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1 Introduction

If you don’t need a new set, don’t rush to buy one. Prices will no doubt continue to drop

over time, [and] you’ll have more sets to choose from.1

-ConsumerReports.org on 3D HDTVs

In many durable goods settings, the choice of when to buy is as important to consumers as what to

buy. Particularly for consumer electronics, the quote from Consumer Reports conveys the conventional

wisdom: prices will fall and new choices, often higher quality ones, will arrive. As a result, many

consumers purposely delay their purchase of these goods. When they do purchase, consumers often have

in mind that they will replace the product with a superior product in the foreseeable future. Thus,

dynamic behavior is an important element of demand for consumer durable goods markets. This paper

specifies a structural dynamic model of consumer preferences for new durable goods; estimates the model

using aggregate data on digital camcorders; and uses the model to evaluate elasticities and cost-of-living

indices for this market.

The digital camcorder industry is an important sector, with about 11 million units sold in the U.S.

from 2000 to 2006. Between 2000 and 2006, the sector also experienced a huge evolution. Average

digital camcorder prices dropped from $930 to $380 while average pixel counts rose from 580,000 to 1.08

million. The number of products available grew from less than 30 to almost 100. Annual sales grew by

2.6 times in 4 years. The rapidly evolving nature of the characteristics and sales – together with the

fact that consumers are advised to consider the dynamic implications of their decisions – suggests that

modeling dynamics is empirically very important for estimating consumer preferences in this industry.

These issues have broad applicability: rapidly falling prices and improving features have been among

the most visible phenomena in a large number of other new consumer durable goods markets, including

computers, DVD players and HDTVs among many others.

In our model, dynamically optimizing consumers may choose among the set of available camcorders

or wait. Camcorders are durable, so purchase provides flow utility into the future. The available prices,

quality and variety improve over time, so waiting is valuable. In addition, while consumers can hold only

one camcorder at a time, they may substitute a new camcorder for an old one, so consumers continue

to evaluate the market even after purchase. Our model allows for product differentiation, endogeneity of

prices, many products, changing numbers of products, persistent consumer heterogeneity, and endogenous

repeat purchases over time. As our model is dynamic, we need to specify consumer perceptions over
1http://www.consumerreports.org/cro/electronics-computers/tvs-services/tvs/tv-buying-advice/tv-3d/tv-3d.htm, ac-

cessed June 27, 2011.
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future states of the world. We focus on a major simplifying assumption: that consumers expect that the

evolution of the value of purchase will follow a simple one-dimensional Markov process. In this sense,

consumers use a reduced-form approximation of the supply side evolution to make predictions about

the value of future purchases. We also examine a number of alternative specifications for perceptions,

including multi-dimensional processes and perfect foresight.

The dynamics of our model build on the traditional vintage capital models (see Solow, Tobin, von

Weizsacker & Yaari, 1966) in that consumers in our model hold one product at a time and endogenously

reallocate to new products as the technology for capital (i.e., camcorders) improves. Our framework

differs from this literature in that we model a sunk cost of acquiring new technology – namely the

purchase price – which makes the consumer purchase decision dynamic. In this way, it is similar to the

Rust (1987) model of bus engines, in which the agent must decide when to replace the engine.

While the Rust model concerns an industry with one homogeneous product, the camcorder industry

has hundreds of different products with different prices and characteristics. To understand purchase deci-

sions in this industry (and other consumer durable goods industries) we need to model both the “when”

to buy of the dynamic literature and the “what” to buy. A different literature started by Bresnahan

(1981) and Berry, Levinsohn & Pakes (1995) (henceforth BLP), has modeled static consumer decisions

for differentiated products systems with many heterogeneous products. This literature has shown that

incorporating consumer heterogeneity into differentiated product demand systems is important in obtain-

ing realistic predictions. Our paper nests a BLP-style demand system within the dynamic replacement

framework. By allowing for persistent consumer heterogeneity, we relax the assumption that choices are

conditional independent given the observed state that is typically required for dynamic estimation, but

at the cost of computational complexity. We develop a new estimation procedure that draws on the

techniques of BLP for modeling consumer heterogeneity in a discrete choice model and on Rust (1987)

for modeling optimal stopping decisions. Our primary methodological advance is in developing a feasible

specification that allows us to combine these two separate methods.

Over the last fifteen years, a substantial literature has used static BLP-style models to investigate

questions of policy interest. This literature has analyzed questions that include (but are by no means

limited to) horizontal merger policy (see Nevo, 2000a), trade policy (see Berry, Levinsohn & Pakes,

1999) and the value of new goods (see Petrin, 2002). Many of these papers investigate industries, such

as automobiles, for which goods are durable. To the extent that dynamics are important for many

industries, our paper may be useful in deriving better estimates for these and related questions. Indeed,

recent work is using and extending our methods to examine the importance of software in the video

game industry (Lee, 2010), scrapping subsidies for automobiles (such as cash-for-clunkers programs; see
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Schiraldi, 2011), markups for digital cameras (Zhao, 2008), switching costs between cable and satellite

television (Shcherbakov, 2009) and switching costs in consumer banking (Ho, 2011), among other research

questions.

Before moving forward, we briefly consider the complex question of how estimates from dynamic and

static models might differ. There are two principal causes of dynamics: durability and forward-looking

behavior. The implications of durability are straightforward: the sales increase from price declines will

be moderated in the durable goods model since demand endogenously falls as high-value consumers

accumulate the good. Thus, the static estimation will understate the importance of price and quality,

since it appears that the sales response to improvement is relatively small. The implications of accounting

for forward-looking behavior are more complex. Static models predict that sales increase when prices are

low, whereas dynamic models predict that sales increase when the expected change in price is low.2 A

price decline may not lead to a sales increase in a dynamic model if consumers expect a large price decline

in the next period. It is difficult to sign the bias from estimating a static model related to this issue

since it depends on the relationship of low prices, price declines and sales in the data. Finally, note that

we observe both dynamic and cross-sectional variation. It is possible for the dynamic model to generate

substitution patterns within time periods and across time periods that appear inconsistent from the

perspective of a static model.3 Overall, it is difficult to predict what a static model will estimate when

the data-generating process is dynamic, because it depends on the interaction of these many factors.

We use our results to analyze the difference between short-run and long-run price elasticities. We focus

on the case in which price increases for one period and then returns to its previous level, and consumers

anticipate this. When considering the industry as a whole, the long-run elasticity is substantially smaller

than the short-run elasticity, since many consumer delay purchase during the price spike. However,

the short- and long-run product elasticities are very close to each other. That is because we find that

camcorders are relatively close substitutes, so when the price of a single product increases, consumers

switch to another product rather than delaying purchase. We consider several other cases, such as
2More formally, dynamic models predict that sales increase when the user cost of capital falls, and the implicit user cost

of capital is (roughly) the change in price. This point is explicit in Gandal, Kende & Rob (2000), who consider a similar

but simpler dynamic model with one product in each time period. Their model generates the result that sales are a linear,

decreasing function of the forward difference in prices after discounting future price, (pt − βpt+1).
3Consider the case in which prices fall and then level off. In a dynamic model, a consumer may prefer the high quality

product (particularly if the consumer recognizes that purchasing the high quality good delays future purchases) but wait

to purchase until the price stops dropping. Thus, the data will show that consumers bought when prices were low, but that

within a period, they purchased the high price, high quality product. The static model would interpret the first sort of

variation to imply that price sensitivity is high but the second form of variation to imply that price sensitivity is relatively

low.
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permanent price changes, and different consumer expectations.

We also use our results to examine the evolution of consumer value from the digital camcorder indus-

try by calculating a cost of living index (COLI) for this sector. COLIs measure compensating variations,

the dollar taxes or transfers necessary to hold welfare constant at the base level over time. The Consumer

Price Index and other government-computed indices are often used as COLIs, and have important impli-

cations for wage growth at many firms, government transfer programs and a variety of other government

policies. The Bureau of Labor Statistics is particularly concerned about the development of accurate

COLIs for consumer electronics and camcorders in particular (see Shepler, 2001). If high-value consumers

purchase early and low-value consumers purchase late, standard approaches that assume demand is ho-

mogenous over time overstate the welfare gains later on (see Aizcorbe, 2005). We show that this effect,

which Aizcorbe terms the “new buyer” problem, is empirically important. Standard COLI measures

show welfare substantially improving in this market since prices fall and quantities rise. However, our

dynamic model shows that welfare gains are attenuated, since later buyers are either low value relative

to early buyers, or they already hold the good.

Because we use primarily aggregate data, we develop a relatively parsimonious specification which

results in the parameters that we estimate being essentially the same as in static BLP-style models:

the mean and variance of consumer preferences for product characteristics. As in these models, our

identification of key parameters such as price elasticities and random coefficients comes from the impact

of different choice sets on purchase probabilities using the assumption that the choice sets are exogenous

to unobserved product characteristics. Our dynamic model adds to identification by making use of

substitution patterns across time periods as well as within time periods and by capturing the endogenous

changes in demand over time as consumer holdings evolve.

An important feature of our model is that it is designed to be applied to aggregate data on models and

market shares by month (although in some specifications, we supplement these with limited data from a

survey) rather than individual household purchase data. Perhaps not surprisingly, models for household

level data are substantially more sophisticated than those for aggregate data, incorporating not only

dynamics, heterogeneity and upgrading but also such features as learning, product loyalty, inventory

behavior and surveys of price expectations (see Ackerberg, 2003; Hendel & Nevo, 2006; Erdem & Keane,

1996; Erdem, Keane, Oncu & Strebel, 2005; Prince, 2008; Keane & Wolpin, 1997). Extending these

types of models to aggregate data is important for two reasons. First, in many cases, aggregate data

are all that are available. Second, aggregate data are typically necessary for studying many important

issues, such as oligopoly interactions. This is because household-level data sets rarely contain enough
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observations to measure product shares accurately.4 Accurate market shares are important for estimating

the supply side. For instance, BLP and Goldberg (1995) use aggregate market share data to estimate

pricing first-order conditions.

Finally, a number of recent papers (Gandal et al., 2000; Esteban & Shum, 2007; Melnikov, 2001; Song

& Chintagunta, 2003; Gordon, 2006; Nair, 2007; Carranza, 2007; Park, 2008) propose dynamic consumer

choice models for aggregate data. Most similar to our work is Melnikov (2001), which was the first

to model dynamics in a logit-based discrete choice model with endogenous prices and aggregate data.

We use a similar reduced-form approximation of the supply side as he proposed. Our model builds on

Melnikov (2001) by adding a full set of persistent random coefficients and repeat purchases over time, all

modeled in an explicitly dynamic framework. An important comparison is to Hendel & Nevo (2006) which

is also a logit-based model with endogenous repurchases and a similar approximation to the formation

of expectations. By using disaggregate data, Hendel & Nevo (2006) are able to identify the parameters

underlying consumer stockpiling. However, their model cannot be used with random coefficients on

variables that vary within product sizes. A final comparison is to Goettler & Gordon (2011) who estimate

supply and demand in the microprocessor industry. Given their focus on endogenous product quality

(i.e., innovation), they solve a full model of the interaction between dynamically optimizing consumers

and the two firms in the industry, whereas we use a reduced-form approximation of the supply side. Their

approach is computationally costly though, and would be difficult to apply to industries with many firms

or products, random coefficients, or unobserved product characteristics. In contrast, we address a context

with a very large and changing number of products, random coefficients, and endogenous prices.

The remainder of the paper is divided as follows. Section 2 discusses the model and method of

inference, Section 3 the data, Section 4 the results, and Section 5 concludes.

2 Model and Inference

In this section, we specify our dynamic model of consumer preferences; explain our method of inference;

and discuss the identification of the parameters.
4Our data contain 343 distinct camcorder models and 4,436 distinct model-months (a figure that is typical for new

durable goods industries) implying that a survey would have to have over 100,000 purchases to measure shares accurately.

The ICR-CENTRIS survey that we use for household level information interviews 4,000 individuals. By the end of our

sample period, less than 15% of people had ever bought a digital camcorder, implying less than 600 total purchases.
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2.1 Model

This subsection specifies the purchase decisions of one consumer; the next discusses aggregating across

heterogeneous consumers. The industry starts at time t = 0. The consumer has an infinite horizon

and discounts the future at rate β. The consumer can benefit from at most one camcorder in a period:

camcorder usage technology is Leontief. We further assume that there are no resale markets.5 Thus, if

the consumer purchases a new camcorder to replace an old one, she costlessly discards the old camcorder

and obtains flow utility from the new camcorder.

The consumer starts time 0 holding the outside good, which gives mean flow utility 0. At some point

in time, she may purchase a camcorder. From this point on she will use the purchased camcorder (while

keeping an eye on new products and prices). Eventually, she might upgrade her camcorder at which

point she scraps the one she had. She continually repeats the process of using her latest model purchased

while looking to potentially upgrade.

To formalize payoffs, at each time period t, there is a set of products j = 1, . . . , Jt. Each product

has a net flow utility fjt and a disutility from price Pjt (resulting from less consumption of the money

good). The consumer chooses one of the available products or chooses to purchase no product. If she

buys product j at time t, then at time t she receives utility of

ujt = fjt − Pjt + εjt, for j = 1, · · · Jt, (1)

where εjt is an idiosyncratic type 1 extreme value term, distributed i.i.d. across products and time

periods, and is meant to capture random variations in the purchase experience that do not persist across

month, due to sales personnel, weather, etc.

A consumer who does not purchase any product at time t receives u0t = f0t + ε0t, the mean flow

utility from the good she currently owns plus another idiosyncratic type 1 extreme value term. The

current flow utility f0t is determined by past purchases. Thus, if time t̂ was her first purchase occasion

and ĵ was her first purchase, then for t < t̂, f0t = 0; and for t > t̂, f0t = fĵt̂ until after she upgrades to

a new product. The consumer does not need to remember the identity or characteristics of the product

she purchases, only its flow utility.

Consider now the consumer dynamic optimization decision. At time t, the consumer is faced with

Jt + 1 choices, and chooses the option that maximizes the sum of the expected discounted value of

future utilities conditional on her information at time t. We assume that the consumer knows all time

t information when making her time t decision but that she has no information about the future values
5We believe that resale markets are small for the new consumer durable goods that we examine given the speed of

technological progress and price reduction.
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of her ε shocks beyond their distribution. Furthermore, the set of products and their prices vary across

time due to entry and exit and changes in prices for existing products. The consumer has expectations

about the evolution of future products, but in most specifications lacks perfect knowledge about them.

We now define the state variables and use them to exposit the Bellman equation. Let ~εt ≡ (ε0t, . . . εJtt),

where we use the right arrow to denote a vector. Then, the purchase decision for consumer i depends

on ~εt, endowment f0t, attributes of currently available products and expectations about future product

attributes. Future product attributes will depend on firm behavior which is a function of consumer

endowments and supply-side factors such as technological progress. Let Ωt denote the current industry

state; Ωt includes the number of products Jt, the price disutility and mean flow utility for each product,

and any other factors that influence future product attributes. We assume that Ωt evolves according to

some Markov process g(Ωt+1|Ωt) that accounts for firm optimizing behavior. Thus, the state vector at

time t is (~εt, f0t,Ωt).

Let g denote densities in general; let the prime symbol (e.g., Ω′) denote next period’s value of a

variable (which allows us to drop the t subscript); let V (~ε, f0,Ω) denote the value function; and let

EV (f0,Ω) =
∫
~ε
V (~ε, f0,Ω)dg~ε denote the expectation of the value function, integrated over ~ε. Then the

Bellman equation is

V (~ε, f0,Ω) = max
{
f0 + βE [EV (f0,Ω′)| f0,Ω] + ε0, max

j=1,...,J
{fj − Pj + βE [EV (fj ,Ω′)| fj ,Ω] + εj}

}
(2)

where “E” denotes the expectation operator, a conditional expectation in this case, and Pj , and fj ,

j = 1, . . . , J and J are functions of Ω. From (2), the first element of the max operator indicates that

the consumer keeps the camcorder she already has (or none), which means we pass f0 into the next

period’s value function. In the second argument of the max operator, we pass fj – the flow utility of her

contemporaneous choice – into the next period’s value function.

To estimate our model, we will ultimately need to solve (2) many times. But Ω has a very large

dimension resulting in a curse of dimensionality. We proceed by using the aggregation properties of the

extreme value distribution to express the Bellman in a relatively simple form, and then make assumptions

on the perceptions of industry evolution based on this form. Specifically, we define the logit inclusive

value to be

δ(Ω) = ln

 ∑
j=1,...,J

exp (fj − Pj + βE [EV (fj ,Ω′)| fj ,Ω])

 . (3)

The logit inclusive value is the ex-ante present discounted lifetime value of buying the preferred cam-
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corder, as opposed to holding the outside option.6 Using this definition, the expectation Bellman can be

written as a simpler problem where the consumer makes a one-time purchase of a product with mean

utility δ(Ω) or continues to hold her existing product. Applying the logit aggregation once more to the

binary choice between all camcorders and holding the existing product, we obtain

EV (f0,Ω) = ln [exp (f0 + βE [EV (f0,Ω′)| f0,Ω]) + exp (δ(Ω))] .7 (4)

Equation (4) shows that Ω only affects EV through its impact on the current δ(Ω) and predictions

of future values of δ(Ω). A simplifying assumption on how consumers form these predictions then can

greatly reduce the complexity of our problem. We assume that consumers predict future values of δ

based only on the current δ, rather than on the full information set Ω.

Assumption 1 Inclusive Value Sufficiency (IVS) If δ(Ω) = δ(Ω̃), then g(δ(Ω′)|Ω) = g(δ(Ω̃′)|Ω̃′) for all

Ω, Ω̃.

The IVS assumption and (4) imply that all states with the same δ(Ω) have the same expected value;

see Proposition 1 in the Appendix for details. Thus, it is sufficient for the consumer to track only

two scalar variables, f0 and δ in order to form their dynamic decisions. This assumption is restrictive:

consider that δ could be high in a period either because there are many products in the market all with

high prices or because there is a single product in the market with a low price. While dynamic profit

maximization might lead these two states to have different patterns of industry evolution, the consumer

will assume these states share the same future. While our assumption of IVS can be interpreted as

a literal assumption on how the industry evolves, it is perhaps more attractive to think of it as an

assumption on how boundedly rational consumers perceive this market. The IVS assumption is valuable,

since we can now replace Ω with δ in the state space, rewriting (4) as

EV (f0, δ) = ln [exp (f0 + βE [EV (f0, δ
′) |δ]) + exp (δ)] , (5)

and (3) as

δ = ln

 ∑
j=1,...,J

exp (fj − Pj + βE [EV (fj , δ′)| fj , δ])

 , (6)

providing a tractable two-dimensional state space.
6Formally, the ex-ante distribution of the preferred camcorder is now distributed δ(Ω) plus a new type 1 extreme value

term. Anderson, De Palma & Thisse (1992); Rust (1987) provide proofs of this statement for static and dynamic models

respectively.
7We omit Euler’s constant from this equation as it does not affect decisions since it is constant.
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Within this context, we assume rational expectations, that the consumer is on average correct about

the future. We choose two functional forms. The simplest is perfect foresight, where the consumer knows

all future values of fj and Pj . This functional form is straightforward: the industry state is t. Moreover,

it is a special case of IVS provided that δ is different at every time period (as would occur if quality were

improving, prices were non-decreasing and the set of products were non-decreasing), as in this case, there

is a one-to-one mapping from t to δ.8 We believe that it is more realistic to assume that the consumer

has only a limited ability to predict future product attributes. Thus, for most of our specifications, we

let consumer perceptions about next period’s δ, g(δ′|δ), be its actual empirical density fitted to a simple

linear autoregressive specification:

δt+1 = γ1 + γ2δt + νt+1, (7)

where νt+1 is normally distributed with mean 0 and unobserved at time t and γ1 and γ2 are incidental

parameters. This assumption will ensure that the consumer is correct, on average, about the improvement

in industry value, as embodied in δ.9

An implication of (7) is that, for 0 < γ2 < 1, consumers expect the δ process to converge towards

an asymptote γ1/(1 − γ2). This asymptote can be interpreted as a long-run steady state of the model.

The assumption of an eventual arrival of a steady state is how we capture an evolving industry with

a stationary dynamic model.10 In our results for the camcorder industry, we find that the market will

eventually arrive at the steady state, but that the arrival will occur well after the end of our data.

Similar assumptions have been used in the existing dynamic literature. Most other papers (Melnikov,

2001; Hendel & Nevo, 2006) specify their analog of δ as a function of the flow utilities of available

products, whereas ours also incorporates the continuation values of holding those products. Since flow

utilities are taken as exogenous and continuation values incorporate endogenous decision-making, the

assumption of (7) may be less palatable in our implementation. Our approach differs because we allow

the characteristics of the products that δ is defined over to affect the continuation value, which means

we cannot separate the continuation values from δ. In this way, our model allows a consumer that

purchases a high-quality product (high fj) to hold it for longer, which affects consumer decision-making

in anticipation.

Importantly, with IVS and rational expectations, the optimal consumer decisions given an industry

environment are defined by the joint solution to the expectation Bellman (5), the logit inclusive value
8In practice, it is more straightforward to compute this specification using t instead of δ as the industry state variable.
9Because of the larger dimensionality of flow utility and prices relative to δ, we can always rationalize the assumption

in (7) with an assumption on fundamentals. See Proposition 2 in the Appendix for details.
10Goettler & Gordon (2011) provide an alternative approach to address a changing environment. They specify a model

that is stationary relative to exogenously advancing technology frontier.
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Figure 1: Simulated evolution of flow utility and delta in a simple example
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(6), and the industry evolution regression (7). While the following subsection discusses computation in

detail, note for now that to compute optimal consumer decisions – for instance, to evaluate counterfactual

firm policies – it is necessary to jointly solve these three equations and not just the Bellman equation.

The reason for this is that a different Bellman equation (as would occur under a counterfactual policy

environment) implies different values of δ which imply different γ coefficients which in turn imply a

different Bellman equation.

To better understand the roles of both δ and IVS, we first evaluate δ in the context of a simple

numerical example of our model, with one product every period and a constant price. We simulate

flow utility to evolve according to an AR(1) process. We choose the AR(1) process and price to obtain

aggregate shares that roughly match the camcorder industry.11 If the consumer were forced to hold a

product indefinitely once she bought it, the mean discounted flow utility net of price from purchasing the

product would be f/(1− β)− P . Figure 1 shows the evolution of this value and δ over 100 month-long

periods. Note that δ is greater than the discounted flow utility net of price because δ incorporates the

ability to upgrade to a new camcorder when features improve. The gap between them shrinks over time

as the option value diminishes. Importantly, δ captures the path of quality increases (and, if they existed,

11The AR(1) process is ft+1 = .0005 + .99ft + νt+1, where ν ∼ N(0, .002); the price term is P = 5; the discount factor

is β = .99; and first period flow utility is f = −0.04. We assume that consumers know price, the AR(1) parameters, and

current f .
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Figure 2: Simulated market share with approximate and true data generating process in simple example
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price decreases) that occur in the data. Note also that discounted flow utility net of price will asymptote

towards a long-run mean that is higher than its starting value, in this case to .05.

A further concern is how well the IVS assumption approximates δ and consumer decision-making.

By assumption, consumers assume that δ evolves according to an AR(1) process. In the example, flow

utility evolves according to an AR(1) process as in Melnikov (2001) and Hendel & Nevo (2006) but

δ does not. To investigate how much bias might occur from this misspecification, Figure 2 shows the

evolution of market share for a consumer who uses the true δ data generating process to make decisions,

and for a consumer who optimizes assuming that δ follows an AR(1) process, jointly solving (5), (6),

and (7). The two time paths of market shares are very close. We take from this the heuristic that if an

industry is evolving rapidly (as in our example and the camcorder industry) then the exact specification

of future expectations will not hugely influence purchase decisions so long as it captures the general

process of evolution. Note that if we consider cases with larger numbers of products, the state space for

the consumer tracking the true flow utilities grows larger whereas the state space for the consumer using

our approximation stays the same, which makes our model more attractive computationally.

We believe that the assumptions that we make capture the first-order feature of the camcorder

industry, that prices are dropping and quality is rising. In addition to the evidence in Figure 2, we

implement the following empirical tests of the empirical validity of IVS:
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1. We test the impact of adding additional state variables. This is similar to the macroeconomics

general equilibrium literature on the impact of heterogeneity (see Krusell & Smith, 1998), which

adds additional moments of the income distribution. Given the potential importance of the number

of products in determining industry evolution, we use J as an additional predictor, so that both δ

and J predict δ′ and J ′.12

2. We test the validity of the AR(1) specification in (7). We construct a moment based on the

assumption of no autocorrelation E [νtνt+1] = 0. We do not impose this moment in estimation but

rather test its validity at the estimated parameters.

3. Using the estimated parameters, we graph ν and δ over time for different simulated consumers.

This allows us to examine graphically whether perceptions of their future values look systematically

biased or not.

2.2 Inference

The previous subsection considered the decision of a single consumer, who is faced with a vintage capital

problem in the spirit of Rust (1987). This subsection discusses aggregation across consumers, which fol-

lows BLP closely. We now assume that there is a continuum of consumers indexed by i. Consumers differ

in their mean flow utility, disutility from price, idiosyncratic shocks, logit inclusive values, expectation

Bellman, and expectations processes for the future. All of these terms should now be indexed by i, i.e.,

fijt, Pijt, εijt, δi(Ωt), EVi and (γ1i, γ2i), respectively. In this subsection, we refer to δi(Ωt) as δit.

We assume that flow utility and price fit in the random coefficients framework developed by BLP.

Specifically, we let fijt = xjtα
x
i + ξjt. Here, xjt are observed characteristics of the camcorder (e.g.,

size, zoom, LCD screen size); ξjt is the unobserved (to the econometrician) characteristic and αxi are

consumer i’s coefficients on observed characteristics. The ξjt plays the role of our econometric error term,

and explains why market shares deviate from those predicted by observable elements of the model.13 We

interpret it as unobserved quality. For a given model, observed characteristics are fixed over time in

our data, but we do not constrain the unobserved characteristic to remain fixed over time. Note that

a consumer who buys at time t obtains the same flow utility fijt every period thereafter, implying that

she is receiving ξjt as the unobserved characteristic in every future period in which she uses the product.

12We specify two linear regressions for the state evolution that are similar to (7). The linear regressions have δ′ and

ln(J ′) as dependent variables and include both aggregate state variables as regressors.
13Note that ε is not an econometric error term since our assumption of a continuum of consumers implies that the data

are assumed to reflect the integral over ε values.
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Also, we let Pijt = αpi ln(pjt), where pjt is price. The parameters αxi and αpi are time-invariant.

Let αi denote consumer coefficients αxi and αpi . We assume that αi has mean α ≡ (αx, αp) and

variance matrix Σ. Our empirical implementation uses a diagonal Σ matrix, although correlated matrices

fit within this framework. Define also the mean flow utility of product j in period t as

Fjt = xjtα
x + ξjt, j = 1, . . . , Jt. (8)

Note that fijt = Fjt + (αxi − αx)xjt where (αxi − αx) ∼ N(0,Σ).

The structural parameters of our model are thus (α,Σ, β) . We do not attempt to estimate β because

it is notoriously difficult to identify the discount factor for dynamic decision models (see Magnac &

Thesmar, 2002). This is particularly true for our model, where substantial consumer waiting can be

explained by either little discounting of the future or moderate preferences for the product. Thus, we set

β = 0.99 at the level of the month leaving only α and Σ to estimate.

Following BLP, we specify a GMM criterion function

G (α,Σ) = z′~ξ (α,Σ) ,

where ~ξ (α,Σ) is the vector of unobserved product characteristics (ξjt) for which the predicted product

shares equal the observed product shares conditional on parameters, and z is a matrix of exogenous

variables, described in detail in Subsection 2.3 below. We estimate parameters to satisfy(
α̂, Σ̂

)
= arg minα,Σ

{
G (α,Σ)′WG (α,Σ)

}
, (9)

where W is a weighting matrix. Thus, to estimate (α,Σ), we need to solve for ~ξ (α,Σ).

In order to solve for ~ξ (α,Σ), we first have to solve for market shares. As in Section 2.1, the consumer

decision problem is defined by the fixed points to three equations: the expectation Bellman equation

(5), the logit inclusive value (6), and the industry evolution regression (7). Based on these equations, we

solve for market shares by starting at time 0 with the assumption that all consumers hold the outside

good.14 Iteratively for subsequent time periods, we solve for consumer purchase probabilities given the

distribution of flow utility of holdings using (10), and update consumer holdings at each period. Using

(5), the probability that a consumer with holding fi0t purchases good j is the aggregate probability of

purchase (the first term) times the probability of purchasing product j conditional on purchase (the

second term):

ŝj(fi0t, δit) =
exp(δit)

exp (EVi(fi0t, δit))
× exp (fijt − Pijt + βE [EVi (fijt, δ′it)| fijt, δit])

exp(δit)
. (10)

14A strength of our data set is that it reaches back essentially to the start of the industry, so we can assume that all

consumers start with nothing. In another setting, we would have to make assumptions or estimate consumer holdings at

the start of the time horizon. For an example, see Schiraldi (2011).

14



We then integrate over consumers i to compute predicted market shares for each j and t. We perform

the integration via simulation, as in BLP.

These equations define the market share conditional on the vector of mean flow utilities ~F . To define

the moment condition (as opposed to computing market shares), we need to recover ~ξ. This requires

solving a fourth equation, which finds ~F that make shares for each product at each time period match

those in the data. This equality is justified by the assumption of a continuum of consumers and is

analogous to the contraction mapping defined by BLP:

Fnewjt = F oldjt + ψ ·
(

ln(sjt)− ln
(
ŝjt

(
~F old, αp,Σ

)))
,∀j, t, (11)

where ŝjt
(
~F old, αp,Σ

)
is the predicted market share of the model, sjt is observed market share in the

data, and ψ is a tuning parameter used in the computation that we generally set to 1− β.

In practice, we solve these four equations via successive approximations, beginning with guesses of

δit, EVi(fi0t, δit), (γ1i, γ2i) and Fjt and circulating between the implicit equations until we find a fixed

point in all four. We found computational benefits to taking only a small number of iterations of each

equation before moving to another, although it would be possible to “nest” them, for instance, by solving

(5), (6), and (7) to convergence before taking a step in (11).15

Using the ~F that is the solution to these four equations, we compute ~ξ (α,Σ) from (8), and then

construct our objective function in (9). As we discuss in more detail in the appendix, we discretize the

state space and use importance sampling to draw from the distribution of consumers. Also, as in Nevo

(2000b), we can solve for the optimal αx as a function of the other parameters using matrix algebra

techniques. Thus, we perform non-linear search only over αp and Σ. All computer code is available from

the authors upon request.

An important issue is whether these implicit functions have a unique fixed point, which is necessary

to guarantee identification of the model. We have used a variety of different starting values and have

always obtained convergence to the same solution. However, we cannot prove uniqueness of the fixed

point. Berry (1994) proves uniqueness for models where all products are substitutes. A variant of our

model where consumers can only purchase once and where every current and future product attribute

including the extreme value shocks are known would satisfy substitutability. In contrast, in most dynamic

models, products may be complements with future products. As an example of a complementary between

a product in the current period and two periods forward, if we exogenously lower price of a current period
15Judd & Su (2010) and Dube, Fox & Su (2011) suggest using MPEC procedures to solve this problem rather than

successive approximations. This would involve numerically solving a constrained minimization problem where we minimize

(9) subject to (5), (6), (7) and (11). Conlon (2010) used MPEC to successfully solved a variant of our model.
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product, we increase sales at the expense of sales in the next period. However, with innovation, it may

lead to higher sales in two periods as more consumers will value an upgrade. Hence, we employ:

Assumption 2 For any vector of parameters (αp,Σ), there is a unique vector ~F such that ln(~s) =

ln
(
~̂s
(
~F , αp,Σ

))
.

2.3 Identification and instruments

For the supply side, we assume that products arrive according to some exogenous process and that their

characteristics evolve exogenously as well. Firms have rational expectations about the future evolution of

product characteristics. After observing consumer endowments and xjt and ξjt for all current products,

firms simultaneously make pricing decisions. Firms cannot commit to prices beyond the current period.

These supply side assumptions are sufficient to estimate the demand side of the model. A fully specified

dynamic oligopoly model would be necessary to understand changes in industry equilibrium given changes

in exogenous variables.

For a given model (dynamic or static), our identification strategy is similar to BLP and the literature

that follows. Heuristically, the increase in market share of product j associated with a change in a

characteristic of j identifies the mean of the parameter distribution α. The products that j draws market

share from identifies Σ. For instance, if product j draws market share from all products, then consumer

heterogeneity is captured by the i.i.d. term and Σ is estimated to be small. If j draws market share

mostly from products with similar characteristics, then consumers differ in their value of characteristics,

which leads us to estimate Σ to be large. For the dynamic model, substitution patterns across periods

in addition to within periods identify parameters. For instance, a particularly low price on a low-quality

product early in the sample draws in consumers interested in low quality products, and reduces their

demand later in the sample. Thus, the endogenous determination of demand across periods aids in

identification.

As is standard in studies of market power since Bresnahan (1981), we allow price to be endogenous to

the unobserved term (ξjt) but we assume that product characteristics are exogenous. This assumption

is justified under a model in which product characteristics are determined as part of some technological

progress which is exogenous to the unobserved product characteristics in any given period. As in Bres-

nahan and BLP, we do not use cost-shifters as instruments for price and instead exploit variables that

affect the price-cost margin. Similar to BLP, we include the following variables in z: all of the product

characteristics in x; the mean product characteristics for a given firm at the same time period; the mean

product characteristics for all firms at the time period; and the count of products offered by the firm and
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by all firms. These variables are meant to capture how crowded a product is in characteristic space, which

should affect the price-cost margin and the substitutability across products, and hence help identify the

variance of the random coefficients and the price coefficient. While one may question the validity of these

instruments, they are common in the literature. We consider the development of alternative instruments

a good area for future research.

Note that our model allows for consumers to purchase products repeatedly over time, but one cannot

identify from aggregate sales whether purchases are by new consumers or upgraders. Formally, the model

is still identified since it does not introduce any new parameters over the static model (except for the

discount factor β, which we do not estimate). However, in order to identify the extent of repeat purchase

from data, we incorporate household survey data on penetration in some specifications. The change in

the number of households owning a camcorder over a given period relative to sales will identify the extent

of repeat purchasing in a dynamic model.16

3 Data

We estimate our model principally using a panel of aggregate data for digital camcorders.17 The data are

at the monthly level and, for each model and month, include the number of units sold, the average price,

and other observable characteristics. We observe 383 models and 11 brands, with observations from

March 2000 to May 2006. These data start from very early in the product life cycle of digital camcorders

and include the vast majority of models. The set of models, price and quantity data were collected by

NPD Techworld which surveys major electronics retailers and covers 80% of the market.18 Models in

our data have the same observed characteristics over time. We create market shares by dividing sales by

the number of U.S. households in a year, as reported by the U.S. Census.

To create our final data set, we exclude from the choice set in any month all models that sold fewer
16Several recent papers relax important assumptions in our model and address the related concerns about identifica-

tion. Schiraldi (2011) allows for a resale market, transactions costs, and for the depreciation of the good after purchase.

Shcherbakov (2009) includes a switching cost between products. Gowrisankaran, Park & Rysman (2011) models a network

effect with a complementary good, as well as households that hold multiple products.
17We have obtained similar data for digital cameras and DVD players and previous versions of this paper estimated

those industries. Basic features of the results are similar across industries. We focus on camcorders because we believe this

product exhibits the least amount of endogenous complementary goods or network effects (such as titles for DVD players or

complementary products for producing pictures for digital cameras), which would complicate our analysis. Incorporating

network effects into our framework is the subject of current research.
18NPD sales figures do not reflect on-line sellers such as Amazon and they do not cover WalMart. This could potentially

bias welfare results if these vendors disproportionately sell particular types of products.
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Figure 3: Number of brands and models over time
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than 100 units in that month. This eliminates about 1% of sales from the sample. We also exclude from

the choice set in any month all products with prices under $100 or over $2000 as these products likely

have very different usages. This eliminates a further 1.6% of sales from the sample. Our final sample

has 4,436 observations and includes 343 models and all 11 brands.

Figure 3 shows the number of models and brands over time. Both variables have a clear upward

trend. The number of models varies from 29 in March 2000 to 98 in May 2006. There is substantial

entry and exit – the median length of time in the data for a model is 14 months, while the mean and

standard deviation are 12.9 and 7.3 months respectively. Among the brands, Canon, JVC, Panasonic

and Sony are available in every month, with Hitachi, Samsung and Sharp available in most months.

In order to understand the dynamics of prices and quantities, Figure 4 shows total sales and average

prices for camcorders in our final sample over time. Camcorders exhibit striking price declines over our

sample period while sales increase. Even more noticeable than the overall increase in sales is the huge

spike in sales at the end of each year due to Christmas shopping. Note that while quantity changes over

the Christmas season, there is no visible effect on prices or the number of models.

Our model needs to explain the huge impact of the Christmas season on sales, which is challenging in

a dynamic context. We proceed with two different methods. For most of our specifications, we address

the Christmas spike issue by seasonally adjusting our data: we multiply sales by a separate constant for
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Figure 4: Prices and sales for camcorders
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each month, constant across years. The constants were chosen so that the sales by month summed over

the years in the data were the same for each month and so that total sales for each year were unchanged.

Figure 4 also shows the seasonally-adjusted sales data, which are, by construction, much smoother than

the unadjusted data.

For one of our specifications, we add a monthly characteristic to each product. It is unlikely that

products bought over Christmas are inherently more valuable in the future. Thus, the monthly charac-

teristic adds to utility at the time of purchase, rather than adding to fijt. This specification modifies

the Bellman equation to have the month of the year as an additional state variable, and modifies the

regressors in the industry evolution regression (7) to allow for month-of-year dummies instead of just

a constant term. This specification adds 11 parameters, one for each month but January, all of which

are estimated non-linearly. The extra state variables and parameters vastly increase the computational

complexity of our estimation which is why most of our specifications seasonally adjust quantities instead

of adding this characteristic.

We collected data on several important product characteristics from on-line resources. We observe

the number of pixels that the camera uses to record information, which is an important determinant

of picture quality. We observe the amount of magnification in the zoom lens and the diagonal size of
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the LCD screen for viewing shots.19 We observe the width and depth of each camera in inches (height

was often unavailable), which we multiply together to create a “size” variable. We also record indicators

for whether the camera has a lamp, whether it can take still photos and whether it has “night shot”

capability, an infrared technology for shooting in low light situations. Finally, we observe the recording

media the camera uses – there are four mutually exclusive media (tape, DVD, hard drive and memory

card) – which we record as indicators.

Many characteristics improve on average over time. Two of the most important are the size of the

camcorder and the pixel count. Figure 5 graphs simple averages of these characteristics across models by

month in our final data set. Both show dramatic improvement, with pixel counts roughly doubling and

size (in terms of square inches of footprint) falling by more than half. We also have several characteristics

that display less dramatic improvement. Figure 6 exhibits three dummy variables over time: the presence

of a lamp, the presence of night shot, and the ability to take still photographs. While all grow over time,

still photo capability is widely available from the start and an included lamp never becomes widely

available. Nightshot makes the largest gain. Overall, the industry appears to deliver the most significant

improvement over time through decreased camcorder size and increased pixel count (notably, in our

results section, we find these to be the most important drivers of consumer preferences as well).

Figure 7 presents the evolution of recording media. Early camcorders all recorded to tape, typically

small tapes under the DV standard. An important innovation appearing about halfway through was

the ability to record directly to DVD instead, so consumers could easily watch their recordings on their

TV sets. Flash drive camcorders allow for smaller camcorders, but the memory capacities of these were

very low during the time of our data set. We also observe some camcorders that use hard drives near

the end of our data set. These could also be small and they had large capacity, but were expensive. By

the end of the data set, less than 60% of camcorders use tape. We take from these figures that quality

improvement is potentially as important as the price declines for this industry.20

Finally, in some specifications we incorporate household level data on ownership, often referred to

as penetration, to better pin down repeat purchasing behavior. These data come from ICR-CENTRIS,

which performs telephone interviews via random-digit dialing. ICR-CENTRIS completes about 4,000

interviews a month, asking which consumer electronics items a household owns.21 Figure 8 shows our
19In estimation, we log all continuous variables and treat any screen of less than .1 inch as equivalent to a screen of .1

inch.
20Two characteristics that we did not graph are zoom and LCD screen size. The average camera has optical zoom

capability of 14X, and has an LCD screen with a 2.5 inch diameter.
21Data on how many camcorders a household owns or data on the time between purchases would be even more directly

useful for understanding repeat purchases. However, a lengthy search of public and private data sources did not turn up
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Figure 5: Pixel count and camera size over time
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Figure 6: Indicator variables over time
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Figure 7: Recording media over time
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ICR-CENTRIS data, which contain the percent of households that indicate holding a digital camcorder

in the third quarter of the year for 1999 to 2006. It also shows the year-to-year change in this number

and, as reported by NPD, the new sales of camcorders.

The penetration data show rapid growth in penetration early on in the sample but no growth by

the end. The evidence from the penetration and sales data are not entirely consistent, perhaps due to

differences in sampling methodology: in 3 of the 6 years, the increase in penetration is larger than the

increase in new sales. We also believe the ICR-CENTRIS finding of virtually no new penetration after

2004 to be implausible. Nonetheless, the slowdown in penetration but continued growth in sales together

suggest that there are substantial repeat purchases by the end of our sample. Because of the issues

surrounding the penetration data, we limit its use to one specification.

4 Results and implications

We first exposit our results, then provide evidence on the fit of the model, discuss the implications of

the results and finally use our results to analyze dynamic COLIs.
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Table 1: Parameter estimates

Parameter
Base dynamic 

model

Dynamic 
model without 
repurchases

Static model
Dynamic model 
with micro‐
moment

(1) (2) (3) (4)

Mean coefficients (α)
Constant ‐.092 (.029) * ‐.093 (7.24)  ‐6.86 (358)  ‐.367 (.065) *

Log price ‐3.30 (1.03) * ‐.543 (3.09)  ‐.099 (148)  ‐3.43 (.225) *

Log size ‐.007 (.001) * ‐.002 (.116)  ‐.159 (.051) * ‐.021 (.003) *

Log pixel .010 (.003) * ‐.002 (.441)  ‐.329 (.053) * .027 (.003) *

Log zoom .005 (.002) * .006 (.104)  .608 (.075) * .018 (.004) *

Log LCD size .003 (.002) * .000 (.141)  ‐.073 (.093)  .004 (.005) 

Media: DVD .033 (.006) * .004 (1.16)  .074 (.332)  .060 (.019) *

Media: tape .012 (.005) * ‐.005 (.683)  ‐.667 (.318) * .015 (.018) 

Media: HD .036 (.009) * ‐.002 (1.55)  ‐.647 (.420)  .057 (.022) *

Lamp .005 (.002) * ‐.001 (.229)  ‐.219 (.061) * .002 (.003) 

Night shot .003 (.001) * .004 (.074)  .430 (.060) * .015 (.004) *

Photo capable ‐.007 (.002) * ‐.002 (.143)  ‐.171 (.173)  ‐.010 (.006) 

Standard deviation coefficients (Σ1/2)

Constant .079 (.021) * .038 (1.06)  .001 (1147)  .087 (.038) *

Log price .345 (.115) * .001 (1.94)  ‐.001 (427)  .820 (.084) *

Standard errors in parentheses; statistical significance at 5% level indicated with *.  All models 
include brand dummies, with Sony excluded.  There are 4436 observations.
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Figure 8: Penetration and sales of digital camcorders

0

0

.05

.0
5

.1

.1

.15

.1
5

Fraction of U.S. households

Fr
ac

tio
n 

of
 U

.S
. h

ou
se

ho
ld

s

2000q3

2000q3

2001q3

2001q3

2002q3

2002q3

2003q3

2003q3

2004q3

2004q3

2005q3

2005q3

2006q3

2006q3

Penetration (ICR-CENTRIS)

Penetration (ICR-CENTRIS)

New sales (NPD)

New sales (NPD)

New penetration (ICR-CENTRIS)

New penetration (ICR-CENTRIS)

4.1 Parameter estimates

We present our parameter estimates in Table 1. Table 1 contains four columns of results. The first

column of results provides the parameter estimates and standard errors from our base specification of

the model presented in Section 2 with two random coefficients, one on price and the other on the constant

term. The base specification reports results that are generally sensible in magnitude and sign. As we

would hope, price contributes negatively to utility for virtually everyone, with a base coefficient of −3.30

and a standard deviation on the random coefficient of .345. Both are precisely estimated. A person with

mean tastes would obtain a negative gross flow utility from a camcorder with all characteristics zero

(relative to the outside option), with a mean constant term of −.092. The standard deviation on the

constant term in the consumer population is .079, indicating that there is substantial variation in the

gross flow utility from a camcorder. Again, both coefficients are statistically significant. In comparing

the magnitudes of these coefficients, recall that price is paid once, while all the other coefficients relate to

flow utility at the level of the month, and hence the price coefficients should be roughly 1/(1− β) = 100

times the magnitude of the other coefficients as compared to a static model.

Most of the characteristics of digital camcorders enter utility with the expected sign and significance,

including camcorder size, pixels, zoom, LCD screen size, night shot capability and the presence of a lamp.

any such information.
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The three included media dummies are all positive. These are relative to the flash drive technology, which

is generally considered the worst during the time period of our data set. The one coefficient whose sign

is not intuitive is photo capability, which is estimated to be negative and significant. It is hard for our

utility model to generate a positive coefficient on this feature since it varies little and its diffusion slightly

reverses over time.

All of the estimated parameters on characteristics are smaller in absolute value than the parameter

on the constant term. These characteristics either are indicators or have a standard deviation less than

1, implying that these features are important, but that the vertical differentiation between camcorders

is small relative to the differentiation from the outside good.

A potential concern in our context is the restrictiveness of the logit error assumption. Logit errors

(and most i.i.d error terms) typically imply unrealistic welfare gains from new products (see Petrin,

2002). Ackerberg & Rysman (2005) argue that this feature implies that logit-based models will perform

poorly in contexts where consumers face different numbers of products over time. Ackerberg & Rysman

recommend addressing this problem by including the log of the number of products, ln(Jt), as a regressor,

as if it were a linear element in Fjt. Finding a coefficient of 0 implies the logit model is well-specified,

whereas a coefficient of −1 implies “full-crowding,” so there is no demand expansion effect from variety.

In unreported results, we find that other parameters change little and that the coefficient on ln(Jt) is

−.013. Although the coefficient is statistically significant, it is very close to zero and suggests that the

i.i.d. logit draws are a reasonable approximation. Concerns with the implications of logit draws motivate

Berry & Pakes (2005) and Bajari & Benkard (2005) to propose discrete choice models that do not include

logit i.i.d. error terms, but given this coefficient estimate, we do not further pursue this issue.

Column 2 provides estimates from the dynamic model where individuals are restricted to purchase at

most one digital camcorder ever. This specification yields results that are less appealing than our base

specification. In particular, the mean price coefficient drops in magnitude by a factor of 6 and loses its

statistical significance. Many of the characteristics enter mean utility with an unexpected sign, including

pixels, LCD screen size and lamp and many fewer mean coefficients are significant than in the base

specification. The standard deviation coefficients are very small and statistically insignificant. We apply

a formal test of model selection. Rivers & Vuong (2002) derive a test statistic that has a standard normal

distribution under the null hypothesis that the two models fit the data equally well (in this case, in the

sense of the GMM objective function).22 The value of the test statistic is 5.55, which strongly rejects

the single purchase model in favor of our base model. The base model finds different results than the
22Following Jaumandreu & Moral (2008), we base our test statistics for the non-nested test on the consistent first-stage

GMM estimates.
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single-purchase model, although we show below that our base model implies very few repeat purchases.

This follows because in the single-purchase model, the magnitude of the mean price coefficient is much

smaller than the standard deviation of the extreme value distribution. Had this estimated coefficient

been applied to the base model, many people would purchase a camcorder most months. This sharp

difference in purchase patterns between the two models explains why the coefficient estimates can be so

different.

Column 3 follows BLP and estimates a traditional static random coefficients discrete choice speci-

fication. To compare these coefficients with the base specification, one would have to multiply all the

coefficients from this specification, except for the coefficients on price, by 1/100. The static model yields

many unappealing results, including a barely negative price coefficient with an enormous standard error

and many coefficients on characteristics that are of the opposite sign from expected. We similarly perform

a non-nested test of this model against the base model and obtain a test statistic of 5.7, which strongly

rejects the static model in favor our base model. The introduction discusses possible explanations for

why the static model does so poorly, such as differences between dynamic and static responses to price

changes, and tension between cross-sectional and dynamic predictions in the two models.23

As we show below, our base specification implies very little repeat purchase. Thus, we use the

penetration data in the form of a micro-moment (see Petrin, 2002) as a check on our base results.

Specifically, we use the penetration data to construct an additional moment that is the difference between

the increase in household penetration between Sep. 2002 and Sep. 2005 predicted by the model and by

the penetration data.24 We chose to use only this one difference across many years to mitigate the noise

present in the data. Column 4 reports the result.

There are two main differences between these results and the base specification. First, the standard

deviation of the random coefficient on price more than doubles. That increases the set of consumers who

care about price very little. Second, the coefficients on the characteristics increase, often becoming 2

or 3 times as large. The parameters that increase the most are on the characteristics that improve the

most over time. For instance, there are large parameter changes on size, zoom and pixel count and small

changes on the presence of a lamp or a photograph option. Hence, the model generates repeat purchase

by creating a set of price insensitive consumers and increasing the importance of characteristics that

improve over time.
23An issue with comparing our model to “the static model” is that different researchers would implement the static model

in different ways. Perhaps alternative specifications would perform better.
24See Berry, Levinsohn & Pakes (2004) and Petrin (2002) for details on calculating weighting matrices when combining

micro moments with aggregate moments.
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In Table 2, we present a number of robustness checks. Column 1 explores the importance of the

IVS assumption by including ln(Jt) as an additional state variable. The results are very similar to our

base specification, lending support to the IVS assumption. The second column estimates a model with

perfect foresight where the market stops evolving at the last period in our data so that the market

structure available there is exactly what is available ever after. Although it leads to a smaller mean

price coefficient and virtually no heterogeneity around this mean, the model generates mostly the same

qualitative results. Hence, it does not appear that our particular specification of expectations is crucial

in generating our results.

From column 3, the addition of two extra random coefficients results in parameter estimates for mean

coefficients that are very similar to the base specification. In particular, the sign of the mean coefficients

on price and characteristics are all the same as in the base specification, and statistical significance is

similar across specifications, except that the random coefficient on price is now close to 0. Moreover, the

two new random coefficients are estimated to be small and statistically insignificant.

While models with the log of price tend to fit data better, it is easier to theoretically justify a model

with linear price from the perspective of consumers with heterogeneous incomes. Column 4 estimates

our model with a linear price. Again, the qualitative results look similar.

Column 5 estimates a model with single purchase and no random coefficients, which is the model

considered by Melnikov (2001). We solve it based on our method rather than the multi-stage model that

Melnikov proposes. The results are not particularly appealing, with an insignificant price coefficient and

numerous negative coefficients on characteristics. We find similar (unreported) results using Melnikov.

Column 6 estimates the model with monthly effects as described in Section 3. The utility function

for this specification includes (unreported) month dummies for utility at the time of purchase, which are

.720 for December, .250 for November and which range from −.146 to .104 for the other months. Only

the December effect is statistically significant. This model fully exploits the cross-month substitution

for identification purposes since the data used in this specification does not normalize away any monthly

variation. Nonetheless, the estimated coefficients on price and characteristics are remarkably similar to

the base specification.

We do not address a number of issues which might be important in diffusion contexts, such as

consumer learning or neighborhood effects. These would be difficult to address with aggregate data.

However, a simple way to capture some of these issues is to use a time trend. In unreported results, we

experimented with a quadratic time trend. The coefficients on time came out economically unimportant

and the remaining parameters were very similar.
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Figure 9: Average estimation error (ξjt) by month

-.
01

-.
00

5
0

.0
05

.0
1

J an00 Jan02 Jan04 Jan06

Mean xi Zero base

4.2 Implications of the results

We first assess the implications of the results by reporting the simple average of the unobserved quality

ξjt for each month in Figure 9 using the estimated parameters from the base specification, Table 1

column 1. Note that ξjt is the econometric unobservable. The figure does not indicate any systematic

autocorrelation or heteroscedasticity of the average error over time. This finding is important because

there is no reduced-form feature such as a time trend to match the diffusion path. If one were to match,

for instance, a product with a typical S-shaped diffusion path with a simple linear regression, we would

expect to have systematic autocorrelation in ξjt. However, Figure 9 does not indicate any such pattern.

We also look at the extent to which the model generates repeat purchases. Figure 10 plots the fraction

of shares due to repeat purchases for the base model as well as for the model with the micro-moment,

Table 1, column 4. Under the base model, repeat purchases account for a very small fraction of total

sales. Even in the final period, which has the largest fraction, repeat purchases account for only about

.25% of new sales. The underlying reason why there are not more repeat purchases is that the coefficients

on characteristics other than the constant term are small relative to the utility contribution from the

price and the constant terms, implying that the net benefit to upgrading is low.

This finding is not consistent with the evidence, albeit imperfect, from the ICR-CENTRIS household

penetration survey, that new sales are higher than new penetration. Figure 10 also plots the share of
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Figure 10: Evolution of repeat purchase sales
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repeat purchases for the specification with the micro-moment. Since this model fits both the increase in

penetration of 4.9% from Sep. 2002 to Sep. 2005 and the new sales of 5.85% over the same time period,

it predicts much higher repeat purchases than the base model. In particular, it predicts that over 25%

of new sales are attributable to repeat purchases by the end of the sample.

Finally, we plot the evolution of the logit inclusive value δit in order to compare the sources of

heterogeneity in our results. Figure 11 plots δit for 3 sets of the random coefficients. We choose draws

for the price and constant terms that are at the 80-80, 20-20, and 80-20 percentiles of their respective

distributions. For all consumers, values are increasing close to linearly over time. As the linearity should

make evident, the estimated asymptotes of the AR(1) processes are reached in the far future for the

reported draws (and indeed all draws that we use). Thus, consumers expect the market to improve for

the foreseeable future.

The value that the 20-20 consumer places on the market at the end of the sample is far below the value

that the 80-80 consumer places at the beginning. That is, the heterogeneity in valuation of the product

swamps the changes over time. The second two lines allow us to compare consumers that differ only

in their price sensitivity. Again, we see that the heterogeneity in the constant term is more important.

That follows for two reasons: first, the lines are relatively close to their counterparts with different price

draws and second, there is little compression over time even though prices are dropping. Because it is
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Figure 11: Evolution of δit over time
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hard to see the level of compression, we plot the difference between the 80-80 and 80-20 lines separately;

the difference decreases by 15% over the sample period.

Figure 12 shows the difference between δi,t+1 and the period t prediction of this value, for a consumer

with draws in the 50th percentile for both random coefficients. There do not appear to be any significant

deviations in the AR(1) process from our assumed functional form. To verify this formally, we estimate

the value of an additional moment based on the null hypothesis of no serial correlation in νit, E[νitνit+1] =

0, using the median consumer. We find that this moment has a mean of −.474 with a standard deviation

of 2.95 implying that we cannot reject the null hypothesis that the residuals are not serially correlated.

Finally, Figure 13 investigates the magnitudes of the dynamic responses by examining the time path

of digital camcorder sales under three different assumptions: the time path generated by the estimated

model (also the actual time path of sales), the time path that would occur if consumers assumed that

their logit inclusive values for digital camcorders remained equal to its current value in all future periods,

and the time path that would occur if firms were faced with all consumers having no digital camcorders

in each period, instead of high valuation consumers having purchased the product and hence generally

having a higher reservation utility for buying, as occurs in our model.

We find that dynamics, both durability and forward-looking behavior, explain a very important part

of the sales path. If consumers did not assume that prices and qualities changed, then sales would be
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Figure 12: Difference between δi,t+1 and its period t prediction
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Figure 13: Evolution of digital camcorder sales under different assumptions
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Figure 14: Industry dynamic price elasticities
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somewhat declining over time, instead of growing rapidly over the sample period, as consumers would not

perceive the option value from waiting, and by the end of the sample period, many high-value consumer

would already one a camcorder. If instead, we eliminate consumer holdings each period but consumers do

not anticipate this taking place, the sales path would be similar to the base case until roughly two years

into our sample, and then grow rapidly relative to the base case. This result is due to high valuation

consumers who otherwise would be out of the market. Note that roughly 90% of the market had not

purchased any digital camcorder by the end of our sample period.

4.3 Price elasticities

This subsection analyzes dynamic price elasticities, also using the coefficients in Table 1 column 1. We

compare three price changes: a temporary (one-month) 1% price increase at time t̄ that consumers know

to be temporary; a temporary increase that consumers believe to be permanent; and a permanent price

increase. In all cases, the price increase is unexpected before time t̄. When consumers believe the increase

to be temporary, we compute the time t̄ expectations of δi,t̄+1 using the baseline δit̄ in Equation 6; for the

perceived permanent price change, we use the realized δit̄. For all specifications, we keep the estimated

γ1i and γ2i coefficients.25 That is, we assume that the beliefs about the future evolution of products and
25The price elasticities from the static model are all virtually 0, so we do not include them on the figures.
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Figure 15: Dynamic price elasticities for Sony DCRTRV250
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prices, as well as the value function, conditional on the space, stays the same.

Figure 14, which displays the industry elasticity with t̄ set to the median period of the sample (April

2003), shows that a temporary price change results in twice as big a response as a permanent one.

Specifically, a 1% price increase leads to a contemporaneous decrease in sales of 2.55% when consumers

believe it to be temporary and a decrease of only 1.23% when they believe it to be permanent. In addition,

the response over the following year is also larger, but in the opposite direction: when consumers believe

the temporary price change to be temporary, sales will increase by .54% of the time t̄ sales for the

following 12 months compared to an increase of .22% under the temporary but believed-permanent price

change.

Figure 15 considers the own price elasticity for the Sony DCRTRV250, which had the largest market

share in the median period. Here, the difference in response between a temporary and permanent price

change is small: 2.59% versus 2.41%. This result follows because consumers switch to another product

rather than delay their purchase when one product changes price permanently.

Strikingly, we find that the temporary price elasticities are almost the same for the industry as a

whole and for the Sony DCRTRV250. However, the sources of the elasticity are different: the industry

elasticity is due to consumers waiting for the price to drop whereas the product elasticity is due to

consumers switching to other products. Thus, the long-run industry temporary price elasticity is much
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smaller than for the product. In the industry case, consumers recover over 20% of the sales reduction

in later periods, while virtually none is recovered for the product. The fact that expectations matter

crucially in determining the impact of price changes suggests that expectations-setting will pay a big role

in firm strategies.

4.4 Cost-of-living indices

We develop a COLI for our model and compare it to widely-used COLIs. All indices are calculated with

seasonally adjusted data. In order to avoid dealing with differing marginal utilities of money based on

different tax and money good quantities, our dynamic COLI is constructed from the specification with

linear price, Table 2 column 3. In performing this exercise, we hope to inform the discussion of how to

improve current BLS methods.26

The canonical price index It used by the BLS is a Laspeyres index that specifies

It+1

It
=

∑Jt

j=1 sjtpj,t+1∑Jt

j=1 sjtpjt
. (12)

We compute a BLS-style price index from (12) using the prices and market shares (based on quantities)

in our data, linked over time by model names. As is standard, we normalize the index to 100 for March

2000.27 An important challenge in constructing the BLS index is determining pj,t+1 for products that

drop out of the market. One approach is to apply the average price decline for products that appear in t

and t+ 1 to products that drop out in t+ 1. This introduces the well known “new goods” problem since

the exiting product probably would have declined more quickly than average. Pakes (2003) proposes

using a prediction of pj,t+1 from a hedonic regression, which addresses this problem. We also construct

the Pakes (2003) price index. Interestingly, we find little evidence of a new goods problem. The indices

are about the same: the BLS price index falls from 100 to 12.7 and the Pakes index falls from 100 to

14.5, slightly higher.28

26We do not mean to propose our model as a method that the BLS should consider for constructing indices as it would

probably be infeasible given the time constraints under which the BLS operates. We focus on indices used by Pakes (2003)

and the BLS but there have been other proposals for indices in dynamic settings. Reis (2009) develops a COLI from a

model with durable goods. Contrary to our approach, he assumes that there are perfect resale markets, that consumers

make a continuous purchase choice and implicitly, he considers established markets where diffusion is not taking place. His

focus is on uncertainty in prices. He provide excellent citations on dynamics in price indices. Housing is an important area

where durability has been a concern. See, for instance, Benkard & Bajari (2005).
27The BLS must deal with a number of challenging issues associated with the way enumerators collect data that we do

not address here. See Pakes (2003) or more generally, Bureau of Labor Statistics (2007), Chapter 17.
28To implement the Pakes index, we specify a model of log price as a linear function of product characteristics (except
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Figure 16: Average monthly value from camcorder market
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Formally, both the CPI and the Pakes index are price indices, not COLIs. However, they are both

motivated by their relationship to the COLI and in practice, are used as such.29 In general, one would

construct COLIs by multiplying the price indices from (12) by the the expenditures in the sector. This

is problematic for the camcorder sector since sales are rapidly growing and prices rapidly falling over

time. Thus, we proceed by including the outside good as a product with an invariant price in (12). We

then multiply the resulting index by the share-weighted average price in the initial period ($961), divide

by 100 and subtract the resulting term from $961. This new index then provides the change in income

relative to the first period necessary to buy the same basket of products. We plot the CPI and Pakes

versions of this index in Figure 16. The indices start at $0 by construction and end six years later at

$1.74 for the BLS COLI and $1.72 for the Pakes COLI. That is, from the BLS COLI, a tax of $1.74 per

household in May 2006 would result in an average utility equal to the Mar. 2006 average utility, with

smaller taxes necessary for earlier months. The relatively small values reflect the fact that market shares

for camcorders are low.

The BLS and Pakes COLIs are designed to provide the income change necessary to buy a camcorder

of equal quality in any period. However, this may deviate from the income change necessary to hold

for the three dummy variables on media, which show little variation within the month) and run OLS separately for each

month. Using annual regressions instead of monthly regressions seems to generate more stable regressions and finds a Pakes

index that falls by more (14.0 as compared to 16.6 for the BLS in December 2005), but we must drop the last four months

of data because there is no following year.
29Bureau of Labor Statistics (2007) states that “the concept of COLI provides the CPI [Consumer Price Index]’s mea-

surement objective (p. 2).”
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utility constant as willingness-to-pay changes due to evolving consumer holdings and expectations of the

future. We use our structural model to evaluate the price changes that would hold utility constant over

time.

We construct the COLI from our dynamic model as follows: we imagine a social planner who sets

a sequence of taxes (or subsidies) that are contingent on the aggregate industry state and that holds

the average flow utility constant over time assuming that consumers follow optimizing behavior. This

sequence of taxes forms a compensating variation measure because it results in the average expected value

function being constant over time. This approach avoids a number of difficulties that might make a COLI

for forward-looking consumers intuitively unappealing.30 Note that the aggregate-state-contingent taxes

do not change camcorder purchase behavior in our model. We make one final adjustment which is to

assume that a consumer who buys a product that costs pjt in period t pays a perpetual amortized price

of (1 − β)pjt forever after, instead of paying pjt at time t.31 Note that a consumer pays the amortized

price even after replacing the good. To eliminate this property, one could adjust β by the hazard of

replacing the good.

We plot our dynamic COLI in Figure 16.32 The dynamic index starts at $0 by construction and

ends six years later at $1.27. The dynamic, BLS and Pakes COLI lines are very close for the first two

years and then diverge substantially over the remaining four years. The dynamic COLI shows a clear

concavity whereas the BLS COLI continues approximately linearly over the whole sample. Thus, we find

the “new buyer problem” (Aizcorbe, 2005) to be empirically important. Sales and prices are moving

linearly which causes standard COLIs to move linearly as well. However, relatively low value people are

purchasing at the end of the sample and so overall, surplus is tapering off. Note that a BLS COLI that

started in a later time period would have a lower slope as the average price would be lower than $962,

illustrating how difficult it is to use a price index as a COLI for camcorders. Although the slope would

be different, the shape would remain the same – and different from our dynamic COLI.
30Potential problems are 1) current price declines might benefit every consumer, even those who will not buy for several

periods; 2) surprising price drops might affect welfare changes much more than anticipated ones; and 3) future income

adjustments based on a COLI affect welfare today. See Reis (2009) and Bajari, Benkard & Krainer (2005) for different

approaches.
31If we measured flow utility using the entire price rather than the amortization scheme, we would find that average flow

utility was less than the outside good utility throughout our sample since payments from new purchasers swamp flow from

those who hold the product. Although theoretically consistent, we found this unappealing.
32We also computed a COLI using the static BLP estimates. It was much larger than the other indices, and peaked at

$6.92. It did not appear reasonable.
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5 Conclusion

This paper develops new methods to estimate the dynamics of consumer preferences for new durable

goods. Our model allows for rational expectations about future product attributes, consumers with

persistent heterogeneity over time, endogeneity of price, large and changing numbers of products, and

the ability for consumers to upgrade to new durable goods as features improve. We estimate our model

using a panel data set of prices, quantities and characteristics for the digital camcorder industry. We use

our model to measure the welfare impact of new durable goods industries and to evaluate dynamic price

elasticities for these industries.

We find substantial heterogeneity in the overall utility from digital camcorders. Our results also show

that much of the reason why the initial market share for digital camcorders was not higher was because

consumers were rationally expecting that the market would later yield cheaper and better players. We

find that industry short-run elasticity of demand is 2.55 for transitory price shocks, but that the long-

run (12 month) elasticity is only 2.01, as many consumer delay purchase during the transitory shock. In

contrast, short-run elasticity is only 1.23 for permanent price shocks. Long-run elasticities for individual

products are substantially larger than market elasticities. Last, we find that the digital camcorder

industry is worth an average of $1.27 more per household per month in 2006 than in 2000 and that

standard COLIs would overstate the gain in welfare due to the “new buyer problem.”

Our estimates of consumer preferences that account for dynamics are generally sensible. A variety of

robustness measures show that the major simplifying assumptions about the dynamics in the model are

broadly consistent with the data. In contrast, a static analysis performed with the same data yields less

realistic results. Thus, we believe that our results show that dynamic estimation of consumer preferences

for durable goods industries is both feasible and important for analyzing industries with new goods.

A Propositions

Proposition 1 Assume that Assumption 1, IVS, holds. Consider states Ω and Ω̃ for which δ(Ω) = δ(Ω̃).

Then, EV (f0,Ω) = EV
(
f0, Ω̃

)
.

Proof We prove the proposition for the case of finite horizons and then take appropriate limits to address

the case of infinite horizons. Consider first a model where the product life and market end at period T

and define EV Tt (f0,Ω) to be the value function at time t in this case. We will prove the proposition by

induction.
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First, the base case. In period T , we can write equation 4 as:

EV TT (f0,Ω) = ln (exp(δ(Ω)) + exp(f0)) .

Since ΩT only enters EV TT through δ, by the second assumption of the proposition, the valuations in

period T are equal: EV TT (f0,Ω) = EV TT (f0, δ(Ω)) = EV TT (f0, δ(Ω̃) = EV TT (f0, Ω̃).

Now the inductive step. For some t such that t ≤ T assume that EV Tt (f0,Ω) = EV Tt (f0, Ω̃) for

all f0 and Ω for which δ(Ω) = δ(Ω̃). We would like to show that EV Tt−1(f0,Ω) = EV Tt−1(f0, Ω̃) when

δ(Ω) = δ(Ω̃). We find

EV Tt−1(f0,Ω) = ln
(
exp(δ(Ω)) + exp(f0 + βE[EV Tt (f0,Ω′)|f0,Ω])

)
.

The first parts inside the ln are the same because δ(Ω) = δ(Ω̃) by construction. The second parts have

the same conditional density because they have the same distribution of δ′ by the IVS assumption and

thus the same conditional density of EV Tt (f0,Ω′) by the inductive assumption. Thus, we have proved

the inductive step.

This proves the finite horizon case. The infinite horizon case holds because

EV (f0t,Ωt) = lim
T→∞

EV Tt (f0t,Ωt) = lim
T→∞

EV Tt (f0t, Ω̃t) = EV (f0t, Ω̃t).

Because of discounting and the fact that characteristics are bounded, the limit exists and hence the

equality is true. We drop the subscript t after taking the limit in T because the problem is then

stationary. �

Proposition 2 Assume that the possible values for Ω are elements of a finite set and consider any set

of contingent probabilities for the evolution of the logit inclusive value, δ. Then, there is at least one set

of values (fj(Ω′), Pj(Ω′)|Ω), j = 1 . . . J for flow utility and price respectively as a function of the state

such that this set of values together with optimizing behavior imply the contingent probabilities for δ.

Proof Let K denote the (assumed finite) number of potential values of Ω. Let k index a particular

value so that fjτk denotes the realization of fjτ for the kth value of Ωτ . Let ~δ denote the vector of logit

inclusive values under consideration for each time period and potential state. We must define fjt and Pjt

in each of the potential states k to generate the appropriate δ(Ωt). There will generally be a continuum

realizations of fjt and Pjt that could generate any given δ(Ωt). We (arbitrarily) choose the following: let

Pjt = 0 always, let product 1 at any time period τ have some contingent flow utility f1τk and let other

products have a utility flow of −∞.
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Let ~f1 denote the vector of flow utilities for each time period and potential state. Now, define a

function m : <∞×<K → <∞×<K that maps from time periods and potential states to the same space,

conditional on a vector of logit inclusive values. We can write m(·|~δ). We define m element by element.

Let the value for one particular element, mτk(~f1|~δ), be the value of f1τk that makes the logit inclusive

value for the τkth case equal to δτk holding constant the other flow utilities at ~f1.

First, we show that m defines a valid function by showing that the above definition of mτk(~f1|~δ)
defines a unique value. Define the scalar-valued function h(x|~f1) as the δτk that would occur with flow

utilities of ~f1 for every element but the τkth one and flow utility of x for the τkth one. Note that h

is continuous in x: for a sufficiently low x it is unboundedly low (since the consumer will have to hold

the bad product for one period); for a sufficiently high x it is unboundedly high; and it is monotonically

increasing in its argument. Thus there is a unique x such that h(x|~f1) = δτk. This unique value,

h−1(δτk|~f1) defines mτk.

Now, we show that m has a fixed point. As m is infinite dimensional, we would like to apply Schauder’s

fixed point theorem. We must show that m is continuous and that it lies in a convex, compact set. The

function m is continuous as h−1 is continuous in the argument ~f1. To show convexity and compactness,

let δmin and δmax denote the minimum and maximum the elements of ~δ respectively. Then, no element

of ~f1 will be larger than δmax(1− β), since purchasing a product with a flow utility of δmax(1− β) and

never purchasing another product will already give mean expected utility δmax and the actual decision

allows for this option without imposing it. Thus, the elements of ~f1 are bounded above. Moreover, if

the domain is bounded above by δmax(1− β) then the range is bounded below by δmin − β(1− β)δmax,

since the worst possible f1τk – which occurs if δτ is δmin and δτ+1 is δmax with certainty – yields this

value. Thus, ~f1 ∈ [δmin − β(1− β)δmax, δmax(1− β)]∞, which is bounded and closed in R∞ and hence

a compact set by Tychonov’s theorem. By Schauder’s fixed point theorem, g has a fixed point.

By construction, the flow utilities of a fixed point of m generate ~δ as the logit inclusive values.�

B Discretization and sampling

To perform the iterative calculation, we discretize the state space (fi0, δi) and the transition matrix.

Specifically, we compute the value function by discretizing fi0 into 20 evenly-spaced grid points and δi

into 50 evenly-spaced grid points. We calculate the transition matrix by simulation as well, with 20

draws approximating the distribution of νt. We specify that δi can take on values from 20% below the

minimum computed value to 20% above the maximum and assume that evolutions of δi that would put
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it above the maximum bound simply place it at the maximum bound.33 We have examined the impact

of easing each of these restrictions and found that they have very small effects on the results.

To aggregate across draws, we need to simulate draws for αi. A simple method is to sample standard

multidimensional normal base draws ᾱi ∼ φ and scale the base draws using αi = Σ1/2ᾱi + α. Since our

estimation algorithm is very computationally intensive and computational time is roughly proportional

to the number of simulation draws, we further use importance sampling to reduce sampling variance, as

in BLP.

Specifically, let ŝsum
(
ᾱi, ~F , α

p,Σ
)

denote the sum of predicted market shares of all camcorders at

any time period for an individual with parameters (αp,Σ) , mean flow utility ~F and base draw ᾱi. Then,

instead of sampling from the standard multinomial normal density we sample from the density

g(α̌i) ≡
ŝsum

(
α̌i, ~F , α

p,Σ
)
φ(α̌i)∫

ŝsum

(
α̌, ~F , αp,Σ

)
φ(α̌)dα̌

, (13)

and then reweight draws by

wi ≡

∫
ŝsum

(
α̌, ~F , αp,Σ

)
φ(α̌)dα̌

ŝsum

(
α̌i, ~F , αp,Σ

) ,

in order to obtain the correct expectation. Our importance sampling density oversamples purchasers,

which will reduce the sampling variance of market shares. As in BLP, we sample from the density g in

(13) by sampling from the standard normal density φ and using an acceptance/rejection criterion. We

compute ŝsum using a reasonable guess of (αp,Σ) and the accompanying ~F that solve equations 5, 6, 7

and 11 as described in Section 2.2.

In our estimation, we use 40 importance sampled draws; results for the base specification do not

change substantively when we used 100 draws. Finally, instead of drawing i.i.d. pseudo-random normal

draws for φ, we use Halton sequences to further reduce the sampling variance (see Gentle, 2003).
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