1 The function f , viewed as a mapping from A to R, can be extended continuously
onto the set

{α ∈ Ā | |J(α)| ≤ n − 2}.

Proof. Recall from the proof of Theorem 3.3 that f is continuous on the set

A = {α ∈ Ā | |J(α)| = 0}

(in fact, it is continuous on (0,∞)n). Now, let α∗ ∈ Ā with |J(α∗)| ∈ {1, . . . , n − 2} be arbitrarily
given. Then let us define the set of players N∗ := N\J(α∗). Since we have |N∗| ≥ 2, it follows
that the Nash game with the set of players N∗ replacing the set of players N has all the properties
that were already shown. Consequently, if we let

f ∗(α) :=
∑
ν∈N∗

xν(α)

be the objective function of this new game, we, in particular, obtain from Theorem 3.3 that f ∗

is continuous in a sufficiently small neighbourhood of α∗ simply since we eliminated the critical
players ν with α∗ν = 0 from the set N. We will show in the next paragraph that, for all α from a
sufficiently small neighbourhood U of α∗, we have K(α) ⊆ N∗. This then implies f (α) = f ∗(α)
for all α ∈ U and, in this way, we obtain the desired continuous extension of f in α∗.

To verify the above claim, we have to find a sufficiently small neighbourhood U of α∗ such
that K(α) ⊆ N∗ for all α ∈ U, i.e., for all α ∈ U and all indices ν with ν ∈ K(α), we necessarily
have αν > 0. By contraposition, this is equivalent to showing that, for all α ∈ U and all indices ν
with αν = 0, we have ν < K(α).

To see this, we first choose a sufficiently small neighbourhood of α∗ such that |J(α)| ∈
{0, 1, . . . , n−2} for all α ∈ U. We then define a function c(α) on U as the sum of the two smallest
quotients βµ

αµ
(µ ∈ N). Then c(α) is continuous and finite. Moreover, Corollary 2.4 shows that we

always have K(α) ⊆ {ν ∈ N | βν
αν
< c(α)}. By taking a possibly smaller neighbourhood U, we may

assume by continuity that c(α) < 2c(α∗) for all α ∈ U and, in addition, that βν
αν
> 2c(α∗) for all

ν ∈ J(α∗). This implies the desired claim since, now, we obtain βν
αν
> 2c(α∗) > c(α) for all α ∈ U

and all ν ∈ J(α∗), hence ν < K(α). �

It remains to consider the case |J(α)| = n − 1. This is done in the following result.

Lemma A.2 The function f , viewed as a mapping from {α ∈ Ā | |J(α)| ≤ n − 2} to R, can be
extended continuously onto the set Ā by setting f (α∗) = 0 for all α∗ ∈ Ā with |J(α∗)| = n − 1.

Proof. We begin with some preliminary comments. In order to verify our claim, we have to
show that, given an arbitrary vector α∗ ∈ Ā with |J(α∗)| = n − 1 as well as a sequence {α} → α∗

with α ∈ Ā satisfying |J(α)| ≤ n − 2 for all α, we have f (α) → f (α∗). Now, for all α ∈ A (so all
components of α are positive), we have the representation

f (α) =
∑
ν∈K(α)

xν(α) (15)
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of our objective function, where K(α) is the set of active players, cf. (5). On the other hand, if
one or more (at most n − 2) components of α are equal to zero, we obtained f by a continuous
extension in the proof of Lemma A.1, hence the representation (15) does not necessarily hold in
this case. However, we showed in the proof of Lemma A.1 that K(α) ∩ J(α) = ∅ so that players
ν with αν = 0 are certainly not active. This means that for all α ∈ Ā with |J(α)| ≤ n − 2, the
representation (15) is still valid, and we will work with it throughout this proof.

Now, take an arbitrary α∗ ∈ Ā with |J(α∗)| = n − 1, i.e. α∗ = e j for some j ∈ {1, . . . , n}. Then
we obtain for all α ∈ Ā\{α∗} sufficiently close to α∗ that, on the one hand, |J(α)| ∈ {0, . . . , n − 2}
and, on the other hand,

β j

α j
= min

µ∈K(α)

βµ

αµ
,

hence j ∈ K(α). Consider an arbitrary sequence {α} ⊂ Ā\{α∗} with α → α∗. We can divide the
sequence into finitely many subsequences such that, within each subsequence, the set K(α) is
constant. We verify the statement for each of these subsequences which then, obviously, implies
that the statement holds for the entire sequence. We now consider one of these subsequences and
call it, once again, {α}. In view of the previous remark, we have K(α) ≡ K and k(α) ≡ k for all α.
We now verifiy the limit f (α) =

∑
ν∈K xν(α) → 0 by showing that xν(α) → 0 holds for all ν ∈ K.

For ν = j, this follows immediately from

x j(α) =

1 − β j(k − 1)∑
µ∈K βµ

α j

αµ

 (k − 1)∑
µ∈K βµ

α j

αµ

→ (1 − 0)0 = 0.

Moreover, for k = 2, the statement also follows easily for ν ∈ K\{ j}:

xν(α) =

1 − βν
βν + β j

αν
α j

 1
βν + β j

αν
α j

→ (1 − 1)
1
βν

= 0.

It therefore remains to verify xν(α)→ 0 for all ν ∈ K\{ j} in the case k ≥ 3. To this end, we show
that, for all k = 3, 4, . . . and all ν, µ ∈ K\{ j} with ν , µ, we have

lim
α→e j

αν
αµ

=
βν
βµ
. (16)

Using (16), we then obtain for all ν ∈ K\{ j} and all k ≥ 3

xν(α) =

1 − (k − 1)∑
µ∈K

βµ
βν

αν
αµ

 (k − 1)

βν
∑
µ∈K

βµ
βν

αν
αµ

→ (1 − 1)
1
βν

= 0

and therefore the desired statement. To verify (16), it suffices to show that, for all k = 3, 4, . . .
and all ν, µ ∈ K\{ j} with ν , µ, we have

lim sup
α→e j

αν
αµ
≤
βν
βµ
. (17)
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Exchanging the roles of ν and µ then yields (16).
To verify (17), we first consider the case k = 3. Therefore, let ν, µ ∈ K\{ j} be given with

ν , µ. We then obtain for an arbitrary α, exploiting the characteristic property (1) of µ ∈ K, that

αν
αµ

=
βν
βµ

αν
βν

βµ

αµ
<
βν
βµ

αν
βν

1
2

(
β j

α j
+
βν
αν

+
βµ

αµ

)
.

Rewriting this expression gives
αν
αµ

<
βν
βµ

(
ανβ j

βνα j
+ 1

)
.

Taking into account α→ e j, we obtain (17).
Next, consider the case k = 4. To this end, choose arbitrary ν, µ ∈ K\{ j} with ν , µ, and let

K = { j, ν, µ, λ}. Using λ ∈ K, we have

βλ
αλ

<
1
3

∑
ρ∈K

βρ

αρ
⇐⇒

βλ
αλ

<
1
2

(
β j

α j
+
βν
αν

+
βµ

αµ

)
. (18)

Exploiting once again (1), we obtain from µ ∈ K the inequality

αν
αµ

=
βν
βµ

αν
βν

βµ

αµ
<
βν
βµ

αν
βν

1
3

(
β j

α j
+
βν
αν

+
βµ

αµ
+
βλ
αλ

)
.

Estimating the right-hand side by using (18) and rearranging the resulting terms, we obtain the
same inequality

αν
αµ

<
βν
βµ

(
αν
βν

β j

α j
+ 1

)
as above, so that α → e j also yields (17) for the case k = 4. For k = 5, 6, . . ., the statement can
be verified in an analogous way. �
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