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Abstract

In this paper I consider games in which multiple informed principals simultaneously
compete to in�uence the decisions of a common agent. I focus on the problem of character-
izing the equilibrium outcomes of such games. I �rst show that, to solve this problem, one
can invoke neither Myerson�s Inscrutability Principle, which holds in agency games with
one informed principal, nor the Extended Taxation Principle, which holds in common-
agency games with uninformed principals. I then provide two characterizations of the
equilibrium outcomes: one for games in which the principals delegate the �nal decisions
to the agent, and one for games in which they participate with the agent in making such
decisions.
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1 Introduction

Common-agency games model settings in which multiple principals non-cooperatively contract
with a single agent.1 These games have proved useful to study many economic problems, such
as the possibility of tacit collusion and its implications for antitrust regulation, the consequences
of multilateral lobbying on government policies, and the optimality of common vs. exclusive
retailers in wholesale trade. Until very recently (Martimort and Moreira (2010)), the literature
has focused on common-agency games (hereafter, games for short) in which principals have no
private information. Many environments, however, correspond to games with informed prin-
cipals. For example, Bernheim and Whinston (1986a) consider menu auctions in which the
bidders (the principals) submit bidding schemes to the auctioneer (the agent) who then freely
chooses a revenue-maximizing allocation. In their model, the bidders are uninformed, although
it seems natural to allow for informed bidders as in standard auction settings. More recently,
Martimort and Moreira (2010) consider a model of public-good provision in which contributors
(the principals) privately know their valuations of such a good and o¤er its provider (the agent)
schemes that tie contributions to production.
The present paper studies the problem of how to characterize the outcomes� de�ned as maps

from players�types (their information) to allocations� that can arise as equilibria of games with
informed principals.2 In these games, each principal commits to an arbitrary mechanism that
speci�es an allocation� e.g., a contribution for the public good� as a function of how she and the
agent communicate with the mechanism itself. Since the principals are informed, I consider both
games in which each principal can communicate with her mechanisms (as in Myerson (1983)),
and games in which only the agent can do so. I refer to the �rst case as non-delegation games,
and to the second case as delegation games.
Characterizing the outcomes of these games raises several di¢ culties because standard results

in the literature do not apply when principals are informed. From the literature on games with
uninformed principals, we know that we cannot invoke the Revelation Principle to characterize
the agent�s behavior.3 This is because his behavior with one principal depends not only on his
exogenous type, but also on the endogenous information that he learns by interacting with the
other principals. Furthermore, in this paper I show that with informed principals two other well-
known principles fail: the Inscrutability Principle (Myerson 1983) and the Extended Taxation
Principle� also known as Menu Theorem (Peters (2001)) or Delegation Principle (Martimort
and Stole (2002)).4

The Inscrutability Principle holds in non-delegation games in which there is only one principal
and the principal is informed.5 It says that, when characterizing the outcomes of such games,
there is no loss of generality in assuming that the principal commits to the same mechanism

1As a convention, throughout the paper I use feminine pronouns for the principals and masculine ones for the
agent.

2In contrast, Martimort and Moreira (2010) focus on a speci�c game and examine the e¢ ciency properties of
a particular class of its equilibria.

3For the Revelation Principle, see Gibbard (1973), Green and La¤ont (1977), and Myerson (1979). For the
inapplicability of the Revelation Principle to games with multiple principals, see Katz (1991), McAfee (1993),
Peck (1997), Epstein and Peters (1999), Peters (2001), and Martimort and Stole (2002).

4For the Taxation Principle, see Rochet (1985) and Guesnerie (1995).
5As I will explain later, in delegation games the Inscrutability Principle does not apply even if there is only

one informed principal.
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independently of her type, thereby disregarding the possibility that she may want to choose
di¤erent mechanisms to convey her information. This is not true in games with multiple informed
principals. On the one hand, as noted, with multiple principals the agent�s behavior with, say,
principal 1 depends not only on his exogenous but also on his endogenous information about, say,
principal 2. On the other hand, with informed principals the agent�s endogenous information
includes also what principal 2 conveys about her type with her choices of a mechanism. So, if
principal 2 can let these choices depend on her types, she may be able to induce a behavior
of the agent with principal 1 that otherwise cannot arise in equilibrium. This means that, in
contrast to the games with one informed principal, in games with multiple informed principals
signaling through mechanisms represents an essential strategic component.
As far as the Extended Taxation Principle is concerned, it says that one can characterize

all the outcomes of a game in which uninformed principals compete in arbitrary mechanisms,
by studying the equilibria of a simpler game in which the principals can o¤er only menus of
allocations and delegate the �nal choices to the agent. This Principle is important because it
provides a relatively practical framework to study all outcomes of a much more complicated
game. Moreover, it represents perhaps the main solution suggested in the literature to the
failure of the Revelation Principle, also because it avoids the in�nite regress problem that arises
if one allows each principal to use mechanisms that depend on the agent�s exogenous type as
well as his endogenous information about the other principals.6

The Extended Taxation Principle fails for the following reason when principals are informed.
As noted, to sustain some outcomes, the principals need to control the information revealed up
front by their choices of mechanisms. At the same time, they also need to restrict the options
that their communication with the agent can induce, by committing to mechanisms that map
to restricted menus of allocations. Clearly, in a delegation game each principal can achieve
the second goal by simply o¤ering the agent her desired menu and letting him directly choose
from it. However, with general mechanisms each principal can restrict the agent�s choices to
the same menu using di¤erent communication protocols, which may be essential to signal her
desired amount of information. On the other hand, in a non-delegation game, with general
mechanisms each principal can directly participate with the agent in choosing an allocation.
But this participation is impossible when the principal must delegate the agent to choose from
a menu. Thus, the principal may want to restrict such a menu to the allocations that she likes
better given her type, but to do so she may have to reveal more information than she wants to.
Building on these remarks about the Inscrutability and the Extended Taxation Principles, I

provide two characterizations of the equilibrium outcomes of games with informed principals�
one for delegation games and one for non-delegation games. In both cases I focus on (weak)
Perfect Bayesian Equilibria in which, conditional on their types, the principals do not random-
ize over mechanisms. Equilibria with this property represent the focus of (almost) the entire
literature on games with uninformed principals� to the best of my knowledge, there is no paper
that actually constructs an equilibrium with random choices of mechanisms. Moreover, from
an applied perspective it seems hard to imagine, for instance, that bidders in a menu auction
randomize over complicated bidding schemes or that competing sellers randomize over schemes
of price-quantity pairs.

6For more details on this point, see Peters (2001), Martimort and Stole (2002), and Pavan and Calzolari
(2010).
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In the case of delegation games, I show that we can recover all outcomes that arise when prin-
cipals compete in arbitrary mechanisms by �nding the equilibria of the following �signal-menu
game.�In this new game, the principals o¤er menus of allocations� as suggested by the Extended
Taxation Principle� and also privately send a �cheap talk�signal to the agent. Moreover, each
principal�s set of signals equals her set of types.
To characterize the outcomes of non-delegation games, I construct a di¤erent game in which

each principal now o¤ers the agent a menu of direct mechanisms. For each menu, all DMs
depend only on the principal�s reports about her type and restrict such reports to a subset
of her possible types. Such menus allow the agent to act on his exogenous and endogenous
information by selecting di¤erent DMs, without causing any in�nite regress. At the same time,
the DMs allow each principal to retain all her ability to participate with the agent in choosing
an allocation. Furthermore, by letting a principal commit to reporting only a subset of her
possible types, the restricted DMs allow her to signal that her true type belongs to that set.
Finally, I show that we can recover all outcomes of the original non-delegation game by �nding
the equilibria of the new game in which, after o¤ering a menu of DMs, each principal truthfully
reports her type to the DM chosen by the agent.
This characterization suggests the following interpretation of non-delegation games with

informed principals. In such games, it is as if each principal o¤ers the agent several instruments�
the DMs� that he can use to screen her types. After observing all o¤ers, the agent chooses a
DM for each principal, in a way that may depend on his type and on how he decides to screen
the other principals. Finally, each principal truthfully reveals her type to the chosen DM. In
other words, it is as if the principals accept to become �agents of the agent�in a way that they
partially control with their initial o¤ers.
Related Literature: As noted, this paper relates to the literature on mechanism design

with one informed principal (Myerson (1983)) and on common-agency games with uninformed
principals (Peters (2001); Martimort and Stole (2002); Pavan and Calzolari (2010)).
This paper also relates to a recent literature on multilateral contracting games in which

multiple, privately informed, parties sign mutual contracts (Peters (2010); Peters and Szentes
(2011); Celick and Peters (2011)). This literature has suggested several characterizations of the
outcomes of multilateral contracting games. These games, however, di¤er from common-agency
games in one crucial aspect that makes those characterizations inapplicable to the settings con-
sidered in the present paper. In multilateral contracting games, each party can communicate
with all other parties and design contracts that depend on others�contracts� examples include
international trade agreements and tax treaties. In common-agency games, instead, each princi-
pal can neither communicate with the other principals, nor make her mechanisms directly depend
on their mechanisms� for example, because of antitrust regulation. This di¤erence signi�cantly
changes the strategic nature of the games. In multilateral contracting games, each party can
directly punish another party if, for instance, she deviates from a collusive behavior. On the
other hand, in common-agency games any principal has to rely on the agent�s collaboration and
superior information to punish a deviating opponent.
The paper is organized as follows. Section 2 describes the model. Section 3 is about the

failure of the Inscrutability Principle. Section 4 is about the failure of the Extended Taxation
Principle. Section 5 contains the main characterization results. The last section concludes. All
proofs are in the appendix.
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2 The Model

I begin by describing the class of common-agency games on which I focus in this paper. The
novelty of this class consists in allowing the principals to have private information.
Players and Information: There are N > 1 principals, denoted by i = 1; : : : ; N , and

a common agent, denoted by i = 0. Before the game begins, each player i can privately
receive some information in the form of a type �i 2 �i, where �i is a �nite set� as usual,
� = �Ni=0�i and ��i = �j 6=i�j with elements � and ��i. I assume that j�ij > 1 for at least one
principal i. Finally, the players commonly know that the types are distributed according to the
joint probability distribution b over �. This distribution need not feature independence across
players.
Allocations and Mechanisms: Principals have full commitment and bargaining power.

Each principal o¤ers the agent a mechanism to select an allocation for their bilateral relationship.
The set of feasible allocations for principal i is the �nite set Xi. For example, think of xi as
a quantity together with its price in a relationship between a buyer and a seller, or a piece of
regulation together with a kickback in a relationship between a politician (the agent) and a
lobbyist (the principal).
To choose an allocation, principal i and the agent communicate using a certain language,

which I model with �nite sets of messages.7 Speci�cally, the set of messages that principal i can
send to the agent is Pi, and the set of messages that she can receive from the agent is Ai. I
assume that j�ij � jPij, so that principal i can communicate what she privately knows; similarly,
I assume that j�j � jAij for every i = 1; : : : ; N , so that the agent can communicate to each
principal what he privately knows as well as what he may learn about all principals by interacting
with them. Formally, an indirect mechanism of principal i is a map mi : Ai�Pi ! Di = �(Xi)
that associates to each pair of messages (ai; pi) a decision di 2 Di, which is a lottery over Xi.
For future reference, denote the range of a mechanism mi by Ra(mi). The space of all indirect
mechanisms of principal i is Mi.8

The agent can choose to interact only with some principals by rejecting the mechanisms
o¤ered by the other principals. To model this possibility, I assume that each set Ai contains a
�rejection�message �ai such that sending �ai to any mechanism mi is equivalent to rejecting it.
Note that mi (�ai; �) still depends on the messages of principal i, because she may still be able to
a¤ect the �nal decision in Di even without the collaboration of the agent.
As is usual in common-agency games, the principals cannot directly interact among them-

selves. This means that, for every principal i, mi cannot directly depend on m�i, nor can xi
depend on x�i; moreover, principals cannot directly communicate among themselves.9

Timing: The game has two periods. In the �rst period, all principals simultaneously and
non-cooperatively o¤er the agent their mechanisms. The agent observes all mechanisms, but
no principal can observe the mechanisms of the other principals� i.e., this is a model of pri-

7Of course, the assumption that the sets of messages are �nite entails some loss of generality. However, it
ensures that continuation equilibria exist after any pro�le of mechanisms o¤ered by the principals (see De�nition
1).

8To simplify notation, let M= �Ni=1Mi, A = �Ni=1Ai, P = �Ni=1Pi, and D = �Ni=1Di, with generic elements
m � (m1; : : : ;mN ), a � (a1; : : : ; aN ), p � (p1; : : : ; pN ) and d � (d1; : : : ; dN ).

9As I explained in the introduction, these properties are an important di¤erence between my model and those
of Peters (2010), Peters and Szentes (2011), and Celik and Peters (2011).
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vate contracting. In the second period, both the agent and each principal simultaneously,10

non-cooperatively, and privately send their messages to the respective mechanisms, which inde-
pendently deliver an allocation x. The players then enjoy their payo¤s and the game is over.
Strategies and Updated Beliefs: Conditional on her type �i, in period 1 each principal

chooses a mechanismmi, and in period 2 she chooses a message pi given mi. As explained in the
Introduction, my analysis focusses on equilibria in which principals choose their mechanisms
as a deterministic function of their types. Therefore, a (behavior) strategy of principal i is
a pair of (measurable) functions (�i; �i), where �i : �i ! Mi and �i : �i � Mi ! �(Pi).
Hereafter, I refer to �i as the o¤er strategy and to �i as the communication strategy of principal
i. With regard to the agent, he chooses a pro�le of messages a as a function of his type �0 and
the o¤ered mechanisms m. A (behavior) strategy of the agent is then a (measurable) function
� : �0 �M ! �(A). Hereafter, I refer to � as the communication strategy of the agent.
Finally, after observing a pro�le of o¤ered mechanisms, the agent will update his belief about

the principals� types. For each m and �0, I denote this updated belief with the conditional
probability � ( �j �0;m) on ��0.
Preferences and Payo¤s: Each player is an expected-utility maximizer. The vN-M utility

function of principal i is ui : X ��! R and that of the agent is v : X ��! R. Using these
functions, let V (�; �; �0;m; �) be the expected payo¤ to the agent from the communication
strategy pro�le (�; �) = (�; (�i)Ni=1), given that his type is �0, he observes m, and he updates
his beliefs according to �. Similarly, let Ui

�
�; �; �i;mi; ��i

�
be the expected payo¤ to principal

i from (�; �), given that her type is �i, she o¤ers mi, and her opponents play ��i. Finally, let
U i (�; �; �; �i) be the initial expected payo¤ to principal i from the strategy pro�le � = (�; �; �),
given that her type is �i.
Equilibrium Concept: I denote the game that I have just described by G. I focus on

(weak) PBE of G in which principals play deterministic o¤er strategies as I de�ned above.
Hereafter, the term �equilibrium of G�refers to such a PBE.

De�nition 1 (Equilibrium) The strategy pro�le �� = (��; ��; ��) together with the belief ��

is an equilibrium of G if and only if:
1. For every �0 2 �0, m 2M , and a 2 A,

V (�� (�0;m) ; �
�; �0;m; �

�) � V (a; ��; �0;m; ��) ;

2. For every i = 1; : : : ; N , �i 2 �i, mi 2Mi, and pi 2 Pi,

Ui(�
�; ���i; �

�
i (�i;mi) ; �i;mi; �

�
�i) � Ui(��; ���i; pi; �i;mi; �

�
�i);

3. For every i = 1; : : : ; N , �i 2 �i, and mi 2Mi,

U i(�
�
�i; �

�
i (�i) ; �

�; ��; �i) � U i(���i;mi; �
�; ��; �i);

4. Whenever possible, the belief �� satis�es Bayes rule given �� and b.11

10Although no principal i can observe m�i at any stage in the game, one could consider the possibility that
principals choose their messages after observing the agent�s messages. Allowing for this possibility, however,
adds no further generality to the analysis, as I will explain after presenting Theorem 2.
11Formally, let ��(��0) = �Ni=1��i (�i) and 1[�] be the indicator function of the event [�]. Then, for every � and
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As is common in the literature, I assume that an equilibrium of G exists.12 Also, to denote
a pro�le of communication strategies (�; �) that satis�es conditions 1 and 2 in De�nition 1
given �, I will use the term �continuation equilibrium�of G. Note that, given any pro�le � and
o¤ered mechanisms m, a continuation equilibrium always exists because the message spaces are
�nite. So, for any pro�le of mechanisms that the principals o¤er in the �rst period, the players�
behavior in the continuation of the game is always well de�ned.
Non-Delegation and Delegation Games: In the game G, each principal can send mes-

sages to her mechanisms. This possibility allows the principal to a¤ect the �nal decisions,
together with the agent, in the second period of the game. For this reason, hereafter I will
refer to the game G as a �non-delegation game.� However, in some economic environments of
interest (see, e.g., Martimort and Moreira (2010)), the principals have to completely delegate
the �nal decisions to the agent. To model this situation, I consider a class of games in which
the outcomes of each mechanism can depend only on the agent�s messages.

De�nition 2 (Delegation Game) The common-agency game G is a delegation game� denoted
by Gd� if, for every i = 1; : : : ; N , every mechanism mi 2 Md

i satis�es (1) mi : Ai ! Di, and
(2) mi(ai) = �di for some ai 2 Ai.

As in the game G, each principal i must allow the agent to reject her mechanism mi by sending
some message that leads to a �default�decision �di (e.g., no trade). Since in Gd the principals
play no role after o¤ering their mechanisms, there is no communication strategy for them. The
notion of equilibrium in De�nition 1 naturally extends to Gd.
Social-Choice Functions: My aim here is to characterize the outcomes that can arise as

equilibria of the interaction between the principals and the agent. I represent such outcomes as
social-choice functions f : �! �(X).

3 Failure of the Inscrutability Principle

The so called Inscrutability Principle was �rst stated by Myerson in his 1983 seminal paper and
is a fundamental result in the literature on mechanism design with one informed principal (see
also Maskin and Tirole (1990, 1992)). Using Myerson�s own words, the Inscrutability Principle
says: "there is no loss of generality in assuming that all types of the principal should choose the
same mechanism, so that his [...] choice [...] will convey no information." (p. 1774) Myerson
considered a setting in which the informed principal can send messages to her mechanisms and
therefore may not entirely delegate the �nal decisions to the agent. In this respect Myerson�s
setting is similar to the non-delegation game G.
The intuition behind the Inscrutability Principle is as follows. For simplicity, suppose that

each type of the principal o¤ers a di¤erent mechanism, thereby revealing itself up front. After

m, the updated belief �� must must satisfy

��(��0j �0;m)
nP

�0�0
1[��(�0�0)=m]b(�

0
�0
�� �0)o = 1[��(��0)=m]b(��0j �0).

12See Peters (2001), Martimort and Stole (2002), Pavan and Calzolari (2010), Celik and Peters (2011), and
Peters (2011).
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observing a mechanism, the agent replies by sending some messages that, together with the
principal�s messages, determine some �nal decision. The key observation here is that, conditional
on the information revealed by the principal�s o¤er, the agent�s choices of messages depend
only on his predetermined exogenous type. Therefore, if the principal knew the agent�s type,
she could replicate� on her own and without having to reveal any information up front� the
di¤erent decisions that her types were originally implementing with that particular type of the
agent by o¤ering di¤erent mechanisms. To induce the agent to reveal his type, the principal
can commit to a single direct mechanism that works as follows: (1) the agent and the principal
report one type each, and (2) for every pair of reports, the mechanism delivers the same decision
that the reported types were implementing through the original mechanisms. It is easy to see
that, under this new mechanism, truthful reporting is optimal for the agent if the principal
behaves truthfully (and vice versa). So, the new uninformative mechanism allows the principal
to implement the same decisions that she was implementing by revealing her information up
front.13

The Inscrutability Principle is extremely useful because it allows one to completely disregard
that the informed principal may use her choice of a mechanism as a signalling device. It is
therefore important to know whether it also applies to games with multiple informed principals.
If so, we could safely neglect the signalling role of the mechanisms and assume that each principal
follows the same o¤er strategy independently of her type. The game G would then be essentially
the same as a standard game with uninformed principals: As in a standard game, the mechanisms
of each principal would respond to the agent�s messages with a potentially random allocation,
except that now this randomness may depend on the communication strategy and type of the
principal. The analysis of G would then be dramatically simpler.
Unfortunately, when the agent simultaneously interacts with multiple informed principals,

the Inscrutability Principle fails. This happens because, conditional on the information revealed
by principal i�s o¤er, how the agent communicates with i may now depend not only on his
exogenous type but also on his endogenous information about i�s opponents, which includes
their o¤ers and how he communicates with them. Furthermore, the agent�s communication with
principal i�s opponents� and hence with i herself� may change depending on the information
revealed by principal i�s o¤ers. Because of this interdependence, if in equilibrium principal
i reveals some information up front, then the agent can induce a social-choice function that
exhibits correlation between i�s information and the allocations with all principals. However,
the agent clearly cannot induce the same correlation if principal i reveals no information up
front. The next example illustrates these points.

Example 1 (Failure of the Inscrutability Principle) There are two principals. Principal
1 has two equally-likely types: �1 =

�
�1; �1

	
with b(�1) = 1=2. Principal 2 and the agent are un-

informed: j�0j = j�2j = 1. For each principal there are two possible allocations: X1 = fx1; x1g
and X2 = fx2; x2g. The sets of messages are P1 = fp

1
; p1g, A1 = fa1; a1g, A2 = fa2; a2g;

for simplicity, I neglect P2. Table 1 reports the players�payo¤s; in each cell, the �rst entry is
principal 1�s payo¤, the second is principal 2�s, and the third is the agent�s.

13The Inscrutability Principle clearly relies on the principal�s ability to send her messages to her mechanism,
so as to tailor the �nal decision to her type for any report of the agent. Therefore, the Principle does not apply
to settings with only one principal who is informed but has to delegate the �nal decisions to the agent. A fortiori,
this inapplicability extends to the delegation game Gd.
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�1 x2 x2
x1 4; 3; 3 1;�1; 0
x1 1; 0; 0 �1; 2; 1

�1 x2 x2
x1 �1; 3;�1 1;�1; 0
x1 1; 0; 0 4; 2; 3

Table 1: Payo¤s of Example 1

Note that the agent�s preference over X1 depends on x2. So, from the point of view of principal
1, the agent can have endogenous information to the extent that the �nal x2 depends on the
mechanism of principal 2 and on how the agent communicates with it. Moreover, the agent�s
preference over X1 �X2 depends on �1. Therefore, if the agent learns �1 by observing principal
1�s o¤ers, his endogenous information about x2 can change.
I will construct an equilibrium that sustains the social-choice function f �(�1) = (x1; x2) and

f � (�1) = (x1; x2). Note that f
� �matches�both x1 and x2 with principal 1�s type.

In this equilibrium, principal 2 o¤ers a mechanism m�
2 such that m

�
2(a2) = x2 and m

�
2(a2) =

x2. Principal 1 o¤ers the mechanism m1 if her type is �1, and m1 if her type is �1, where

m1 (a; p) =

8<:
x1 if (a; p) = (a1; p1)
x1 if (a; p) = (a1; p1)
x1 otherwise

and m1 (a; p) =

8<:
x1 if (a; p) = (a1; p1)
x1 if (a; p) = (a1; p1)
x1 otherwise

.

Since m1 and m1 di¤er, principal 1 reveals her type up front. For m1 2 fm1;m1g, her commu-
nication strategy is �1

�
�1;m1

�
= p1 and �1 (�1;m1) = p1. Finally, when the agent is o¤ered m

�
2

and either m1 or m1, his communication strategy is

�(m1;m
�
2) =

�
(a1; a2) if m1 = m1

(a1; a2) if m1 = m1

. (1)

Note that according to (1), the agent selects di¤erent allocations by communicating to m�
2 de-

pending on whether principal 1 o¤ers m1 or m1. For other mechanisms m2 and m1 =2 fm1;m1g,
one can extend �, �1, and � so that they constitute a continuation equilibrium. In particular,
�xing (�1; �1), extend � as follows: if m2 allows the agent to choose only x2, then he sends
the message a1 to m1 and a1 to m1; if instead m2 allows the agent to choose only x2, then
he sends message a1 both to m1 and to m1. It is easy to see that the strategy (�1; �1) admits
no pro�table deviation given � and �2� principal 1 is getting her maximal payo¤ of 4. Prin-
cipal 2 is also maximizing her payo¤ given (�1; �1) and �. Finally, given the updated belief
�(�1

��m1) = � (�1jm1) = 1, � also admits no pro�table deviation.
There is, however, no equilibrium of G and no mechanism m1 with the property that both

types of principal 1 o¤er m1 and the equilibrium social-choice function is f �. If both types of
principal 1 o¤er the same mechanism, the agent does not learn her type. Therefore, even if
principal 2 allows the agent to choose between x2 and x2, he cannot match the two principals�
allocations as required by f �: With positive probability, he will choose either x2 when �1 = �1,
or x2 when �1 = �1.

We have therefore reached the following important conclusion. In contrast to non-delegation
games with one informed principal, when studying the outcomes of non-delegation games with
multiple informed principals one can no longer disregard that, in equilibrium, the principals may
use their choices of mechanisms to signal their types.
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4 Failure of the Extended Taxation Principle

In this section, I turn my attention to the literature on common agency with uninformed prin-
cipals. An important result in this literature is the so called Extended Taxation Principle, or
Menu Theorem (Peters (2001); Martimort and Stole (2002)). Loosely speaking, this Principle
says the following: Given an arbitrary game with uninformed principals Gun, there exists a
simpler game GL in which principals are restricted to o¤ering only menus of decisions, and such
that any equilibrium social-choice function that arises in Gun also arises in GL and vice versa.
As I will momentarily show, when principals are informed, the Extended Taxation Principle
does not apply; this happens for two reasons. First, an informed principal may use her indirect
mechanisms not only to constrain the agent to choose from a speci�c menu of decisions, but
also to signal her private information by framing such a menu in di¤erent ways. Second, in non-
delegation games, an informed principal can also use her mechanisms to retain some ability to
in�uence the �nal decisions through her messages, while revealing up front as little information
as she wishes. Such a �exibility is, however, impossible if the principal can only o¤er menus of
decisions.
To prove my claims, I �rst need to introduce the notion of menu and recall the statement

of the Extended Taxation Principle. A menu is simply a �list�of decisions that the agent can
choose by naming one. Formally, we can de�ne menus as follows.14

De�nition 3 (Simple Menus) For i = 1; : : : ; N , a menu li is a mechanism such that (1)
the message space of the agent, Ali, is a nonempty subset of Di and (2) li(di) = di for every
di 2 Ali.

Let the set of available menus for principal i be Li, and let GL be the �menu game�in which
each principal i is restricted to o¤ering menus in Li.
To be able to replicate all social-choice functions sustained by equilibria of a more general

game Gun, in which uninformed principals compete in arbitrary mechanisms, the game GL must
be su¢ ciently comparable to Gun in terms of the principals�ability to a¤ect their decisions with
the agent. Intuitively, if in Gun principal i can (not) o¤er a mechanism that allows the agent to
induce a decision di, then in GL principal i should (not) be able to o¤er a menu that contains di.
This intuitive requirement is usually captured with the notion of enlargement (see also Pavan
and Calzolari (2010)).

De�nition 4 (Enlargement) The game Gun is an enlargement of the game GL if, for every
i = 1; : : : ; N , we have that for every menu li 2 Li there exists a mechanism mi 2 Mi such that
Ra(mi) = Ra(li), and vice versa.

The Extended Taxation Principle then says the following (Peters (2001); Martimort and Stole
(2002)).

Extended Taxation Principle (Menu Theorem): Let Gun be an enlargement
of GL. There exists an equilibrium of Gun that sustains the social-choice function f
if and only if there exists an equilibrium of GL that sustains f .

14See Peters (2001), Martimort and Stole (2002), and Pavan and Calzolari (2010).
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In the rest of this section, I provide two counterexamples to this result for games with informed
principals� that is, if one replaces Gun with G or Gd. These examples also allow me to develop
the intuition behind my main results in Sections 5.1 and 5.2.
The �rst example shows that the Extended Taxation Principle does not apply to delegation

games Gd. The reason is as follows. In games with uninformed principals the Extended Taxation
Principle holds because, by o¤ering an arbitrary indirect mechanism, each principal is e¤ectively
restricting the agent to choosing from a speci�c menu of decisions. So, if in the menu game GL

each principal i can rely on an appropriately rich set of menus Li, then the equilibrium outcomes
of GL should� and indeed are� the same as in the original game. In contrast, in a delegation
game Gd, by choosing her mechanisms each informed principal not only de�nes a menu of
available choices for the agent, but she may also signal some of her information by framing such
a menu in a speci�c way. So in GL, even if each principal can o¤er the same menus as she does in
Gd through arbitrary mechanisms (as required by the notion of enlargement), she cannot frame
them in di¤erent ways and therefore she loses part of the ability to signal her types. As a result,
some of the equilibrium social-choice functions that arise in Gd may be unattainable in GL.

Example 2 (Failure of the Extended Taxation Principle for Gd) As in example 1, there
are two principals, �1 = f�1; �1g with b(�1) = 1=2, and j�0j = j�2j = 1. Their feasible allo-
cations are X1 = fx1; x1g and X2 = fx2; x02; x2g. For simplicity, both principals can only o¤er
mechanisms of the form mi : Ai ! Xi� i.e., mi can induce only degenerate lotteries over
Xi� where A1 = fa1; a1g and A2 = fa2; a02; a2g. Table 4 reports the players�payo¤s.

�1 x2 x02 x2
x1 1; 1; 1 1; 3; 2 1; 1; 0
x1 0; 1; 0 0; 0; 3 0; 1; 0

�1 x2 x02 x2
x1 0; 1; 0 0; 0; 3 0; 1; 0
x1 1; 1; 0 1; 3; 2 1; 1; 1

Table 4: Payo¤s of Example 2

I construct an equilibrium of Gd that sustains the social-choice function f �(�1) = (x1; x2) and
f �(�1) = (x1; x2). In this equilibrium, principal 2 o¤ers a mechanism m�

2 such that Ra(m
�
2) =

fx2; x2g. Principal 1 o¤ers the mechanism m1 if her type is �1, and m1 otherwise, where

m1 (a) =

�
x1 if a = a1
x1 if a = a1

and m1 (a) =

�
x1 if a = a1
x1 if a = a1

.

Then, on path the agent updates his beliefs to �(�1 j m1;m
�
2) = �(�1 j m1;m

�
2) = 1. Also,

assume that these beliefs do not change after unilateral deviations of principal 2. The agent
communicates using the following strategy �: given (m1;m

�
2), he chooses x2 with principal 2

and sends the message a1 to m1; given (m1;m
�
2), he chooses x2 with principal 2 and sends the

message a1 to m1. Moreover, whenever the mechanism of principal 2 lets the agent choose x02,
he does so and sends the message a1 both to m1 and to m1. Again, one can appropriately de�ne
the agent�s beliefs and behavior after deviations by principal 1 without a¤ecting the message of
the example. It is immediate to see that the strategy � admits no pro�table deviation given �,
�1, and �2. Also, �1 is a best reply to �2 and �. Finally, principal 2 has no pro�table deviation:
If she allows the agent to choose x02, her payo¤ falls to zero because he then chooses the �wrong�
x1.
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There is, however, no menu game GL such that Gd is an enlargement of GL, and f � is an
equilibrium social-choice function of GL. On the one hand, if both types of principal 1 o¤er the
same menu with x1 and x1, then the agent will induce the same lottery over X1, independently of
�1. On the other hand, if either type of principal 1 o¤ers the menu containing only her preferred
x1, then principal 2 cannot be deterred from o¤ering x02.

Example 2 shows that in the menu game GL principal 1 faces a trade-o¤, which is absent in
Gd, between de�ning the menus of available decisions for the agent and signalling her type. To
signal her type using only menus, principal 1 must exclude from one of them a �latent contract�
that, in the equilibrium of Gd, allows her to deter a deviation of principal 2 by relying on the
self-interest of the agent.
The Extended Taxation Principle also fails in non-delegation games G. One reason of this

failure is the same as in the case of delegation games: In the menu game GL, principal i may not
be able to restrict the available decisions for the agent to a speci�c menu, and at the same time
signal as much information as she does in G. But in the case of non-delegation games, the issue
may also be the opposite. Speci�cally, in G each principal can retain some power to in�uence
the �nal decisions, through her messages, at the moment when the agent communicates with
her and her opponents. Instead in GL, to in�uence the agent�s decisions, each principal can only
restrict his options to di¤erent menus; moreover, she must do so before the agent communicates
with her opponents. So, in GL a principal may face a trade-o¤ between restricting the agent�s
options to the decisions that her type prefers and revealing too much� rather than too little�
information, which the agent could then use against her with her opponents. In contrast, in
G each principal can reveal as little information as she wishes, while still in�uencing the �nal
decisions. The next example illustrates these points.

Example 3 (Failure of the Extended Taxation Principle for G) As in example 1, there
are two principals, �1 = f�1; �1g with b(�1) = 1=2, and j�0j = j�2j = 1. Their feasible
allocations are X1 = fx1; x1g and X2 = fx2; x02; x002g; for simplicity, Di = Xi. Consider the game
G where M2 = L2 and M1 = fm1 : A1 � P1 ! X1g with A1 = fa1; a01; a1g and P1 = fp1; p1g.
Suppose that the set Li allows principal i to �o¤er� all nonempty subsets of Xi; then G is an
enlargement of GL. Regarding players�payo¤s, consider the two possibilities in Table 2 and 3.
In Table 2, both principal 2�s and the agent�s payo¤s are independent of �1 (private values).
Instead, in Table 3, the agent�s payo¤s depend on �1 (common values).

�1 x2 x02 x002
x1 �1; 2; 3 7; 1; 2 �2;�2; 0
x1 1;�2; 0 4; 1; 2 3; 2; 3

�1 x2 x02 x002
x1 2; 2; 3 3; 1; 2 1;�2; 0
x1 0;�2; 0 6; 1; 2 �1; 2; 3

Table 2: Private Values

�1 x2 x02 x002
x1 �1; 2; 3 7; 1; 2 �2;�2; 0
x1 1;�2; 3 4; 1; 2 3; 2; 0

�1 x2 x02 x002
x1 2; 2; 0 3; 1; 2 1;�2; 3
x1 0;�2; 0 6; 1; 2 �1; 2; 3

Table 3: Common Values
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For both payo¤ speci�cations, I construct an equilibrium of G that sustains the social-choice
function f �(�1) = (x1; x02) and f

�(�1) = (x1; x
0
2). In this equilibrium principal 2 o¤ers the menu

l�2 with message space Al�2 = X2. Independently of her type, principal 1 o¤ers the mechanism
m�
1 where

m�
1(a1; p1) =

8<:
x1 if a1 = a1
x1 if a1 = a01
x1 if a1 = a1

and m�
1(a1; p1) =

8<:
x1 if a1 = a1
x1 if a1 = a01
x1 if a1 = a1

.

Moreover, �1
�
�1;m

�
1

�
= p1 and �1 (�1;m

�
1) = p1. In words, by o¤ering m

�
1, principal 1 allows

the agent to tell her whether he chooses x02 or not, and then she chooses her best x1 accordingly.
Finally, the agent�s strategy � is such that he sends the message a01 whenever he can choose
x02 with principal 2; otherwise, he sends a di¤erent message to principal 1 and picks the best
available option with principal 2. Formally,

� (m�
1; l2) =

8>><>>:
(a01; x

0
2) if x02 2 Al2

(a1; x2) if Al2 = fx2; x002g
(a1; x2) if Al2 = fx2g
(a1; x

00
2) if Al2 = fx002g

. (2)

As in example 1, when m1 6= m�
1 or l2 6= l�2, one can complete �, �1, and � to obtain a

continuation equilibrium.
I claim that the strategy pro�le that I have just described� together with the belief �(�1jm1; l2) =

b(�1) for all m1; l2� is an equilibrium of G. First, both types of principal 1 get their maximal
payo¤s by playing �1 against (�; �2). Furthermore, � admits no pro�table deviation because
choosing x02 is the unique best reply of the agent to (�1; �1), and if x

0
2 is not available, it is

optimal for him to select x2 (or x002) and then send any message to m
�
1. Therefore, (�1; �1) is

optimal for principal 1. To see that principal 2 has no pro�table deviation, note that any menu
l2 that �includes�x02 is equivalent to l

�
2; on the other hand, the agent�s strategy in (2) together

with (�1; �1) prevents principal 2 from gaining if she deviates to a menu l2 that does not include
x02 (i.e., such that x

0
2 =2 Al2).

However, no equilibrium of the menu game GL can sustain f �� this is true for both payo¤
speci�cations, but for di¤erent reasons as I explain shortly.15 Suppose in negation that such an
equilibrium exists. Since f � speci�es a di¤erent x1 depending on the type of principal 1, in the
equilibrium of GL �1 and �1 cannot o¤er the same menu; otherwise, the agent would (randomly)
induce the same allocation with both types. It follows that, to sustain f �, at least one of principal
1�s types must o¤er only the allocation that she likes best; so, principal 1 must reveal her type
up front. Finally, given his degenerate beliefs, the agent selects x02 with principal 2 if and only
if she o¤ers the menu l2 that contains only x02 (i.e., with Al2 = fx02g). This o¤er strategy,
however, is not optimal for principal 2: if she o¤ers the menu l02 that contains all options (i.e.,
with Al02 = fx2; x

0
2; x

00
2g), then she is better o¤ because the agent chooses either x2 or x002.16

15See also the discussion in Maskin and Tirole (1990-1992) about the di¤erences between private- and common-
value assumptions.
16In the common-value case, the agent would still choose x02 with principal 2, if her deviation to l

0
2 caused

the agent not to update at all his beliefs about �1 even though principal 1 has not deviated from her strategy.
Although this is technically possible, it seems implausible (see Fudenberg and Tirole (1991)).
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Example 3 helps us better understand how GL restricts, relative to G, the principals�ability
to in�uence the �nal outcomes of the game. In GL, to achieve the decision that best �ts her
type, principal 1 must o¤er a menu that includes only that decision, thereby revealing her type.
But if she does so, she makes the agent take undesirable decisions with principal 2. The reason
in the common-value case is simple: By revealing her type up front, principal 1 directly a¤ects
the agent�s preference over her opponent�s allocations. In the example, after discovering the true
�1, the agent knows whether x2 or x002 is the best allocation that he can get with principal 2. The
private-value case, instead, is more subtle. Even if principal 1 reveals her type up front, she has
no direct e¤ect on the agent�s preference. Nonetheless, recall that the agent�s preference over
X2 endogenously depends on x1. Therefore, if principal 1 reduces the agent�s uncertainty about
the �nal x1 by committing to a menu, she can still induce an undesirable x2. In the example,
when the agent is uncertain about the �nal x1 that principal 1 will choose using her messages,
he prefers the safe allocation x02 with principal 2. But when the agent is not uncertain about x1
because he himself chooses it from a menu, then if he can, he will choose either x2 or x002.
To summarize, the examples in this and the previous section have unveiled the main strate-

gic components of the games with informed principals. Speci�cally, in delegation games, the
principals use their mechanisms for two key purposes: (1) to specify menus of available decisions
for the agent; (2) to signal their information. In games with multiple uninformed principals only
the �rst purpose matters� as shown by the Extended Taxation Principle. In contrast, in games
with multiple informed principals the second purpose becomes important, which is perhaps the
key novelty of the present model. Moreover, in non-delegation games each principal also uses
her mechanisms for a third purpose: to partake in choosing an allocation� acting on her private
information� after the agent has communicated with her opponents.

5 A Simple Characterization of Equilibrium Outcomes

In this section, I build on the insights from Sections 3 and 4 to construct new games that are
simpler than the general games described in Section 2, but are capable of replicating all the
equilibrium social-choice functions that arise in those general games. As noted, the new games
should allow each principal to o¤er the agent appropriately de�ned choice sets as well as to
signal her types, without introducing new trade-o¤s between these two goals.
As far as signalling is concerned, it takes a relatively simple form in equilibria in which

principals play deterministic o¤er strategies. This important feature is shared by delegation
and non-delegation games; it is therefore worth discussing it now. When principal i o¤ers
mechanisms as a deterministic function of her types, with each o¤er she simply signals that her
type is in a speci�c subset of �i. In other words, each deterministic o¤er strategy of principal
i de�nes a partition of �i, with each element of the partition containing all types that o¤er the
same mechanism. In contrast, if principal i played a mixed o¤er strategy, she would give rise
to a more complicated pattern of signals. Since each of her types could o¤er many mechanisms
with di¤erent probabilities, we could no longer describe the resulting signal structure only in
terms of �i.
Therefore, to replicate all social-choice functions sustained by equilibria of Gd and G, the

new games will have to allow each principal to achieve the form of signalling that I have just
described, while o¤ering the agent di¤erent choice sets. I begin by considering the delegation

14



games.

5.1 Delegation Games

For any delegation game Gd, I consider a new game that is equivalent to the standard menu
game of Peters (2001), except that it also endows each principal with a set of �cheap-talk�signals.
I show that this new game can replicate all social-choice functions sustained by the equilibria
of Gd. This result implies that we can study the equilibrium outcomes of any game Gd using a
very simple extension of Peters�menu game.
I refer to my new game as the �signal-menu�game, which I denote by GSL. In this game, each

principal i does two things: (1) she o¤ers menus from the set Li (De�nition 3), and (2) provided
that her menu contains more than just the default decision �di� which means that she is actively
participating in the game� she sends a signal from the set Si = �i.17 After observing the menus
and the signals of all principals, the agent chooses a decision from each menu. Therefore, the
game GSL works very similarly to Peters�menu game except that, unless a principal is not
actively participating in the game, she can also give the agent some information about her type
using her signals. To capture this formally, for each principal i, let�li be the menu that contains
only �di (i.e., A�li = f�dig). Then, in G

SL, the action space of principal i is fSi � Li n�lig [ f�lig,
and a signal-o¤er strategy �i speci�es, for each �i, a lottery over i�s action space. The agent�s
strategy is a map that, for every pro�le of signals �̂ and menus l, speci�es a lottery over the
pro�les of messages Al. As for the original game Gd, the term equilibrium of GSL refers to a
weak PBE in which, after observing her type, every principal i chooses deterministically a menu
and a signal� that is, if for every i = 1; : : : ; N and �i 2 �i, �i(�i) is a degenerate lottery over
i�s action space.
To replicate all equilibrium social-choice functions that arise in Gd, the new game GSL must

satisfy two requirements: (1) inGSL, the principals must be as able to a¤ect the agent�s decisions
by specifying his available choices as they are in Gd; (2) in GSL, the principals must also be
as able to a¤ect the agent�s decisions by signalling their information as they are in Gd. To
satisfy requirement (1), which also applies to games with uninformed principals, I follow the
literature using the notion of enlargement: I will say that Gd is an enlargement of GSL if and
only if they satisfy the conditions of De�nition 4, where Gd replaces Gun and GSL replaces GL.
Note that, to �nd the GSL that satis�es this de�nition for a given Gd, we can treat Gd as a
game with uninformed principals, derive the standard menu game that satis�es De�nition 4,
and then simply endow each principal with a set of signals equal to her set of types as suggested
above. This last step should also ensure that requirement (2) is satis�ed, given the simple form
of signalling that principals can achieve in an equilibrium of Gd. Indeed, Theorem 1 below
con�rms this intuition.

Theorem 1 Let Gd be an enlargement of GSL. There exists an equilibrium of Gd that sustains
the social-choice function f if and only if there exists an equilibrium of GSL that sustains f .

To understand the intuition behind Theorem 1, consider �rst an equilibrium of Gd. As noted,
in such an equilibrium, by playing the mechanism mi principal i signals that her type is in some
subset Ti(mi) of�i. So, inGSL we can let all types in Ti(mi) o¤er the menu li containing the same

17Any other set Si with jSij � j�ij would work.
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decisions that the agent can induce through mi, and send him a common signal �̂i 2 Ti(mi)� of
course, unless li =�li.18 By replicating this procedure for each type of each principal, we construct
a pro�le of o¤er strategies in GSL. Note that according to this construction, after each on-path
pro�le of menus and signals, the agent has the same information and available choices as he has
after the corresponding on-path pro�le of mechanisms in the equilibrium of Gd. Therefore, it
must be optimal for him to induce the same decisions as he does in Gd. Similarly, it must be
optimal for each type of each principal to o¤er the menu and send the signal as speci�ed. This
intuitively explains why every social-choice function sustained by an equilibrium of Gd is also a
social-choice function sustained by an equilibrium of GSL.
Showing the converse is more delicate. By the de�nition of enlargement, each menu of

decisions that principal i can o¤er in GSL can also be o¤ered in Gd through some indirect
mechanism. However, this is not enough: It is also important that each principal can achieve, in
Gd, the same degree of signaling that she achieves in the equilibrium of GSL. On the one hand,
in GSL menus and signals are separated and principal i can combine them in any way she wants
(provided that she is actively participating in the game). On the other hand, in Gd her signals
are intertwined with the di¤erent ways in which she lets the agent�s messages map to a choice
set. Nonetheless, the agent�s message spaces in Gd are rich enough to ensure that each principal
can always design as many di¤erent indirect mechanisms as she needs to achieve the desired
degree of signaling, while o¤ering the same bundle of decisions. Because of this property, we
can essentially reverse the construction that I sketched before, now going from an equilibrium
of GSL to an equilibrium of Gd that sustains the same social-choice function.

5.2 Non-Delegation Games

In this section, I consider the non-delegation game G. I will construct a new game that is simpler
than G, but replicates all social-choice functions sustained by the equilibria of G.
My new game has two periods as does G and proceeds as follows. In the �rst period, each

principal o¤ers the agent a list of restricted direct mechanisms (RDMs), simultaneously with her
opponents. Intuitively, an RDM of principal i is a standard direct mechanism that depends only
on i�s reports about her types, except that it restricts such reports to a subset of all her possible
types. A list of RDMs of principal i is simply a collection of such RDMs, all restricting her
reports to the same subset of types. In the second period of the game, after privately observing
the o¤ers of all principals, the agent chooses an RDM from each list. Finally, each principal
submits her report before observing the RDM chosen by the agent.
I will now formally describe my new game, starting from the lists of RDMs. For every

principal i and nonempty subset Ti of �i, denote the set of RDMs restricted to Ti by

RTi = frTi : Ti ! �(Xi)g.

Intuitively, a list of RDMs restricted to Ti corresponds to a subset of RTi from which the agent
chooses an option by simply naming it.

18Note that if in the equilibrium of Gd two (or more) types of principal i choose not to actively participate
in the game� i.e., they both o¤er the unique mechanism mi with Ra (mi) = �di� they have no possibility of
di¤erentiating themselves in the eyes of the agent. Therefore, they should also not have this possibility in GSL

after o¤ering�li.
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De�nition 5 (List of RDMs) Fix principal i and a nonempty Ti � �i. A list of direct
mechanisms restricted to Ti� denoted by �

Ti� is a function �Ti : A�Ti ! RTi such that (1)
the message space of the agent, A�Ti , is a nonempty subset of RTi, and (2) �Ti is the identity
function, i.e., �Ti(rTi) = rTi. Finally, the set of all possible lists of RDMs of principal i is �i.

Based on this de�nition, I denote my new game by G�. In this game, the strategy of principal
i involves an o¤er strategy �i and a communication strategy �i, where �i assigns to each �i a
lottery over �i and �i assigns to each (�i; �

Ti) a lottery over the restricted set of reports Ti. The
communication strategy � of the agent speci�es, for each pro�le �T = (�T1 ; : : : ; �TN ), a lottery
over A�T . As before, the term equilibrium of G� refers to a weak PBE in which, for every
principal i and type �i, �i(�i) is a degenerate lottery over �i.
To be able to replicate all social-choice functions that arise in the non-delegation game G,

the new game G� and the original one G must be su¢ ciently comparable. To denote when G�

and G are comparable, I will use an appropriate de�nition of enlargement as I did for delegation
games in Section 5.1. To state this de�nition, I �rst need to show how we can combine any
indirect mechanism mi and communication strategy �i in G to obtain a list of RDMs. For each
message ai of the agent, we can use mi(ai; �) and �i to construct a direct mechanism r�i by
de�ning the probability that r�i assigns to the allocation xi given the report �i by

r�i(xi; �i) =
P

Pi di(xi)mi(di; ai; pi)�i(pi; �i;mi). (3)

If we now repeat the same construction for each message ai 2 Ai, we identify a subset of R�i
that we can use to de�ne a list of RDMs ��i following De�nition 5. To denote the list of RDMs
that results from combining mi and �i, I will use the notation c(mi; �i). Finally, I will use the
notation �Ti / ��i to denote that the list �Ti results from restricting every direct mechanism in
the list ��i to the subset of reports Ti.

De�nition 6 (Enlargement of G�) A game G is an enlargement of G� if and only if for
every principal i three conditions hold: (1) for every mechanism mi 2 Mi and communication
strategy �i in G, there is a list �

�i 2 �i such that c(mi; �i) = �
�i; (2) for every ��i 2 �i, there

is an mi 2Mi and a �i in G such that ��i = c(mi; �i); (3) �
Ti 2 �i if and only if �Ti / ��i for

some ��i 2 �i.

As noted, the combination of any indirect mechanism mi and communication strategy �i in G
results in a list of RDMs ��i. So, condition (1) requires that such a list be feasible for principal
i in G�. Conversely, condition (2) requires that a list ��i be infeasible for principal i in G� if
in G she has no mechanism mi and communication strategy �i whose combination results in
��i. Finally, condition (3) requires that the whole set �i could be obtained by considering every
feasible list of unrestricted direct mechanisms ��i and by restricting all its mechanism to Ti, for
every nonempty subset Ti of �i.
Since in G� the principals will play RDMs, it would be desirable to restrict attention to

equilibria in which� at least on path� they report truthfully their type to their RDMs. The
next de�nition and lemma show that one can do so without loss of generality.

De�nition 7 (Truthful Equilibrium) An equilibrium of G� is a (principal) truthful equi-
librium if, for every principal i and �i 2 �i, we have �i(�i; �i (�i)) = �i.
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Lemma 1 If there exists an equilibrium of G� that sustains the social-choice function f , then
there exists a truthful equilibrium that sustains f .

Truthful equilibria represent a simple and intuitive class of equilibria of G�. Moreover, the
set of social-choice functions sustained by truthful equilibria of G� coincides with the set of
social-choice functions sustained by the equilibria of G.

Theorem 2 Let G be an enlargement of G�. There exists an equilibrium of G that sustains the
social-choice function f if and only if there exists a truthful equilibrium of G� that sustains f .

Intuitively, the new game G� can replicate all social-choice functions sustained by equilibria
of G, because in G� each principal maintains the same ability to in�uence the �nal decisions
with the agent that she has in G. To see this, recall that in G each principal uses her indirect
mechanisms for two purposes: to specify a set of decisions from which she and the agent will
choose one using their messages, and to signal her information.
Consider the �rst purpose. On the one hand, if principal i retains some decision power

through her messages, it means that she only lets the agent use his messages to select a subset
of decisions from which she e¤ectively chooses the �nal one. Furthermore, when principal i sends
her messages, she only knows her type and the mechanism that she has o¤ered to the agent.
Therefore, to retain all her decision power, principal i only needs to assign to any message
of the agent a subset that only contains one decision for each of her possible types. On the
other hand, principal i may want to let the agent select di¤erent subsets of decisions depending
on his exogenous type and endogenous information about her opponents (recall the discussion
in Section 3 about the failure of the Inscrutability Principle). To do so, principal i could o¤er
mechanisms that assign a subset of decisions to each report of the agent about his exogenous and
endogenous information. Such a report, however, would involve a description of the mechanisms
o¤ered by i�s opponents and of how these mechanisms respond to reports about i�s mechanisms,
causing an in�nite regress. To avoid this problem, principal i could simply o¤er the agent a list
of subsets of decisions and let him directly choose among these subsets. It is easy to see that
any list of subsets, each containing one decision for each type of the principal, is equivalent to a
list of direct mechanisms, each letting principal i choose a �nal decision by reporting her type.
Consider now the signalling purpose that indirect mechanisms have in G. As noted, in an

equilibrium of G, by choosing a mechanism principal i at most signals that her true type is in
a speci�c subset, say Ti, of her set of types �i. So, if principal i could o¤er a list of direct
mechanisms that commit her to reporting only the types in Ti, she could signal to the agent
that her true type is in Ti. This is the basic idea behind letting principal i o¤er lists of RDMs,
so that she can use the domain of these RDMs as her signalling device.
These remarks and Theorem 2 also help us understand why it is without loss of generality,

with regard to the equilibrium social-choice functions, to assume that in G the principals com-
municate with their mechanisms simultaneously with the agent.19 To see this, consider a game
G0 that is identical to G, except that in G0 each principal chooses her messages after observing
the message that the agent has sent to her mechanism. From this observation principal i may
learn something about the agent�s type and her opponents�types and mechanisms. Conditional

19I limit myself to an informal argument because the cost of introducing new notation and de�nitions outweighs
their bene�t here.
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on this information, however, i�s choices of messages depend only on her type. Thus, for the
same reason that applies to G, principal i only needs lists of RDMs to be able to in�uence the
�nal decisions with the agent as she does in G0. Furthermore, principal i can always o¤er lists of
RDMs such that, conditional on what she learns from the agent�s choice of an RDM, she wants
to truthfully report her type to it. Therefore, we lose nothing if each principal has to report
her types before observing the agent�s choice of an RDM. Also, note that the agent only cares
about the distribution over allocations that his choices of RDMs can induce. For these reasons,
if an equilibrium of G0 sustains the social-choice function f , then there is a truthful equilibrium
of G� that sustains f . Theorem 2 then implies that every social-choice function that arises in
G0 also arises in G.
There is a similarity between the logic behind the last remark and that behind the In-

scrutability Principle. Roughly speaking, the Inscrutability Principle says that the single in-
formed principal need not covey any information to the agent, because her information has no
impact on the agent�s exogenous information, which is what ultimately matters for the �nal
decisions. Therefore, the Principle justi�es restricting attention to simpler games in which the
informed principal must o¤er the same mechanism independently of her type. Similarly, the
previous remark says that the endogenously informed agent need not convey any information
to the principals, because his information has no impact on the principals�exogenous informa-
tion, which again ultimately determines their �nal decisions. Again, this justi�es restricting
attention to simpler games in which each informed principal communicates with her mechanism
simultaneously with the agent.

6 Conclusions

In this paper, I have considered common-agency games in which principals have private in-
formation. I have shown that the set of equilibrium outcomes of these games depends on the
principals�ability to signal their information through their choices of mechanisms. This property
explains why both the Inscrutability and the Extended Taxation Principle fail in these games.
Finally, I have shown how to characterize the equilibrium outcomes of general delegation and
non-delegation games, using new games that are simpler than the original ones but ensure that
each principal retains the same ability to in�uence the �nal decisions of the agent.
Common-agency games with informed principals provide a useful framework to analyze many

situations of economic interest, including competition in menu auctions, in oligopolistic markets,
or in lobbying contests. Applying my results to study how the outcomes in these situations
depend on the principals�private information� e.g., in terms of e¢ ciency or ability to aggregate
dispersed information� represents an interesting avenue for future research.

7 Appendix

7.1 Proof of Theorem 1

Part 1: ()) Let (��; ��) be an equilibrium of Gd that sustains the social-choice function f��.
I shall construct an equilibrium (���; ���) of GSL that sustains f��� = f��.
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Given the o¤er strategy ��i of principal i, let �
�
i (�i) be the set of mechanisms that are

o¤ered by some �i in equilibrium. For every �i, it is possible to identify the subset Ti(��i (�i)) =
(��i )

�1(��i (�i)) � �i. Since ��i is deterministic, the collection fTi(��i (�i))g�i2�i is a partition
of �i with at most j�ij elements. De�ne the function #i : ��i (�i) ! �i such that, for every
Ti(�

�
i (�i)), #i (�

�
i (�i)) is the signal �̂i 2 Ti(��i (�i)) with the lowest index� this choice is just for

convenience. Since Gd is an enlargement of GSL, for every mi 2 Md
i let li (mi) be the menu li

such that Ali = Ra(mi). So, for �i 2 �i, let ���i be de�ned as follows: if li(��i (�i)) = �li, then
���i (�i) =

�li, otherwise

���i (�̂i; li; �i) =

�
(�̂i; li) if �̂i = #i (��i (�i)) and li = li (�

�
i (�i))

0 else.

The same construction applies to every principal i.
Now consider the agent�s strategy ���. If a pro�le of signals �̂ and menus l in on path (i.e., it

equals ���(��0) for some ��0), then #
�1
i (�̂i) is the mechanism ��i (�̂i) in M

d with li(��i (�̂i)) = li.
So, consider the pro�le of mechanisms m(�̂; l) in which mi(�̂i; li) = #

�1
i (�̂i) and mi(�li) = �mi (i.e.,

the mechanism with Ra(�mi) = f�dig). Then, for every �0 2 �0 and d 2 Al, let

���(d; �0; �̂�0; l) =
P

fa2Ajm(�̂;l)(a)=dg �
�(a; �0;m(�̂; l)).

Suppose instead that (�̂; l) is o¤ path. For every principal i, if (�̂i; li) = ���i (�i) for some �i let
~mi = #

�1
i (�̂i), and if li =�li let ~mi = �mi. Otherwise, let ~mi be any mechanism in Md

i such that
Ra ( ~mi) = Ali. Given such a pro�le ~m, for every �0 and d 2 Al, let

���(d; �0; �̂; l) =
P

fa2Aj ~m(a)=dg �
� (a; �0; ~m) .

I claim that f��(�) = f���(�) for every �. This is immediate because, for every ��0, the principals
give the agent the same selection of pro�les of decisions, and for every l on path, every �0
induces the same distribution over pro�les of decisions as in the original equilibrium after the
corresponding pro�le ��(��0).
Now consider the agent�s updated belief ���. Suppose the pro�le (�̂; l) is on path. This

means that 1[���(��0)=(�̂;l)] > 0 for some ��0. Thus, we have for every ��0

���(��0j �0; �̂; l) =
1[���(��0)=(�̂;l)]b(��0j �0)P
�0�0
1[���(�0�0)=(�̂;l)]b(�

0
�0
�� �0)

=
1[��(��0)=m(�̂;l)]b(��0j �0)P
�0�0
1[��(�0�0)=m(�̂;l)]b(�

0
�0
�� �0) = ��(��0j �0;m(�̂; l)),

where m(�̂; l) is the pro�le of mechanisms that I used before to de�ne ��� on path. For every
(�̂; l) o¤ path, construct ~m as before and let ���( �j �0; �̂; l) = ��( �j �0; ~m).
Given the agent�s belief ���, it follows that the strategy ��� is sequentially rational. Take

any (�̂; l) on path� the same argument applies if (�̂; l) is o¤ path. Given (�̂; l), the agent�s set
of available decisions and his belief over ��0 coincide with the set and belief that he had after
observing m(�̂; l) in the original equilibrium ��; moreover, ��� induces the same distribution
over decisions as did ��. Therefore, the agent cannot have a pro�table deviation from ���.
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Given ����i and �
��, no principal i has a pro�table deviation from ���i . Suppose to the contrary

that for some �i there exists an action (�̂i; li) (or�li) such that

U i((�̂i; li); �
��
�i; �

��; �i) > U i(�
��
i (�i); �

��
�i; �

��; �i).

Now, if (�̂i; li) is on the path of play under ���i , then it means that li corresponds to some

~mi = ��i

�
~�i

�
for ~�i =2 Ti(�

�
i (�i)). Otherwise, let ~mi be the indirect mechanism I used in

constructing ��� o¤ path. Because the probability over outcomes that �i induces after deviating
to (�̂i; li) given ����i and �

�� is identical to that induced after deviating to ~mi given ���i and �
�,

it must be that
U i( ~mi; �

�
�i; �

�; �i) > U i(�
�
i (�i); �

�
�i; �

�; �i).

A contradiction.
Part 2: (() Let (���; ���) be an equilibrium of GSL. I now derive an equilibrium (��; ��)

of Gd, and show that f��� = f��.
Consider the strategy ���i for principal i. Let Ra(���i ) be the set of signals and menus that

principal i can o¤er according to ���i . For every (�̂i; li) 2 Ra(���i ), let Si(li) be the set of signals
that principal i sends while o¤ering li. Now construct jSi(li)j indirect mechanisms mi(li) with
Ra(mi(li)) = Ali. This can be done because Gd is an enlargement of GSL and j�ij � jAij
for every i = 1; : : : ; N . Speci�cally, choose j�ij messages in Ai and label the elements in Ali,
other than the �default�option �xi, each time starting with a di¤erent element from the set of
j�ij selected messages. And when you get to �xi, assign all remaining messages in Ai to this
option. This procedure delivers j�ij di¤erent indirect mechanisms whose image equals the menu
li. Then, assign one of these mechanisms to each �̂i 2 Si(li) and denote it by mi(�̂i; li). Now,
with a slight abuse of notation, let principal i strategy in Gd be de�ned as ��i (�i) = mi(�

��
i (�i)),

unless ���i (�i) =�li in which case let �
�
i (�i) = �mi. Finally, apply the same construction to obtain

the o¤er strategy of every principal i.
Now consider the agent�s strategy ��. Ifm is on path, then let ���((��)�1 (m)) = �Ni=1���i ((��i )�1 (mi)).

For every d 2 Ra(m) letA(d) = fa 2 A : m(a) = dg and choose one message pro�le a(d) 2 A(d).
Then for every �0, let

��(â; �0;m) =

�
���(d; �0; �

��((��)�1 (m))) if â = a(d)
0 else

.

Now suppose m̂ is not on path. For every principal i, if m̂i = ��i (�i) for some �i let (~�i; ~li) =
���i (�i), and if m̂i = �mi let ~li =�li. Otherwise, let (~�i; ~li) be any pair with A~li = Ra(m̂i). Use
this construction to de�ne the pro�le (~�; ~l). Then, for every d̂ 2 Ra(m̂), let A(d̂) = fa 2 A :
m̂(a) = d̂g and choose one message pro�le a(d̂) 2 A(d̂). Then for every �0, let

��(a; �0; m̂) =

�
���(d̂; �0; ~�; ~l) if a = a(d̂)
0 else

.

I claim that f��� = f��. This is because any pro�le of principals�types ��0 o¤ers the agent
the same choice set under ��� and ��. Furthermore, given an array of mechanisms, the agent
conditions the distribution over decisions on the speci�c designs of such indirect mechanisms as
he was conditioning on the signals in the equilibrium of GSL.
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Consider now the agent�s beliefs. Suppose �rst that the pro�le m is on path according to
��. Then, for every �0 and ��0

��(��0j �0;m) =
1[��(��0)=m]b(��0j �0)P
�0�0
1[��(�0�0)=m]b(�

0
�0
�� �0)

=
1[���(��0)=���((��)�1(m))]b(��0j �0)P
�0�0
1[���(�0�0)=���((��)�1(m))]b(�

0
�0
�� �0) = ���(��0j �0; ���((��)�1 (m))).

If instead m̂ is o¤ path. Let (~�; ~l) be the pro�le of signals and menus that I constructed before
to de�ne �� o¤ path, and let

��(��0j �0; m̂) = ���(��0j �0; ~�; ~l).

I claim that the pro�le (��; ��) is an equilibrium of Gd. With regard to the agent�s strat-
egy, after any pro�le m that is on path, the agent has the same beliefs and induces the same
distributions over pro�les of decisions as after the pro�le of menus and signals ���((��)�1 (m)).
Hence, he cannot have any pro�table deviation. If m̂ is o¤ path, the same argument applies.
With regard to the principals�strategies, suppose some �i of some principal i has a pro�table
deviation to a mechanism m̂i, that is

U i(m̂i; �
�
�i; �

�; �i) > U i(�
�
i (�i); �

�
�i; �

�; �i).

Then it means that the way that the agent interprets �i�s deviation in forming his beliefs and
the resulting distribution over decisions make �i strictly better o¤. On the other hand, by
construction the deviation to m̂i is equivalent to o¤ering ~li with A~li = Ra( ~mi) and send the
signal ~�i that I used in the construction of �� and �

� above. Since the agent is responding to
���i as he was responding to �

��
�i, it follows that

U i((~�i; ~li); �
��
�i; �

��; �i) > U i(�
��
i (�i); �

��
�i; �

��; �i).

A contradiction.

7.2 Proof of Lemma 1

Let (��; ��) be an equilibrium of G�. I will construct a truthful equilibrium of G� that sustains
f��� = f��.
Consider �rst principal i. For every �i, let �

T 0i
� (�i) = �

�
i (�i) and let Ti(�i) = (�

�
i )
�1 (�

T 0i
� (�i)) �

�i� clearly, �
T 0i
� (�

0
i) = �

T 0i
� (�i) if and only if �

0
i 2 Ti(�i). Now for each �i, construct a new

list �Ti��(�i) as follows: for each r
T 0i 2 A

�
T 0
i� (�i)

, let ��i(rT
0
i )(�) = rT

0
i (�) � ��i (�; �

T 0i
� (�i))

20 and let

�Ti(rT
0
i ) = ��i(rT

0
i )
��
Ti(�i)

which is an RDM in RTi(�i). Repeating this operation and collecting

the resulting RDMs, we obtain the new list �Ti��(�i). Clearly, �
Ti
��(�i) = �

Ti
��(�

0
i) if and only if �

0
i 2

20Given a RDM rTi(�) and a communicatin strategy �i(�;�Ti), the operation � simply reduces the compound
lottery de�ned by rTi(�) and �i(�;�Ti) to obtain a direct mechanism as in (3).
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Ti(�i). So, for every �i let ���i (�i) = �
Ti
��(�i), and �

��
i (�i; �

��
i (�i)) = �i, whereas for �

Ti 6= ���i (�i),
let ���i (�i;�

Ti) = ��i (�i;�
Ti). Finally, repeat the same construction for every principal i.

Now consider the agent. Suppose �rst that �T is on path under ���. Then, for every �0 and
every rT 2 A�T , let

���(rT ; �0; �
T ) =

P
frT 02A

�T
0

�
:�T (rT 0 )=rT g �

�(rT
0
; �0; �

T 0

� ),

where �T
0

� = �Ni=1��i ((���i )�1(�
T 0i
� )). Also, using Bayes rule it follows that on path, for every �,

���(��0j �0; �T ) =
1[���(��0)=�T ]b(��0j �0)P
��0
1[���(�0�0)=�T ]b(�

0
�0
�� �0)

=
1
[��(��0)=�T

0
� ]
b(��0j �0)P

��0
1
[��(�0�0)=�

T 0
� ]
b(�0�0

�� �0) = ��(��0j �0; �T 0� ),
where again �T

0

� = �Ni=1��i ((���i )�1(�
T 0i
� )).

I claim that f��� = f��. To see this, note that for every �, both through (��; ��) and
through (���; ���), the principals� essentially give the agent the possibility to choose among
the same pro�les of lotteries over allocations; furthermore, the agent actually induces the same
distribution over such pro�les under �� as well as under ���.
To complete the construction of the equilibrium (���; ���), for every �T o¤path let ���(�; �; �T ) =

��(�; �; �T ) and ���( �j �; �T ) = ��( �j �; �T ). Using the assumption that (��; ��) is an equilibrium
of G�, it follows that the pro�le (���; ���) is also an equilibrium of G�. Furthermore, (���; ���)
is a truthful equilibrium.

7.3 Proof of Theorem 2

Part 1: ()) Let (��; ��) be an equilibrium of G sustaining f . I will construct a truthful
equilibrium (���; ���) of G� that sustains f .
Given the o¤er strategy ��i of principal i, let �

�
i (�i) be the set of mechanisms that are o¤ered

by some �i in the equilibrium. For every �i identify the subset Ti(��i (�i)) = (��i )
�1(��i (�i)) �

�i, that is the set of types of principal i who o¤er the same mechanism ��i (�i). Using the
communication strategy ��i and the function c(�; ��i ),21 for every �i recover the list of DMs
��i(�i) = c(�

�
i (�i); �

�
i ) that corresponds to the mechanism o¤ered by �i under ��i . Finally, for

every �i identify the list of RDM �Ti(�i) in RTi(�
�
i (�i)) by restricting every r�i in ��i(�i) to

Ti(�
�
i (�i)). By construction, for every �i and �

0
i 2 Ti(��i (�i)), �Ti(�i) = �Ti(�0i). Therefore, let

principal i�s o¤er strategy in G� be ���i (�i) = �
Ti(�i). Finally, repeat the same construction for

every principal i to obtain the pro�le of o¤er strategies ���.
Now consider the communication strategies of the principals and the agent on path. For every

�i of principal i, let ���i (�i; �
��
i (�i)) = �i. With regard to the agent, given �

T on path, letm(�T ) =
��((���)�1(�T )), and for every rT 2 A�T , let A(rT ) = fa : (mi(�

Ti)(ai; �) � �i(�;m(�Ti))
��
Ti
)Ni=1 =

rTg. In words, A(rT ) is the set of messages that allowed the agent to induce a pro�le of DMs
21Recall the discussion before De�nition 6.
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(given ��) such that, if we restrict each of them to the corresponding Ti, we obtain rT . Then
for each �0, let

���(rT ; �0; �
T ) =

P
a2A(rT ) �

�(a; �0;m(�
T )).

To derive the on-path beliefs of the agent, we can use Bayes rule as follows: for every ��0; �0
and �T on path

���(��0j �0; �T ) =
1[���(��0)=�T ]b(��0j �0)P
�0�0
1[���(�0�0)=�T ]b(�

0
�0
�� �0)

=
1[��(��0)=m(�T )]b(��0j �0)P
�0�0
1[��(�0�0)=m(�T )]b(�

0
�0
�� �0) = ��(��0j �0;m(�T )).

I claim that f�� = f���. Fix any � 2 � and let m� and �T�� be the pro�les of indirect mechanisms
and lists of RDMs o¤ered by ��0 under �� and ���, we have

f��(x; �) =
P

A�
N
i=1

�P
Pi di(xi)m

�
i (di; ai; pi)�

�
i (pi; �i;m

�
i )
�
��(a; �0;m

�)

=
P

rT2A
�T��
�Ni=1r

Ti(xi; �i)
P

a2A(rT ) �
�(a; �0;m

�) = f���(x; �).

Using this result, we can see that (���; ���) is a continuation equilibrium given any �T on path
and ���. This is because, given any (�0; �

T ) on path, the agent has the same belief over ��0
and, given ���, he expects the same distribution over outcomes by playing ��� as when he was
playing �� after (�0;m(�

T )). Furthermore, given ��� the agent can�t induce any distribution
over outcomes that he couldn�t induce after m(�T ) given ��. Similarly, each �i of principal i
can�t have a pro�table deviation from her truthful strategy after o¤ering �Ti, because any such
deviation was available also in the original game after o¤ering mi(�

Ti).
If �T is o¤ path and involves deviations by more than one principal, choose any belief for

the agent ���( �j �; �T ) and equilibrium of the resulting continuation game� �niteness of A�T
and ��0 ensures the existence of at least one continuation equilibrium. Now consider �

T o¤
path induced by the deviation of one single principal i. Suppose �rst that �i of principal i
o¤ers �Ti = ���i (�

0
i) for �

0
i 6= �i. Then the agent�s strategy and beliefs are de�ned as on path.

Let ���i (�i; �
Ti) 2 �(Ti) be any best reply to ��� and ����i. We have that, for any principal

i, no type �i can pro�t from such a deviation because it was already available to �i in the
equilibrium of the original game G. The remaining case is when �T is o¤ path (in the sense that
it can�t occur with positive probability according to ���i ) and only principal i has deviated for
some �i. I claim that there must exist a continuation equilibrium that makes such a deviation
unpro�table. Suppose to the contrary that �i of principal i deviates to o¤ering �̂

Ti
o¤ path,

whereas all other principals follow ����i, and that for any choice of �
��( �j �; (�̂Ti ; �T�i))� where

�T�i results from ����i� any continuation equilibrium can�t deter �i from such a deviation. I will
argue that then (��; ��) can�t be an equilibrium of G, which is a contradiction. To see this recall

that, since G is an enlargement of G�, for such an �̂
Ti
there exist an indirect mechanism ~mi and

a communication strategy ~�i( ~mi) for such a mechanism, such that restricting the DMs in the list

c( ~mi; ~�i) to Ti delivers �̂
Ti
. Hence, consider the mechanism m̂i such that, for every �i 2 Ti, there
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is a message pi(�i) such that m̂i(�; pi(�i)) = ~mi(�; ~�i(�i; ~mi)) and, for every pi =2 fpi(�i)g�i2Ti,
m̂i(�; pi) = m̂i(�; pi(�0i)) where �0i is the element of Ti with the lowest index� this choice is just for
convenience. Then, for type �i of principal i, o¤ering m̂i in G followed by the message pi(�i) is

essentially equivalent to o¤ering �̂
Ti
in G� followed by the report �i. Now, given any realization

m�
�i according to �

�
�i, the set of distribution over outcomes that the agent can induce after

(m̂i;m
�
�i) given (�̂i; �

�
�i) is the same as after the corresponding pro�le (�̂

Ti
; �T�i) given ���, if we

de�ne �̂i to play pi(�i) after m̂i with the same probability with which ���i plays �i after �̂
Ti
. By

assumption, it is not possible to �nd a belief ��� and a strategy ��� so that ��� is a best reply
to ��� and vice versa, and �i of principal i doesn�t pro�t by deviating to �̂

Ti
. But then, given

any speci�cation of the agent�s belief after (m̂i;m
�
�i), there can�t be a strategy �̂ that delivers,

together with �̂i, a continuation equilibrium such that �i of principal i is deterred from o¤ering
m̂i followed by �̂i. This contradicts the assumption that (��; �

�) is an equilibrium of G. We
conclude that it is possible to extend the on-path strategies and beliefs that I have constructed
above to obtain an equilibrium (���; ���) of G� such that f��� = f��.
Part 2: (() Suppose (���; ���) is a truthful equilibrium of G� that sustains f . I will

construct an equilibrium (��; ��) of G that sustains f .
Consider principal i and her o¤er strategy ���i . For every �

Ti 2 ���i (�i), consider the mech-
anism m(�Ti) 2 Mi constructed as follows. Since G is an enlargement of G�, there exist ~mi

and ~�i such that restricting the DMs in the list c( ~mi; ~�i) to Ti delivers �
Ti. Since j�ij � jPij,

assign to each each �i 2 �i a message pi(�i). Now let m(�Ti)(�; pi(�i)) = ~mi(�; ~�i(�i; ~mi)) for
every �i 2 Ti, and for every pi =2 fpi(�i)g�i2Ti, let m(�Ti)(�; pi) = m(�Ti)(�; pi(�0i)) where �0i is
the element of Ti with the lowest index� again, this choice is just for convenience. There are
two cases to consider. The �rst case corresponds to jTij > 1. In this case, each m(�Ti) signals
the same amount of information about principal i�s type as �Ti because �Ti and m(�Ti) restrict
principal i to choose a message in Ti and in fpi(�i)g�i2Ti, respectively. The second case corre-
sponds to jTij = 1, which implies that �Ti is essentially a simple menu. In this case, we can
match di¤erent �is to di¤erent mechanisms mis, even when these mechanisms correspond to the
same menu, as in the proof of Theorem 1. So, denote by �Ti(�i) the list of RDMs that �i o¤ers
under ���i and let m(�Ti(�i)) be the indirect mechanism that we have just constructed. Then,
for every principal i and �i, de�ne ��i (�i) = m(�

Ti(�i)).
Now, consider the on-path communication strategies of the principals and the agent. First,

for every principal i and �i, let ��i (�i;m(�
Ti(�i))) = pi(�i) where pi(�i) was de�ned before. Now

consider the agent. Given any pro�le m� on path, recover the corresponding �T (m�) given the
above construction ofm�. Also, for every rT 2 A�T (m�), letA(rT ) = fa : ((m�

i (ai; �) � ��i (�;m�
i )jTi)

N
i=1 =

rTg and choose one message a(rT ) 2 A(rT ). Then for each �0, de�ne

��(~a; �0;m
�) =

�
���(rT ; �0; �

T (m�)) if ~a = a(rT )
0 else

.

The agent�s on-path beliefs follow from Bayes rule: for every ��0; �0 and m� on path

��(��0j �0;m�) =
1[��(��0)=m�]b(��0j �0)P
�0�0
1[��(�0�0)=m�]b(�

0
�0
�� �0)

=
1[���(��0)=�T (m�)]b(��0j �0)P
�0�0
1[���(�0�0)=�T (m�)]b(�

0
�0
�� �0) = ���(��0j �0; �T (m�)).
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Given the construction of (��; ��) and �� on path, it follows that f�� = f���. This is because
each type �i of each principal i is o¤ering the same options to the agent and is constraining
herself to the same communication possibilities as in the pro�le (���; ���), and� given that� the
agent is inducing the same distribution over maps from the principals�messages to outcomes as
under ���. This last observation implies that (��; ��) is a continuation equilibrium given the
agent�s belief ��.
It remains to show that ��, ��, and �� can be extended o¤ path to obtain an equilibrium

(��; ��) of G. If m is o¤ path because more than one principal i deviated, let ��( �j �;m) be any
belief of the agent and let (��; ��) be any equilibrium of the resulting continuation game. Now
suppose m̂ is o¤ path because only principal i deviated for some �i. If m̂i = ��i (

~�i) for some
~�i 6= �i, then the agent�s strategy and beliefs are as if m̂ is on path. Hence, for �i, o¤ering
m̂i followed by some communication strategy� given �� and (���i; �

�
�i) in G� is equivalent to

o¤ering �Ti(~�i), again followed by some communication strategy, given ��� and (����i; �
��
�i) in

G�. Therefore, �i can�t gain by o¤ering m̂i. Now consider the case with m̂i 6= ��i (
~�i) for all

~�i. Suppose that for any speci�cation of �
�( �j �; m̂), any continuation equilibrium can�t deter �i

from deviating to m̂i. Consider the communication strategy �̂i(�; m̂i) in any such continuation

equilibrium, and let �̂
�i
= c(m̂i; �̂i). Hence, for �i of principal i, o¤ering m̂i followed by �̂i in G

is equivalent to o¤ering �̂
�i
in G� followed by a truthful report of �i. Given the pro�le ����i and

any �T�i resulting from ����i, the set of distributions over outcomes that the agent can induce

after (�̂
�i
; �T�i) given ��� is the same as the set that the agent can induce after the corresponding

pro�le (m̂i;m
�
�i) given (�̂i; �

�
�i). By assumption, for any speci�cation of �

�( �j �; (m̂i;m
�
�i)) there

is no ��(�; (m̂i;m
�
�i)) that is a best reply to �̂i and vice versa� given �

�
�i� and can deter the

deviation to m̂i by �i of principal i. But then, there is no speci�cation of �
��( �j �; (�̂�i ; �T�i)) for

which a continuation equilibrium can be constructed that deters �i of principal i from deviating
to ��i in G�. This implies that (���; ���) can�t be an equilibrium of G�. A contradiction that
implies that it is possible to complete ��,�� and �� o¤ path to make any deviation from the on
path behavior constructed above unpro�table, and thus obtaining an equilibrium (��; ��) of G.
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