
   
 
 

UNIVERSITÀ DEGLI STUDI DI SIENA 
 

 

 
QUADERNI DEL DIPARTIMENTO 

DI ECONOMIA POLITICA E STATISTICA 

  

  
 

Stefano Vannucci 
 
 
 

 
 
 

Widest Choice 
 

  
  
 
 
 

n. 629  –  Dicembre 2011   

  

    

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

    

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6633566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract - A choice function is (weakly) width-maximizing if there exists a dissimilarity- i.e. an irreflexive 
symmetric binary relation- on the underlying object set such that the choice sets are (include, respectively) 
dissimilarity chains of locally maximum size. 
Width-maximizing and weakly width-maximizing choice functions on an arbitrary domain are characterized 
relying on the newly introduced notion of a revealed dissimilarity relation. 
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1 Introduction

Choice functions may be used to model choices from subsets of jointly avail-
able objects- as opposed to alternative options- and that usage is some-
times advertised denoting them as combinatorial choice functions (see e.g.
Echenique (2007), and Barberà, Bossert, Pattanaik (2004)).
The analysis and assessment of biodiversity preservation policies is a

prominent case in point: typically, some diversity index is to be maximized
under appropriate constraints, and such a diversity index is usually meant to
result from the aggregation of binary dissimilarity comparisons between the
available objects, combinations of which may be chosen (see e.g. Weitzman
(1998), and Nehring, Puppe (2002)).
Furthermore, if dissimilarity comparisons are dichotomous (i.e. any two

objects either are dissimilar or are not, with no intermediate degrees of dis-
similarity) and unsupplemented by further relevant information, diversity is
arguably to be assessed in terms of �maximum number of mutually dissimilar
objects�or width (see Basili, Vannucci (2007)).
Under those circumstances, diversity-maximizing combinatorial choice

amounts to �widest choice�according to the relevant dissimilarity relation.
But in fact, the range of �widest choice�is likely to be much larger than

that. On digiting �widest choice�on Google one is currently o¤ered a quite
impressive list of some 1:7� 107 items: at the very least, that fact suggests
that very many companies expect that their prospective customers might
choose among them relying on a width-maximizing criterion.
But then, how can one tell �widest choice�from other sorts of combinato-

rial choice behaviour? Is there any observable prediction following from the
hypothesis of width-maximizing choice?
The present note addresses the foregoing issue by providing a charac-

terization of width-maximizing choice on a general domain, to the e¤ect of
covering the case of �nite sets of observations (see Bossert, Suzumura (2010)
for a recent extensive work on maximizing choice behaviour on general do-
mains according to an arbitrary binary relation).
It will be shown that strict or irredundant width-maximizing choice rules

do in fact entail some signi�cant restrictions on combinatorial choice behav-
iour, while redundant width-maximizing choice only requires nonemptiness
of the choice set at any nonempty set.
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2 Model and results

Let X be a �universal�set of items, with cardinality #X � 3, and P(X) its
power set. A choice function on X with domain D � P(X) is a (partial)
contracting operator on X i.e. a function f : D ! P(X) such that f(A) � A
for any A 2 D. We denote by CX(D) the set of all choice functions on X
with domain D. We also denote by CX the set of all choice functions on X
and de�ne a partial order 6 on CX by pointwise set-inclusion as follows: for
any f : D ! P(X) and g : D0 ! P(X); f; g 2 CX , f 6 g i¤ D � D0 and
f(A) � g(A) for each A 2 D. A binary relation R � X � X is irre�exive
i¤ (x; x) =2 R for any x 2 X, and symmetric i¤ for any x; y 2 X, (x; y) 2 R
entails (y; x) 2 R, and is said to be a dissimilarity (or orthogonality) relation
on X i¤ it is both irre�exive and symmetric. We also denote -for any A � X-
RjA = R \ (A� A) and �A = f(x; x) : x 2 Ag.
Let D � X �X be a dissimilarity relation on X. Then, for any A � X,

let MC(DjA) =:

8<:
B � A : DjB = B �B r�B and

#B � #B0 for any B0 � A such that
DjB0 = B

0 �B0 r�B0

9=;
the set of all maximal D-chains in A.
A choice function f 2 CX(D) is rationalizable by width-maximization

through D i¤ f(A) 2 MC(DjA) for all A 2 D, and weakly rationalizable by
width-maximization through D i¤ for any A 2 D there exists B 2MC(DjA)
such that B � f(A).
A choice function f 2 CX(D) is rationalizable by width-maximization

(WM-rationalizable) i¤ there exists a dissimilarity relation D � X �X such
that f is rationalizable by width-maximization throughD. Similarly, a choice
function f 2 CX(D) is weakly rationalizable by width-maximization (weakly
WM-rationalizable) i¤ there exists a dissimilarity relation D � X �X such
that f is weakly rationalizable by width-maximization through D. To put
it in other, equivalent, terms WM-rationalizable (weakly WM-rationalizable)
choice functions model irredundant (redundant, respectively) width-maximization.
Notice that, by de�nition, f 2 CX(D) is weakly WM if and only if there exists
a WM f 0 2 CX(D) such that f 0 6 f .
For any f 2 CX(D) its revealed dissimilarity relation Df � X � X may

de�ned by the following rule: for any x; y 2 X, xDfy i¤ x 6= y and there
exists A 2 D such that fx; yg � f(A). It is immediately checked that Df

is indeed irre�exive and symmetric: it will play a pivotal role in the ensuing
analysis.
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Let us �rst address the case of WM-rationalizable choice functions. The
following properties are to be introduced

De�nition 1 (Properness (PR)) A choice function f 2 CX(D) is proper i¤
f(A) 6= ? for any A � X, A 6= ?.

PR is a quite natural property for width-maximizing choice. Even in
the worst case, when any object appears to be similar to any other objects,
something -as opposed to nothing- should expectedly be chosen among the
available objects (possibly a single item, if irredundance is required).

De�nition 2 (Revealed-dissimilarity coherence (RDC)) A choice function
f 2 CX(D) is revealed-dissimilarity coherent i¤ for all A0 2 D and A;B � X
with A [B � A0, if #A < #B and there exist fB0igi2I with B0i 2 D for each

i 2 I, such that B �B �
[
i2I
f(B0i)� f(B0i) then f(A0) 6= A.

RDC is also a natural requirement for width-maximizing choice, at least
when its revealed dissimilarity is the underlying dissimilarity relation: indeed,
RDC simply dictates that the choice set of any available set of objects cannot
be any subset that happens to be of smaller size of another available subset
consisting of objects that are revealed to be mutually dissimilar.
It may not be clear at the outset that any width-maximizing choice func-

tion should satisfy RDC. That is however one of the consequences of the
following

Lemma 3 Let f 2 CX(D). Then f is WM-rationalizable i¤ it is WM-
rationalizable with respect to Df .

Proof. Let f 2 CX(D) be WM-rationalizable through D. If D = ? (notice
that the empty relation is trivially irre�exive and symmetric) it follows, by
de�nition, that

MC(DjA) =:

8<:
B � A : ? = B �B r�B

and #B � #B0 for any B0 � A
such that ? = B0 �B0 r�B0

9=;
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henceMC(?jA) = ffxg : x 2 Ag and #f(A) = 1 for all A 2 D i.e. f is
single-valued. Thus, by de�nition of Df , Df = ? = D hence f is trivially
WM-rationalizable through Df as well.
Then, suppose D 6= ?, and consider any A 2 D. By hypothesis, f(A) 2

MC(DjA) hence Djf(A) = f(A) � f(A) r �f(A) and #f(A) � #B for any
B � A such that DjB = B�Br�B. By de�nition, xDfy for each x; y 2 f(A)
such that x 6= y hence Df

jf(A) = f(A)� f(A)r�f(A).
Now, suppose that there exists some B � A such that #B > #f(A) and

Df
jB = B�Br�B: then, since f(A) 2MC(DjA), DjB � B�Br�B hence

there exist at least two distinct x�; y� 2 B such that not x�Dy�.
On the other hand, for all x; y 2 B there exists some B0 2 D with

fx; yg � f(B0), hence in particular there exists B� 2 D such that fx�; y�g �
f(B�) 2 MC(DjB�) whence x�Dy�, a contradiction since by hypothesis not
x�Dy�.
Therefore, it must be the case that #f(A) � #B for all B � A such that

Df
jB = B �B r�B. It follows that f(A) 2MC(DjA) for all A 2 D, i.e. f is

WM-rationalizable through Df whenever it is WM-rationalizable at all.

We are now ready to state the main characterization result of the present
paper, namely

Theorem 4 Let f 2 CX(D). Then f is WM-rationalizable i¤ it satis�es PR
and RDC.

Proof. Let f 2 CX(D) be WM-rationalizable. Then, by Lemma 3 it is
WM-rationalizable through Df , i.e. for any A � X,

f(A) 2
(
B � A : Df

jB = B �B r�B and #B � #B0 for any B0 � A
such that Df

jB0 = B
0 �B0 r�B0

)
.

Now, to see that f satis�es PR, suppose that on the contrary f(A) = ?
for some nonempty A � X. Thus, for any B � A, Df

jB = B � B r�B only

if B = ?, a contradiction since A 6= ? and, for any x 2 A, Df
jfxg = ? by

irre�exivity of Df whence fxg � fxgr�fxg = ? = Df
jfxg by de�nition.

To check that RDC also holds, take any A0 2 D, A;B � X such that
A [ B � A0, #A < #B, and there exist a family fB0igi2I with B0i 2 D for

each i 2 I, and B � B �
[
i2I
f(B0i) � f(B0i). Now, suppose that f(A0) = A.
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Since f is WM-rationalizable, it is in particular WM-rationalizable through
Df , by Lemma 3.
Therefore, f(A0) = A 2 MC(Df

jA[B). However, by de�nition of Df ,

B�B �
[
i2I
f(B0i)�f(B0i) entails B�B n�B � Df

jA[B, a contradiction since

A 2 MC(Df
jA[B) and #A < #B.

Conversely, suppose that f 2 CX(D) satis�es PR and RDC, and let A 2 D.
Let us show that f(A) 2 MC(Df

jA) whence the thesis follows. First, notice

that f(?) = ? 2 MC(Df
j?) by de�nition, while f(A) = ? with A 6= ? is

impossible by PR. Now, suppose that A 6= ? and f(A) =2 MC(Df
jA): then,

since by de�nition Df
jf(A) = f(A) � f(A) r �f(A), it must be the case that

there exists B � A such that Df
jB = B � B r�B and #B > #f(A) (hence

#B > 2). Thus, by de�nition of Df , for each pair x; y 2 B there exists
B0i 2 D such that fx; yg � f(B0i). But then, by RDC, f(A) 6= f(A), a
contradiction.

Remark 5 It is easily checked that PR and RDC are mutually indepen-
dent properties. To see this, take X = fx; y; zg with x 6= y 6= z 6= x,
D = ffx; yg ; Xg, and f : D ! P(X) such that f(fx; yg) = fx; yg, f(X) =
fxg. Clearly, f satis�es PR. However, fx; yg�fx; yg � f(fx; yg)�f(fx; yg)
and f(fx; y; zg) = fxg entail a violation of RDC. Consider now f 0 : D !
P(X) de�ned as follows: f 0(fx; yg) = ?, f 0(X) = fxg. Since

[
B2D

f(B) �

f(B) = f(x; x)g it follows that f 0 trivially satis�es RDC. However, f 0 does
not satisfy PR.

Let us now turn to the characterization of weakly WM-rationalizable
choice functions.

Proposition 6 Let f 2 CX(D). Then f is weakly WM-rationalizable i¤ it
satis�es PR.

Proof. Let f 2 CX(D) be weakly WM-rationalizable. To begin with, notice
that by de�nition there exists a WM-rationalizable f 0 2 CX(D) such that
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f 0 6 f . By Theorem 4, f 0 satis�es PR hence by construction f also satis�es
PR.
Conversely, let f 2 CX(D) satisfy PR. Therefore, there exists a single-

valued f 0 2 CX(D) such that f 0 6 f . Now, it is easily checked that any
single-valued g 2 CX(D) is WM-rationalizable: to check this, take D = ?
which is trivially irre�exive and symmetric, and observe that for any A � X,
x 2 A and B � A such that #B � 2:
?jfxg = fxg � fxgr�fxg = ? while ?jB 6= B �B r�B.
Thus, g is WM-rationalizable through the empty dissimilarity relation

D = ?. It follows that in particular f 0 is WM-rationalizable hence f 0 6 f
implies that f is indeed weakly WM-rationalizable.

A remarkable consequence of Proposition 6 is that if the available data-
base only collects observations of nonempty choice sets (while empty choice
sets are ignored or disallowed), then anything goes. Namely, any choice be-
haviour may be rationalized in terms of weak i.e. redundant width-maximization,
under a not uncommon speci�cation of the database.
The foregoing trivializing e¤ect induced by mere choice of database type,

however, does never hold for strict or irredundant width-maximizing choice
behaviour that- by Theorem 4- is bound to display revealed-dissimilarity
coherence as its unmistakable hallmark.

3 Concluding remarks

Characterizations of both irredundant and redundant width-maximizing com-
binatorial choice behaviour on a general domain have been provided. It has
been shown that while redundant width-maximizing choice does not entail
any restriction on observable choice behaviour except for nonemptiness of the
choice set, the hypothesis of irredundant width-maximizing choice provides
much more stringent predictions.
Results of this kind parallel and supplement some related work on char-

acterizations of maximizing choice behaviour on general domains under an
arbitrary binary relation (see e.g. Bossert, Suzumura (2010)), and of alter-
native choice rules on more specialized domains of alternative options (see
e.g. Sen (1993), Baigent, Gaertner (1996), Brandt, Harrenstein (2011)).
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