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1 Introduction

Many decision processes arising in economics involve a �nite number of dis-

crete changes both in the structure of the system and the objective functional

over the course of the planning horizon. This paper presents a proof of the

necessary conditions for the optimal timing of the switches between these

alternative regimes which are of particular importance.

Some early contributions to the optimal regime switching problems have

proposed multi-stage optimal control techniques that recall Pontryagin max-

imum principle from a dynamic programming perspective (see Tomiyama,

1985; Tomiyama and Rossana, 1989; Makris, 2001 and Saglam, 2010). The

main idea is to reduce a two stage problem into a standard one with a dy-

namic programming approach, �rst by solving the post-switch problem and

then attaching its value function to the pre-switch one with Pontryagin max-

imum principle concluding at the intermediate steps. The illustrations of this

technique on technology adoption problems can be found in Boucekkine, et

al. (2004), and (2010).

We proceed in entirely di¤erent lines with the existing literature. In

particular, we utilize some basic properties of Sobolev space W 1;1
loc , and treat

the problem by the standard tools of the calculus of variations. Our approach

allows us to avoid the strict assumption that the value function be twice

continuously di¤erentiable. Yet, we are able to cover the three important

aspects of the regime switching problems that have not been considered at

the same time in the literature mentioned above: the in�nite horizon for

the objective functional to be maximized, the possibility of multiple regime

switches and the explicit dependence of the constraint functions and the

objective functional on these switching instants.

Except for the switching in the technology regime and the objective func-

tional, our optimization framework is identical to the so-called reduced-form
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optimal growth models which have been extensively used in economics due

to their simple mathematical structure and generality (see McKenzie, 1986

and Stokey and Lucas, 1989). Our crucial choice of the topological space is

relevant for many optimal growth models, e.g. the Ramsey model, in which

the feasible capital paths are proved to belong to this space and the feasible

consumption paths belong to L1 (see Askenazy and Le Van, 1999, page 42).

The Sobolev space W 1;1
loc also turns out to be a powerful tool to extract the

usual transversality conditions as necessary optimality conditions for such

in�nite horizon optimal growth problems (see Le Van, et al., 2007). Combin-

ing these with the standard tools of calculus of variations gets through the

control problem of multiple regime switches without needing to decompose it

in many auxiliary problems in a simple and uni�ed manner. We prove that,

in addition to the standard optimality conditions such as Euler-Lagrange,

two speci�c set of necessary conditions that characterize the optimal timing

of regime switches emerge: continuity and the matching conditions. These

are nothing but extensions of the Weierstrass-Erdmann corner conditions.

Indeed, we show that Weierstrass-Erdmann corner conditions extend to the

problems with switches.

In order to show how our approach allows to derive properly and easily

the necessary conditions for an in�nite horizon multi-stage problem depend-

ing explicitly on the switching instant, we �rst analyze the optimal timing of

technology adoption under embodiment and exogenously growing technology

frontier. We show that the optimal timing of a technology upgrade depends

crucially on how the growth advantage deriving from switching to a new

economy with a higher degree of embodiment compares to the resulting ob-

solescence cost and the technology speci�c expertise loss. Later, we analyze

an environmental control problem à la Boucekkine, et al. (2010) that consid-

ers the trade-o¤ between economic performance and environmental quality

from the perspective of a government over a �nite time horizon.
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The paper is organized as follows. Section 2 presents the considered

optimization problem, derives our necessary conditions of optimality for a

two-stage problem, and compares them with the existing literature. Section

3 extends these results to the case of multiple regime switches. Section 4

provides applications to an optimal adoption problem under embodiment

with exogenously growing technology frontier and an environmental control

problem with the trade-o¤between economic performance and environmental

quality. Finally, Section 5 concludes.

2 Model

We consider the optimal timing of switching between alternative and consec-

utive regimes in a continuous time reduced form model:

max
x(:); t1

t1R
t0

V 1 (x (t) ;
:
x (t) ; t; t1) e

�rtdt+
tfR
t1

V 2 (x (t) ;
:
x (t) ; t; t1) e

�rtdt

subject to

x (t0) = x0;

(x (t) ;
:
x (t)) 2 Dt1 (t) � R2; x (t) � 0; a:e: on [t0; tf ] ; tf � 1;

where Dt1 (t) =

(
(x; y) j

f 1 (x; y; t; t1) � 0; for t0 � t < t1
f 2 (x; y; t; t1) � 0; for tf � t > t1

)
; and f i are

Rm valued, for m � 1. Throughout, we adapt the notation that the symbol
� denotes �all components are greater than or equal to ...�, and > denotes

�all components are strictly greater than ...�.

We recall some of the general de�nitions, notations and the results that

will be useful in our analysis from Brezis (1983). We will say that a measur-

able function, x : [t0; tf ] ! R is locally integrable if jxj is integrable on any
bounded interval and write x 2 L1loc. L1loc will denote functions essentially
bounded on �nite intervals. By Ckc (a; b) ; we denote the set of k-th times

continuously di¤erentiable functions, say x, in an open interval (a; b) with
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supp x = ft 2 R+ : jx(t)j > 0g � (a; b). For any x 2 L1loc; x
0 is the weak

derivative of x if 8h 2 C1c (t0; tf );
R tf
t0
x(t) _h(t)dt = �

R tf
t0
x0(t)h(t)dt: For a

function x 2 C1c (t0; tf ) ; the weak derivative is identical with the ordinary
derivative.

W 1;1 � W 1;1 (t0; tf ) � fx 2 L1 : x0 exists and x0 2 L1g with the norm
de�ned by jjxjj =

R tf
t0
jxj dt+

R tf
t0
jx0j dt, is the Sobolev space that we will be

frequently referring to in our analysis. W 1;1
loc is similarly de�ned on (t0; tf )

to be fx 2 L1loc : x0 exists and x0 2 L1locg. Two important properties of the
Sobolev space will prove to be crucial in our analysis. As the elements of

this space are equivalence classes, for any function x 2 W 1;1; there is a

continuous representative
�
x which is equal to x almost everywhere. We will

be talking about this representative, whenever we refer to an element of this

space. Secondly, weak derivative coincides with the usual derivative almost

everywhere and
�
x (b) =

�
x (a) +

R b
a
x0dt: Thus, the elements of this space are

absolutely continuous functions on �nite intervals. In fact, on a �nite open

interval, the set of absolutely continuous functions and the Sobolev space

W 1;1 are the same.

De�nition 1 A pair
�
x
�
(:) ; t1

�

�
is admissible if x

�
(t) 2 W 1;1

loc ,
:
x
�
(t) 2 L1loc;

satisfy the constraints

x
�
(t0) = x0;�

x
�
(t) ;

:
x
�
(t)
�
2 Dt1 (t) � R2; x� (t) � 0; a:e: on [t0; tf ] ; tf � +1;

and

t1Z
t0

V 1
�
x
�
(t) ;

:
x
�
(t) ; t; t1

�
e�rtdt+

tfZ
t1

V 2
�
x
�
(t) ;

:
x
�
(t) ; t; t1

�
e�rtdt < +1:

A pair (x (:) ; t1) is an optimal solution if it is admissible and if the value

of the objective function corresponding to any admissible pair is not greater

than that of (x (:) ; t1) :
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From now on, x will always refer to the optimal values unless otherwise

stated. We have the following set of assumptions.

Assumption 1 V i : R4 ! R is C1 and f i : R4 ! Rm is continuous for

i = 1; 2.

Assumption 2 (Interiority) x (t) > 0; f i (x;
:
x; t; t1) > 0 uniformly in the

sense of the space L1 on any bounded interval for i = 1; 2 (i.e., on any

bounded interval there exists an " > 0 such that x (t) > " ; f i (x;
:
x; t; t1) > ";

on their respective domains, almost everywhere on the interval):

The following proposition gives the Euler-Lagrange equation for the prob-

lem that incorporates a change in the objective functional at an instant in

a very elementary way within our functional framework. To ease the nota-

tion, the third and the fourth arguments of V i (i = 1; 2) will be suppressed

whenever we do not need them.

Proposition 1 (Euler-Lagrange) Under Assumptions (1) and (2), the opti-

mal x (t) satis�es �
V :
x (x;

:
x) e�rt

�0
= Vx (x;

:
x) e�rt; (1)

almost everywhere on any bounded interval (a; b); where V should be read as

V 1 whenever t < t1 and V 2 whenever t > t1.

Proof. The proof follows from Dana and Le Van (2003), but it is based

on the use of weak derivatives to handle the switching between alternative

regimes.

Consider any bounded interval (a; b) on (t0; tf ): Take any h 2 C1c (a; b); and
assume that it is extended to zero outside of (a; b): For j�j small x+ �h > 0;
clearly. Moreover, for j�j small, for an appropriate �; (x + �h; _x + � _h) is
in an open ball of radius � centered at (x; _x); for each t 2 (a; b) so that

f i(x+ �h; _x+ � _h; t; t1) > 0; for i = 1; 2.
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De�ne '(�) =
bR
a

V
�
x+ �h; _x+ � _h

�
e�rtdt = '1(�) + '2(�); and write

'1(�) =
t1R
a

V 1
�
x+ �h; _x+ � _h

�
e�rtdt; '2(�) =

bR
t1

V 2
�
x+ �h; _x+ � _h

�
e�rtdt:

For any sequence of real numbers �n ! 0; �xing any t;

V
�
x+ �nh; _x+ �n _h

�
� V (x; :x)

�n
= Vx

�
x+ ��nh; _x+ ��n _h

�
h

+ V _x

�
x+ ��nh; _x+ ��n _h

�
_h;

for some 0 < j��nj < j�nj; by Mean Value Theorem.
Now, Vx and V _x are continuous and they are restricted to a bounded

rectangle in R2; due to the continuity of x and the boundedness of _x: So,
Vx

�
x+ ��nh; _x+ ��n _h

�
and V _x

�
x+ ��nh; _x+ ��n _h

�
_h are bounded in L1(a; b)

when n is large enough.

Thus, there exists K 2 R; such that
����V (x+�nh; _x+�n _h)�V (x; :x)�n

���� � K; a:e: on
(a; b): Then, we may apply Dominated Convergence Theorem to the sequence:

'1(�n)� '1(0)
�n

=

t1Z
a

V 1
�
x+ �nh; _x+ �n _h

�
� V 1(x; :x)

�n
e�rtdt;

concluding that '1(�) is di¤erentiable at 0 with the derivative,

lim
n!1

t1Z
a

V 1
�
x+ �nh; _x+ �n _h

�
� V 1(x; :x)

�n
e�rtdt

=

t1Z
a

�
V 1x (x; _x)he

�rt + V 1_x (x; _x)
_he�rt

�
dt:

By repeating the same steps on (t1; b) one may also �nd that '02(0) =
bR
t1

�
V 2x (x; _x)he

�rt + V 2_x (x; _x)
_he�rt

�
dt: Hence, we easily obtain that: '0(0) =

bR
a

�
Vx(x; _x)he

�rt + V _x(x; _x) _he
�rt
�
dt:
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Now,
bR
a

V (x+ �h; _x+ � _h)e�rtdt�
bR
a

V (x; _x)e�rtdt = '(�)� '(0); so that

'(:) is maximized at 0. Since '(:) is di¤erentiable at zero,

'0(0) =

bZ
a

(Vx(x; _x)e
�rth+ V _x(x; _x)e

�rt _h)dt = 0: (2)

As h 2 C1c (a; b) was arbitrary, (V :
x(x;

:
x)e�rt)

0
= Vx(x;

:
x)e�rt; i.e. Vx(x;

:
x)e�rt

is the weak derivative of V :
x(x;

:
x)e�rt on (a; b).

By means of the Euler-Lagrange equation, we are able to derive an im-

portant result for the problems with switches, known as the �rst Weierstrass-

Erdmann condition.

Corollary 1 (Continuity condition) Let Assumptions (1) and (2) be satis-

�ed. Then V :
x (x;

:
x) e�rt is continuous everywhere, and in particular, at the

switching instant.

Proof. The Euler-Lagrange equation implies V :
x (x;

:
x) e�rt 2 W 1;1

loc so

that V :
x (x;

:
x) e�rt is absolutely continuous on any bounded interval and hence

continuous everywhere.

The following results and the set of assumptions that impose more regu-

larity on x (t), will be crucial in establishing the optimality conditions with

respect to the switching instant.

Corollary 2 The optimal x (t) is locally Lipschitz, i.e., Lipschitz on any

bounded interval.

Proof. Since x (t) is admissible, j :x (t)j is bounded locally. Hence, for
any bounded (a; b) � (t0; tf ) ; there is some K such that for all t 2 (a; b) ;

j :x (t)j � K and thus jx(b)� x(a)j =
���� bR
a

:
xdt

���� � K jb� aj :
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In what follows, some global properties of the functions V i (i = 1; 2)

will be needed. Because of this, we continue with the following modi�cation

of Assumption 1. We write V i2 for the derivative of V
i with respect to the

second variable, and V i22 for the derivative of V
i
2 with respect to the second

variable.

Assumption 3 V i2 is C
1 and V i22 is invertible (i.e., either V

i
22 < 0 or V

i
22 >

0) on R� R� [t; t0] for t; t0 �nite in [t0; tf ], and i = 1; 2:

Proposition 2 If the optimal x is Lipschitz on bounded open intervals, then

x is C2 except possibly at t1:

Proof. See Butazzo, et al. (1998), Proposition 4.4, page 135.

Note that Assumption 3 assumes a global invertibility condition, which

may be violated in applications. If, however, the solution of the Euler-

Lagrange equation happens to be C1 then one may utilize a local invertibility

criterion as the following variant of Proposition 2 demonstrates.

Proposition 3 For any bounded interval I, if V i2 is C
1 on some neighbor-

hood of the path (x; _x; t), V i22 is invertible along the path (x; _x; t), for t 2 I,
i = 1; 2, and x is C1 (except possibly at t1), then x is C2 (except possibly at

t1).

Proof. See Butazzo, et al. (1998), Proposition 4.2, page 135.

So whenever global invertibility and smoothness conditions of Assump-

tion 3 are violated one may replace Assumption 3 with the assumptions of

Proposition 3. In this case, one may also restrict the domain of the Assump-

tion 1 to a small enough neighborhood around the optimal path, if necessary.

This simply follows from the fact that the proof of Euler-Lagrange equation

utilizes the assumption only in such a neighborhood. In fact, it is this ver-

sion that we utilize in the technology adoption and the environmental control

problems presented in Section 4.
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Assumption 4 There exists an integrable function g (t) on [t0; tf ] and some

interval I � [t0; tf ], such that t1 is in the interior of I, and 8s 2 I; 8t;
jV is (x;

:
x; t; s)j e�rt � g (t) ; for i 2 f1; 2g (in case of t1 =1, the interval I is

of the form, [N;+1) for some N < +1).

Note that if the planning horizon is �nite, i.e., tf < 1, Assumption
4 is automatically satis�ed. The next proposition, which is a variant of

the second Weierstrass-Erdmann corner conditions, will be proved under the

assumptions 1 � 4; by the so-called "variation of the independent variable"
technique. In the next proposition, recall also that Assumption 3 can be

replaced with the assumptions of Proposition 3, and Assumption 1 can be

replaced to be satis�ed in a neighborhood of the optimal path, whenever

convenient.

Proposition 4 (Matching condition) Under assumptions 1�4, optimal pair
(x; t1) satis�es

� :
xV 1:x � V

1
�
t1
e�rt1 �

� :
xV 2:x � V

2
�
t1
e�rt1 =

t1Z
t0

V 1t1e
�rtdt+

tfZ
t1

V 2t1e
�rtdt (3)

whenever t0 < t1 < tf :

Proof. Take any h 2 C1c (t0; tf ); and de�ne a function �(t; �) = t� �h(t)
on [t0; tf ] (h is extended to zero outside (t0; tf )): Note that � (t0; ") = t0 and

� (tf ; ") = tf . For j�j small enough, � t(t; �) = 1 � �h0(t) > 0 (we continue

to use subscripts for derivatives). Thus, for all such small j�j ; the mapping
�(:; �) is a C1 di¤eomorphism of [t0; tf ]: Write �(s; �); for the inverse of this

mapping, and denote �(t1; �) = s1.

Since the transformation t 7! t��h(t), is monotonic, for j�j small enough,
the path x(�(s; �)) as a function of s = �(t; �); satis�es the constraints of the
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problem, thanks to the di¤erentiability properties of the functions and con-

tinuity (expect possibly for the switching instant) of the solutions involved.

Let W i(x;
:
x; t; t1) = V

i(x;
:
x; t; t1)e

�rt; i = 1; 2: So,

'(�) =

s1Z
t0

W 1(x(�(s; �));
dx(�(s; �))

ds
; s; s1)ds

+

tfZ
s1

W 2(x(�(s; �));
dx(�(s; �))

ds
; s; s1)ds

is maximized at 0 (Note that �(t; 0) = t).

Since dx(�(s;�))
ds

= _x(�(s; �))�s(s; �); we write:

'(�) =

s1Z
t0

W 1(x(�(s; �)); _x(�(s; �))�s(s; �); s; s1)ds

+

tfZ
s1

W 2(x(�(s; �)); _x(�(s; �))�s(s; �); s; s1)ds (4)

As '(�) is �nite and � is a C1 di¤eomorphism, the change of variables

(see Lang, 1993, p.505, Theorem 2.6) allows us to transform this equation

into the following form:

'(�) =

t1Z
t0

W 1

�
x(t); _x(t)

1

� t(t; �)
; �(t; �); �(t1; �)

�
� t(t; �)dt

+

tfZ
t1

W 2

�
x(t); _x(t)

1

� t(t; �)
; �(t; �); �(t1; �)

�
� t(t; �)dt (5)

where we use � t (�(s; �); �) �s(s; �) = 1:

Now, in a neighborhood of zero, by Assumptions 1 and 4, the partial

derivatives with respect to � of the integrands above,

(1� �h0)[�W i
th+ _xW i

_x

h0

(1� �h0)2 �W
i
t1
h(t1)]�W ih0;

10



will be dominated by an integrable function. This is obvious for the terms

multiplied by h or h0. For the term, (1 � �h0)W i
t1
h(t1), this is due to the

fact that for " small, � (t1; ") will be in the interval I from Assumption 4,

so that some g (t) dominates the term
��W i

t1

��, while j(1� �h0)h(t1)j is already
bounded on [t0; tf ]. It then follows by dominated convergence theorem that

'(�) is di¤erentiable at zero. This derivative equals to zero, and is given by

the following expression (we suppress the arguments of the functions):

'0(0) =

t1Z
t0

�
�W 1

t h+ _xW 1
_xh
0 �W 1

t1
h(t1)�W 1h0

�
dt

+

tfZ
t1

�
�W 2

t h+ _xW 2
_xh
0 �W 2

t1
h(t1)�W 2h0

�
dt: (6)

By integration by parts:

t1Z
t0

�
_xW 1

_x �W 1
�
h0dt =

�
_xW 1

_x �W 1
�
t1
h(t1)�

t1Z
t0

d [ _xW 1
_x �W 1]

dt
hdt;

tfZ
t1

�
_xW 2

_x �W 2
�
h0dt = �

�
_xW 2

_x �W 2
�
t1
h(t1)�

tfZ
t1

d [ _xW 2
_x �W 2]

dt
hdt:

Plugging these in '0(0); we obtain:

h(t1)
��
_xW 1

_x �W 1
�
t1
�
�
_xW 2

_x �W 2
�
t1

�
+

t1Z
t0

�
�W 1

t �
d [ _xW 1

_x �W 1]

dt

�
hdt+

tfZ
t1

�
�W 2

t �
d [ _xW 2

_x �W 2]

dt

�
hdt

= h(t1)

0@ t1Z
t0

W 1
t1
dt+

tfZ
t1

W 2
t1
dt

1A :
11



For h(t1) 6= 0;

�
_xW 1

_x �W 1
�
t1
�
�
_xW 2

_x �W 2
�
t1
=

t1Z
t0

W 1
t1
dt+

tfZ
t1

W 2
t1
dt

+
1

h(t1)

24 t1Z
t0

�
W 1
t +

d [ _xW 1
_x �W 1]

dt

�
hdt+

tfZ
t1

�
W 2
t +

d [ _xW 2
_x �W 2]

dt

�
hdt

35 :
(7)

We will now prove that W 1
t +

d[ _xW 1
_x�W 1]
dt

= 0. Indeed, since d(W 1
_x )

dt
= W 1

x

by Euler equation, one has:

d [ _xW 1
_x �W 1]

dt
=

::
xW 1

_x + _xW 1
x �W 1

x _x�W 1
_x

::
x�W 1

t

= �W 1
t :

The result follows. Similarly, one gets

W 2
t +

d [ _xW 2
_x �W 2]

dt
= 0:

Therefore, replacing W i by V ie�rt in (7) gives (3).

In order to consider the corner solution cases in which the optimal switch-

ing time is at one of the terminal times, we need an additional assumption

ensuring that some initial or �nal segment of an optimal path x, is also ad-

missible under the other regime. Note that, whenever t1 is an interior point

of [t0; tf ], such a uniformity requirement is not necessary at all, as the inner

variation of the optimal path around an interior switching point respects the

admissibility condition anyway.

Assumption 5 Let (x; t1) be an optimal pair. If t1 = t0, there exists a

non-degenerate interval t0 3 I � [t0; tf ] and � > 0, such that, 8s 2 I; and
t < s; f 1 (x (t) ; _x (t) ; t; s) > �: If t1 = tf , there exists a non-degenerate

12



interval tf 3 I � [t0; tf ] and � > 0, such that, 8s 2 I; 9�t such that, if t > s;
f 2 (x (t) ; _x (t) ; t; s) � 0 and if �t > t > s, f 2 (x (t) ; _x (t) ; t; s) > � (note that
we need f 1 (x (t) ; _x (t) ; t; s) > � on (t0; s) and f 2 (x (t) ; _x (t) ; t; s) > � on

(s; �t) in order to allow room for inner variation on �nite intervals around

the switching point).

Proposition 5 Under Assumptions (1)-(5), whenever the optimal switching

time is at one of the terminal times, the matching condition should be modi�ed

as:

�
_xV 1_x � V 1

�
t=t0

e�rt0 �
�
_xV 2_x � V 2

�
t=t0

e�rt0 �
tfZ
t0

V 2t1e
�rtdt; for t1 = t0; and

�
_xV 1_x � V 1

�
t=tf

e�rtf �
�
_xV 2_x � V 2

�
t=tf

e�rtf �
tfZ
t0

V 1t1e
�rtdt; for t1 = tf ;

where in the case of tf =1, the last inequality holds in the limit.

Proof. The proof follows from the calculation of the limit of a directional

derivative of the function '(�); which is de�ned in the proof of Proposition 4,

where the limit is taken with respect to a sequence of functions hn replacing

h in '(�). But this calculation is rather tedious and we omit it.

Remark 1 In order to compare our results with those of the two-stage op-

timal control approach, de�ne the Hamiltonian of the pre-switch and post-

switch phases of the problem as

H i (x; p; t; t1) = �V i (x;
:
x; t; t1) e

�rt + pi
:
x; i = 1; 2:

Following from Dana and Le Van (2003), under the conditions that V i is

C2; V i22 is invertible, say V
i
22 < 0; for i = 1; 2; a solution of the Euler-

Lagrange equation is a solution of the corresponding Hamiltonian system,
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i.e., the equation system: @Hi

@p
=

:
x; @H

i

@x
= � :

p
i
; and vice versa. Moreover,

note that V _x(x; _x; t; t1)e�rt = p(t); at any t, and H2 jt1= [ _xV
2
_x � V 2]t1e

�rt1 ;

H1 jt1= [ _xV 1_x � V 1]t1e
�rt1(see Buttazzo, et. al. 1998, Proposition 1.34,

p.38). These establish the continuity of the co-state variable at the switching

instant and the following matching condition for an interior switch stated in

Tomiyama and Rossana (1989):

�
H2 jt1

�
�
�
H1 jt1

�
�
Z t1

t0

@H1

@t1
dt�

Z tf

t1

@H2

@t1
dt = 0: (8)

Remark 2 When the switching instant does not appear explicitly in the in-

tegrands or the constraints of the problem, it is clear that the matching condi-

tion reduces to
�
H2 jt1

�
=
�
H1 jt1

�
; as stated in Makris (2001) and Tomiyama

(1985).

3 Multiple regime switches

These results can easily be generalized to consider the problems with multiple

regime switches. In this respect, consider the following problem with f � 1
switches.

max
x(t); t1

fP
k=1

tkR
tk�1

V k (x (t) ;
:
x (t) ; t; t1; t2; :::; tf�1) e

�rtdt

subject to

(x (t) ;
:
x (t)) 2 Dt1;t2;:::;tf�1 (t) � R2;

x (t0) = x0; x (t) � 0; a:e: on [t0; tf ] ; tf � 1;

where Dt1;t2;:::;tf�1 (t) = f(x; y) j fk (x; y; t; t1; t2; :::; tf�1) � 0; for tk�1 � t <
tk;8k = 1; 2; :::; fg:
The novel feature of this problem with multiple regime switches is that

the endogenous switching instants appear explicitly as an argument of the
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law of motion of the state and the objective criteria. It is important to note

that early contributions by Tomiyama (1985), Tomiyama and Rossana (1989)

and Makris (2001) can not be used to handle this optimization problem.

It is clear that the assumptions for the single switch, Euler-Lagrange

equation, and hence the continuity condition extend immediately for such

problems. In order to characterize the optimal timing of the multiple switch-

ing instants, one has to deal with the extension of the matching condition.

Following the same steps in the proof of the single switch matching condition,

one can rewrite (7) as:

'0(0) =

fX
k=1

f h(tk)
�
_xW k

_x �W k
�
tk
� h(tk�1)

�
_xW k

_x �W k
�
tk�1

�
tkZ

tk�1

 
f�1X
i=1

�
h(ti)W

k
ti

�
+ �kh

!
dt g: (9)

where �i(t) � �V it �
d[ _xV i_x�V i]

dt
; for i 2 f1; 2; :::; fg:

For t0 < t1 < t2 < ::: < tf�1 < tf ; we have '0(0) = 0: Now, if h is such

that h(ti) 6= 0 and h(tj) = 0, 8j 6= i (note that h(tf ) = h(t0) = 0; as h will
have compact support on (t0; tf )), then we obtain:

�
_xV i_x � V i

�
ti
e�rti �

�
_xV i+1_x � V i+1

�
ti
e�rti =

fX
j=1

0B@ tjZ
tj�1

V jtie
�rtdt

1CA :
Similarly, the necessary conditions for t1; t2; :::; tf�1 to be interior optimal

switching instants can then be written as:

�
_xV i_x � V i

�
ti
e�rti �

�
_xV i+1_x � V i+1

�
ti
e�rti =

fX
j=1

0B@ tjZ
tj�1

V jtie
�rtdt

1CA ;8i = 1; 2; :::; f � 1: (10)
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In general, in such a system with f � 1 switches, or equivalently in a
system with f possible regimes, one has to consider also (3f�4)(f�1)

2
possible

corner solution cases.1 As an example, let us work on a system that involves

2 regime switches and the following out of the four possible con�gurations:

t0 = t1 = t2 < tf . In this case the system immediately jumps to the third

stage. Considering the appropriate limits, we have the following as necessary

conditions:

�
_xV 1_x � V 1

�
t=t0

e�rt0 �
�
_xV 3_x � V 3

�
t=t0

e�rt0 �
tfZ
t0

V 3t1e
�rtdt;

�
_xV 2_x � V 2

�
t=t0

e�rt0 �
�
_xV 3_x � V 3

�
t=t0

e�rt0 �
tfZ
t0

V 3t2e
�rtdt:

In this manner, the necessary conditions for all corner solutions can be writ-

ten. But it is clear that implementing these in practice is really hard, as the

number of necessary conditions grow very fast.

4 Applications

In this section, we consider two applications of our results. First, we shall

solve a technology adoption problem with expanding technology frontier in

order to show how our approach allows to derive properly and easily the

necessary conditions for an in�nite horizon multi-stage problem depending

explicitly on the switching instant. As advancement of technology may be re-

garded as a continuous process while adoption of it is a discrete process, our

1This follows from the following argument: there are f(f�1)2 corner cases corresponding

to immediate jump to a higher regime at t0; there are
(f�1)(f�2)

2 corner cases corresponding

to not switching to a higher regime (i.e cases in which �rst regime forever, or second

regime forever, or ...); there are (f�1)(f�2)
2 corner cases corresponding to nonswitching to

an intermediate regime, like a jump from regime 1 to 3, 1 to 4, etc..
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analysis will be legitimate in its approach to the adoption problem. Yet,

the analysis below should be treated as a complement to the studies of

Boucekkine et. al. (2004) and (2010), as the adoption process is rather com-

plicated with determinants like learning, network externalities, and strategic

interactions, e¤ects of which are studied by these authors. Second, we con-

sider an environmental control problem. In this problem we illustrate how

easy it is to obtain necessary and su¢ cient conditions for an interior switch-

ing time with the present approach.

4.1 Optimal timing of technology adoption

We consider the following technology adoption problem:

max
k(t);t1

1Z
0

ln(c(t))e��tdt

subject to

_k(t) = f
q(0)(a1k(t)� c(t)); for t < t1;
q(t1)(a2k(t)� c(t)); for t � t1;

k(0) = k0 > 0; c(t) � 0; _k (t) � 0;

where c denotes the �ow of consumption and � is the time discounting pa-

rameter. The problem can easily be transformed into the format we discuss

by setting c (t) = aik (t) �
_k(t)
qi
, q1 = q (0), q2 = q (t1) ; and accordingly,

V i
�
k(t); _k(t); t; t1

�
= ln

�
aik (t)�

_k(t)
qi

�
; i = 1; 2. So the constraint func-

tions become � _k (t) + qiaik (t) � 0 and _k (t) � 0, for i = 1; 2. Recall that V
should be read as V 1 whenever t < t1 and V 2 whenever t > t1.

The planning horizon is in�nite. The production function in the con-

sumption sector is simply ak, where a > 0, is the marginal productivity of

capital. The consumption good is either used for consumption or as an input
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in the production of the capital goods. q(t) denotes the linearly expanding

technology frontier in the capital goods sector, i.e. q(t) = 1 + t measures

the productivity in the capital goods sector, and as such, it represents the

embodied technical progress variable. We assume without any loss of gen-

erality that the capital depreciation rate is nil. We also assume a2; a1 > �,

so that the uniformity requirements of our assumptions are veri�ed for the

paths of c (t) and _k (t).

Problem is composed of two phases, where each one corresponds to a

di¤erent mode of technology. t1 refers to the instant of the switching between

these modes. At any t1, the economy may switch to a more e¢ cient capital

goods sector so that the adopted level of technology will be q(t1) = 1 + t1;

while before switching it is q(0) = 1: Such a rise in q will only a¤ect the new

capital goods, in contrast to an increase in a, which is meant to have the

same e¤ect on all capital goods whatever the date of the their production,

whatever their vintage. In this sense, a is neutral and q is investment speci�c

(see Boucekkine et al., 2004). A reassignment of resources towards capital

goods due to an increase in q will induce a drop in consumption, thereby

resulting with a loss in welfare. This is referred to as obsolescence cost

inherent to technology adoption problems (see Boucekkine et al., 2003). In

addition to this, switching to a more e¢ cient capital goods sector incurs

a loss of technology speci�c expertise, which can be re�ected by a2 < a1

(see Parente, 1994; Greenwood and Jovanovic, 2001). Given these costs, the

trade-o¤ at the basis of the technology adoption problem should be clear by

now.

Note by Proposition 3 that c(t) and k(t) are di¤erentiable on each regime.

Having this in mind, by Euler-Lagrange equation (1) for the second regime,

we obtain:

k(t) = �A� ea2� t
�
�e

��t

�
� k(t1) e

�a2� t1

A�
+
e��t1

�

�
; (11)
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where A = c(t1) e
(��a2�)t1 ; � = 1 + t1. Following from Boucekkine, et al.

(2004) and Le Van, et al. (2007), the necessary transversality condition

writes as limt!1

�
@V
@ _k
k(t)e��t

�
= 0. Thus, utilizing Euler-Lagrange equation

(1) now for the �rst period, we �nd that

c(t) = c(0) e(a1��)t; (12)

k(t) = �c(0)ea1t
�
�e

��t

�
+
1

�
� k(0)
c(0)

�
: (13)

The Corollary 1 states that @V
@ _k
is continuous at t1: Then, from the equality

of @V 2

@ _k
jt1=

�1
� k(t1)

and @V 1

@ _k
jt1=

@V 2

@ _k
jt1 ; one can easily �nd that: c(0) = �

k(t1) e
(��a1)t1 : We also have the continuity of k(t) at t1: Evaluating (13) at

t1, we obtain k(t1) = k(0) e(a1��)t1 : So we have the solution of the problem

in terms of k(0); and t1; summarized as follows:

k(t) = k0 e
(a1��)t; 0 < t � t1; (14)

c(t) = � k0 e
(a1��)t; 0 < t � t1; (15)

k(t) = k0 e
(a1�a2�)t1 e(a2���)t; t1 < t <1; (16)

c(t) =
�

�
k0 e

(a1�a2�)t1 e(a2���)t; t1 < t <1: (17)

This solution satis�es the uniformity and the continuity requirements

made in the assumptions. In order to proceed to the characterization of the

switching instant it only remains to verify Assumption 4. We need to check

only the second period as t1 do not occur in the �rst period solution. For the

second regime, Vt1 is a2
d�
dt1
te��t, and this is integrable, so that Assumption 4

is satis�ed.

Given these, we can proceed to characterize the optimal switching instant

by means of the matching condition. We have:

[ _xV 1_x � V 1]t1e
��t1 = �

�
�
�
�1 + ln

�
k0�e

t1(��+a1)
��
+ a1

�
e��t1

�
;
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[ _xV 2_x � V 2]t1e
��t1 =

�
�� � ln

�
k0�et1(��+a1)

1+t1

�
� a2(1 + t1)

�
e��t1

�
;

Z tf

t1

V 2t1e
��tdt =

(��+ (1 + t1) (�a1 � a2(�+ (�1 + �t1) ))) e��t1
(1 + t1)�2

;

and
R t1
0
V 1t1e

��tdt = 0; so the necessary condition for an interior switching

turns out to be:

� [ � (1 + t1)� ln(1 + t1)] + (1+ t1) [�2�a1 + a2(2�+ (2�t1 � 1))] = 0:
(18)

After some algebra, and de�ning s = 1+ t1, the condition can be recast as:

�  + 2�a2s
2 = �2s ln s+ s(2�(a1 � a2) + a2 + 2�a2): (19)

To simplify the interpretation of (19), we will assume that

� < 2�(a1 � a2) + a2

This condition ensures that the left hand side of (19) has a lower value than

the right hand side of (19) at t1 = 0: The derivative with respect to s at

the left hand side of (19) is 4�a2s; while the right hand side derivative is

�2(ln s+1)+2�(a1�a2)+a2+2�a2: Since the derivatives are positive, and
for large s; the left hand side derivative will be strictly higher than that of

the right hand side, there exists a unique solution t1 > 0 to (19).

As the matching condition does not have a closed form solution, we shall

resort to the numerical analysis and study in particular, the e¤ect of an

increase in the growth rate of technology frontier on the optimal timing of

technology adoption. We adopt the following set of parameter values: � =

0:04; a1 = 1; a2 = 0:8 and  = 0:02 as our benchmark analysis. We determine
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that the optimal timing of the switch two the second regime occurs at t1 =

25:1: We obtain that the higher pace of technology implies the fastening of

the adoption decision:

 0:02 0:06 0:10

t1 25:10 16:64 14:98

As a higher technology comes earlier, the loss due to the drop in marginal

productivity of capital after adoption becomes tolerable in a shorter run and

this also implies that the adopted level of technology to get higher. Similarly,

higher discount rates should fasten the adoption. Higher discounting implies

an urgency in covering the costs resulting from the delay in adoption.

� 0:03 0:04 0:06

t1 29:12 25:10 21:05

In fact the costs from switching decreases at a particular instant with higher

discount rates with respect to the costs with a lower discount rates. This is

what we see by simply looking at the derivative of (19) with respect to �;

�(2(a1� a2) + 2a2)s+2a2s2+ � 2s� ln(s); as well. On the other hand, the
lower value of marginal productivity after adoption delays the adoption:

a2 0:8 0:7 0:6

t1 25:10 34:25 46:50

This is reasonable since lower marginal productivity after adoption means

that the cost of switching is higher. So, this should be compensated by a

higher gain in technological jump, creating a waiting incentive for a higher

technology level to adopt. This is more clear if we consider the derivative

with respect to a2 of (18), as this derivative, �(1 + t1) + 2(1 + t1)2�; is
positive whenever � � 

2
.
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4.2 An Environmental Control Problem

Boucekkine et al. (2010) consider the trade-o¤ between economic perfor-

mance and environmental quality from the perspective of a government over

a �nite time horizon by using canonical two-stage optimal control techniques.

At any moment in time, the government has to choose when to switch to a

new technology which is economically less e¢ cient but better in environmen-

tal quality terms. Formally, the environmental control problem that the

government endeavor to solve is

max
fC; t1g

Z t1

0

u (C (t) ; P (t)) e��tdt+

Z T

t1

u (C (t) ; P (t)) e��tdt

subject to the constraints C (t) + X (t) = F (X (t)) = AiX (t) ; _P (t) =

�iAiX (t) ;with P (0) � 0; given and P (T ) free, where C; X; and P de-

note consumption, input, and pollution, respectively. Given technology i,

Ai measures the productivity of the input, and �i measures the marginal

contribution of an extra unit of production to pollution. The technical menu

(A1; �1) applies on the time span [0; t1), and the menu (A2; �2) applies on

[t1; T ], where it is assumed that �1 > �2 > 0, and A1 > A2 > 1.

Considering a utility function of the form u (C;P ) = lnC��P; Boucekkine
et al. (2010) shows that switching will happen at the corners, unless �2A2

A2�1 =
�1A1
A1�1 : In that case, t1 can take any value on [0; T ] as the government will

be indi¤erent between the two regimes (see Corollary 3 in Boucekkine et al.,

2010). We will now show how this result can easily be obtained with the

present approach by utilizing the matching condition (3), without delving

into the details of the optimal solution.

The problem can be recast as follows:

max
P (t);t1

Z t1

0

u

 
_P (t)

�1A1
(A1 � 1) ; P (t)

!
e��tdt+

Z T

t1

u

 
_P (t)

�2A2
(A2 � 1) ; P (t)

!
e��tdt

subject to P (t) � 0; _P (t) � 0; with P (0) � 0; given and P (T ) free. Note
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that, with P (0) > 0, the optimal solution has to satisfy our Assumption (2),

since X = 0 derives utility to �1. That is, the optimal solution satis�es
P (t) > 0, _P (t) > 0 uniformly. The rest of the assumptions are obviously

satis�ed. In particular, Assumption (4), has no bite here, as t1 does not

explicitly appear in the instantaneous utility. Then the interior matching

condition writes

_P
1
_P
� u

 
_P

�1A1
(A1 � 1) ; P

!
= _P

1
_P
� u

 
_P

�2A2
(A2 � 1) ; P

!
;

which implies

ln _P + ln

�
A1 � 1
�1A1

�
� �P (t1) = ln _P + ln

�
A2 � 1
�2A2

�
� �P (t1) ;

where both sides are evaluated at t1. u _P =
1
_P
; is continuous by Corollary (1),

so that the interior matching condition is equivalent to

A1 � 1
�1A1

=
A2 � 1
�2A2

:

Accordingly, the condition for an immediate adoption of the new technology

is �2A2
A2�1 <

�1A1
A1�1 : Moreover, it is obvious with the present approach that, this

result extends easily to the nonlinear pollution disutility and the in�nite time

horizon cases.

5 Conclusion

In this paper, we have analyzed the optimal timing of regime switches in op-

timal growth models by means of the standard tools of calculus of variations

and some basic properties of Sobolev spaces. Our approach has allowed us

to consider the three important aspects of the regime switching problems in

a simple and uni�ed manner: the in�nite planning horizon, multiple regime

switches and the explicit dependence of the constraint functions and the
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objective functional on these switching instants. We have proved that, in

addition to the standard optimality conditions such as Euler-Lagrange, two

speci�c set of necessary conditions that characterize the optimal timing of

regime switches emerge: continuity and the matching conditions. We have

shown that Weierstrass-Erdmann corner conditions extend to the problems

with regime switches. As for the application, we have considered an optimal

adoption problem under embodiment with exogenously growing technology

frontier and an environmental control problem with the trade-o¤ between

economic performance and environmental quality.
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