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Abstract

This paper presents a new approach to estimation and inference in panel data models with
unobserved common factors possibly correlated with exogenously given individual-specific
regressors and/or the observed common effects. The basic idea behind the proposed
estimation procedure is to filter the individual-specific regressors by means of (weighted)
cross-section aggregates such that asymptotically as the cross-section dimension (V) tends to
infinity the differential effects of unobserved commond factors are eliminated. The estimation
procedure has the advantage that it can be computed by OLS applied to an auxiliary
regression where the observed regressors are augmented by cross sectional averages of the
dependent variable and the individual specific regressors. It is shown that the proposed
correlated common effects (CCE) estimators for the individual-specific regressors (and its
pooled counterpart) are asymptotically unbiased as N approaches infinity, both when 7 (the
time-series dimension) is fixed, and when N and T tend to infinity jointly. A generalization of
these results to multi-factor structures is also provided. The estimation and inference in
dynamic heterogenous panels with a residual factor structure will be addressed in a
companion paper.
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1 Introduction

A number of different approaches have been advanced in the literature for the analysis of cross
section dependence. In the case of spatial problems where a natural immutable distance measure is
available the dependence is captured through “spatial lags” using techniques familiar from the time
series literature. In economic applications spatial techniques are often adapted using alternative
measures of “economic distance”. See, for example, Lee and Pesaran (1993), Conely and Dupor
(2001), Conley and Topa (2002) and Pesaran, Schuermann and Weiner (2001), as well as the
literature on spatial econometrics recently surveyed by Anselin (2001). In the case of panel data
models where the cross section dimension (N) is small (typically N < 10) and the time series
dimension (7T') is large the standard approach is to treat the equations from the different cross
section units as a system of seemingly unrelated regression equations (SURE) and then estimate
the system by the Generalized Least Squares (GLS) techniques. This approach allows for a general
(time-invariant) correlation patterns across the errors in the different cross section equations.
There are also a number of contributions in the literature that allow for time-varying individual
effects in the case of panels with homogenous slopes where T is fixed as N — oo. Holtz-Eakin
et al. (1988) use a quasi-differencing procedure to eliminate the time-varying effects and then
estimate the model by instrumental variables. This procedure eliminates the individual-specific
effects but yields (dynamic) regression equations with time-varying coefficients that are generally
difficult to estimate and is likely to work only when 7" is quite small. Ahn, Lee and Schmidt (2001),
building on the earlier contributions of Kiefer (1980) and Lee (1991) propose a number of different
generalized method of moments (GMM) estimators depending on whether first as well as second-
order moment restrictions are utilized. In the case where idiosyncratic errors are homoskedastic
and nonautocorrelated, they show that the GMM estimator that makes use of all the first- and
second-order moment restrictions dominates the maximum likelihood estimator (which is also the
generalized within estimator) originally proposed by Kiefer (1980). However, their analysis assumes
that the regressors are identically and independently distributed across the individuals, which may
not be valid in practice. In addition, none of these approaches are appropriate when both N and T’
are large and of the same order of magnitudes, as is often the case in cross-country (region) studies.
The application of unrestricted SURE-GLS approach to large N and T panels involves nuisance
parameters that increase at a quadratic rate as the cross section dimension of the panel is allowed
to rise. To deal with this problem Robertson and Symons (2000) propose restricting the covariance
matrix of the errors using a common factor specification with a fixed number of unobserved factors,
and then estimating the model using maximum likelihood (ML) techniques assuming homogeneous
slopes. Robertson and Symons also assume that the common factors are distributed independently
of the observed regressors that are included in the model. In this case and under certain restrictions

on the number of fitted factors Robertson and Symons show that the likelihood function is bounded



and the maximum likelihood estimates exist even in the rank deficient case where N > T. However,
they are unable to establish the asymptotic properties of their estimators in the case of large N
and primarily rely on results from Monte Carlo experiments in the context of a simple panel
data model with homogeneous coefficients. The SURE-GLS procedure is also utilized recently by
Phillips and Sul (2002) for estimation of autoregressive models with heterogeneous slopes (but
without exogenous regressors) using a single factor structure for the residuals. Once again no large
N asymptotic results are provided. In another related paper Coakley, Fuertes and Smith (2002)
propose a principal components approach that is arguably simpler to implement than Robertson

I These authors also claim that their procedure is valid even if

and Symons’s full ML procedure.
the unobserved common factors and the observed individual effects are correlated, possibly due to
omitted global variables or common shocks that are correlated with the included regressors.

In this paper we first establish that in general the estimation procedure proposed by Coakley,
Fuerts and Smith (CFS) will not be consistent if the unobserved factors and the included regressors
are correlated. We also show that the satisfactory simulation results reported in the paper is due
to the paper’s special Monte Carlo design where the cross-section average of the included regressor
and the unobserved common effect become perfectly correlated as N — oo. We shall then propose
a new approach that yields consistent and asymptotically normal parameter estimates even in the
presence of correlated unobserved common effects both when T is fixed and N — oo, and as
(N,T) — oo, jointly.

Initially, we consider a one-factor residual model and distinguish between individual-specific
regressors, observed and unobserved common effects. We permit the common effects to have dif-
ferential impacts on individual units, while at the same time allow them to exhibit an arbitrary
degree of correlation amongst themselves and with the individual-specific regressors. We consider
the problem of estimating individual slope coefficients as well as a pooled estimator when the coef-
ficients of individual-specific regressors are homogeneous. We allow for error variance heterogeneity
and do not assume that the individual-specific regressors are identically and/or independently dis-
tributed over the cross-section units, that are particularly relevant to the analysis of cross-country
panels. However, in this paper we assume the regressors to be stationary and exogenous. Due
to space limitations, the problem of estimation and inference in dynamic panels subject to cross
section dependence will be addressed in a companion paper. See Pesaran (2002).

The basic idea behind the proposed estimation procedure is to filter the individual specific
regressors by means of (weighted) cross section aggregates such that asymptotically (as N — c0)
the differential effects of unobserved common factors are eliminated. This is in contrast with the

various approaches adopted in the literature that focus on estimation of factor loadings as an

!Similar issues are also discussed in the analysis of (dynamic) factor models by Forni and Lippi (1997), Forni and
Reichlin (1998), Stock and Watson (1998), and Bai and Ng (2002), among others.



input into the GLS algorithm. The estimation approach has the added advantage that it can be
computed by ordinary least squares applied to an auxiliary regression where the observed regressors
are augmented by cross sectional averages of the dependent variable and the individual specific
regressors. We refer to this estimator as the common correlated effects (CCE) estimator. We also
propose a pooled CCE estimator which is asymptotically efficient when the slope coefficients of the
individual-specific regressors are homogenous, although the common effects (whether observed or
not) are still allowed to have differential impacts over the cross-section units. The pooled CCE
estimator can also be viewed as a generalized fixed effects estimator where the individual-specific
dummies are augmented with individual-specific cross-section aggregates.

We show that the CCE estimator of the coefficients of the individual-specific regressors (and
its pooled counterpart) are asymptotically unbiased as N — oo, both when T is fixed, and when
N and T tend to infinity jointly. Further we show that the proposed estimators are asymptotically
normal for T fixed as N — 0o, and when (N, T) — oo, jointly provided vT /N — 0 as (N,T) — ooc.
A generalization of these results to multi-factor structures is also provided. In the case where T is
fixed our proposed estimator while directly comparable to the GMM estimator proposed by Ahn
et al. (2001), is applicable more generally. In particular, it does not require the individual-specific
regressors to be cross sectionally independent.

Finally, it is worth emphasizing that the CCE estimator is applicable even if one is interested
in individual-specific coefficients. In such a case not allowing for cross dependence would not pose
inconsistency problems (only inefficiencies) if the source of cross dependence (the common effects)
are not correlated with the observed included regressors. Seen from this perspective the paper
addresses two problems: cross dependence and correlated omitted effects. It is of interest that it
is possible to find a solution to the second problem by viewing individual regressions as parts of a
fully integrated panel data model. In effect the approach proposed in the paper provides another
generalization of Zellner’s (1962) idea to the case of seemingly unrelated regressions where the
cross-sectionally dependent errors are also correlated with the included regressors. The differences
in the two approaches stem from what is assumed about the size of N. In Zellner’s framework
since N is fixed (and relatively small) cross-dependence can be modelled freely, but it is assumed
that the unobserved errors and the included regressors are uncorrelated. In the case where N is
large cross-dependence can only be modelled subject to restrictions, but the assumption of zero
correlation between the errors and the included regressors can be relaxed.

The plan of the paper is as follows: Section 2 sets out the one-factor residual model and the
assumptions in detail. Section 3 shows the general inconsistency of the principal components
estimator proposed by Coakley, Fuertes and Smith (2002). Section 4 first motivates the idea of ap-
proximating the unobserved common factor by linear combination of the cross-sectional aggregates

of the dependent and the individual-specific regressors. The CCE estimators of the coefficients of



the individual-specific regressors are then presented in sub-section 4.1, and their pooled counterpart
in sub-section 4.2. The problem of how best to choose the weights used in the construction of the
aggregates and in the formation of the pooled estimator are discussed in sub-section 4.3. Section
5 provides a generalization of the CCE estimators in the case of a multi-factor residual model.
Section 6 concludes by identifying important areas for extensions and further developments.
Notations: K stands for a finite positive constant, ||A|| = [Tr(AA’ )]1/ ? is the Euclidean norm
of the m x n matrix A. a, = O(b,) states the deterministic sequence {a,} is at most of order
b, X, = Op(yn) states the vector of random variables, x,,, is at most of order y,, in probability,
and x, = op(yn) is of smaller order in probability than y,, % denotes convergence in quadratic
mean (or mean square error), 2 convergence in probability, <, convergence in distribution, and 4
asymptotic equivalence of probability distributions. All asymptotics are carried out under N — oo,
either with a fixed T, or jointly with T' — co. Joint convergence of N and T will be denoted by
(N,T) 7, c0. Restrictions (if any) on the relative rates of convergence of N and T" will be specified

separately.

2 A One-Factor Residual Model

Let y;; be the observation on the i** cross-section unit at time t for i = 1,2,....N; t = 1,2, ..., T,

and suppose that it is generated according to the following linear heterogeneous panel data model
Yit = Zéai + X;t/@i + Uit (2.1)

where z; is a k. x 1 vector of observed common effects, x;; is a k, X 1 vector of observed individual-

specific regressors on the i cross section unit at time ¢, and the errors have the one-factor structure
wit = Vi ft + €its (2.2)

in which f; is the unobserved common effect, and ¢, are the individual-specific (idiosyncratic) errors.
The primary parameters of interest are the individual specific slope coefficients, 3;, 7 = 1,2, ..., N.
The common factor loadings, a; and «;, will be treated as nuisance parameters, although we shall
also consider their identification and estimation once consistent estimators of 3, are obtained.

The following assumptions will be made throughout:

Assumption 1(a) (observed individual-specific regressors): For each ¢ the regressors, x;;, are
covariance stationary with absolutely summable autocovariances, zero means and finite fourth-order
moments and are distributed independently of the individual-specific errors, ;;/, for all ¢ and ¢'. In

particular, for each ¢

E(xj;x;)° < K, for s = 1,2 and all i. (2.3)



Dependence between x;; and f; is allowed so long as for each ¢ as T'— oo

T

1

T § ftxitgﬂfz'<007
t=1

and

1 T
th)_(t £> Ofz,
t=1

=l

where 0z = limy_. % Zf\il of < 00.

Assumption 1(b) (observed common effects): The observed common effects, z;, are covariance
stationary with absolute summable autocovariances, distributed independently of the individual-
specific errors, g;, for all ¢ and ¢'.

Assumption 1(c) ( unobserved common effect): The single unobserved common effect, f, is
covariance stationary with absolute summable autocovariances, mean zero and variance 0]20, and for
each 7 , f; and g; are independently distributed for all ¢ and ¢'.

Assumption 2(a) (fixed factor loadings): The factor loadings, ;, are non-stochastic constants
such that |y;| < K.

Assumption 2(b) (random factor loadings): The factor loadings, 7;, follow the random coef-

ficient model
Vi =Y+ n, 1 tid (0,072]), fori=1,2,...,N, (2.4)

where v # 0, 0 < (7727 < K, and 7}s are distributed independently of the regressors (x};, z, f;) for
all 7 and t.
Assumption 3 (random coefficients): The slope coefficients of the individual-specific effects,

B3;, follow the random coefficient model
B, =B +wv;, v,iid (0,Q), fori=1,2, ..., N, (2.5)

where (Q is a k; X k; non-negative definite matrix and the random deviations, v;, are distributed

independently of j;, the regressors (x};, 7, f:) for all i, j and t, and
E (viv)* < K. (2.6)

The coefficients of the observed common effects, a;, are bounded (lie on a compact set).

Assumption 4 (individual-specific errors): The individual specific error, e;, is distributed
2

independently across ¢ and ¢ with mean zero, variance, o7, and a finite fourth-order moment,
B(eh) < K.
Assumption 5(a): (identification of unobserved common effects): There exists a set of fixed

(aggregating) weights, {w;,7 =1,2,..., N}, such that for all 7 and N (including as N — o0)

1 N N
(1): w; =0 (N) ,(1): Y Jwi < K, and (if): > wiys # 0. (2.7)

i=1 =1



Assumption 5(b): (identification of 3;): Let X, = Z;V:1 w;X ¢, with the weights {w;} satis-
fying the conditions of assumption 5(a), and consider the partition Xy = (X, X5,:) associated
with x;; = (x};;,%5;,)’. Assume that x;;; exhibit a sufficient degree of cross section dependence such
that for each ¢t and as N — 00, X1t s Mg, 7# 0, a time-varying vector of random variables, and

that xo;, are not sufficiently cross sectionally dependent and Xo,; iy 0, as N — oo. Specifically

1
X1wt — Mtz = Op <\/_N> , (28)

and

_ 1
Xowt — Mgy = O;D <N> . (29)

Let guw,it = (xgt7z§7i’1wt,ft)/ = (X}, 81) s Gl = (Bwi, Bw2, -y Buwr), and X! = (Xi1,Xi2, ..., XT)-
For fixed N and T,

X'X; X/Gy
(2.10)

T

/
Z gwﬂtgw,zt = =, — —
t=1 ( G, Xi GGy

is a non-singular matrix. For a fixed T let G/, = (gu1, 8u2, ---, 8u1), Where gy = (z, u§7x17ft)/, then

T / !
1 L 1 < X/X; X.G, >
T Zgw,z'tgw,it = 24T = 5 ;as N — o0, (2.11)
T 1 T GLXi GLGH
where ¥;; 7 is a non-stochastic positive definite matrix. Also
1 & Spe O :
T Zgw,z‘tg;,,u L2 = ( s ) , as (N,T) % 0, (2.12)
t=1 Yz, Lpp

where X0, = E(XiX);), Yo = E(xitth), Yup = E(gutg;it), and X;; is a non-stochastic positive
definite matrix.
Assumption 5(c): (identification of 3): For a fixed T
N

> 0; (XiMX;) £ Wy, as N — oo, (2.13)
=1

where the (pooling) weights, 6;, satisfy the conditions

N
1
0; = O <N> , and ;\ei\ <K, (2.14)
M, =1Iy - G, (G,G,) ‘G, (2.15)



and Ur is a non-stochastic positive definite matrix. Also

N
3o <X/MT“X> 2y, as (N,T) 5 oo, (2.16)
i=1

where U is a non-stochastic positive definite matrix.

Assumption 1(a) is restrictive in two respects: It does not allow for inclusion of lagged i
amongst the regressors, and rules out the inclusion of I(1), integrated of order one, regressors
in the model. The latter restriction can be readily relaxed at the expense of further technical
complications.? Allowing for individual specific dynamics in the model presents new difficulties
and is addressed in Pesaran (2002). Assumption 1(b) is quite general and allows for the observed
common factors, z;, to be correlated with x; and f;. Also by setting one of the elements of
7; to unity, fixed effects and non-zero means for the individual-specific regressors, X;, can be
accommodated. Assumption 1(c) allows for non-zero correlations between the included regressors
and the unobserved common effect, and is sufficiently general for our purposes here. The more
general case of multiple factors will be considered in Section 5. Assumption 2(a) is innocuous
and corresponds to the fixed effects specification in standard panel data models. Assumption
2(b) imposes stronger restrictions on the distribution of the factor loadings and corresponds to the
random effects specification. The random coeflicient specification is also assumed for the coefficients
of the individual-specific effects, 3;, in assumption 3.> No restrictions are imposed on a;, the
coefficients of the common observed effects, apart from assuming that they lie on a compact set.
Notice also that the assumption that €2 is a non-negative definite (and not necessarily a positive
definite) matrix allows for a sub-set of the slope coefficients to be homogeneous. Assumption 4
allows for heterogeneity of error variances across ¢, but rules out residual serial correlation, although
this part of the assumption can be readily relaxed when T is finite and ;s are strictly exogenous.
Assumption 5(a) is required for identification of the unobserved common effects, f;, up to a scalar
constant, and is met so long as there exists a set of weights, w;, such that Zf\i Jwiy; # 0. The

simple scheme w; = 1/N is an obvious example and yields

N N N
Z|w2| =1 and Zwi% = Nﬁlz% = AN
i=1 i=1 i=1

As we shall see later, in practice, it is possible to check if Zfi Lw;y; = 0, for a given choice of
w;’s. It is also possible to use time-varying weights so long as they are pre-determined and satisfy
the conditions of assumption 5(a). Assumptions 5(b) and 5(c) are needed in conjunction with
assumption 5(a) for consistent estimation of the parameters of interest, namely [3; and their means,

B. Assumption 5(b) is quite general and allows for different degrees of cross section dependence of

2The case where x;;’s are I (1) whilst z; is stationary could also be of interest.

3For a detailed treatment of the random coefficient model see, for example, Swamy (1970).



the individual specific regressors, x;;, as well as between x;;, X,¢, and the common effects, f; and

z;. Consider the following fairly general model for the individual specific regressors
Xt = ¢1'1ft + ®iozy + Cizxy + Vi, 1 =1,2, ..., N, (217)

where x; is the vector of common effects specific to x;; (not included in the model for y;;), v;; are
the idiosyncratic components distributed independently of the common effects and across ¢ with a
finite covariance matrix.* Averaging these relations across 4, using the weights w;, and assuming

that the coefficients ¢;;, ®;2, and ®;3 are bounded in N, we have

N N N N
Xwt = (Z wz¢i1> Je+ (Z w@n) Zt + <Z wz'(I)i3> Xt + Zwivit. (2.18)
i=1 i=1 i=1 i=1
It is now easily seen that as N — oo, Zf\i 1 WiVt e 0, and hence

Xt o K = <_ﬁ1ft + Doz + (53Xta (2.19)

where ¢, ®o, and @3 are the limits of Zf\i 1 Wi, Zf\i 1 w;iPso, and Zf\i 1 w;P;3, respectively as
N — oo. Therefore, a variety of correlation structures (both across ¢ and amongst ¢, Xue, f,
and z;) can be entertained. For example, the Monte Carlo design of the experiments carried out
by Coakley, Fuerts and Smith (2002) sets ®; = 0, and ®3 = 0, and therefore implies perfect
correlation between X,,; and f; as N — oo. The analysis of Ahn, Lee and Schmidt (2001) assumes
that the individual specific regressors are cross sectionally independent, and in effect imposes zero
restrictions on all the elements of ¢;;, ®;2, and ®;3. But in most applications of interest individual
specific regressors are likely to be cross sectionally dependent and a formulation such as (2.17) will
be far more widely applicable.

It is also easy to verify that under (2.17), conditions (2.13) and (2.16) of assumption 5(c) hold

if it is also assumed that v

VitV
> (47)

converges in probability to a positive definite matrix; for a fixed T as N — oo, in the case of (2.13),
and as (N, T) EX 00, in the case of (2.16).

Finally, it is worth noting that the common feature dynamics across ¢ are captured through the
serial correlation structure of the common effects. Other more general individual-specific dynamics

can be introduced by relaxing assumption 1 to included lagged values of ;.

It is also possible to extend (2.17) by adding the lagged values of x;; to the right-hand-side variables. Our main
results will continue to hold provided the cross section distribution of the eigen values of the dynamic system in x;¢

satisfy certain restrictions as discussed in Zaffaroni (2001).



3 The Principal Components Estimator

To deal with the residual cross section dependence, Coakley, Fuertes and Smith (2002) propose
a principle components estimator by augmenting the regression of y;; on x; with one or more
principle components of the estimated residuals, 4, 1 = 1,2, ..., N, t = 1,2, ..., T obtained from the
first stage regressions of y;; on x;;. By means of an example we shall now demonstrate that such
an estimator will not be consistent in the general case where f; and X; are correlated. Under our
assumptions Coakley, Fuertes and Smith (CFS) principal components estimator is consistent either
if f; and X; are (asymptotically) uncorrelated or if they are (asymptotically) perfectly correlated.

For this purpose we shall focus on the simple case of only one individual-specific regressor (k = 1)
and assume that all the coefficients of the underlying data generating process are homogeneous
across ¢, namely o; = 0, 5; = 3, v; = vy, and (71-2 = ¢2. This is the set up considered by CFS in
the analytical discussion of their estimator. In this case the first principle component is given by

u = N1 Zf\i 1 wit. CFS suggest estimating u; using the pooled estimator of 3, given by

T N
BPE _ Zt:l Zizl YitTit (3 1)
T N ) :

This yields @ = N1 Zfil(yit — BpEﬂTit) = — BPE Ty, for t = 1,2, ...,T which are then used in

the augmented OLS regression of y;;on x; and 4; to obtain the principal components estimate of
(3, which we denote by ch.

To examine the asymptotic properties of ,épo as T and N — oo, using the following vector

notations:
Yi: = (yﬂ,yiz, ---,yz’T)/, X; = (fﬂz‘l,fﬂn, ---,%‘T)/, €; = (51'1,51'2, ---,SiT)/
y = (yhg% "'>gT)/? X = (571,:7327 ---ajjT)/a €= (517527 ._.,ET)/
a = (ﬂl,ﬂg,_.;&T)x f::(fﬁ,fé,uu,ff)x

we first note that

_ , 3.2
Brc Dr (3.2)
where
Sln ala Al
D = N—1 XX x'a, o'a, 4, 0'x
vr = N7 - () )

In the present simple case
yi = 0% +f +e;, (3:3)
and averaging across ¢

y =8%+f +E. (3.4)



Using these results in (3.3) we now have

EH-EHERTED NSNS - (30T ER)

3 T
—_ 3= 3.5
Brc—B="7 Dor + Dr (3.5)
To derive the probability limit of ch, as N and T — oo, we first note that
u'g xX'g f'e g’
- = B~ ﬁPE)( ) )+ (),
a'x x'x xf, Xe
- = (5—5PE)(T)+’Y(7)+(7)7
o'f x'f f'f f'e
L= p-benEh e Ee 5,
and finally
o' N R 2 £/
- = (B-=0pp) (5 )+2v(8 - BrE) (7 ) ++° ()
g'e X' f'e
+(T)+27(5 BPE)(T)+27(T)
Under the above assumptions (iTE), (’_‘Tlé), (LTE) and N~ N I(X;; *) all converge to zero in proba-

bility as N and T" — oo (in no particular order) and the following probability limits exist and are
bounded (see the appendix for proofs)

%'% ) X p £'f

and
1 oL x/x;
NZ(’Tz)HA}lm Z()’m =02 >0.
Also using (3.1)
0z
B—Bps B —y < f> :
o2

T

Substituting these probability limits in (3.5) and after some algebra we have

Y (0a7/0?) (02 = o2)

: 3.6
020]20—0%0 [O'%/U%—3G‘%/U%+3] (3.6)

Brc — B85

T

Therefore, in the presence of common effects (7 # 0) the CFS’s principal components estimator
is consistent only under the two extremes of zero correlation between the common factor and the
cross-section average of the included regressor, namely if 0z = 0, and when the common factor and
the cross section average of the included regressor are perfectly correlated, namely if (r% ;= (rj%(r%.

This result also explains CFS’s Monte Carlo simulations and the small sample evidence that they

10



seem to provide in support of their proposed estimator. The processes used to generate f; and

are given by

ft = 0.9 fii1+ep,
Tig = dig+ Nift,
dig = 0.9d;4 1+ ¢€dis,

and the shocks e; and e4;; are IID draws from the normal distribution. It is now easily seen that
Ty =di + Mfi,
where d; and ) are the cross section means of d;; and );, respectively. Also
di = 0.9 di_1 + &g,

and since the shocks, e4; ¢, are 11D it then readily follows that Var(és) — 0 and hence Var(dy) — 0
for each t as N — oo. Therefore, Z; and f; will become perfectly correlated if N is sufficiently
large. Perfect correlation between Z; and f; can be avoided, for example, by allowing a sufficient

degree of dependence across d;; so that Var(d;) does not go to zero.

4 A General Approach to Estimation of Panels with Common

Effects

The main difficulty with the CFS’s estimator lies in the fact that it makes use of an inconsistent
estimator of 3 to obtain the principal components which are then used as proxies for the unobserved
common effects. To see how this problem can be overcome initially we work with the homogeneous
case, a single individual-specific variable and no observed common effects, namely we set a; = 0,
B: = B3, vi = 7, and 02 = 02, for all i. For these parameters and averaging (2.1) using the weights

w; = 1/N, we have
Gt = Bre +fe + & (4.1)

Under assumption 4, Var(&) = 0?/N, and & converges to zero in root mean square error. There-
fore, so long as v # 0 and for IV sufficiently large, up to a scalar constant, f; converges in probability
to gy — 7.5 It is therefore possible to identify and estimate the unobserved common effects, f;, only

if a consistent estimate of 3 is available. Hence the direct use of z; for the purpose of consistently

5The validity of condition v # 0 can be checked in practice if N and T are sufficiently large. Note that under
v =0, and N sufficiently large §; = 8Z; and the regression of §; on Z;, the so called aggregate function associated
with the underlying “micro” equations (2.1), must yield a perfect fit. As we shall see below this result is quite general

and extends to the heterogeneous slope case with multiple factors.

11



estimating ( will not be a fruitful strategy. However, for consistent estimation of 3 a consistent
estimate of f; is not necessarily needed. It proves adequate to use ; and Z; separately as they to-
gether form a sufficient basis for the consistent estimation of f;. This observation suggests running
a regression of y;; on x;; augmented with the cross section averages of the dependent variable and
the regressors. We shall refer to this estimator as the correlated common effect estimator. In

the present simple case this estimator is given by

, (4.2)

where H = (¥,%) and

o= () - (F) (F) (7). =

However, since X is contained in H, then ﬁ(ﬁ/ﬂ)_lﬂi = X, and the expression for BCC simplifies

further to

Bec = (4.4)

Using (3.3) and (4.1) now yields

which is free of the nuisance parameter, . It is now easily seen that as N — oo (irrespective of

whether T is fixed or tends to infinity)

Bec & B,
provided for each t as N — oo we have
1N
2 P2 2
i=1

where 02 = limy_,o0 F(Z?). Then for a fixed T and as N — oo
Tt t

plimpy_ 0 [N’l Zfil ngz} — plimy_, (X'E)

T
Zt:l(”?ct - (’%t)

Boc—B 5
But it is easily seen that
E(XE)=0

12



Var(X'g) = %E()‘(’)‘().
Similarly,

Var N

N 2 N I3
N ZXQ&-] -z [—Zil E(XZXZ)] :
i=1

Therefore for a fixed T, as N — oo, N1 Zf\i 1 X;e; and X' tend to zero in probability and Boc B 8.

Also as T — oo, BCC EX B for any fixed N > 2, so long as

| X
<N ZU121> > oZ. (4.6)
i=1

For N = 2 this estimator reduces to the OLS estimator of the slope in the regression of y1+ — yor
on x1; —xo,t = 1,2, ..., T. Conditions (4.5) and (4.6) ensure that the individual-specific regressors
exhibit adequate time and cross section variations. The consistency property of BCC continues to
hold under the joint asymptotics when both T and N — oo.

Finally, it is worth noting that under y; = «, the CCE estimator, (4.4), is in fact the same as

the familiar de-meaned regression estimator given by:

Zi]\il(xi - i)/(}’i - 3_’)_
Y (ki — %) (xi — %)

The algebraic equivalence of these two estimators in the case where all the coefficients are homoge-

Bde —meaned =

neous is re-assuring but not surprising. What would be of interest is to see if the proposed estimator
continues to be valid in the heterogeneous case where ~; differ across ¢, particularly considering
that the de-meaned regression estimator fails to produce a consistent estimator in this case even
under 3; = 3. Note that

yi =¥ =8(xi — %) + (i —Nf + (¢; — &),

where 5 = N~1 Zf\il ~;. Hence

N = N _
3 i1 Yi(x —X)'f N «!(e. —F
Bdefmeaned - ﬁ = %271 ’Yl( t ) + szl 1 ( i )

it = %) (x = %) O (x — %) (% — %)
The first term on the right hand side of the above expression is identically equal to zero only
if 7 = «, but in general where the unobserved common effects are correlated with the included
regressors this term does not vanish even for N and T sufficiently large.
In the general heterogeneous case two different, but related, estimation problems must be ad-

dressed, namely estimation of the individual coefficients, a;, 3;, (71-2 and possibly ;, and the average
slope coefficients, 3, defined by (2.5).

13



4.1 Panels with Heterogenous Effects: Individual Specific Coefficients

Focusing on the individual-specific regressions, consistent estimates of o, 3;, (71-2 can be obtained

by running the OLS regression of y;; on Xz, Zt, Guwt, and X1t whereS

N N
Yuwt = ijyjta Xiwt = ijxljt- (4.7)
Jj=1 Jj=1

In principle the weights used in the construction of the aggregates, ,,: and X, could be individual-

specific, namely one could even use

N N
Ywit = E WiYjt, Kwt = E WijXjt, (4.8)
j=1 j=1

with w; = 0. As we shall see later the optimal choice of these weights will depend on the unknown
parameters, 7; and 0]2-, j=1,2,...,N. But for consistent estimation it is only required that the
chosen weights satisfy the conditions of assumption 5(a), namely that Z;VZI wz-Qj — 0as N — oo,
and that Z;V:1 w;jy; # 0. As noted earlier, a simple and obvious choice is w;; = 1/N for all 4
and j. But before a set of weights is selected the validity of Z;V:1 w;;7; 7 0 needs to be checked.
Fortunately this is possible even though this condition depends on the unknown factor loadings,
7i. Consider the weights {w;} and assume that Z;V:1 wj2- — 0, as N — oo. Also to simplify
the exposition without loss of generality we assume that all the individual specific regressors are
sufficiently cross sectionally dependent such that for each ¢, namely X, iy pz; # 0.7 Then under

assumptions 1(a), 3, 4, 5(a) and 5(b), for each t we have®

ut — (210 + Xy B+ T fr) “> 0, as N — oo, (4.9)
where
N N
Y = ij'yj7 Oy, = ijaj. (410)
Jj=1 Jj=1

Therefore, the OLS regression of g, on z; and X,,; must fit perfectly if 74,, = 0, and N is sufficiently
large. In what follows we suppose that this is not the case and the variables z;, X, Xyt and Y,
are not perfectly correlated. Under these assumptions the correlated common effects estimator of

B, exists and is given by the OLS estimate of b; in the augmented regression

y: = Za; + X;b; + chil + YuwCio2 + €5, (4.11)

6Recall from assumption 5(b) that x1;; is the sub-set of the individual specific regressors assumed to be sufficiently
cross sectionally dependent.
"See assumption 5b for more detail.

8See Proposition A.1 in the Appendix.
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where y; is the T x 1 vector observations on y;;, Z and X; are the T' x k,, and T' x k, matrices of
observations on z; and x;;, respectively, and X,, and ¥, are T x k ¢ and T' x 1 observation matrices
on the aggregates X,; and 7, respectively.? Throughout we suppose that T' > k, + 2k, + 1,and
(Z,X;, Xy, ¥w) is a full column rank matrix. Using familiar results from partitioned regressions

the CCE of 3, can be written as

b; = (XM, X;) XM,y (4.12)
where
M, = I, - H,(H,H,) " 'H,, (4.13)
and
Hy,= (Z,X,,¥w)- (4.14)

To establish the consistency of this estimator we first write (2.1) and (2.2) in matrix notations

as
yi = Zoy + X8, + vt + &, (4.15)
together with its associated aggregate form
Vo= Zaw+XuB+%f + &, (4.16)

where &, and 7,, are already defined in (4.10) and

N N
Xw = Zw]Xjaéw :ijgja
=1 =1
€j = ¢g; + Xjvj, (4.17)

with v; defined by (2.5). Under random coefficients, the composite error term, §;, are independently
distributed across j even when the regressors, X;, are cross-sectionally dependent. Using (4.15) in
(4.12) we have

. XM, X\ /X! M,f
o () (25

XM, X;\ ! /X Mye;
i i . 4.1

Also since by assumption 7, # 0, using (4.16) we have

9In the case where some of the individual specific regressors are cross sectionally independent, cross-section averages

of these regressors should not be included in the augmented regression.
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But by construction M,, (yw—zaw — }_(w,@) = 0. Hence

M, f = —73,'€,, (4.20)
and
bo_g — (X XIM,X;\ [ XIM,E,
! v Aw T T
XM, X;\ L /X Mye;
D w i D wei ) 4.91
() () (21

It is now easily seen that for a finite N the CCE estimator, 151-, will depend on the unknown

factor loadings and in general will be biased, even if T" — co. To see this note that

_ _ _ _ _ —1 _ _
XMu€y S Xt (ZtT1 Xz‘thiut) (ZtT1 hwthiut> (Z;‘F1 hwtﬁwt>

T a T T T T

where hy; = (2}, %, Juwt)'- Using (A.19)

l_lwt = Awgwt + Uyt (422)
where gy = (2}, %X, f1)'
I,, 0 O 0
Ay,=| 0 I, 0 |,andDy=]| 0 |, (4.23)
Under our assumptions for a fixed N
X! Mye; = xaé
iV w€i p 0, and —thlxt&”t 2,0, a8 T — 0. (4.24)
T T
But o _ _
231:1 hwtfwt — A 221:1 gwt&vt + ZtT:I Dwtfwt
T S T T ’
and
oo - 0
M », 0 |
o
plimyoc | Ziplir]

which converges to a non-zero value if N is fixed.! For the CCE estimator to be consistent it

is therefore necessary that N is sufficiently large so that the dependence of b; — B; on the factor

°Tn the simple case where 3; = 3,

T = T 2 N 2
p lim (%) =p lim (E”EU’t) _ L £0, for a fixed N.

T—oo T—o0 T N2
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loadings disappears in the limit. The following theorem provides a formal statement of this result

and the associated asymptotic distributions.

Theorem 4.1 Consider the panel data model (2.1) and (2.2) and suppose that assumptions 1,
2(a), 3, 4, 5(a) and 5(b) hold.

(a) - (N-asymptotic) The correlated common effects estimator, b;, defined by (4.12) is unbiased
for a fivred T > k, + 2k, +1 and N — oo, in the sense that limy_F (BZ) = B;. Under the

additional assumption that ey ~ N(0,072),

bi — 8; % N(0,%1y,), (4.25)

as N — oo, where
Yrp, = (71'2\1’;[17 W = X;MuXia (4.26)
M, = 1Ir — Gu(G,G,) "G, (4.27)

G,u - (g,u17g,u27 ”'7g}LT)7 g,ut - (Z;:u l’l’;fzu ft)/7 and Mtz = pth—)oo()_(’wt)
(b) - (Joint asymptotics) As (N, T) % 0o (in no particular order), b; is a consistent estimator

of B;. If it is further assumed that VT/N — 0 (or if T/N — k, where k is a fized non-zero

constant) as (N, T) 5 oo, then
VT (Bi _ ﬂi> 4 N(0,,), (4.28)
where
So, = 07U, Ui = Saa, — S Sua, - (4.29)
An asymptotically unbiased estimator of X7, is given by (as N — oo for fixed T > k, 42k, +1)
St = 67 (X;-wai)fl, (4.30)
where

NS .

) <Yi — Xibi) M., <Yi — Xibi)
54 = . 4.31
% T — (k, + 2k, + 1) (4.31)

In the case where (N, T) ER 00, a consistent estimator of 3 is given by

. XM, X\ 7
S, =67 (7 T ) : (4.32)

For a proof see the Appendix.
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4.2 Pooled Correlated Common Effects Estimators

In the case where the parameters of interest are the cross-section means of slope coefficients 3;,
namely (3 defined by (2.5), one possibility would be to use the mean group (MG) estimator proposed
by Pesaran and Smith (1995), which is a simple average of the individual estimators, 151-, given by
(4.12).

N
byc=N") b (4.33)

i=1
As an alternative one could also consider the Swamy’s Random Coefficient (RC) estimator defined
by the weighted average of the individual estimates with the weights being inversely proportional

to the individual variances (see, for example, Swamy (1970)):

N
bre = Z ©;b;, (4.34)
i=1
where
-1
N -1 . -1
0 =3 S, + 0|} [Srn+9] (4.35)
j=1

iT,bj is given by (4.30) and €2 is a consistent estimator of , the variance of 3; defined by (2.5). A
comparative analysis of the MG and the RC estimators in the context of dynamic panel data models
without unobserved common effects is provided in Hsiao, Pesaran and Tahmiscioglu (1999). It is
shown that for IV and T sufficiently large both of these estimators are consistent and asymptotically
equivalent. These results continue to apply in the more general setting of this paper. In particular,
the MGE is asymptotically unbiased as N — oo, for a fixed T, and will be consistent as (N, T") 9, 0.
Furthermore, as (N, T) 7, o0 with T/N — k, where & is a fixed non-zero constant, the asymptotic

distribution of by (or b RrC) is given by
VN (Bac - 8)  N(0.9), (4.36)
where 2 is consistently estimated by
L1 . N
0= Z; (bz- - bMG) (bi . bMG> . (4.37)

However, these estimators are likely to have poor small sample properties particularly if T is

small.'! Efficiency gains from pooling of observations over the cross section units can be achieved

H)Monte Carlo evidence on the small sample properties of the MG and RC estimators are provided in Hsiao,
Pesaran and Tahmiscioglu (1999), where it is shown that Swamy estimator can also be viewed as an empirical Bayes

estimator.
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when the individual slope coefficients, 3;, are the same. In what follows we developed a pooled
estimator of 3 that assumes (possibly incorrectly) that 8, = 3, and ¢? = ¢, although it allows
the slope coefficients of the common effects (whether observed or not) to differ across i. Such a

pooled estimator of 3 is given by

N -1 N
b= (Z eingwxi> > 09X Myy;. (4.38)
i=1 i=1
Typically, the (pooling) weights 6; is set equal to 1/N, although in the general case where o2 differ
across ¢ as we shall it will be optimal to set 0; = o, 2 / Z;V: 1 0;2. However, in practice where 03 is
unknown the efficiency gain from using an estimate of (722 is likely to be limited particularly when
T is small. Nevertheless, to maintain a reasonable level of generality in what follows we allow 6; to
differ across 7 but treat them as non-stochastic constants satisfying the conditions in (2.14).
Although, it is not necessary for the (pooling) weights, 6;, to be the same as the weights, w;,
used in construction of the aggregates, 7,,+ and X,; for the invariance of the asymptotic distribution

of b to the factor loadings, ;, we must have

N -1/2 , N /
(Z 9?) (Z 9X> M€, 5 0, (4.39)
i=1 =1

and this is satisfied for all N if §; = w;. Under this restriction Zf\i 10X, = X, and it follows
immediately that (Zf\i 1 HiXi)/l\_/Iw =0.

We refer to b as the “pooled correlated common effects” (PCCE) estimator. It can also be
viewed as a “generalized” fixed effects estimator, in the sense that the PCCE estimator reduces
to the fixed effects estimator in the case where z,= 1, f; = 0, and 6; = 6 for all ¢t and ¢. Within
our framework the fixed effects can be viewed as time-invariant common effects with heterogeneous
slopes.

As before, we investigate the asymptotic properties of this estimator as N — oo, both when T
is fixed and when (N, T) ENINY Using (4.15) and (4.20) we have

N -1y
b-p3= (Z eingwxi> D [0 XMg; — 7ibs (XiMuE,, )], (4.40)
i=1 i=1
where without loss of generality we have set 7, = Z;V: Jw;7v; = 1. For a fixed N, even if T' — oo,
the distribution of b will depend on the unknown factor loadings and will be biased. In general,
we need N to be sufficiently large, although T could be fixed as N — oo. Also whilst it is possible
to show that b is a consistent estimator of 3 with a minimal set of restrictions on the factor
loadings, +;, for asymptotic normality of the pooled estimator we shall require the more restrictive
assumption that 7;’s follow a random coefficient model as set out in assumption 2(b). The following

theorem provides a formal statement of our main results.
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Theorem 4.2 Consider the panel data model (2.1) and (2.2) and suppose that assumptions 1,
2(a), 3, 4, 5(a) and 5(c) hold.

(a) - (N-asymptotic) The pooled correlated common effects estimator, b, defined by (4.38) is
a consistent estimator of B3 for a fivred T > k, + 2ky + 1 and as N — oo. Under the additional

assumption 2(b) and for 0; = w;

N —1/2
(Z w?) (B . [3) 4 N(0,37) (4.41)
i=1

where
Spr = USROS, (4.42)
N
Q’T = plimN_)oo [ZquI’LT y (443)
i=1
N
Ry = plimy—co {Zw; (020 + Ui Q7] } 7 (4.44)
i=1
W = wT (4.45)
Xj=1Wj

and ;7 is defined by (4.26).
(b) - (Joint asymptotics) As (N, T) % oo (in no particular order) b is a consistent estimator
of B. Under the additional assumption 2(b), if 6; = w; and T/N — 0 (or T/N — K, where k is

a fized non-zero constant) as (N, T) & oo, then

I —1/2
(Z w§> (6 - ﬁ) 4 N(0,5y), (4.46)
i=1

where

Y =V RO (4.47)

N—oxo

N N
U = lim (quf) ;R = lim (ZwQ\PQ\I}) (4.48)
i=1 T \i=

and U; is defined by (4.29).
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Consistent estimators of ¥ 7 and ¥ can be obtained using

A A A

N N
Py = sz"i’iT, Ry = ZIDZQ [(}?i’iT + Ui QU |,
i=1 i=1

1

L
U= sz"l’i% Ry = —

N
Z G QW
i=1 i=1
where U, = XM, X;, 0 is given by (4.37) and 62 by (4.31).
As with the Swamy and the MG estimators the above pooled estimator is likely to perform well
for N and T to be sufficiently large if the slopes, 3;, differ across i. In fact it is easy to show that
b is asymptotically dominated by byse (or b rc) under slope heterogeneity and for §; = 1/N. In

this case we have

AVar (\/NB) — AVar (\/NBMG> — URUI—Q
= U IR -0QU) T

and since W is a positive definite matrix we need only consider R — UQW. But
1 & 1 1Y
(R—0QU) = lim [N Z; W00, — (N z; \If) Q (N z; w)
1 _ _
= lim [NZ(%—@)Q(%—@)

=1

)

where U :% Zf\i 1 ¥;, which establishes the desired result given that () is a positive definite ma-
trix. Therefore, the pooled estimator, f), can (asymptotically) dominate the mean group (or RC)
estimator only when [3,’s are reasonably homogeneous across ¢. It is also interesting that in the
present application where the regressors are strictly exogenous the heterogeneity of the effects of the
common factors (observed or not) do not affect the asymptotic distribution of the pooled estimator.

However, the above result does not hold in the case where 3;’s are homogeneous, namely when
1 = 0.2 In this case the rate of convergence of b to 3 will also depend on T', and its asymptotic
covariance matrix, as (N,T) ER 00, is no longer given by (4.47). The asymptotic results for the

homogeneous case is summarized in the following theorem.

Theorem 4.3 Consider the panel data model (2.1) and (2.2) and suppose that assumptions 1,
2(b), (4), 5(a), and 5(c) hold and 3; = B for all i.
(a) - (N-asymptotic) For a fivzed T > k, + 2k; + 1, and as N — oo

N —1/2
(Z w§> (B - ,@) 4 N (0, Sy 7) (4.49)
i=1

12Here we do not consider intermediate cases where a sub-set of B, could be homogenous.
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where

Spr = U R0 (4.50)

N
Q’T = plimN_)oo [ZwZ\PZT y (451)

i=1

N
Ry = plimy oo {wacr?\lfﬁ} : (4.52)
=1

(b) - (Joint asymptotics) As (N, T) 2, 0o such that VT/N — 0 (or T/N — &k, with k being a

fized non-zero constant)

~1/2
<M> (B - ,@) 4 N(0,5), (4.53)

where

5= U IR, (4.54)

N N
— 1 . 3 — 1 7252
¥ = lim_ (z; wZ\IQ) R= lim <Z;w o @) . (4.55)
1= 1=
The asymptotic variance matrix of b under B, = 3 is given by

AVar (B) = (M) (‘I’_IR\I’A) ;

which upon using (4.45) reduces to

X A -1 /N . N -1
AVar (b) = <Zw\11> <Zw o @) (quf) . (4.56)
i=1 i=1 i=1

Alternative consistent estimators of AVar (B) can be obtained depending on the size of T relative

to N. When T is of the same order of magnitude as N, one could use
N - -1 /N - N - -1
Aa 1 XM, X; 9.9 XM, X XM, X,
War ) = (o) (XL (57, KR
7=1 =1 =1 (457)

where 67 is given by (4.31). On the other hand if T is small one could follow Arellano (1987) and

use the robust estimator of the asymptotic variance of b given by

N o/ N -1 N S A A~ N A A —1
AVar (b) == (M) (z w;cx) <z wxx> |
(4.58)

T T T
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where
Xi = MU,XZ', and ﬁi = Mw (yi - Xﬂ?)) . (459)

This estimator is valid in the presence of error variance heterogeneity and serial correlation in &,
t=1,2,...,T, provided T is small relative to N. To allow only for error variance heterogeneity the
middle term in (4.58) must be replaced by

T N 2525 ol
D i1 D Wi U Ra Xy,
T )

where %;; is the t'' column of X/, and 4 is the ' element of ;.

4.3 Determination of Optimal Weights

Our results hold for all values of {w;, i =1,2,..., N} that satisfy the three conditions set out in
assumption 5(a). But it is clear that these conditions do not uniquely determine the weights
and the issue of how to choose w;’s optimally presents itself. One possible approach would be to
determine the weights such that the asymptotic variance of the estimators of interest are minimized
(in a suitable sense) subject to the conditions of assumption 5(a) being met. For the individual
coeflicients, 151-, this amounts to minimizing Y7, = 01-2\1'2.7[1, given by (4.26), which is the same as
maximizing W, = X;MpXi with respect to w;’s. However, it is easily seen that W;; does not
depend on w;’s. To see this note that ;7 can be viewed as sample correlation matrix of residuals
obtained from regressions of the columns of X; on G, = (8u1,8u2, --., 8ur), Where g,y = (2}, pi,,
f:)’. But under (2.17), which presents a fairly general specification of the x;; process, we have
Wew = O fi + Pozy + P3x,, and G, depends on w;’s, only through the coefficients @, ®o, and D3.
Therefore, XM, X; will be identical to the sample correlation matrix of the residuals from the
regressions of X; on f;, z¢, and x,, and hence will be invariant to the choice of w;’s. The same also
applies to ¥;, which is the probability limit of 77! (X!M,X;), as T — cc.

Consider now the asymptotic variance of the pooled estimator, B, given by (4.56). Noting that
U,’s are invariant to the choice of {w;}, it is then easily established that subject to (2.7), AVar (B)

is minimized with 6; set at

-2
j=1"3

First, >~ | || = 1 and under assumption 4 it is easily verified that 6 = O (%)-13 Also AVar (B)

evaluated at 67 yields

N -1
AVar (B(e*)) :% (Za%) . (4.61)

13The third condition in (2.7), namely Z;'V:1 'ijj_Q # 0, is an identification restriction which is assumed a priori.
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But noting that U, is a positive definite matrix we can write

7| avar (b)) " - avar (5) 7]

N N N —1 N
- <ZA¢A§> - (ZAiB2> (Z B¢B§> (ZBiA;> >0,
i=1 i=1 i=1 i1

where
1/2

1 ’

1/2

Ai = 0';1\1’ Bz = 910'1\112

. -1 o\ —1
This now establishes that |:AV(M° (b(@*)) — AVar (b) } is a non-negative definite matrix, with

{07} providing an optimal choice in the sense that AVar (f)(@*)) < AVar (f))
Not surprisingly the pooled estimator computed using 8; reduces to the generalized least squares

estimator

N -1 N

b(6*) = (Z (71.2X;~1\_/IMX1-> > o XMy, (4.62)
i=1 1=1

with its feasible counterpart obtained by replacing 01-2 with the estimates, (722, given by (4.31) and

computed using an initial consistent estimator of 3 based on (say) 6; = 1/N. Recall, however,

for the pooled estimator to remain asymptotically valid the weights used for the construction of

the aggregates should, in general, be the same as the ones used in the formation of the pooled

estimator.14

5 A Multi-Factor Generalization

The analysis of the previous section can be readily generalized to allow for more than one unobserved

common factor. Consider the following generalization of (2.2)
Uit = ’Y;ft + Eity (51)

where f; is now an m x 1 vector of unobserved common effects and =, is the associated individual
specific vector of factor loadings. Suppose that there exists m different sets of weights, wy;, for
l=1,2,...,mand i=1,2,...,N, such that the following conditions (which are a generalization of

the conditions in (2.7)) are met:

N
(i): wy = O <%> , () ) w| < K, forl=1,2,..,m, (5.2)

i=1

141t would be valid to use different sets of weights if the individual specific regressors, x;;, were asymptotically

perfectly correlated with the common effects, z; and f;.

24



and (iii): the m x m matrix

f/ = (’_)’17’_)’27-.-7’_)’7,1)7 (53)

is non-singular for all N (including as N — oo) where

N
Y= Zwlj’)’j- (5.4)
j=1
Using the weights, wy;, the cross section aggregation of (2.1) now yields (for each t)

U = gz + X B+ + &, 1=1,2,...,m, (5.5)

where
N N N
T = > wiyin Xu= > wXi, & = Y wibse,
j=1 j=1 j=1
N
&t = ej+Xjv;, and ag = Zwljaj. (5.6)
7j=1

As in the single factor case, it is easily seen that as N — oo (also see proposition A.1),

g.m.

it — (&;zt +x,8+ %ft) —'0forl=1,2,....,m, (5.7)

and provided T is non-singular, then for each t and as N — oo, the m unknown factors, f;, can be
proxied perfectly by linear combinations of the observables, 4, X;;, | = 1,2, ..., m, and z;. More

specifically, for each ¢ we have
ft — f_l (}_’t - AZt - Xtﬁ) qi)n. 07 (58)

where ¥y = (G1¢, Yoty -y Ut ) » A= (&1, &g, ..., @y ), and X} = (K14, Ror, ..., Xt ). > Therefore, in this

more general setting the correlated common effects estimator for the individual- specific slopes, 3;,

is given by
b; = (X/MX,)~'X!My;, (5.9)
where
M=1Ir -HH\H)'H, (5.10)
H=(Z,X,Y), (5.11)

15This result also shows that the unobserved factors can be identified only up to a non-singular transformation and

without loss of generality I can be set to an identity matrix of order m.
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? = ()_’1,}_’2, ...,)_’T)/, X = (Xl,XQ, ...,Xm), and X[ = ()_(11,)_(12, ...,)_(lT)/ . Note that ? is T' % m,
and X is T x m k,, and for 131 to exist it is necessary that T' > (m + 1)k, + k, + m. These are
direct generalizations of (4.12), (4.13) and (4.14). Similarly, the pooled correlated common effects

estimator in this case is given by!®

N -1 N
b= (Z wing)g-) > wXMy;, (5.12)
i=1 i=1

where

7y = =1 (5.13)
m
To allow for error variance heterogeneity at the estimation stage we could also set
—2
o = T;’Zl = (5.14)
Following similar lines of proof, it can be shown that theorems 4.1 and 4.2 developed for the residual
one-factor model equally applies to the current more general case, provided m is fixed as N and T
— 00.

As in the one-factor case there are numerous ways that the weights {wy;, | =1,2,....,m; i =1,2,..., N}
can be set. One possibility would be to partition the IV individual observations into m different
groups of (approximately) equal size. This can be done, for example, by a randomization proce-
dure, or can be based on a prior: criteria, such as geographical or social groupings. The same
weights could then be applied to members of a given group and zero to the observations that lie
outside the group. More specifically, let N =", N;, with Ny, Na, ..., N, being of similar orders

of magnitude. Then set

wi; = 1/N1,forz':1,2,...,N1

= 0, otherwise,

wy; = 1/No,fori= N +1,Ni+2,...,N; + Ny,

= 0, otherwise,

and so on, with the last set of weights defined by

m—1 m—1 m
Wi = 1/Np,fori=» Ni+1,Y Ni+2,..,> N
i=1 i=1 i=1
= 0, otherwise.

It is easy to verify that these weights satisfy the conditions in (5.2), provided that as N — oo,

N;/N — k;, where k; is a fixed non-zero constant.

16For asymptotic (as N — o0) invariance of the distribution of b to the nuisance parameters, 7y,, we must have
7 _
(Zf\il wixi> M = 0, which is clearly satisfied for the choice of w; given by (5.13).
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6 Concluding Remarks

This paper provides a simple procedure for estimation of panel data models subject to cross section
dependence when the cross section dimension (V) of the panel is sufficiently large. The asymptotic
theory required for estimation and inference is developed under fairly general conditions both when
the time dimension (T) is fixed and when 7' — oo. Conditions under which the proposed corre-
lated common effects estimators are consistent and asymptotically normal are provided. Further
extensions and generalizations are, however, clearly desirable.

It is assumed that m, the number of unobserved factors is known. In principle it should be
possible to adapt the analysis of Bai and Ng (2002) to estimate m. One possibility would be to
directly apply the Bai-Ng procedure to the residuals

Under our assumptions these residuals provide consistent estimates of u;; in the multi-factor model
(5.1) and could be used as “observed data” to obtain estimates of the factors f; (up to a non-
singular transformation). It is a reasonable to expect these factor estimates (denoted by f't) to be
consistent, and could justify the application of Bai-Ng procedure. The factor estimates can also be

used directly as (generated) regressors in the regression equation
vit = zpa; + X b; + fle; + G,

to evaluate the joint statistical significance of the unobserved factors. Since factors can be identified
only up to a non-singular transformation, statistical analyses of the effects of individual factors will
be problematic.

Also it is desirable to see if the results of this paper carry over to the case where lagged values
of y;+ are allowed to be included amongst the individual-specific regressors. The regression model
(2.1) allows for dynamics only through the general dynamics of the aggregate effects and the fact
that these effects could have differential impacts on different groups. This is restrictive and its
relaxation is clearly important for a wider applicability of the approach advanced in this paper.

Another important extension is to multi-variate panel data models such as Panel Vector Au-
toregressions (PVAR) of the type discussed, for example, in Binder, Hsiao and Pesaran (2002).

Finally, small sample properties of the proposed estimators need to be evaluated by Monte
Carlo experiments and compared with alternative estimators when available.

These further developments are beyond the scope of the present paper and will be the subject

of separate studies.
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Appendix
Lemma A.1 Under assumptions 1(a), (3), (4), and 5(a) we have

E(gwt) =0, (Al)

BlEwea) = wirt = 0(uw) =0 (). (A2)

N N N 1
= Zw?-(r? + waE(x;-thjt) =0 Zw? =0 <N> , (A.3)
j=1

J=1

and

Var(€2,) = (Zw )2 = (%) (A.5)

where Eu; s the average error term defined by

N N
Eut =) _wjgji+ Y wXjv;. (A.6)
j=1 j=1

Also

(A.8)

T
Var (% ngvt> <Var(&,) =0 <%> , (A.9)

E (%ig‘it> = (Zw ) = <i> : (A.10)



Var (% ixitfwt> =0 (ﬁ) : (A.11)

1 « 1
Var <T Z tfwt) = <ﬁ> ) (A12)
where But = (Z;h)_(éuta ft)/'
Proof. First using (A.6) it is easily seen that under assumptions 1(a), 3 and 4, for each ¢,
E(gwt) =0
Also
) N N
E({:‘Z’tgwt) = FE |e; ijéjt + ijx;-tvj
j=1 j=1
= in'?,

and (A.2) follows since o7 < K.

Consider now

N
Var(Eyt) = Zw -+ Zw?E(x;thjt). (A.13)
j=1

But x A%t < Amax(£2) (x;-txjt), where A\pax(€2) is the maximum eigen value of 2. Hence

N
VCLT‘ gwt Z 1U2(72 + )\max Z tX]t

Also under assumptions 1(a) and 4, (r and E(x},x;i) are bounded in N for all j and ¢, and hence

N
E(&h) = Var(€u) < szf, (A.14)
i=1

for some finite positive constant, K. Consequently, under assumption 1(a), 3, 4 and 5(a) for each ¢

Var(Ey) = Zw =0(=). (A.15)

Similarly,
Var(Euen) = E(€23) — [EGwen)]” -

A2



But

E(&heh) = Zwkle (Q%ffktflt)

k.l

LE (e3it)

where
§it = €t + X0
Also it is easily seen that
2 2 2 4 2

E(&en) = wi [E (ei) + 07 E(x,Qxit)] -

Hence using this result in conjunction with (A.2) we have
Var(gwteit) = wz-2 [E (eft) + U?E(x;tﬁxit) — (fﬂ .
Under our assumptions the term after w? is bounded in N, and hence
Var(Ewiei) = O (wf) -

Consider now Var(£2,), and note that
= 2
V‘““(?ut) = E(fffjt) - [E(f?ut)] .
E(&y) = > wiwjwpw B (&ije€riin)

1,J,k,1

where Under assumptions 3 and 4

E (Subjiubn) = E(cY)+E [(x;tvi)ﬂ 4 602 B(x,Oxy), fori = j =k =1
= |07 + B(x},2%u)] [0} + E(x}yQxkt)] , for i = j, and k = I

=0 otherwise.
Hence
B N
E( gjt) = wa {E (5%) +E {(thvi)ﬂ + GUzZE(X;tQXit)} +
i=1

2
{Zw 2 4+ B( (x5 it | } ,

and together with (A.7) yields

N

Var(?ut) = wa {E (eglt) + F (thvi)4 + 60§E(X;tQXit)} +
i=1

2 {wa (07 + E(x,Qx;)] } .

i=1
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However, by Cauchy-Schwarz inequality

2
(xjv:)” < (x5xit) (Vivi)
and since x;; and v; are independently distributed

E (xgtvi)4 <FE (x;txit)z E (v;ui)z .

Also
E(thQXit) < Amax (Q)E(X;txit)

Using these results and noting that under our assumptions, €;, X;+, and v; have finite fourth-order

moments we have

N N 2
Var(&2,) < K, Zw? + Ko <Zw22> ,

i=1 i=1
for some positive constants K1 and K5. Finally, noting that

i< (84) o)

we have the desired result

Ve
&
—
Il
)
7 N
o=
N——

Var(&,) < (K1 + K>) (

olrne) =

Consider now,

T — —
Z E(fwtfwt’)7

3~
M’ﬂ

T =1t'=1
| L. TN
B ST}
t=1t'=11i=1
But
E(tu&i) = of +E(x,Qxy), fort =1t
= E},O%), for t # .
Hence
1 X T T N

The second term in the above expression can also be written as

1 N N
T2 D D Wi B Sxi) = 3 wiB(K Var),

t=1t'=1 i=1 =1
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where
T
- 1
XiT = T E Xit,
t=1

is the time average of the regressors for the i unit. Therefore,

1 I | X N
Var < tz; §wt> = 7 z; wio? + Z wiE (X, Q%)
= 1=

i=1

=l

ZN w? Y
< K (=2 4 (@) Yl ERipkir)-
i=1

But since for each 4, x;; is covariance stationary with absolute summable autocovariances and zero

means then E (X}, X;7) = O(%).!” Using this result and recalling that Amax(Q2) is bounded in N we

1 N w? 1
Var (T ;§Mt> =0 (—szfl 2) =0 <ﬁ> .
It is now easily seen that Cov (fwteit, EwtrEirr ) =0, for all t # ¢/,
1, 1 « _
Var <T Z wté‘z‘t) =712 ;VCW (Ewtcit)

which upon using (A.4) yields (A.8).
To prove (A.9) first note that by assumption £2, is a covariance stationary process and Var(£2,) =
Var(&2,) for all t and . Hence

have

Cov(&2;, &) < Var(€2,),

and

1 T 1 T T
Var (% Z@) LSS @) < Var @),
t=1

t=1¢=1

and using (A.5) the desired result follows.!8

Result (A.10) follows from (A.3).

To prove (A.11) first note that x;; and &, are independently distributed and F (Xitfwt) = 0.
Hence

A | TN
Var (T zxﬁfwt> LSS S v () B €.

t=1¢'=1k=1 I=1
But

E (gktgltl) =0 for k 7£ l, and all t,

17See, for example, Proposition 10.5 in Hamilton (1994, p.279).
1811 the case where the slope coefficients of the individual specific regressors are homogeneous, then E’it =2, will
be serially independent and Var (% 23:1 Eﬁ,t> =Var (?:?Ut) /T = O(1/N?T).
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and

E (ubre) = 0p + E(XyQxpy), for t =t
= BE(xQxpy) for t £t

Hence

T T /
1 - > 1 B (xux]
Var <? tE 1 thfwt) = (7/% ( =1 T( L t)> +

1 N
Tk
k=1
1<,
Tzwk T

k=1

(ZtT1 Yi B (xirx}y) B (ngtQth')>

Since under our assumptions 0'13 < 00, and x;; is covariance stationary then

Zthl E (xix})
T

=T, (0) = 0(1),

and

Yo Yo B (xiuxly) B, Q) _ i1 v Doy (= DT ([0, (|t —¢))]
T T ’

(A.16)

where

E (%X} ) = Tq,(

t—t']).

Furthermore, since by assumption x;; has absolute summable autocovariances, using standard re-

sults in the time series literature, it follows that (A.16) is bounded in 7. Hence

1 & 1 1
£ — il 2|
Var <T sztfwt> =0 (T Zwk> =0 <N T> .
t=1 k=1
A proof of (A.12) can be established along similar lines, making note of the following two
properties. First, g,; and &,; are independently distributed and E(g.:{w:) = 0. Second since
Zfi L|wil < K, and (x};,2}, fi), ¢ = 1,2,..., N are covariance stationary with absolute summable

autocovariances, then g, = (z},X),;, f:) will also be covariance stationary with absolute summable

autocovariances for all N. Wl
Proposition A.1 Under assumption 1(a), 3, 4 and 5(a), for each t,

Jut — (£ + KB+ Fuft) ©5 0, as N — oo, (A.17)

— _ .m. . .
where &y, = Zévzl wjoj and Yy = Zjvzl w;vyj, and 5 denotes convergence in quadratic mean (or

mean square 67‘7‘07“).
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Proof. Aggregating the individual-specific relations (2.1) and (2.2), using the weights, {w;}, we

obtain

N N
Jut = 240 + > WX Bs + Ywfi + > wigji. (A.18)
=1 =1

Assuming that the individual-specific slopes, 8;, satisfy the random coefficient model, (2.5), we

now have
Yut = 240y + Koy B + o fo + Eut (A.19)
where £, is defined by (A.6). Therefore,

lim E [fur — (200 + X8+ Jufr)|” = lim B (&)

N—oo

However, using (A.15) we have

lim E(&,) <K lim (> w}| =0,

N—o0 N—oo
which establishes that
Juwt — (240w + Xy B+ Fu fr) 5 0, as N — oc.
|

Lemma A.2 Under assumptions 1(a), (3), (4), and 5(a) we have

b _ Ly o, <@> , (A.20)

'z T
€iéw _ Zfitf_wt =0, (g) ’ (A.21)

X;éw . ZtT:1 xz'tgwt _ 1
r - 1 %\ Unr (422
Gi&w _ D1 Butbut _ ) (L (A.23)
T T P\ V/NT '

> , (A.24)



G' G 1 1
w _ nH
T _Aw< - >+0p< >+0p< NT), (A.25)

H, X, G X; 1 1
T < T > " <¢N> "\VNT (420
H,&, 1 1
5o, ()0, 1), o
H, e, G 1 1
F=an ()0 (5) v (7). (4:29)
and
Ge; 1
L= =0, —= ). A.29
= -o(77) (420
where Hy,, Ay, and £y are defined by (4.14), (4.23), and (A.6), respectively, Guwi = (2}, Xy, f1)
But = (Z;H nu’;fzcv ft)/7 and G;L = (gulag;ﬁa '--7ng); where Mty = plimN—)oo(iwt)~19
Proof. Using (A.9) and (A.10)
1 I T 1 I N
Var —Zéfut> <O (—2> ,and E <—Z Z,t> =0 (VT wi|,
(ﬁ t=1 N T t=1 j=1

and (A.20) follows noting that Z;VZI wJQ- = O(1/N).
Similarly, using (A.2) and (A.8) we have

1 & 1
Var (ﬁ Z wtaﬂ) =0 (wf) , B (ﬁ ; wtc‘fz’t) =0 (\/T'U)z) )

and since by assumption w; = O(1/N), then (A.21) follows. Results (A.22) and (A.23) can also
be readily established using (A.11) and (A.12) and noting that g,; and &,; are independently
distributed.

To prove (A.24), using (4.22) and (4.23) we first note that

— T _ _
H,H, - Zﬁwtﬁl L= A, (Z?:l gwwi%&;t) A LA, (Zle gwt”iut)
t=1

T T T

T - - T - =
<Zt1;wtgiut> A <w> (A.30)

9For expositional simplicity here we are assuming that none of the individual specific regressors converge in

probability to non-stochastic constants under cross section averaging.
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where under assumption 5(a) A,, is a non-singular matrix. Also

ZT:zEw
0 O tljjt t

T _  _
M — 0 0 Zf:l?wté’wt — ( 0 Zf:1$thwt ) (A31)
T ?
iy Jibw
0 O 2 }11t t
and
00 0
T — —
izt Pty ;“’“/é”t —[oo o : (A.32)
0 0 Zitr:1 E’?Ut
T
Using (A.20) and (A.23) we now have
T - =
w 1
w -0, (N) , for all T, (A.33)

and

Zt_—l gwtaéut < 1 >
=== T -0, = . A.34
1 P VNT ( )

Using these results in (A.30) yields (note that A, is a fixed matrix):

H/ H,, I 8w 1
w — A’u} (Ztlg tgwt> Aiv +Op (_) +Op (

= 7 ¥ ) . (A.35)

3-
N

But under assumption 5(b)?

1
Buwt = 8ut + Op (_\/N> (A36)
then (for all T')

T - = T /
D i1 ButBu D=1 But8ut Lo, <

> : (A.37)

2=

T T
and
Zthl gutXy Z?:l gutxl‘t 1
L= L — | . A.
T T +0, N (A.38)
Hence

", = / 1 1
LI A, (M) AL+ 0, <\/_N> L0, <ﬁ> . (A.39)

29For expositional simplicity here we are assuming that none of the individual specific regressors converge in

probability to non-stochastic constants under cross section averaging.
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which establishes (A.24). (A.25) also follows along similar lines.

Consider now

H,X; Y hex), A (ZtTl Ewtxét> N (2?1 ’7wtxi-t>
- - w )

T T T T

and using (A.8), (A.11) and (A.38) we have

ItIZJXz Zle ButXjy 1
T = Ay, (T +Op <—W>
i But Xy < 1 > < 1 >
= A, (&= ) Lo (=) +0, (= ).
( T PAVN PAVNT
Similarly,
ﬁéuéw _ Zthl l_lwtgwt :A ZtT:I gwtgwt + ZtT:I Dwtgwt
T T v T T 7
where
_ 0
Zz;l ’7wt§wt . o 1
A B AV
i, 8
T

Hence using (A.34) we have

Finally,

H,e S hugeir _A S L Butcit n Sy Dutit
T T oo T T ’

where (using (A.8))

_— 0
Y1 Pwi€it _ 1
== = 0 =0, | —= |,
T th;l gwtgit Nﬁ
T
and . .
D i1 Buwt€it _ D i1 But€it L0 1
T T PAVN)’
hence

ﬁ/ &; ZT_ 8utEit < 1 > 1
WP A, [EELLE L0, | — | +0, | —= |
T ( T PAVN PA\NVT
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(A.41)

(A.42)

(A.43)

(A.44)



Finally, noting that under assumption 5(b) 7! Zthl E (gutg;n) exists and is bounded in N and

T, we have

T T T

Gei _ > uiit -0 ( 1 )
p \/T .

|
Proof of Theorem 4.1
Part (a) - N-asymptotic. In this part T is fixed and the limits are taken with N — co. Using

(A.24) and (A.26) and noting that under assumption 5(a) A,, is a non-singular matrix we have

_ _ 1 1
XM, X; = XIX; — X/H, (Hiun) 1 H, X, = X;MNXZ- + 0y <\/_N> , (A.45)
where

M, =1Ir — G,4(G],G,)"'G),. (A.46)

Similarly, using results in Lemma A.2 it is easily seen that

X;M,&,, 50, (A.47)
and
_ 1
Substituting these results in (4.21) we now have?!
b — B, = (X;Muxi)il XiM,e; + Op (L> , (A.49)
VN
where ¢;; is distributed independently of x;; and gy,;. Therefore,
Jim 5 (b:) =B
Also under the normality assumption for a fixed T' > k, + 2k, + 1, and as N — oo
b — B % N(0,%qy,) | (A.50)
where
Srp = 0F (XIM,X;) 7. (A.51)

2INote that under assumption 5(b), XM, X; is a positive definite matrix. A necessary order condition for this is

given by T' > k, + 2k, + 1.
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Part (b) - Joint N and T asymptotic. In this part all probability limits are taken under

(N,T) 7, co. First note that by assumption 5(b) we have

T /
_ 1
B _ g o, <_>
T T
S gueX, 1
LB v, +0,( =),
and ,
XM, X; 1
7 U0 <—T> |
where

\I’i = Ezizl Emlpz lzpmia

(A.52)

(A.53)

is a non-stochastic positive definite matrix. See, in particular, (2.12). These in conjunction with

the results established in Lemma A.2 now yield

H H 1 1
wHo _ 4 5 Agﬁo( >+0 <_)
T Hp p \/_ /_N
H X,

wEr i L
2= a0, (77) 40 (75):

HE, (1 1
r - <ﬁ> +Op< NT> ’

and noting that A,, is a non-singular matrix then

Xél\‘;wxz- L

and using (4.21) we have

. ; B "My&,, 1 ( XIMye;
b—3 2 (2)g! gl [ 2 wEi )
B <%>2< T >+( T )

But

X;ngw _ X;Ew _ X;ﬁw I?IQU
T T T T

and using (A.54) to (A.56), and (A.22) we have

X’Ii]‘\_/‘[wgw p
T

Also from (A.28) and (A.29)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)



and since Xle;/T = O, (T~Y/2) then

X/‘]-\_/Iw 7
% 2. (A.60)

Using (A.59) and (A.60) in (A.58) the desired result follows, namely b; 2 3;, as (N, T) % 0o with
no particular restrictions on the order by which N and/or T" are allowed to tend to infinity.

To establish the asymptotic normality of b; stronger convergence results are required. First we
need to show that the limiting distribution of /T (BZ — ,61> does not depend on the factor loadings,
7i. As we shall see this is valid only if v/T/N — 0, as (N,T) — oco. To see this using (4.21) and
(A.57) we have

~ d Vi _ X;Mwéw _ X;ngi
(B £ () et (B )+ (FUE)-

To ensure that the asymptotic distribution of /T (f)z — /32') does not depend on the factor it is
necessary that 7-1/2 (XIMuwé,,) 2, 0as (N,T) ERINY

e (55)- (P () (58) e

()=o)

and using (A.24) and (A.26) we first observe that

From (A.22)

X;MWEW —1 ﬁéuéw
T&_EWA;U (AuZyuuAL) <W : (A.62)

Hence, the rate of convergence of T1/2 (X;Mwéw) is determined by that of T~1/2 (I_{;}Ew) But

from (A.27) -
(%) =0 () o ()

Therefore, for the asymptotic distribution of distribution of /T (BZ — ,Bi>to be free of nuisance

parameters it is sufficient that T /N — 0, as (N, T) 7, 5. Under this additional condition

c g d 1 X;Mw&“z’
VT (bz ﬁz> U <—ﬁ > . (A.63)
Again using (A.54), (A.55) and (A.28) as well as (A.43) and (4.10) we have

X!Mye; 4 Xle; 1 <G/ €z'>
~ — eI ), A.64
\/T ﬁ Tilt = pp \/T ( )
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and by application of standard central limit theorem for regression models it is easily seen that
with T' — oo,

T

Z (%t — S Sy But) €it % N(0,07D)),

1 )_ 1
pp T pst) T s
VT =

ﬁ (X;Ez — Emi'uzilG/ &€;
(A.65)

where U; is given by (A.57). Using this result in (A.63) now yields
VT (Bi - ﬁz) 4 N0,0207Y), as (N,T) —'00 and VT/N — 0. (A.66)

as required.

Proof of Asymptotic Unbiasedness of iT,bi

In view of (A.45) it is sufficient to show that limy_,cc E((}f) = (71-2 for a fixed T' > k, + 2k, + 1.
Using (4.12), 62 given by (4.31) can be written as

/
) yiDuwyi
2 _ i A.
OC T T (ke t 2k + 1) (A.67)

where

D, = M, - M, X; (XM, X;)” ! X!M,,. (A.68)

/
yiDuwyi = <€i - 7—2_w> D, <€i — _7—’510) : (A.69)
Yw Yw
But
éiuf)wgi = Eiul\_/lwgi - é;uMsz (X;wai)il X;Mwsz’a (A7O)
and
€,Du€, = €,MyE, — €,M,X; (XIM,X,) ™ XM,E,. (A.71)

In the case where T is fixed and N — o0, using the various results in Lemma A.2 it is easily seen
that
X;waz g X;M,uXia éiuf)wei g 07 E'/w]_)wgw g 07

and

yDyy: = €/D,e;, as N — oo, for a fixed T,

where

D, =M, - M, X; (XM, X;) "' XM, (A.72)
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with all elements of €; being distributed independently of those of D,. Hence??

E (e D,e; 2Ty (D
lim E(62) = (eiDyei) _ o; Tr(Dy) = o2,
N—oo —(ky+2ky;+1) T —(ky+2kz+1)

Proof of Consistency of f]bi
In view of (A.57) it is sufficient to prove that 67 % o2, as (N, T) = o00. First using (A.70) and
(A.71) and the results in Lemma A.2 we have

6 ];,g —I:O, and

Dw’l
& T€ 2,0, as (N, T) L o0

Hence _
/ /
52 = ytiyz' p €; Dsz P EiDpei

T T (ko 2ke+1) T — (knt2ke+1) T —(kst2kp+1)

where D, is defined by (A.72) and we have the desired result, 62 EN 02, as (N,T) 4, 0.

Proof of Theorem 4.2

Part (a) - N-asymptotic with 7 fixed. Throughout note that by assumption 7" > 2k, +k,+1.
Let

Ay =M, — M, (A.73)
and note that
N N
D OXIANX|| < (ZW HXz'HQ> [AN]- (A.74)
i=1 i=1

But ||Xz||2 =Tr(X!X;) = ZtT:I x},x;; and under assumption 1(a) and recalling from (??) that
SV 1 16i] < 00, we have

N T N
E<2Wmmm> SN 16l E ( ﬂ”<Kz]M<m (A.75)
=1

t=1 i=1 i=1
Also
Ay = G,(G,G,) ‘G, -1, (H,H,) "H,,

and noting that Tr (Ayx) = 0, it is easily seen that

GG (CUMLG,
T T ’

Using (A.24) and (A.25) and under assumption 5(b) it is now easily seen that (for all T')

G;LMMGH_O 1 AT
#_ P ﬁ ) ( )

22Note that Tr(M,) = T — (ks + ks + 1), and T (M#Xi (X/M,X:) X;MM> = ks

|AN|? =2 Tr
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and hence

VN
Therefore, using (A.75) and (A.77), from (A.74) it follows that for a fixed T" and as N — oo

1Ax]? =0, (i) | (A7)

N
D 0XANX; 50, (A.78)
=1
and under assumption 5(c)
N N
D OXMLX; 5 > 0XMX; B Up, as N — oo, (A.79)
= i=1

where for a fixed T, ¥y is a non-stochastic positive definite matrix.

Using this result in (4.40)
b8 5 > [0 (XiMug;) — 7 (XiMué,)] (A.80)
and to establish the consistency of b it is sufficient to show that
N p—
Z [w; (X{Mu€;) — yiwi (XiMyw€,,)] 2,0, for a fixed Tas N — co. (A.81)
i=1

Consider first the second term in this sum?3

(54

IN

Xngw
Z\%HMEH
! . 1/2
Z\%H&!E(@) .
S X 1/2
= Zh/z‘w’ ( t= 1 zt 1t>

: Sy XpXi
Under assumptions 1(a), 2(a), and 5(a), for a fixed T, E (—1T”—t

Zij\il |0;| < K3, for some positive constants K;, i = 1,2, 3,respectively a

(5 [ (B

23Note that HX;I\_/IU,E‘IUH < HX;I\_/LUH l€.]| < IIXill||€.], and by assumption & and x;;+ are independently dis-
tributed for all 4, ¢ and t’. Also for a positive random variable X with a finite second-order moment, by Jensen
inequality we have E(X'/?) < [E(X)]"/2.

IN

N 1/2
i i
T

sroa N\
()

< Ki, || < Ka, and
d

< K1Kso K3
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Therefore, using (A.10), we have

hm E Z% XMU,E )|:0,foraﬁxedT,
and
N
27 (X Mé)go,aSNHoo. (A.83)
i=1

Consider now the first term in (A.81) and using (A.73) note that
N N N N
XiM,€; XiANE; XiMLE;
500 Kb _ gy Kb gy XME, (A84)
i=1 i=1 i=1
and (see the derivation of (77))

N T, 1/2 T o\ 1/2
—1 X X4 —16;
< AN il 6] (#) (%) . (A.85)
=1

Under assumptions 1(a), 2(a), and 5(a) and using (A.77) it now follows that

XiANE;

X!ANE;
1ZTN€Z 2.0,as N — o0, forall T, (A.86)

and consistency of b is established provided

XIM,E;
KiME; (A.87)

However, since by assumption ; is distributed independently of (xj;, g;,) for all i , ¢, and ', we

have

N , , ) . / |
(20 S () (24 (24
i=1

(A.88)

But E (X!M,X;) < E (X!X;), and under assumptions 1(a), 3, 4 and 5(a) it is easily verified that**

/
Var(Z@X “£><K<ZH2>—>O as N — oo for all T.

= =1

Hence Zfil 0; XIM,.E; 2 limpy oo sz\il 0;F (X M,¢,) = 0, as required.?

24Note that using (2.14) we have Y1 | 67 = O(1/N).

25Recall that & are distributed with zero means independntly of Xy, 2y and fy/, for all ¢, ¢, and t'.
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To derive the asymptotic distribution of b, using (4.40) and (A.79), we first note that

N —1/2 N
(Z 92) (b - ﬁ) Loy [9 XIML,¢; — b (X Mwsw)} : (A.89)
i=1 =1
where
G- % _q <L> (A.90)
e WA
But under assumption 2(b)
N N
2729 (X ngw) = VZ (X/ w£w "‘an % X! ngw)
i=1 i=1 i=1
N
= 7 (KM, ) + D mis (XIMLE,) (A.91)
i=1

where Xy = Zii 1 0,X;. However, it is easily seen that in general ~ (Xgl\_/lwéw> does not vanish
even as N — oo. Note that, by assumption v # 0, and under (2.17) we have

N N
X! M,,&, = (Z 9}@;3) X' MyE€,, + (Z 9}V§> M€, (A.92)
i=1 i=1
where x' = (x1, X2 -, X ), and V = (v;1,vi2, ...,v;p). Whilst it is possible to show that
N ~ a—
(Z &-Vé) M€, = 0
i=1

the same can not be said about the first term of (A.92). This is because Y-~ | 6;8;3 = O(v/N) and
for this term to tend to zero as N — oo, we must have v N (X/ Mwéw) 2, 0, which in general does

not seem possible. However, the problem can be avoided if we set 6; = w;. Under this restriction

z 1 wz 4
\/ Jj= 1w \/ Jj= lw
and we have (identically) ~
o M€,
/9 w&w = N ¢ 5 =0
Zj:l w]
Therefore, under 8; = w; we have
N —1/2 N N
~ d _ - — —_ —
(Z w§> (b - ,@) SO D (XMwE) = > i (XiMLE,) | -
i=1 i=1 i=1 (A93)



Consider now

N - X;ngw . Zi\il mlDzXQ ngw
;""w’( T >_< VT <ﬁ>

and note that under assumption 2(b), E (Zi\i 1 nzsz;) = 0, and hence

Var

N ~ ~r) N ’
msz ) ~9 }(}(z
> ﬁz]_m;wm<—; ,

which is bounded in N (and T'), namely T2 3N 5, X! = O, (1). Also

i &
(%)

(for all T') and as N — oco. Thus for all T, and as N — oo

N —_ a—

~ X{Mw£w> p
> (X5gE2) 2o
i=1 T

1/2
<K

Mwéw

and by (A.10) we have

Similarly,

S (XIME ae s (XIE s  (XGH ) (HEL\ T HLE
Yo (B7) - () -5 (57) (B) (%)

i=1

~

and using (A.24), (A.26) and (A.27) we have (for all 7" and as N — o0)

N Ty N /
Zw" <Xil\;ll)£’i> B Z“Nfi <Xz’1\1/fu£i> 20

i=1 i=1

Using (A.96) and (A.97) in (A.93) we now have (for a fixed T')

N —1/2 N
(Zﬁ) (b-8) ~ 97’y @iXiM,E;.
=1 i=1

(A.94)

(A.95)

(A.96)

(A.97)

(A.98)

Also since by assumption & is a mean zero stationary process distributed independently across 4,

and of x;; and gy, for all 7, ¢ and t/, then by application of standard central limit theorem

N
S @ XME; S N(0,Ry), for a fixed T as N — oo,
i=1
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where

Ry = plimy_eo {iw?XgMHVar(Ei)MuXi} : (A.100)
i=1
and
Var(€;) = oIy + X;0X.. (A.101)
Therefore

N ~1/2
(Z%Uf) (B - ﬁ) <, N(o, \If}lRT\II;I), for a fixed T as N — oc.
o (A.102)

Also using (A.101) in (A.100) we have,

N

Ry = plimy oo {ZwQ (02 Wir + Ui QT ] } , with Wi = XM, X;.
i=1

It is also easily verified that under our assumptions and noting that @w? = O (1/N), Ry exists and

is finite.

Part (b) - Joint N and T asymptotic. First note that

N = N N
X M X; X' ANX; XM, X;
E 0; IhaoTwER ) E g, | —=———== E 92 ke ubiel cintuCN ) A.103

where Ay is defined by (A.73). Also using (A.74) and (A.75) we have

al Z;‘F=1X;txit
<Ay jof | =)
i=1

i 5 XiANX;
=1 Z T

By assumption 1(a) and condition 5(a)

N T ’
. D i1 XXt
phm(NyT)i-)oo 12_1 |6; ] (# <K,

and by (A.77) [|An| 5 0 as (N, T) 4, 0. Hence

N
) XIANX,
phm(N,T)Loo EQHZT = 0. (A.104)
Using this result in (A.103) now yields

N v N
. X;wai . X;MpXi
phm(N,T)Loo [; HiT phm(N,T)Loo ; QiT

N
= 1l 0;V; | =,
o (3o
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where U, is a positive definite matrix defined by (A.53). Note that ¥ is also a positive definite

matrix (by assumption 5(c)). Hence from (4.40) we have

v B _
. - I N XMy&; XMty
phm(N’T)i-)oo(b) -B=Y {E>11r11(1\[7T)i-)Oo ; [91 (T) —7i; (T)} } .

Using (A.82) and (A.10) we have

lim F
(N,T)500

N _
Z O;w; <—X;1\;{w£w >

i=1

‘ = 0. (A.105)

Similarly, using (A.84), (A.86) and (A.88)

lim Var (Z@ XM Tu£ ) 0, (A.106)

(N, T)—»oo =

and

N —_
, X/ M,&;
plim i >0 <T> = 0. (A.107)
i=1

Hence, plim (b) = B, as required.

(N,T) %00

Derivation of the asymptotic distribution of b under (N,T) 7, 50 can be carried out along
similar lines as in the previous case, except that the nature of the distribution and its rate of
convergence depends on whether 3,’s are heterogeneous, namely whether €2 is a positive definite
matrix or = 0.26 However, b continues to be consistent for 3 irrespective of whether ()2 = 0 or
not.

First recall that under 0; = w; and assumption 2(b) we have

N N
=1

i=1

Therefore, using (4.40) and (A.105),

(5)  o-a) 4w

i=1

oo (S5) Fove (452

i=1

(A.109)

Also using (A.96) and (A.97) we have

N ~1/2 N XIMLE |
(Z w?) (b-8) vy w <T“> ,as (N,T) % oo, (A.110)
i=1 i=1

26Here we do not consider intermediate cases where a sub-set of B, could be homogenous.
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As with derivation of (A.99), in the case where €2 is a positive definite matrix it is easily seen that
with (N, T) 5 oo

N / .
Z <X M.&; ) N(O,R), as (N, T) % oo, (A.111)
N
XIMX,\  (XIMLX:Y L (XIMLX,
= i . 72 2 i 2 dnke) iy Unbe)
Ro= v {E;w [az ( T ) i ( T )Q( T )] }

N
= 1 20,00, 5
Jm { S wewen)

where ) and ¥; are non-stochastic positive definite matrices, and @7 = O (N _1). Hence, R exists

and is also a positive definite matrix. Using (A.111) in (A.110) we have the desired result, namely

N ~1/2
(Z wf) (B - 5) <4 N0, v 1RU D). (A.112)

Consider now the homogeneous slope case where 2 = 0. In this case b converges to 3 at a
faster rate, also helped by T". To see this note that in this case §; = &;, and Var (e;) = (TZ-QIT. Using
(A.109) we have

N w2
SN

As before first consider
S i <X;-Mwéw> _ SN miXigw (S i X Hy <ﬁzﬂ w> <H;Uéw>
— nZ K3 \/T \/T T T \/T bl

note that B (Zf\il mtbz-X;?:w> =0, and

o (BN (S ) [ St ()

Since v = O (N71), E (%) is bounded in T for each i, we have SN @w?E (%) =0 (1) for
all N and T, and noting that -~ | w? = O (N~1) then as (N, T) BN

N - _
Var <Z¢=1 mwiX/isw> o

o
|
D
~——

ISH
<

VT

and we have N
> NiWiXiEw p
VT

2,0, as (N,T) L o
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Also using (A.26) and (A.52) we have

XH : 1 1 1
2 =3,A,+0 <—> + 0 <—> + 0 <—> ,
T i "\VN PAVT "\VNT
and under assumptions 1(a) and 2(b), it is easily verified that

N
Tt (Z mwz‘X;ﬁw> =0, (1) for all N and T.
=1

Finally, using (A.24) and (A.27)
a N\ -1 e =
H,H, H,Ew = Op @ _|_Op L ,
T VT N VN

inw (X;ngw> Zf\il Uzsz;?Iw 2} 0
K2 1 ﬁ ﬁ )

provided that vT/N — 0, as (N, T) Z, 0. Under these conditions

S w? I i i [ XIMye:
(B5) -ty (),

and using similar line of reasoning as above we have

and we have

i=1

where
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