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Abstract

N a t i o n a l  B a n k  o f  P o l a n d4

Abstract

Observed macroeconomic data – notably GDP growth rate, inflation and interest rates – can be,
and usually are skewed. Economists attempt to fit models to data by matching first and second
moments or co-moments, but skewness is usually neglected. It is so probably because skewness
cannot appear in linear (or linearized) models with Gaussian shocks, and shocks are usually
assumed to be Gaussian. Skewness requires non-linearities or non-Gaussian shocks. In this
paper we introduce skewness into the DSGE framework assuming skewed normal distribution
for shocks while keeping the model linear (or linearized). We argue that such a skewness can
be perceived as structural, since it concerns the nature of structural shocks. Importantly, the
skewed normal distribution nests the normal one, so that skewness is not assumed, but only
allowed for. We derive elementary facts about skewness propagation in the state space model
and, using the well-known Lubik-Schorfheide model, we run simulations to investigate how
skewness propagates from shocks to observables in a standard DSGE model. We also assess
properties of an ad hoc two-steps estimator of models’ parameters, shocks’ skewness parameters
among them.

JEL: C12, C13, C16, D58, E32
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Introduction

Skewness is a statistical feature of observed economic data. For an arbitrary random variable,

like output growth rate, inflation rate or an interest rate, skewness is typically manifested by the

lack of symmetry of the probability density function which governs this variable1. Intuitively,

if a random variable follows a skewed distribution, then its deviations above the mean value

are (i.e. positive deviations from the mean) on average either larger or smaller in magnitude

than the deviations below the mean (i.e. negative deviations from the mean). Also, either

positive or negative deviations from the mean value tend to be more frequent (i.e. are more

probable)2. Table 1 reports skewness coefficients3 for four macro aggregates in wide range of

countries calculated over 30 years using quarterly data. Application of the Bai and Ng (2005)

test π3 for skewness indicates that most of these coefficients are statistically significant. With

the except of Canada, quarterly inflation rate is positively skewed, which means that, on one

hand, positive deviations of inflation rate from the mean value tend to be bigger in magnitude

than the negative ones, and, on the other, that we should expect more episodes of inflation

rate below the mean than episodes of inflation rate above the mean. These two features of

inflation imply that inflation risks are asymmetric, especially if the mean value turns out to

be in line with the central bank inflation target. It is thus of no surprise, that nominal interest

rates also reveal positive skewness pattern. This is a partial argument for the fact that interest

rate inherit skewness pattern from inflation and not the other way round. Real output growth

rate, in turn, tends to have more frequently values above the mean than below the mean, but

negative deviations are on average greater in magnitude. In other words, GDP tends to grow

at a moderate pace, but if a recession hits, it can be severe. Absolute changes4 of domestic

exchange rates versus the US dollar — with the exception of the Swiss franc and the Japanese

1Yet, it can be the case that probability distribution function of a non-skewed random variable is not symmetric.
2This gives rise to the positive and negative skewness respectively.
3We measure skewness using a skewness coefficient defined as the third central moment standardized by the second

central moment to the power of 1.5, see eq. (1.6). For a review of other skewness measures see e.g. MacGillivray (1986).
4Positive changes denote depreciation and negative changes denote appreciation vs. the US currency.
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yen, are positively skewed in the sample, which means that appreciation of the currencies is

more frequent than depreciation and that appreciation tends to be moderate in magnitude, but

there may be, although less frequently, episodes of substantial depreciations. This stands in

line with the safe haven status of the US currency. Negative skewness of absolute changes of

the Japanese yen and the Swiss franc vs. US dollar could be understood as them having a safe

haven status with respect to the US dollar, which nowadays is true for the Swiss franc at least.

Investigated skewness patterns hold not only for individual countries, but can also be seen in

aggregate economies — in the European Union and in the OECD.

Table 1. Skewness (measured by sample skewness coefficient) in macroeconomic data

Country GDP growth Inflation Nom. interest rate Exchange rate

Australia −0.18 0.05 0.71∗ 1.33∗
Canada −0.50∗ −0.63∗ 0.76∗ 0.74∗
France −0.96∗ 1.64∗ 0.49∗ -

Japan −1.20∗ 0.88∗ 0.47 −0.46∗
Korea −1.48∗ 0.49∗ 0.68∗ 2.92∗
Switzerland −0.12 0.97∗ 0.72∗ −0.02

United Kingdom −1.34∗ 1.04∗ 0.40∗ 0.85∗
United States −0.97∗ 1.82∗ 0.86∗ -

European Union −1.96∗ 1.57∗ - 0.31

OECD −2.24∗ 1.79∗ - -

Note: ∗ indicates significance at least at the 10% level.

Source: Own calculations based on OECD data

It is clear from this exemplary exposition that, at least for investigated samples, major macroeco-

nomic time series reveal a meaningfully interpretable skewness pattern. This somehow stands in

contrast with the fact that DSGE models, as far as their first order approximations are concerned5,

totally abstract from skewness of observed data, assuming that both structural innovations and

measurement errors are normally distributed, hence symmetric.

Neglecting information provided by skewness of economic data distorts the balance of risks

faced by the policy makers, which limits their ability to achieve assumed objectives. Additionally,

unnoticed or neglected features of economic phenomena tend to limit the insight into them,

especially if they can be perceived as structural ones.

In the DSGE domain, skewness in observed variables can appear as a result of three major

factors. Firstly, skewness can appear as a result of models’ non-linearities. A trivial example is

when a normally distributed variable, e.g. a shock, is squared so that it obtains a χ2
1 distribution.

Shocks, for they influence states, would propagate skewness to observables. Such a mechanism

would work if we allowed for higher order approximations of the economy. Secondly, skewness

in observables can emerge as a result because of models’ internal mechanisms, e.g. asymmetric

preferences, see Christodoulakis and Peel (2009) or downward nominal or real rigidities, see

(Fahr and Smets, 2008; Kim and Ruge-Murcia, 2009). In such a case skewness constitutes an

endogenous feature of the model and there is a magnitude of degrees of freedom in which it can

5In this paper we focus only on the first order perturbation for reasons that are explained later in this section. Thus,
excercises provided in this paper is more an econometric than an economic one.
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be introduced. However, skewness vanishes from states and observables if only the first order

perturbation is used6, which in practice is often the case, especially when the model is estimated,

see (Amisano and Tristani, 2007). In a linearized state space form DSGE model skewness in

observables can appear when shocks hitting the economy follow a skewed distribution7. In such

a case skewness constitutes a structural feature of the modeled economy because it reflects a

statistical feature of structural shocks hitting the economy.

In this paper we take the latter approach, i.e. we take a linear state space model — which is

thought of as a first order perturbation of a DSGE economy — and assume that martingale

difference shocks in the transition equation have a skewed distribution. Alternatively, we could

assume that measurement errors are skewed. Both approaches result in skewed observables,

but the latter one lacks any structural motivation, whereas the one we take seems to have a

sound economic interpretation — shocks are skewed in a structural way. What is important for

our motivation, is that in the class of linear state space models skewness in observed variables

must be a reflection of skewness in stochastic disturbances, so the number of degrees of freedom

through which skewness can be accounted for in the modeled economy is minimized to one —

there is no other way for skewness to enter the model8.

Working with skewed shocks gives rise to the question which family of probability distributions

is appropriate for this purpose. Such a family, firstly, should nest a normal distribution, so that

the typical (normal) specification is allowed for and skewness in shocks can be rejected if it does

not find enough support in the data. Secondly, employed distribution should have properties

which allow us to use the state space setting. Desired properties involve closure under most

general linear transformations, under addition of independent variables, under taking joint and

marginal distributions and under conditioning. Most of these features, but not all of them, are

offered by the closed skewed normal distribution.

In the paper we do three things. First, we deliver elementary facts about propagation of skewness

and of the closed skewed normal distribution in linear state space models. Second, we conduct

simulation experiments designed to capture propagation of skewness from shocks to observed

variables in a small open economy Lubik and Schorfheide (2007) DSGE model. Finally, we

develop a simple, yet useful, two-step quasi-maximum likelihood estimation procedure, which is

capable of handling skewness, but avoids computational difficulties which emerge in case of

maximum likelihood estimation.

6And shocks follow a symmetric distribution
7Outside the framework of DSGE models Ball and Mankiw (1995) showed how combination of non-linearity (firms

adjust prices to shocks that are sufficiently large to justify paying menu costs) and skewed shocks (with zero mean) to
desired price levels leads to skewed observed price changes.

8We a priori reject the possibility that measurement errors are skewed since this would seem as an artificial, technical
assumption.

5

be introduced. However, skewness vanishes from states and observables if only the first order

perturbation is used6, which in practice is often the case, especially when the model is estimated,

see (Amisano and Tristani, 2007). In a linearized state space form DSGE model skewness in

observables can appear when shocks hitting the economy follow a skewed distribution7. In such

a case skewness constitutes a structural feature of the modeled economy because it reflects a

statistical feature of structural shocks hitting the economy.

In this paper we take the latter approach, i.e. we take a linear state space model — which is

thought of as a first order perturbation of a DSGE economy — and assume that martingale

difference shocks in the transition equation have a skewed distribution. Alternatively, we could

assume that measurement errors are skewed. Both approaches result in skewed observables,

but the latter one lacks any structural motivation, whereas the one we take seems to have a

sound economic interpretation — shocks are skewed in a structural way. What is important for

our motivation, is that in the class of linear state space models skewness in observed variables

must be a reflection of skewness in stochastic disturbances, so the number of degrees of freedom

through which skewness can be accounted for in the modeled economy is minimized to one —

there is no other way for skewness to enter the model8.

Working with skewed shocks gives rise to the question which family of probability distributions

is appropriate for this purpose. Such a family, firstly, should nest a normal distribution, so that

the typical (normal) specification is allowed for and skewness in shocks can be rejected if it does

not find enough support in the data. Secondly, employed distribution should have properties

which allow us to use the state space setting. Desired properties involve closure under most

general linear transformations, under addition of independent variables, under taking joint and

marginal distributions and under conditioning. Most of these features, but not all of them, are

offered by the closed skewed normal distribution.

In the paper we do three things. First, we deliver elementary facts about propagation of skewness

and of the closed skewed normal distribution in linear state space models. Second, we conduct

simulation experiments designed to capture propagation of skewness from shocks to observed

variables in a small open economy Lubik and Schorfheide (2007) DSGE model. Finally, we

develop a simple, yet useful, two-step quasi-maximum likelihood estimation procedure, which is

capable of handling skewness, but avoids computational difficulties which emerge in case of

maximum likelihood estimation.

6And shocks follow a symmetric distribution
7Outside the framework of DSGE models Ball and Mankiw (1995) showed how combination of non-linearity (firms

adjust prices to shocks that are sufficiently large to justify paying menu costs) and skewed shocks (with zero mean) to
desired price levels leads to skewed observed price changes.

8We a priori reject the possibility that measurement errors are skewed since this would seem as an artificial, technical
assumption.

5

yen, are positively skewed in the sample, which means that appreciation of the currencies is

more frequent than depreciation and that appreciation tends to be moderate in magnitude, but

there may be, although less frequently, episodes of substantial depreciations. This stands in

line with the safe haven status of the US currency. Negative skewness of absolute changes of

the Japanese yen and the Swiss franc vs. US dollar could be understood as them having a safe

haven status with respect to the US dollar, which nowadays is true for the Swiss franc at least.

Investigated skewness patterns hold not only for individual countries, but can also be seen in

aggregate economies — in the European Union and in the OECD.

Table 1. Skewness (measured by sample skewness coefficient) in macroeconomic data

Country GDP growth Inflation Nom. interest rate Exchange rate

Australia −0.18 0.05 0.71∗ 1.33∗
Canada −0.50∗ −0.63∗ 0.76∗ 0.74∗
France −0.96∗ 1.64∗ 0.49∗ -

Japan −1.20∗ 0.88∗ 0.47 −0.46∗
Korea −1.48∗ 0.49∗ 0.68∗ 2.92∗
Switzerland −0.12 0.97∗ 0.72∗ −0.02

United Kingdom −1.34∗ 1.04∗ 0.40∗ 0.85∗
United States −0.97∗ 1.82∗ 0.86∗ -

European Union −1.96∗ 1.57∗ - 0.31

OECD −2.24∗ 1.79∗ - -

Note: ∗ indicates significance at least at the 10% level.

Source: Own calculations based on OECD data

It is clear from this exemplary exposition that, at least for investigated samples, major macroeco-

nomic time series reveal a meaningfully interpretable skewness pattern. This somehow stands in

contrast with the fact that DSGE models, as far as their first order approximations are concerned5,

totally abstract from skewness of observed data, assuming that both structural innovations and

measurement errors are normally distributed, hence symmetric.

Neglecting information provided by skewness of economic data distorts the balance of risks

faced by the policy makers, which limits their ability to achieve assumed objectives. Additionally,

unnoticed or neglected features of economic phenomena tend to limit the insight into them,

especially if they can be perceived as structural ones.

In the DSGE domain, skewness in observed variables can appear as a result of three major

factors. Firstly, skewness can appear as a result of models’ non-linearities. A trivial example is

when a normally distributed variable, e.g. a shock, is squared so that it obtains a χ2
1 distribution.

Shocks, for they influence states, would propagate skewness to observables. Such a mechanism

would work if we allowed for higher order approximations of the economy. Secondly, skewness

in observables can emerge as a result because of models’ internal mechanisms, e.g. asymmetric

preferences, see Christodoulakis and Peel (2009) or downward nominal or real rigidities, see

(Fahr and Smets, 2008; Kim and Ruge-Murcia, 2009). In such a case skewness constitutes an

endogenous feature of the model and there is a magnitude of degrees of freedom in which it can

5In this paper we focus only on the first order perturbation for reasons that are explained later in this section. Thus,
excercises provided in this paper is more an econometric than an economic one.

4



Introduction

WORKING PAPER No. 101 7

be introduced. However, skewness vanishes from states and observables if only the first order

perturbation is used6, which in practice is often the case, especially when the model is estimated,

see (Amisano and Tristani, 2007). In a linearized state space form DSGE model skewness in

observables can appear when shocks hitting the economy follow a skewed distribution7. In such

a case skewness constitutes a structural feature of the modeled economy because it reflects a

statistical feature of structural shocks hitting the economy.

In this paper we take the latter approach, i.e. we take a linear state space model — which is

thought of as a first order perturbation of a DSGE economy — and assume that martingale

difference shocks in the transition equation have a skewed distribution. Alternatively, we could

assume that measurement errors are skewed. Both approaches result in skewed observables,

but the latter one lacks any structural motivation, whereas the one we take seems to have a

sound economic interpretation — shocks are skewed in a structural way. What is important for

our motivation, is that in the class of linear state space models skewness in observed variables

must be a reflection of skewness in stochastic disturbances, so the number of degrees of freedom

through which skewness can be accounted for in the modeled economy is minimized to one —

there is no other way for skewness to enter the model8.

Working with skewed shocks gives rise to the question which family of probability distributions

is appropriate for this purpose. Such a family, firstly, should nest a normal distribution, so that

the typical (normal) specification is allowed for and skewness in shocks can be rejected if it does

not find enough support in the data. Secondly, employed distribution should have properties

which allow us to use the state space setting. Desired properties involve closure under most

general linear transformations, under addition of independent variables, under taking joint and

marginal distributions and under conditioning. Most of these features, but not all of them, are

offered by the closed skewed normal distribution.
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capable of handling skewness, but avoids computational difficulties which emerge in case of

maximum likelihood estimation.
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adjust prices to shocks that are sufficiently large to justify paying menu costs) and skewed shocks (with zero mean) to
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Chapter 1

Skewness in linear models

This section presents the closed skewed normal distribution and provides elementary facts on

propagation of skewness and of the closed skewed normal distribution in a linear state space

model.

1.1 The closed skewed normal distribution

Let us denote a density function of a p-dimensional normal distribution with mean1 µ̃ and

positive-definite covariance matrix Σ̃ by φp(z; µ̃, Σ̃). Let us also denote a cumulative distribu-

tion function of a q-dimensional normal distribution with mean µ̃ and nonnegative-definite

covariance matrix Σ̃ by Φq(z; µ̃, Σ̃). For q > 1 function Φq does not have a closed form.

By Rp×q, p,q ≥ 1, let us denote a space of linear operators from Rp to Rq. For every M ∈ Rp×q

let |M | denote a determinant of M and let r(M) denote a rank of M . We will define the closed

skewed normal, possibly singular, distribution by means of the moment generating function

(mgf). Then, under nonsingularity conditions, probability density function (pdf) will be provided.

Definition 1.1.1. (csn distribution — mgf) Let µ̃ ∈ Rp and ϑ ∈ Rq, p,q ≥ 1. Let Σ̃ ∈ Rp×p and

∆ ∈ Rq×q, |Σ̃|, |∆| ≥ 0, and let D ∈ Rq×p. We say that random variable z has a (p,q) dimensional

closed skewed normal distribution with parameters µ̃, Σ̃, D, ϑ and ∆ if moment generating

function of z, Mz(t), is given by:

Mz(t) =
Φq(DΣ̃ t;ϑ,∆+ DΣDT )

Φq(0;ϑ,∆+ DΣDT )
et T µ̃+ 1

2
t T Σ̃ t

1All vectors are column vectors throughout the paper.
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which henceforth will be denoted by:

z ∼ csnp,q(µ̃, Σ̃, D,ϑ,∆)

Note that matrices Σ̃ and ∆ are allowed to be singular. If Σ̃ is not positive definite, i.e. |Σ̃| = 0,

resulting distribution is called singular. If Σ̃ is positive definite, i.e. |Σ̃| > 0, distribution is

called nonsingular. The csn distribution is ”closed” in the sense, that it is closed under full

rank linear transformations2. Isomorphic linear transformations transform nonsingular csn

variables into nonsigular ones and singular variables into singular ones. Full row, but column

rank deficient linear transformations (dimension shrinkage) transform nonsingular csn variables

into nonsigular ones and singular variables into singular or nonsingular ones. Full column,

but row rank deficient linear transformations (dimension expansion) transform nonsingular

csn variables into singular ones, whereas singular variables remain singular. Both singular and

nonsingular variables can be transformed into a non-csn distributed variable under a rank

deficient transformation. The skewed normal distribution — when considered as consisting of

both singular and nonsingular csn variables — is therefore not closed under arbitrary linear

transformations, which entails computational difficulties for maximum likelihood estimation

of state space models with csn shocks when the transition matrix in state space equations is

singular, which typically is the case in DSGE modeling.

For |Σ̃|> 0, a csn random variable z has a probability density function:

Definition 1.1.2. (csn distribution — pdf) If a random variable z follows a (p,q)-dimensional,

p,q ≥ 1, closed skewed normal distribution with parameters µ̃, Σ̃, D, ϑ and ∆, where µ̃ ∈ Rp,

ϑ ∈ Rq, Σ̃ ∈ Rp×p, |Σ̃| > 0, ∆ ∈ Rp×p, |∆| ≥ 0 and D ∈ Rq×p, than probability density function

of z is given by:

p(z) = φp(z; µ̃, Σ̃)
Φq(D(z − µ̃);ϑ,∆)

Φq(0;ϑ,∆+ DΣDT )
(1.1)

Density function (1.1) defines a (p,q)-dimensional nonsingular closed skewed normal distri-

bution in the sense that a random variable has (p,q)-dimensional nonsingular closed skewed

normal distribution with parameters µ̃, Σ̃, D, ϑ and ∆ if and only if its density function for every

z ∈ Rp equals p(z). The probability density function (1.1) involves a probability distribution

function of a q-dimensional normal distribution for, in principle, arbitrarily large q, which

entails computational difficulties when working with a likelihood function based on p(z). Closed

skewed normal density function can be read as a a product of a normal density function (which

is symmetric) and a skewing or weighting function given by a quotient of two normal probability

distribution functions (in fact the distribution function in the denominator constitutes a constant

of proportionality so that everything integrates to unity).

Parameters µ̃, Σ̃ and D have interpretation of location, scale and skewness parameters respec-

tively. Parameters ϑ and ∆ are artificial, but inclusion of these additional dimensions allows

2Under full rank transformation we mean full row or full column rank transformation and this definition embraces
the case when matrix of the transformation is square and has a full rank. In the latter case the transformation is called
an isomorphism. When both the row and the column ranks are not full, transformation is called rank deficient.
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for closure of the csn distribution under conditioning and marginalization respectively. The

q-dimension is also artificial, but it allows for closure for sums and the joint distribution of

independent (not necessarily iid) variables. When Σ̃, D and ∆ are scalars, they will be denoted

respectively by σ̃, d and δ.

Let us note the following:

Remark 1.1.3. For p = q = 1, ϑ = 0 and ∆ = 1 the csn distribution reduces to the Azzalini

skewed normal distribution, see Azzalini and Valle (1996); Azzalini and Capitanio (1999).

Such a case will be denoted by:

z ∼ sn(µ̃, σ̃, d) (1.2)

In the next sections we will find useful the following:

Corollary 1.1.4. Let z ∼ csn1,1(µ̃, σ̃, d,ϑ,δ) for parameters as in definition (1.1.2), and assume

that δ+ d2σ̃ �= 0, then:

E(z) = µ̃+

�

2

π

dσ̃
�

δ+ d2σ̃
(1.3)

var(z) = σ̃−
2

π

d2σ̃2

δ+ d2σ̃
(1.4)

E(z − E(z))3 =
�

2−
π

2

�

��

2

π

�3�
dσ̃

(δ+ σ̃d2)
1
2

�3

(1.5)

It follows that:

Remark 1.1.5. Let z ∼ csn1,1(µ̃, σ̃, d,ϑ,δ) for parameters as in definition (1.1.4), then E(z) = 0

if and only if µ̃=−
�

2
π

dσ̃�
δ+d2σ̃

.

We also need the following:

Corollary 1.1.6. Let z ∼ csnp,q(µ̃, Σ̃, D,ϑ,∆), p,q ≥ 1, for parameters as in definition (1.1.1).

Elements of z are independent if and only if matrices Σ̃ and D are diagonal.

Since Σ̃ is p × p and D is q × p, corollary (1.1.6) implies that it is impossible to have q = 1

while keeping elements of z independent for p > 1, because it has to be the case that q = p > 1

in order for D to be diagonal. This is relevant for state space models with csn distributed iid

disturbances — e.g. shocks in the transition equation, because the state variable, say ξt , in

every period consists of the csn distributed state from the previous period, say ξt−1, plus the

csn-distributed disturbance3, say ut , and when we add two csn variables we have to add their

q-dimensions, so that the q-dimension of ξt is the sum of q-dimensions of ξt−1 and ut , hence,

according to corollary (1.1.6), contribution of ut to q-dimension of ξt in every period cannot be

squeezed to eg. 1, but must equal the number of elements of ut , hence the q-dimension of ξt

quickly expands which poses numerical difficulties for maximum likelihood estimation.

In further sections we will also need the following corollaries (1.1.7–1.1.10):

3Both state from the previous period and the disturbance are transformed by the linear transformation in state space
models, but let us ignore this fact for the present argumentation (or assume this transformations are identities).
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Corollary 1.1.7. Let z ∼ csnp,q(µ̃, Σ̃, D,ϑ,∆), p,q ≥ 1, for parameters as in definition (1.1.1).

Let also x ∼ N(µx ,Σx), Σx > 0, be independent of z, then:

z + x ∼ csnp,q(µ̃+µx , Σ̃ +Σx , DΣ̃(Σ̃ +Σx)
−1,ϑ,∆+ (D(I − Σ̃(Σ̃ +Σx)

−1))Σ̃DT )

Corollary 1.1.8. Let z ∼ csn1,q(µ̃, σ̃, d,ϑ,δ), q ≥ 1 and for parameters as in definition (1.1.1),

let also ρ �= 0 and b ∈ R, then:

ρz + b ∼ csn1,q(ρµ̃+ b,ρ2σ̃,
1

ρ
d,ϑ,δ)

Corollary 1.1.9. Let z ∼ csnp,q(µ̃, Σ̃, D,ϑ,∆), p,q ≥ 1, for parameters as in definition (1.1.1),

let also A∈ Rp×p, |A|> 1, and b ∈ Rp, then:

Az + b ∼ csnp,q(Aµ̃+ b,AΣ̃AT , DΣ̃A−1,ϑ,∆)

Corollary 1.1.10. Let zi ∼ csnp,qi
(µ̃i , Σ̃i , Di ,ϑi ,∆i), p,qi ≥ 1, i = 1, 2, ..., n, for parameters as in

definition (1.1.1), then
∑n

i=1 zi ∼ csnp,
∑n

i=1 qi
(µ̃�, Σ̃�, D�,ϑ�,∆�), where:

µ̃� =
n
∑

i=1

µ̃i , Σ� =
n
∑

i=1

Σ̃i , D� = (Σ1DT
1 , ...,ΣnDT

n )
T (Σ�)−1,

ϑ� = (ϑT
1 ,ϑT

2 , ...,ϑT
n )

T , ∆� =∆⊕ + D⊕Σ̃⊕D⊕ − [
n
⊕

i=1

DiΣ̃i](Σ̃
�)−1[

n
⊕

i=1

DiΣ̃i]
−1

for ∆⊕ =
⊕n

i=1∆i , D⊕ =
⊕n

i=1 Di and Σ⊕ =
⊕

Σ̃i , where operator ⊕, arbitrary matrices A and B,

is defined as:

A⊕ B =





A 0

0 B





We are now ready to investigate how skewness propagates from disturbances to states and

observables in a linear state space setting. We will do this in a twofold manner. First we will show

how skewness propagates through the state space form in general and then we will turn to the

special case when shocks in the transition equation follow a closed skewed normal distribution.

1.2 Propagation of skewness

In this section we put forward elementary facts about skewness propagation in linear state

space models. First we deal with state variables, and then with the observables. As a measure of

skewness we employ the skewness coefficient4, which, for an arbitrary random variable z ∈ R, is

4We choose a skewness coefficient for a handful of reasons. First, it is widely applied by many researchers, hence
any results can be easily used by others. In addition, it satisfies properties stated by Arnold and Groneneveld (1995).
Second, other skewness measures based on mode or quartiles may be not suitable for our purposes since the closed form
formulas for mode and quartiles of skew-normal distribution have not been derived and we would find it difficult to
provide results on propagation of skewness in general and in the case of the closed skewed distribution in particular.
Third, as it will be clear from further analysis, for shocks, which we model as independent Azzalini-type variables,
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for closure of the csn distribution under conditioning and marginalization respectively. The

q-dimension is also artificial, but it allows for closure for sums and the joint distribution of

independent (not necessarily iid) variables. When Σ̃, D and ∆ are scalars, they will be denoted

respectively by σ̃, d and δ.

Let us note the following:

Remark 1.1.3. For p = q = 1, ϑ = 0 and ∆ = 1 the csn distribution reduces to the Azzalini

skewed normal distribution, see Azzalini and Valle (1996); Azzalini and Capitanio (1999).

Such a case will be denoted by:

z ∼ sn(µ̃, σ̃, d) (1.2)

In the next sections we will find useful the following:

Corollary 1.1.4. Let z ∼ csn1,1(µ̃, σ̃, d,ϑ,δ) for parameters as in definition (1.1.2), and assume

that δ+ d2σ̃ �= 0, then:

E(z) = µ̃+

�

2

π

dσ̃
�

δ+ d2σ̃
(1.3)

var(z) = σ̃−
2

π

d2σ̃2

δ+ d2σ̃
(1.4)

E(z − E(z))3 =
�

2−
π

2

�

��

2

π

�3�
dσ̃

(δ+ σ̃d2)
1
2

�3

(1.5)

It follows that:

Remark 1.1.5. Let z ∼ csn1,1(µ̃, σ̃, d,ϑ,δ) for parameters as in definition (1.1.4), then E(z) = 0

if and only if µ̃=−
�

2
π

dσ̃�
δ+d2σ̃

.

We also need the following:

Corollary 1.1.6. Let z ∼ csnp,q(µ̃, Σ̃, D,ϑ,∆), p,q ≥ 1, for parameters as in definition (1.1.1).

Elements of z are independent if and only if matrices Σ̃ and D are diagonal.

Since Σ̃ is p × p and D is q × p, corollary (1.1.6) implies that it is impossible to have q = 1

while keeping elements of z independent for p > 1, because it has to be the case that q = p > 1

in order for D to be diagonal. This is relevant for state space models with csn distributed iid

disturbances — e.g. shocks in the transition equation, because the state variable, say ξt , in

every period consists of the csn distributed state from the previous period, say ξt−1, plus the

csn-distributed disturbance3, say ut , and when we add two csn variables we have to add their

q-dimensions, so that the q-dimension of ξt is the sum of q-dimensions of ξt−1 and ut , hence,

according to corollary (1.1.6), contribution of ut to q-dimension of ξt in every period cannot be

squeezed to eg. 1, but must equal the number of elements of ut , hence the q-dimension of ξt

quickly expands which poses numerical difficulties for maximum likelihood estimation.

In further sections we will also need the following corollaries (1.1.7–1.1.10):

3Both state from the previous period and the disturbance are transformed by the linear transformation in state space
models, but let us ignore this fact for the present argumentation (or assume this transformations are identities).

8



Skewness in linear models

WORKING PAPER No. 101 11

1

Corollary 1.1.7. Let z ∼ csnp,q(µ̃, Σ̃, D,ϑ,∆), p,q ≥ 1, for parameters as in definition (1.1.1).

Let also x ∼ N(µx ,Σx), Σx > 0, be independent of z, then:
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let also A∈ Rp×p, |A|> 1, and b ∈ Rp, then:

Az + b ∼ csnp,q(Aµ̃+ b,AΣ̃AT , DΣ̃A−1,ϑ,∆)
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(µ̃i , Σ̃i , Di ,ϑi ,∆i), p,qi ≥ 1, i = 1, 2, ..., n, for parameters as in

definition (1.1.1), then
∑n

i=1 zi ∼ csnp,
∑n
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(µ̃�, Σ̃�, D�,ϑ�,∆�), where:

µ̃� =
n
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n )
T (Σ�)−1,
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n )
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�)−1[
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−1

for ∆⊕ =
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i=1∆i , D⊕ =
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i=1 Di and Σ⊕ =
⊕

Σ̃i , where operator ⊕, arbitrary matrices A and B,

is defined as:

A⊕ B =





A 0

0 B
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

We are now ready to investigate how skewness propagates from disturbances to states and

observables in a linear state space setting. We will do this in a twofold manner. First we will show

how skewness propagates through the state space form in general and then we will turn to the

special case when shocks in the transition equation follow a closed skewed normal distribution.

1.2 Propagation of skewness

In this section we put forward elementary facts about skewness propagation in linear state

space models. First we deal with state variables, and then with the observables. As a measure of

skewness we employ the skewness coefficient4, which, for an arbitrary random variable z ∈ R, is

4We choose a skewness coefficient for a handful of reasons. First, it is widely applied by many researchers, hence
any results can be easily used by others. In addition, it satisfies properties stated by Arnold and Groneneveld (1995).
Second, other skewness measures based on mode or quartiles may be not suitable for our purposes since the closed form
formulas for mode and quartiles of skew-normal distribution have not been derived and we would find it difficult to
provide results on propagation of skewness in general and in the case of the closed skewed distribution in particular.
Third, as it will be clear from further analysis, for shocks, which we model as independent Azzalini-type variables,
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defined as5:

γ(z) =
E(z − E(z))3

(E(z − E(z))2)
3
2

(1.6)

provided that the second and the third central moment of z exist6. We will make use of the

following:

Remark 1.2.1. For a random variable z with an n-times differentiable moment generating

function Mz(x) we have:

E(z − E(z))n = κn(z) =
∂ n ln Mz(x)
∂ xn |x=0

where κn(z) denotes the n-th cumulant of z.

Remark 1.2.2. Let z be a random variable for which κn(z) exists for n= 2,3, then:

γ(z) =
κ3(z)

(κ2(z))
3
2

Remark 1.2.3. Let zi be independent random variables and let αi ∈ R, i = 1, 2, ..., m, then:

κn

�

m
∑

i=1

αizi

�

=
m
∑

i=1

αn
i κn(zi)

State variables

We will start with a one-dimensional model and then move to the multidimensional case. Let

us consider the following autoregressive model, which represents the state-space formulation

without the measurement equation:

ξt = ρξt−1 + ut (1.7)

ut ∼ p(. . .) (1.8)

ξ0 ∼ N(µξ0
,σ0) (1.9)

for t = 1,2, ..., T , where ξt ,ξ0,ut ∈ R, ρ �= 0, µξ0
∈ R, σ0 ≥ 0 and p(. . .) is any distribution7

such that γ(ut) exists for every t and is constant, i.e. γ(ut) = γ(u) for every t.

Let us make use of the fact that ξt can be expressed as a weighted sum of innovations ut−k for

skewness coefficient represents an exhaustive measure of skewness. In case of observables, which are not independent,
the univariate skewness coefficient is not exhaustive because it omits cross-skewness. However, from the economic
point of view, we are only interested in skewness of observables perceived as single variables. The co-skewness between
variables might enable us to gain a deeper insight into the issue and we think of it as of a promissing direction of future
research.

5We assumed that z ∈ R in (1.6), but in principle it can be the case that z ∈ Rp for p > 1 if only exponentiations and
division in (1.6) are considered as elementwise operations.

6Which is true in all cases considered in this paper.
7We write p(. . .) to denote that p can depend on some parameters.
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E(z − E(z))3
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3
2

(1.6)

provided that the second and the third central moment of z exist6. We will make use of the

following:
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function Mz(x) we have:
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κn

�

m
∑

i=1

αizi

�

=
m
∑

i=1

αn
i κn(zi)

State variables

We will start with a one-dimensional model and then move to the multidimensional case. Let

us consider the following autoregressive model, which represents the state-space formulation

without the measurement equation:

ξt = ρξt−1 + ut (1.7)

ut ∼ p(. . .) (1.8)

ξ0 ∼ N(µξ0
,σ0) (1.9)

for t = 1,2, ..., T , where ξt ,ξ0,ut ∈ R, ρ �= 0, µξ0
∈ R, σ0 ≥ 0 and p(. . .) is any distribution7

such that γ(ut) exists for every t and is constant, i.e. γ(ut) = γ(u) for every t.

Let us make use of the fact that ξt can be expressed as a weighted sum of innovations ut−k for

skewness coefficient represents an exhaustive measure of skewness. In case of observables, which are not independent,
the univariate skewness coefficient is not exhaustive because it omits cross-skewness. However, from the economic
point of view, we are only interested in skewness of observables perceived as single variables. The co-skewness between
variables might enable us to gain a deeper insight into the issue and we think of it as of a promissing direction of future
research.

5We assumed that z ∈ R in (1.6), but in principle it can be the case that z ∈ Rp for p > 1 if only exponentiations and
division in (1.6) are considered as elementwise operations.

6Which is true in all cases considered in this paper.
7We write p(. . .) to denote that p can depend on some parameters.
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Corollary 1.1.7. Let z ∼ csnp,q(µ̃, Σ̃, D,ϑ,∆), p,q ≥ 1, for parameters as in definition (1.1.1).

Let also x ∼ N(µx ,Σx), Σx > 0, be independent of z, then:

z + x ∼ csnp,q(µ̃+µx , Σ̃ +Σx , DΣ̃(Σ̃ +Σx)
−1,ϑ,∆+ (D(I − Σ̃(Σ̃ +Σx)

−1))Σ̃DT )

Corollary 1.1.8. Let z ∼ csn1,q(µ̃, σ̃, d,ϑ,δ), q ≥ 1 and for parameters as in definition (1.1.1),

let also ρ �= 0 and b ∈ R, then:

ρz + b ∼ csn1,q(ρµ̃+ b,ρ2σ̃,
1

ρ
d,ϑ,δ)

Corollary 1.1.9. Let z ∼ csnp,q(µ̃, Σ̃, D,ϑ,∆), p,q ≥ 1, for parameters as in definition (1.1.1),

let also A∈ Rp×p, |A|> 1, and b ∈ Rp, then:

Az + b ∼ csnp,q(Aµ̃+ b,AΣ̃AT , DΣ̃A−1,ϑ,∆)

Corollary 1.1.10. Let zi ∼ csnp,qi
(µ̃i , Σ̃i , Di ,ϑi ,∆i), p,qi ≥ 1, i = 1, 2, ..., n, for parameters as in

definition (1.1.1), then
∑n

i=1 zi ∼ csnp,
∑n

i=1 qi
(µ̃�, Σ̃�, D�,ϑ�,∆�), where:

µ̃� =
n
∑

i=1

µ̃i , Σ� =
n
∑

i=1

Σ̃i , D� = (Σ1DT
1 , ...,ΣnDT

n )
T (Σ�)−1,

ϑ� = (ϑT
1 ,ϑT

2 , ...,ϑT
n )

T , ∆� =∆⊕ + D⊕Σ̃⊕D⊕ − [
n
⊕

i=1

DiΣ̃i](Σ̃
�)−1[

n
⊕

i=1

DiΣ̃i]
−1

for ∆⊕ =
⊕n

i=1∆i , D⊕ =
⊕n

i=1 Di and Σ⊕ =
⊕

Σ̃i , where operator ⊕, arbitrary matrices A and B,

is defined as:

A⊕ B =





A 0

0 B





We are now ready to investigate how skewness propagates from disturbances to states and

observables in a linear state space setting. We will do this in a twofold manner. First we will show

how skewness propagates through the state space form in general and then we will turn to the

special case when shocks in the transition equation follow a closed skewed normal distribution.

1.2 Propagation of skewness

In this section we put forward elementary facts about skewness propagation in linear state

space models. First we deal with state variables, and then with the observables. As a measure of

skewness we employ the skewness coefficient4, which, for an arbitrary random variable z ∈ R, is

4We choose a skewness coefficient for a handful of reasons. First, it is widely applied by many researchers, hence
any results can be easily used by others. In addition, it satisfies properties stated by Arnold and Groneneveld (1995).
Second, other skewness measures based on mode or quartiles may be not suitable for our purposes since the closed form
formulas for mode and quartiles of skew-normal distribution have not been derived and we would find it difficult to
provide results on propagation of skewness in general and in the case of the closed skewed distribution in particular.
Third, as it will be clear from further analysis, for shocks, which we model as independent Azzalini-type variables,
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γ(z) =
E(z − E(z))3
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3
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(1.6)

provided that the second and the third central moment of z exist6. We will make use of the

following:
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E(z − E(z))n = κn(z) =
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κ3(z)
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3
2
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κn

�

m
∑

i=1

αizi

�

=
m
∑

i=1

αn
i κn(zi)

State variables

We will start with a one-dimensional model and then move to the multidimensional case. Let

us consider the following autoregressive model, which represents the state-space formulation

without the measurement equation:

ξt = ρξt−1 + ut (1.7)

ut ∼ p(. . .) (1.8)

ξ0 ∼ N(µξ0
,σ0) (1.9)

for t = 1,2, ..., T , where ξt ,ξ0,ut ∈ R, ρ �= 0, µξ0
∈ R, σ0 ≥ 0 and p(. . .) is any distribution7

such that γ(ut) exists for every t and is constant, i.e. γ(ut) = γ(u) for every t.

Let us make use of the fact that ξt can be expressed as a weighted sum of innovations ut−k for

skewness coefficient represents an exhaustive measure of skewness. In case of observables, which are not independent,
the univariate skewness coefficient is not exhaustive because it omits cross-skewness. However, from the economic
point of view, we are only interested in skewness of observables perceived as single variables. The co-skewness between
variables might enable us to gain a deeper insight into the issue and we think of it as of a promissing direction of future
research.

5We assumed that z ∈ R in (1.6), but in principle it can be the case that z ∈ Rp for p > 1 if only exponentiations and
division in (1.6) are considered as elementwise operations.

6Which is true in all cases considered in this paper.
7We write p(. . .) to denote that p can depend on some parameters.
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k = 0, 1, ..., t − 2, and of ξ1, i.e. we employ the moving average representation of ξt :

ξt = ρ
t−1ξ1 +

t−2
∑

k=0

ρkut−k =
t−1
∑

k=0

ρkut−k (1.10)

where the second equality comes from a simplifying assumption that µξ0
= 0 and σ0 = 0, so

that ξ1 = u1. This makes exposition simpler and does not change meaning of the results8. First

we will investigate the effect on ξt exerted be innovation ut at time t = 1 keeping ut = 0 for

t > 1, then we will see what happens if ut is allowed to be nonzero also for t > 19.

When ut = 0 for t > 1, (1.10) states that ξt = ρ
t−1u1 and, employing remarks (1.2.1–1.2.3),

we see that:

γ(ξt) =
ρ3(t−1)

�

ρ2(t−1)
�

3
2

γ(u) = sgn(ρ)t+1γ(u) =







γ(u) ρ > 0,

(−1)t+1γ(u) ρ < 0.
(1.11)

which means that univariate autoregressive models preserve skewness (as measured by the

skewness coefficient) which originates from a one-time shock occurrence regardless of the value

of the autoregressive coefficient ρ > 0 and preserve absolute skewness regardless of ρ < 0.

This is true for all t = 1,2, ..., T . It may come as a surprise, since the effect in magnitude of u0

exerted on ξt evaporates totally (in the limit) as t increases.

Now, still being in the univariate case, let us drop the assumption that ut = 0 for t > 1. Once

again we use representation (1.10). Employing remark (1.2.2) we see that:

κn(ξt) =







1−ρnt

1−ρn κn(u) |ρ
n| �= 1,

tκn(u) |ρn|= 1.
(1.12)

which, for n= 2, 3, means, that:

κn(ξt) =























1−ρnt

1−ρn κn(u) |ρ| �= 1, n= 2, 3

tκn(u) ρ = 1, n= 2, 3

tκn(u) ρ =−1, n= 2
1−(−1)t

2
κn(u) ρ =−1, n= 3.

(1.13)

Using remarks (1.2.1–1.2.3) we see that for ρ = 1 we have γ(ξt) = t−
1
2 γ(u)→ 0 which is a well

known property that skewness of a sum of iid random variables vanishes with time. Also for

ρ = −1 we have that γ(ξt) =
1−(−1)t

2
t−

3
2 γ(u)→ 0. In the first case, i.e. for ρ = 1, convergence

of γ(ξt) is monotonic, whereas in the latter, i.e. for ρ =−1, γ(ξt) oscillates with t. For |ρ| �= 1

8Because ξ1 inherits skewness from u1 and not from x0, which is normally distributed.
9The first case shows what is the response (in terms of skewness) of ξt , t = 1, 2, ..., T , to an impulse from ut ∼ p(. . .)

which occurred in period t = 1. The second case predicts response of ξt , t = 1,2, ..., T , generated according to (1.7).
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ξt = ρ
t−1ξ1 +

t−2
∑

k=0

ρkut−k =
t−1
∑

k=0

ρkut−k (1.10)

where the second equality comes from a simplifying assumption that µξ0
= 0 and σ0 = 0, so

that ξ1 = u1. This makes exposition simpler and does not change meaning of the results8. First

we will investigate the effect on ξt exerted be innovation ut at time t = 1 keeping ut = 0 for

t > 1, then we will see what happens if ut is allowed to be nonzero also for t > 19.

When ut = 0 for t > 1, (1.10) states that ξt = ρ
t−1u1 and, employing remarks (1.2.1–1.2.3),

we see that:

γ(ξt) =
ρ3(t−1)

�

ρ2(t−1)
�

3
2

γ(u) = sgn(ρ)t+1γ(u) =







γ(u) ρ > 0,

(−1)t+1γ(u) ρ < 0.
(1.11)

which means that univariate autoregressive models preserve skewness (as measured by the

skewness coefficient) which originates from a one-time shock occurrence regardless of the value

of the autoregressive coefficient ρ > 0 and preserve absolute skewness regardless of ρ < 0.

This is true for all t = 1,2, ..., T . It may come as a surprise, since the effect in magnitude of u0

exerted on ξt evaporates totally (in the limit) as t increases.

Now, still being in the univariate case, let us drop the assumption that ut = 0 for t > 1. Once

again we use representation (1.10). Employing remark (1.2.2) we see that:

κn(ξt) =







1−ρnt

1−ρn κn(u) |ρ
n| �= 1,

tκn(u) |ρn|= 1.
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which, for n= 2, 3, means, that:
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


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Using remarks (1.2.1–1.2.3) we see that for ρ = 1 we have γ(ξt) = t−
1
2 γ(u)→ 0 which is a well

known property that skewness of a sum of iid random variables vanishes with time. Also for

ρ = −1 we have that γ(ξt) =
1−(−1)t

2
t−

3
2 γ(u)→ 0. In the first case, i.e. for ρ = 1, convergence

of γ(ξt) is monotonic, whereas in the latter, i.e. for ρ =−1, γ(ξt) oscillates with t. For |ρ| �= 1

8Because ξ1 inherits skewness from u1 and not from x0, which is normally distributed.
9The first case shows what is the response (in terms of skewness) of ξt , t = 1, 2, ..., T , to an impulse from ut ∼ p(. . .)

which occurred in period t = 1. The second case predicts response of ξt , t = 1,2, ..., T , generated according to (1.7).
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defined as5:

γ(z) =
E(z − E(z))3

(E(z − E(z))2)
3
2

(1.6)

provided that the second and the third central moment of z exist6. We will make use of the

following:

Remark 1.2.1. For a random variable z with an n-times differentiable moment generating

function Mz(x) we have:

E(z − E(z))n = κn(z) =
∂ n ln Mz(x)
∂ xn |x=0

where κn(z) denotes the n-th cumulant of z.

Remark 1.2.2. Let z be a random variable for which κn(z) exists for n= 2,3, then:

γ(z) =
κ3(z)

(κ2(z))
3
2

Remark 1.2.3. Let zi be independent random variables and let αi ∈ R, i = 1, 2, ..., m, then:

κn

�

m
∑

i=1

αizi

�

=
m
∑

i=1

αn
i κn(zi)

State variables

We will start with a one-dimensional model and then move to the multidimensional case. Let

us consider the following autoregressive model, which represents the state-space formulation

without the measurement equation:

ξt = ρξt−1 + ut (1.7)

ut ∼ p(. . .) (1.8)

ξ0 ∼ N(µξ0
,σ0) (1.9)

for t = 1,2, ..., T , where ξt ,ξ0,ut ∈ R, ρ �= 0, µξ0
∈ R, σ0 ≥ 0 and p(. . .) is any distribution7

such that γ(ut) exists for every t and is constant, i.e. γ(ut) = γ(u) for every t.

Let us make use of the fact that ξt can be expressed as a weighted sum of innovations ut−k for

skewness coefficient represents an exhaustive measure of skewness. In case of observables, which are not independent,
the univariate skewness coefficient is not exhaustive because it omits cross-skewness. However, from the economic
point of view, we are only interested in skewness of observables perceived as single variables. The co-skewness between
variables might enable us to gain a deeper insight into the issue and we think of it as of a promissing direction of future
research.

5We assumed that z ∈ R in (1.6), but in principle it can be the case that z ∈ Rp for p > 1 if only exponentiations and
division in (1.6) are considered as elementwise operations.

6Which is true in all cases considered in this paper.
7We write p(. . .) to denote that p can depend on some parameters.
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k = 0, 1, ..., t − 2, and of ξ1, i.e. we employ the moving average representation of ξt :

ξt = ρ
t−1ξ1 +

t−2
∑

k=0

ρkut−k =
t−1
∑

k=0

ρkut−k (1.10)

where the second equality comes from a simplifying assumption that µξ0
= 0 and σ0 = 0, so

that ξ1 = u1. This makes exposition simpler and does not change meaning of the results8. First

we will investigate the effect on ξt exerted be innovation ut at time t = 1 keeping ut = 0 for

t > 1, then we will see what happens if ut is allowed to be nonzero also for t > 19.

When ut = 0 for t > 1, (1.10) states that ξt = ρ
t−1u1 and, employing remarks (1.2.1–1.2.3),

we see that:

γ(ξt) =
ρ3(t−1)

�

ρ2(t−1)
�

3
2

γ(u) = sgn(ρ)t+1γ(u) =







γ(u) ρ > 0,

(−1)t+1γ(u) ρ < 0.
(1.11)

which means that univariate autoregressive models preserve skewness (as measured by the

skewness coefficient) which originates from a one-time shock occurrence regardless of the value

of the autoregressive coefficient ρ > 0 and preserve absolute skewness regardless of ρ < 0.

This is true for all t = 1,2, ..., T . It may come as a surprise, since the effect in magnitude of u0

exerted on ξt evaporates totally (in the limit) as t increases.

Now, still being in the univariate case, let us drop the assumption that ut = 0 for t > 1. Once

again we use representation (1.10). Employing remark (1.2.2) we see that:

κn(ξt) =







1−ρnt

1−ρn κn(u) |ρ
n| �= 1,

tκn(u) |ρn|= 1.
(1.12)

which, for n= 2, 3, means, that:

κn(ξt) =
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



















1−ρnt

1−ρn κn(u) |ρ| �= 1, n= 2, 3

tκn(u) ρ = 1, n= 2, 3

tκn(u) ρ =−1, n= 2
1−(−1)t

2
κn(u) ρ =−1, n= 3.

(1.13)

Using remarks (1.2.1–1.2.3) we see that for ρ = 1 we have γ(ξt) = t−
1
2 γ(u)→ 0 which is a well

known property that skewness of a sum of iid random variables vanishes with time. Also for

ρ = −1 we have that γ(ξt) =
1−(−1)t

2
t−

3
2 γ(u)→ 0. In the first case, i.e. for ρ = 1, convergence

of γ(ξt) is monotonic, whereas in the latter, i.e. for ρ =−1, γ(ξt) oscillates with t. For |ρ| �= 1

8Because ξ1 inherits skewness from u1 and not from x0, which is normally distributed.
9The first case shows what is the response (in terms of skewness) of ξt , t = 1, 2, ..., T , to an impulse from ut ∼ p(. . .)

which occurred in period t = 1. The second case predicts response of ξt , t = 1,2, ..., T , generated according to (1.7).
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skewness coefficient of ξt equals:

γ(ξt) =

1−ρ3t

1−ρ3

�

1−ρ2t

1−ρ2

�
3
2

γ(u) = θ (ρ, t)γ(u)→ θ (ρ,∞)γ(u) =
(1−ρ2)

3
2

1−ρ3 γ(u) (1.14)

which, this time, depends both on ρ and t. We used a notation θ (ρ, t) = 1−ρ3t

1−ρ3

�

1−ρ2t

1−ρ2

�− 3
2 . Now

we can form the following:

Proposition 1.2.1. Assume model (1.7) for ξt . Assume that µξ0
= 0 and σ0 = 0 (so that ξ1 = u1).

Let t be fixed. Then, γ(ξt) = θ (ρ, t)γ(u), and θ (ρ, t), as a function of ρ ∈ (−1, 1), increases with

ρ ∈ (−1,0), decreases with ρ ∈ (0,1) and reaches a maximum value of one for ρ = 0.

This means, that for stationary models, i.e. for |ρ| < 1, if shocks ut are positively skewed,

i.e. if γ(u) > 0, the skewness coefficient of states is constant and maximal for ρ = 0 and it

decreases as ρ departs from zero both to the left or to the right until it reaches 1 or −1. If shocks

are negatively skewed, i.e. if γ(u) < 0, everything is the other way round, i.e. the skewness

coefficient of states is constant and minimal for ρ = 0 and it increases as ρ departs from zero

both to the left or to the right until it reaches 1 or −1. In both cases sign of γ(ξt) equals the

sign of γu. Proposition (1.2.1) states how γ(ξt) behaves as a function of ρ. Behavior of γ(ξt) as

a function of t for fixed ρ is stated in the following:

Proposition 1.2.2. Let assumptions be as in Proposition (1.2.1), but let ρ ∈ (−1,1) be fixed

instead of t. Then γ(ξt) is constant over time and equal to γ(u) for ρ = 0 and decreases with time

for ρ ∈ (−1,0)× (0,1) reaching the limit of 0 < θ(ρ,∞)γ(u) < γ(u) where θ(ρ,∞) = (1−ρ2)
3
2

1−ρ3

and 0 < θ(ρ,∞) < 1. The limiting fraction of γ(u), i.e. θ(ρ,∞), is an increasing function of

ρ ∈ (−1,0), decreasing function of ρ ∈ (0,1) and reaches a maximum value of one for ρ = 0.

This means, that for stationary models, i.e. when |ρ|< 1, skewness of states γ(ξt) evaporates

with time, but it does not vanish totally, reaching in the limit some fraction 0 < θ(ρ,∞) < 1

of skewness shocks γ(u). The limiting fraction is an increasing function of ρ ∈ (−1,0) and

a decreasing function of ρ ∈ (0,1). This is in contrast with the random walk specifications

when skewness evaporates totally with the decay rate of t−
1
2 and t−

3
2 for ρ = 1 and ρ = −1

respectively.

Now we will discuss the multivariate case. More specifically, we will show how skewness

propagates in a model of the form:

ξt = Aξt−1 + ut (1.15)

ut ∼ p(. . .) (1.16)

ξ0 ∼ N(µξ0
,Σ0) (1.17)

for t = 1, 2, ..., T , where A �= 0, |Σ0| ≥ 0, eigenvalues of A are less then one in modulus, so that

model (1.15) is non-explosive10 and p(. . .) is any distribution such that γ(ut) exists for every t

10This is true in case of DSGE models.
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we can form the following:
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= 0 and σ0 = 0 (so that ξ1 = u1).
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This means, that for stationary models, i.e. for |ρ| < 1, if shocks ut are positively skewed,

i.e. if γ(u) > 0, the skewness coefficient of states is constant and maximal for ρ = 0 and it

decreases as ρ departs from zero both to the left or to the right until it reaches 1 or −1. If shocks

are negatively skewed, i.e. if γ(u) < 0, everything is the other way round, i.e. the skewness

coefficient of states is constant and minimal for ρ = 0 and it increases as ρ departs from zero

both to the left or to the right until it reaches 1 or −1. In both cases sign of γ(ξt) equals the

sign of γu. Proposition (1.2.1) states how γ(ξt) behaves as a function of ρ. Behavior of γ(ξt) as

a function of t for fixed ρ is stated in the following:

Proposition 1.2.2. Let assumptions be as in Proposition (1.2.1), but let ρ ∈ (−1,1) be fixed

instead of t. Then γ(ξt) is constant over time and equal to γ(u) for ρ = 0 and decreases with time
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and 0 < θ(ρ,∞) < 1. The limiting fraction of γ(u), i.e. θ(ρ,∞), is an increasing function of

ρ ∈ (−1,0), decreasing function of ρ ∈ (0,1) and reaches a maximum value of one for ρ = 0.

This means, that for stationary models, i.e. when |ρ|< 1, skewness of states γ(ξt) evaporates

with time, but it does not vanish totally, reaching in the limit some fraction 0 < θ(ρ,∞) < 1

of skewness shocks γ(u). The limiting fraction is an increasing function of ρ ∈ (−1,0) and

a decreasing function of ρ ∈ (0,1). This is in contrast with the random walk specifications

when skewness evaporates totally with the decay rate of t−
1
2 and t−

3
2 for ρ = 1 and ρ = −1

respectively.

Now we will discuss the multivariate case. More specifically, we will show how skewness

propagates in a model of the form:

ξt = Aξt−1 + ut (1.15)

ut ∼ p(. . .) (1.16)

ξ0 ∼ N(µξ0
,Σ0) (1.17)

for t = 1, 2, ..., T , where A �= 0, |Σ0| ≥ 0, eigenvalues of A are less then one in modulus, so that

model (1.15) is non-explosive10 and p(. . .) is any distribution such that γ(ut) exists for every t

10This is true in case of DSGE models.
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and is constant, i.e. γ(ut) = γ(u) for every t11.

In what follows, we assume12 that ϑu = 0 and that univariate elements of ut are independent,

see corollary (1.1.6). The difference between models (1.7) and (1.15) for ξt ∈ Rp is that in the

latter case it is allowed that p > 1. As in the univariate case, in what follows we assume for

simplicity that µξ0
= 0 and Σ0 = 0, so that ξ1 = u1.

To determine effects of innovations ut exerted on states ξt we resort to the moving average

representation:

ξt = At−1ξ1 +
t−2
∑

k=0

Akut−k =
t−1
∑

k=0

Akut−k (1.18)

where the last equality follows from the simplifying assumption about ξ1.

It has to be made explicit that we are interested in skewness coefficients of elements of ξt , i.e. of

one-dimensional variables ξt,i for i = 1, 2, ..., p, t = 1, 2, ..., T , and not in synthetic multivariate

skewness measures of ξt regarded as p-dimensional variables. Respective skewness coefficients

will be denoted by γ(ξt,i) =
κ3(ξt,i)

(κ2(ξt,i))
3
2

.

Since variables ut are independent for t = 1, 2, ..., T , employing remark (1.2.3) we see that13:

κn(ξt) = κn

�

t−1
∑

k=0

Akut−k

�

=
t−1
∑

k=0

�

Ak
�◦(n)

κn(u) (1.19)

where A◦(n) denotes the n-th Hadamard (or Schur) power of matrix A, i.e. A◦(n) = A◦ A◦ ... ◦ A
︸ ︷︷ ︸

n

,

for ◦ denoting the Hadamard (or Schur) product, i.e. elementwise multiplication. From (1.19)

we see, more explicitly, that:

κn(ξt,i) =
t−1
∑

k=0

p
∑

j=1

(ak
i j)

nκn(u., j) (1.20)

where ak
i j denotes the i j-th entry of Ak and time indexes for shocks u were suppressed so that

u., j denotes the j-th element of u for any t14.

Let us now try to determine skewness of γ(ξt,i), i = 1, 2, ..., p, assuming that u1 �= 0 and ut = 0

for t > 1. In this case, see eq. (1.20), κn(ξt) = (A
k)◦(n)κn(u), which converges with t to a

zero vector as long as A is nonexplosive. Unfortunately, not much can be said in general about

skewness coefficients γ(ξt,i) as functions of elements of matrix A except for the fact, that using

1.20 we readily obtain closed-form formulae. Therefore, let us consider only a simple case in

which exactly one of the shocks in u1 has a nonzero value:

11Note that here γ(u) ∈ Rp .
12This assumption simplifies the considerations and does not change meaning of obtained results.
13We drop time indices for ut since variables ut are assumed to be iid. Also, for ξt being a p-dimensional variable,
κn(ξt ) denotes a vector cumulant with entries κn(ξt,i) for i = 1, 2, ..., p.

14Less explicit, but considerably more parsimonious expressions for κn(ξt,i) for all n, t and i simultaneously can
be obtained using notations of tensor calculus. The latter approach would also be advisable in case of nondegenerate
dependency structure among entries of ut . Since we do not pursuit higher-order cumulants than the third one and
shocks are independent, we stay with the explicit notation (1.20).
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skewness coefficient of ξt equals:

γ(ξt) =

1−ρ3t

1−ρ3

�

1−ρ2t

1−ρ2

�
3
2

γ(u) = θ (ρ, t)γ(u)→ θ (ρ,∞)γ(u) =
(1−ρ2)

3
2

1−ρ3 γ(u) (1.14)

which, this time, depends both on ρ and t. We used a notation θ (ρ, t) = 1−ρ3t

1−ρ3

�

1−ρ2t

1−ρ2

�− 3
2 . Now

we can form the following:

Proposition 1.2.1. Assume model (1.7) for ξt . Assume that µξ0
= 0 and σ0 = 0 (so that ξ1 = u1).

Let t be fixed. Then, γ(ξt) = θ (ρ, t)γ(u), and θ (ρ, t), as a function of ρ ∈ (−1, 1), increases with

ρ ∈ (−1,0), decreases with ρ ∈ (0,1) and reaches a maximum value of one for ρ = 0.

This means, that for stationary models, i.e. for |ρ| < 1, if shocks ut are positively skewed,

i.e. if γ(u) > 0, the skewness coefficient of states is constant and maximal for ρ = 0 and it

decreases as ρ departs from zero both to the left or to the right until it reaches 1 or −1. If shocks

are negatively skewed, i.e. if γ(u) < 0, everything is the other way round, i.e. the skewness

coefficient of states is constant and minimal for ρ = 0 and it increases as ρ departs from zero

both to the left or to the right until it reaches 1 or −1. In both cases sign of γ(ξt) equals the

sign of γu. Proposition (1.2.1) states how γ(ξt) behaves as a function of ρ. Behavior of γ(ξt) as

a function of t for fixed ρ is stated in the following:

Proposition 1.2.2. Let assumptions be as in Proposition (1.2.1), but let ρ ∈ (−1,1) be fixed

instead of t. Then γ(ξt) is constant over time and equal to γ(u) for ρ = 0 and decreases with time

for ρ ∈ (−1,0)× (0,1) reaching the limit of 0 < θ(ρ,∞)γ(u) < γ(u) where θ(ρ,∞) = (1−ρ2)
3
2

1−ρ3

and 0 < θ(ρ,∞) < 1. The limiting fraction of γ(u), i.e. θ(ρ,∞), is an increasing function of

ρ ∈ (−1,0), decreasing function of ρ ∈ (0,1) and reaches a maximum value of one for ρ = 0.

This means, that for stationary models, i.e. when |ρ|< 1, skewness of states γ(ξt) evaporates

with time, but it does not vanish totally, reaching in the limit some fraction 0 < θ(ρ,∞) < 1

of skewness shocks γ(u). The limiting fraction is an increasing function of ρ ∈ (−1,0) and

a decreasing function of ρ ∈ (0,1). This is in contrast with the random walk specifications

when skewness evaporates totally with the decay rate of t−
1
2 and t−

3
2 for ρ = 1 and ρ = −1

respectively.

Now we will discuss the multivariate case. More specifically, we will show how skewness

propagates in a model of the form:

ξt = Aξt−1 + ut (1.15)

ut ∼ p(. . .) (1.16)

ξ0 ∼ N(µξ0
,Σ0) (1.17)

for t = 1, 2, ..., T , where A �= 0, |Σ0| ≥ 0, eigenvalues of A are less then one in modulus, so that

model (1.15) is non-explosive10 and p(. . .) is any distribution such that γ(ut) exists for every t

10This is true in case of DSGE models.
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i j denotes the i j-th entry of Ak and time indexes for shocks u were suppressed so that

u., j denotes the j-th element of u for any t14.
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for t > 1. In this case, see eq. (1.20), κn(ξt) = (A
k)◦(n)κn(u), which converges with t to a

zero vector as long as A is nonexplosive. Unfortunately, not much can be said in general about

skewness coefficients γ(ξt,i) as functions of elements of matrix A except for the fact, that using

1.20 we readily obtain closed-form formulae. Therefore, let us consider only a simple case in

which exactly one of the shocks in u1 has a nonzero value:

11Note that here γ(u) ∈ Rp .
12This assumption simplifies the considerations and does not change meaning of obtained results.
13We drop time indices for ut since variables ut are assumed to be iid. Also, for ξt being a p-dimensional variable,
κn(ξt ) denotes a vector cumulant with entries κn(ξt,i) for i = 1, 2, ..., p.

14Less explicit, but considerably more parsimonious expressions for κn(ξt,i) for all n, t and i simultaneously can
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Proposition 1.2.3. Assume model (1.15) for ξt . Assume also that ut = 0 for t > 1 and that

u1,r �= 0 for some r ∈ {1, 2, ..., p}, whereas u1, j = 0 for all j ∈ {1, 2, ..., p} \ r. Then:

γ(ξt,i)∝







1 if at−1
i,r > 0,

−1 if at−1
i,r < 0.

(1.21)

where ak
i, j denotes the (i, j)-th element of Ak. It follows, that the series of skewness coefficients

γ(ξt,i), converges with t if and only if there exists t ′ ≥ 0, such that ak
i,r > 0 for all t ≥ t ′ or ak

i,r < 0

for all t ≥ t ′. Moreover, if such t ′ exists, then γ(ξt,i) is constant for t > t ′.

Proposition (1.2.3) states, that in this simple case skewness coefficients γ(ξk,i), i = 1, 2, ..., p, can

converge with t or oscillate around 0 with a constant amplitude, and, if any of them converges,

than it equals its limit starting from some t. This is somehow analogical to the univariate

stationary case when skewness coefficient was constant for ρ > 0 and oscillated for ρ < 0 while

being constant in magnitude.

Measurements

Transition equation (1.15) in a state space model is accompanied by a measurement equation of

the form:

yt = Fξt + Het (1.22)

et ∼ N(0,Σe) (1.23)

for t = 1,2, ..., T , where yt denote obserables, F ∈ Rm×n, H ∈ Rm×n and Σe ∈ Rm×m, |H| > 0,

|Σe|> 0. Employing remarks (1.2.1–1.2.3), we see that:

γ(yt) =
F ◦(3)κ3(ξt)

�

F◦(2)κ2(ξt) + H◦(2)κ2(u)
�

3
2

< γ(F yt) (1.24)

because H◦(2)κ2(ut) > 0 and γ(F yt) =
F◦(3)κ3(ξt )

(F◦(2)κ2(ξt ))
3
2

. Division and exponentiation in (1.24) is

elementwise.

1.3 Propagation of the csn distribution

Having provided formulae for propagation of skewness in the state space setting, we now

turn to the special case of csn-distributed disturbances. More specifically, we will track how

distributions of states and measurements change over time. Knowing this is essential for a

maximum likelihood estimation. As previously, we start with a univariate model and then extend

results to the multivariate case, in which we show that the csn distribution does not in general

propagate through the state space setting. The reason is that the autoregressive matrix A in the

transition equation can be singular. Hence, analytical maximum likelihood estimation requires

14
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Proposition 1.2.3. Assume model (1.15) for ξt . Assume also that ut = 0 for t > 1 and that
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3
2
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elementwise.

1.3 Propagation of the csn distribution

Having provided formulae for propagation of skewness in the state space setting, we now

turn to the special case of csn-distributed disturbances. More specifically, we will track how

distributions of states and measurements change over time. Knowing this is essential for a

maximum likelihood estimation. As previously, we start with a univariate model and then extend

results to the multivariate case, in which we show that the csn distribution does not in general

propagate through the state space setting. The reason is that the autoregressive matrix A in the

transition equation can be singular. Hence, analytical maximum likelihood estimation requires
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an appropriate regularization15 for matrix A. In this paper, however, we alow that A be singular

and consider a quasi-maximum likelihood alternative.

State variables

Let us consider model (1.7) with an additional assumption that:

p(. . .) = csn(µ̃u, σ̃u, du,ϑu,δu)

with σ̃u > 0, du ∈ R, µξ0
∈ R where µ̃u is set in such a way that16 E(ut) = E(u) = 0.

First we will investigate the effect on ξt exerted by innovation ut at time t = 1 keeping ut = 0

for t > 1. Since ξ1 is a sum of a normally distributed variable ρξ0 and a csn1,1-distributed

variable u1, it is, according to corollary (1.1.7), a csn random variable with parameters µ̃ξ,1 = µ̃u,

σ̃ξ,1 = ρ
2σ0 + σ̃u, dξ,1 = du

σ̃u

σ̃ξ,1
, ϑξ,1 = ϑu and δξ,1 = δu + σ̃ud2

u (1−
σ̃u

σ̃ξ,1
). To see how effects of

u1 propagate through ξt , let us notice that ξt = ρξt−1 = ρ
t−1ξ1 for t > 1, hence, according to

corollary (1.1.8), variable ξt has a csn1,1 distribution with parameters:

µ̃ξ,t = ρµ̃ξ,t−1 = ρ
t−1µ̃ξ,1, σ̃ξ,t = ρ

2σ̃ξ,t−1 = ρ
2(t−1)σ̃ξ,1, (1.25)
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1
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dξ,t−1 =

1

ρ t−1 dξ,1, ϑξ,t = ϑξ,t−1 = ϑξ,1, δξ,t = δξ,t−1 = δξ,1 (1.26)

Hence, skewness parameter of ξt equals dξ,t =
1
ρ t−1 dξ,1 =

1
ρ t−1 du

σ̃u

σ̃ξ,1
. If |ρ| < 1, then |dξ,t |

increases with t without bound17 regardless of the shocks’ skewness parameter du �= 0. If |ρ| = 1,

then |dξ,t | equals dξ,1 = du
σ̃u

σ̃ξ,1
for all t and if |ρ|> 1, then |dξ,t | decreases with t reaching zero

in the limit. If ρ < 0, then sign of dξ,t additionally oscillates.

This basic fact can easily be misunderstood, because, since the magnitude of dξ,t , as measured

for example by |dξ,t |, implies in some sense the absolute (i.e. left or right) strength of skewness,

one could conclude that absolute skewness intensifies with time in stationary models, is time
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This is, however, not the case, because variance of ξt also changes with t. As a consequence,

skewness of ξt is constant over time for ρ > 0 and oscillates around zero with a constant

amplitude for ρ < 0, which is in line with results obtained in the previous section. In a more
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15Such a regularization is feasible by means of an appropriate model reformulation.
16Parameter µ̃u is therefore not free, but equals −

�

2
π

duσ̃u
�

1+d2
u σ̃u

which implies that E(ut ) = 0.
17I.e. limt→∞ |dξ,t |=∞.
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Time independency of skewness of the impulse response distribution in state space setting with

csn disturbances appears also as a consequence of applying for zt = ξt the following more

general:

Proposition 1.3.1. Let zt ∈ R, for t = 1, 2, ..., T, be distributed according to a csn1,1 distribution

with parameters µ̃z,t , σ̃z,t > 0, dz,t , ϑz,t and δz,t > 0. Assume that ϑz,t = 0 and that δz,t = const

for all t. If σ̃z,t dz,t = const and σ̃z,t d
2
z,t = const for all t, then absolute value of the skewness

coefficient of zt , i.e. |γ(zt)|, is constant over time and sgn(γ(zt)) equals sgn(dt).

Now we drop the assumption that ut = 0 for t > 1. We make use of moving average representa-

tion (1.10)18. Distribution of ξ1 is a csn1,1 distribution with parameters19: µ̃ξ,1, σ̃ξ,1, dξ,1, ϑξ,1

and δξ,1. Also, using corollary (1.1.8), random variables vk = ρ
kut−k, for k = 0, 1, ..., t −2, have

csn1,1 distributions, but with parameters: µ̃v,k = ρ
kµ̃u, σ̃v,k = ρ

2kσ̃u, dv,k =
1
ρk du, ϑv,k = ϑu and

δv,k = δu. From corollary (1.1.10), ξt has therefore a csn1,t distribution with parameters:

µ̃ξ,t =
1−ρ t−1

1−ρ
µ̃u +ρ

t−1µ̃ξ,1, σ̃ξ,t =
1−ρ2(t−1)

1−ρ2 σ̃u +ρ
2(t−1)σ̃ξ,1 (1.29)

Dξ,t = rT
t

duσ̃u

σξ,t
, ϑξ,t = 1⊗ ϑξ,1 δξ,t = δξ,1 (1.30)

where rt = (ρ
t−1,ρ t−2, ...,ρ, 1)T and⊗ denotes the tensor (Kronecker) product. Above formulae

are valid for |ρ| �= 1. To derive them we only need to notice that that dv,kσv,k = ρ
kduσ̃u and

that dξ,1σ̃ξ,1 = duσ̃u. For ρ = 1 the difference is only that µ̃ξ,t = (t − 1)µ̃u + µ̃ξ,1, σ̃ξ,t =
(t − 1)σ̃u + σ̃ξ,1 and rt = (1t)

T .

Now we will discuss the multivariate case. Let us consider model (1.15) with an additional

assumption that:

p(. . .) = csn(µ̃u, Σ̃u, D̃u,ϑu,∆u)

where |Σ̃u|> 0, |∆u|> 0 and µ̃u is chosen in such a way that E(ut) = 0. We assume20 that ϑu = 0

and that univariate elements of ut are independent. In what follows we assume for simplicity

that µξ0
= 0 and Σ0 = 0, so that ξ1 = u1.

The multivariate case differs from the univariate one in a fundamental way. The univariate

model (1.7) assures that the state variable ξt is distributed according to a csn1,t distribution for

all t, i.e. that the csn distribution is closed under transformations which model (1.7) applies to

ξt . In the multivariate case this does not have to be the case. To check if ξt has a csn distribution,

we give the following:

18Without the simplifying assumption that ξ1 = u1.
19Their values have already been provided in this section.
20This assumption simplifies the considerations.
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in the limit. If ρ < 0, then sign of dξ,t additionally oscillates.
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for example by |dξ,t |, implies in some sense the absolute (i.e. left or right) strength of skewness,
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invariant in case of random walk models and evaporates with time under explosive specifications.

This is, however, not the case, because variance of ξt also changes with t. As a consequence,
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amplitude for ρ < 0, which is in line with results obtained in the previous section. In a more

explicit way application of corollary (1.1.4) for ρ > 0 states that:

γ(ξt) =
�

2−
π

2

�

��

2

π

�3

�

σt dt

(1+σt d
2
t )

1
2

�3

�

σt −
2
π

σ2
t d2

t

1+σt d
2
t

�
3
2

= (1.27)

15Such a regularization is feasible by means of an appropriate model reformulation.
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17I.e. limt→∞ |dξ,t |=∞.
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we give the following:

18Without the simplifying assumption that ξ1 = u1.
19Their values have already been provided in this section.
20This assumption simplifies the considerations.
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Proposition 1.3.2. Let ξt−1 be distributed according to a csnp,q for some p,q ≥ 1 with parameters

µ̃ξ,t−1, Σ̃ξ,t−1 ≥ 0, Dξ,t−1, ϑξ,t−1 and ∆ξ,t > 0. Let zt = Aξt−1, A ∈ Rp,p. Then, zt has a csn

(possibly singular) distribution if and only if r(AT ) = r([AT |wi]) for all i = 1,2, ...,q, where r(A)
denotes rank of A and wi denotes the i-th row Dξ,t−1.

Proposition (1.3.2) states, that for a csn variable ξt−1, variable zt = Aξt−1 has a csn distribution

if and only if rows of Dξ,t−1 are linear combinations of rows of A. In other words, all rows

of Dξ,t−1 must belong to span(AT ), i.e. to the image of AT . This condition is always satisfied

(regardless of Dξ,t) if A has a full rank. However, for a rank deficient operator A this is a very

restrictive condition, since Dξ,t−1 can be in principle arbitrary. Although proposition (1.3.2)

constitutes a negative result for ξt as a p-dimensional variable, it has to be stressed that it is

assured that elements of ξt are csn distributed. In this paper we assume that A can be rank

deficient, hence the distribution of states is in general not a csn distribution, hence we do not go

for an analytical maximum likelihood estimation.

Measurements

As stated in proposition (1.3.2), state variables ξt can fall out of the csn distribution family

starting from some t > 1 if the autoregressive matrix A in model (1.15) is rank deficient. In case

of DSGE models, especially larger ones, this is usually the case. In what follows, we notice that

even if A is rank deficient, observed variables still follow a csn distribution for all t. The reason

for this is that H has a full row rank. To see this notice that:

yt = Fξt + Het = FAt−1ξ1 + F
t−2
∑

k=0

Akut−k + Het = (1.31)

= F
t−1
∑

k=0

Akut−k + Het = Atωt (1.32)

where At =
�

FAt−1|FAt−2|...|FA|F |H
�

and ωt =
�

u1,u2, ...,ut , et
�T and we assumed for simplic-

ity that ξ1 = u1. Matrix At has a full row rank since H is full rank and ωt has a nonsingular

csn distribution, hence yt follows a nonsingular csn distribution, which may come as a surprise

since ξt not only can have a singular csn distribution, but can have some other, i.e. not csn,

distribution.
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Time independency of skewness of the impulse response distribution in state space setting with
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2
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2kσ̃u, dv,k =
1
ρk du, ϑv,k = ϑu and
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1−ρ t−1

1−ρ
µ̃u +ρ
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1−ρ2(t−1)

1−ρ2 σ̃u +ρ
2(t−1)σ̃ξ,1 (1.29)
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t

duσ̃u

σξ,t
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that dξ,1σ̃ξ,1 = duσ̃u. For ρ = 1 the difference is only that µ̃ξ,t = (t − 1)µ̃u + µ̃ξ,1, σ̃ξ,t =
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where |Σ̃u|> 0, |∆u|> 0 and µ̃u is chosen in such a way that E(ut) = 0. We assume20 that ϑu = 0

and that univariate elements of ut are independent. In what follows we assume for simplicity

that µξ0
= 0 and Σ0 = 0, so that ξ1 = u1.

The multivariate case differs from the univariate one in a fundamental way. The univariate

model (1.7) assures that the state variable ξt is distributed according to a csn1,t distribution for

all t, i.e. that the csn distribution is closed under transformations which model (1.7) applies to

ξt . In the multivariate case this does not have to be the case. To check if ξt has a csn distribution,

we give the following:

18Without the simplifying assumption that ξ1 = u1.
19Their values have already been provided in this section.
20This assumption simplifies the considerations.
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Proposition 1.3.2. Let ξt−1 be distributed according to a csnp,q for some p,q ≥ 1 with parameters

µ̃ξ,t−1, Σ̃ξ,t−1 ≥ 0, Dξ,t−1, ϑξ,t−1 and ∆ξ,t > 0. Let zt = Aξt−1, A ∈ Rp,p. Then, zt has a csn

(possibly singular) distribution if and only if r(AT ) = r([AT |wi]) for all i = 1,2, ...,q, where r(A)
denotes rank of A and wi denotes the i-th row Dξ,t−1.

Proposition (1.3.2) states, that for a csn variable ξt−1, variable zt = Aξt−1 has a csn distribution

if and only if rows of Dξ,t−1 are linear combinations of rows of A. In other words, all rows

of Dξ,t−1 must belong to span(AT ), i.e. to the image of AT . This condition is always satisfied

(regardless of Dξ,t) if A has a full rank. However, for a rank deficient operator A this is a very

restrictive condition, since Dξ,t−1 can be in principle arbitrary. Although proposition (1.3.2)

constitutes a negative result for ξt as a p-dimensional variable, it has to be stressed that it is

assured that elements of ξt are csn distributed. In this paper we assume that A can be rank

deficient, hence the distribution of states is in general not a csn distribution, hence we do not go

for an analytical maximum likelihood estimation.

Measurements

As stated in proposition (1.3.2), state variables ξt can fall out of the csn distribution family

starting from some t > 1 if the autoregressive matrix A in model (1.15) is rank deficient. In case

of DSGE models, especially larger ones, this is usually the case. In what follows, we notice that

even if A is rank deficient, observed variables still follow a csn distribution for all t. The reason

for this is that H has a full row rank. To see this notice that:

yt = Fξt + Het = FAt−1ξ1 + F
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�T and we assumed for simplic-

ity that ξ1 = u1. Matrix At has a full row rank since H is full rank and ωt has a nonsingular

csn distribution, hence yt follows a nonsingular csn distribution, which may come as a surprise

since ξt not only can have a singular csn distribution, but can have some other, i.e. not csn,

distribution.
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Chapter 2

A DSGE model with structural

skewness

To investigate some issues related to skewness in DSGE models we employ the small open

economy model of Lubik and Schorfheide (2007) (LS) which is a simplified version of Gali and

Monacelli (2005) and extend it by allowing (some of the) structural shocks to follow a closed

skewed normal distribution. LS model can be seen as a minimum set of equations for an open

economy framework and its small size is an advantage because it reduces computational burden

of simulations which we conduct. Below we present model’s equation in already log-linearised

form (denoted by hats over variables), more details can be found in Lubik and Schorfheide

(2007) or Negro and Schorfheide (2008). The model is also implemented in YADA package

(Warne, 2010).

2.1 The model

There are nine state variables in the model: a growth rate of a non-stationary world technology
�

zt ≡
At

At−1

�

where
�

At
�

denotes the non-stationary technology, foreign output
�

�y�t
�

and inflation
�

�π�t
�

, terms of trade growth rate
�

∆�qt
�

, monetary policy shock u(R), domestic output
�

�yt
�

and inflation
�

�πt
�

, exchange rate growth rate
�

∆�et
�

, and nominal interest rate
�

�Rt

�

. The

non-stationary technology process is assumed to be present in all real variables therefore, to

ensure stationarity, all real variables are expressed as deviations from At .

Four state variables are approximated by autoregressions with normally distributed shocks:

�zt = ρz�zt−1 + u(z)t (2.1)

�π�t = ρπ� �π
�
t−1 + u(π�)t (2.2)

�y�t = ρy� �y
�
t−1 + u(y�)t (2.3)
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∆�qt = ρq∆�qt−1 + u(∆q)t (2.4)

Random processes u(z)t , u(π�)t , u(y�)t , and u(∆q)t as well as the monetary policy shock u(R)t
represent structural shocks or innovations. In the original formulation of Lubik and Schorfheide

(2007) they are all normally, hence symmetrically, distributed. In our approach each structural

shock follows a closed skewed normal csn1,1 distribution:

u(z)t ∼ csn1,1

�

µ̃z , σ̃z , dz ,ϑz ,δz
�

(2.5)

u(π�)t ∼ csn1,1

�

µ̃π� , σ̃π� , dπ� ,ϑπ� ,δπ�
�

(2.6)

u(y�)t ∼ csn1,1

�

µ̃y� , σ̃y� , dy� ,ϑy� ,δy�
�

(2.7)

u(q)t ∼ csn1,1

�

µ̃∆q, σ̃∆q, d∆q,ϑ∆q,δ∆q

�

(2.8)

u(R)t ∼ csn1,1

�

µ̃R, σ̃R, dR,ϑR,δR
�

(2.9)

which means that they can, but do not have to be, normally distributed. We demand that

parametrization of shocks makes them martingale difference sequences.

Euler equation combined with perfect risk sharing and the market-clearing condition for the

foreign good gives rise to an open economy dynamic IS curve:

�yt =E
t
�yt+1 − [τ+α (2−α) (1−τ)]

�

�Rt − E
t
�πt+1

�

−ρz�zt

−α [τ+α (2−α) (1−τ)]E
t
∆�qt+1 +α (2−α)

1−τ
τ

E
t
∆�y�t+1.

(2.10)

Parameters τ and α denote the intertemporal substitution elasticity and the import share (hence

0< α < 1 and for α= 0 equation reduces to closed economy variant).

Optimal price setting by domestic firms leads to the neokeynesian Phillips curve:

�πt = β E
t
�πt+1 +αβ E

t
∆�qt+1 −α∆�qt +

κ

τ+α (2−α) (1−τ)

�

�yt − �y t

�

, (2.11)

where �y t = −α (2−α) (1−τ)/τ�y
�
t is the potential output in the absence of nominal rigidities.

The parameter β is the discount factor. The parameter κ is a function of underlying structural

parameters (elasticities of labour supply and demand, price stickiness), and it is treated itself as

structural.

Definition of consumer prices under the assumption of relative PPP allows to determine change

in nominal exchange rate as:

∆�et = �πt − �π
�
t − (1−α)∆�qt . (2.12)

The nominal interest rate is assumed to follow a policy rule:

�Rt = ρR
�Rt−1 +
�

1−ρR
�

�

Ψπ �πt +Ψy �yt +Ψe∆�et

�

+ u(R)t , (2.13)

where ρR is a smoothing parameter.
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Following Lubik and Schorfheide, we use five observable variables to link the model with

the data: real GDP growth, annualised inflation rate, annual nominal interest rate, change in

exchange rate, and change in terms of trade. The measurement equations take the form:

πt = 4
� πA

400
+ 1
�

�πt +πA, (2.14)

∆et =∆�et , (2.15)

yt =∆�yt + �zt + γQ, (2.16)

∆qt =∆�qt , (2.17)

Rt = 4
�

πA+ rA+ 4γQ

400
+ 1
�

�Rt ,+πA+ rA+ 4γQ, (2.18)

where underlined variables denote observable variables. Parameter πA is annual rate of inflation,

γQ is quarterly growth rate of non–stationary technology process (zt in steady state), and rA is

an element of real interest rate r = rA+ 4γQ.

2.2 Simulation exercises on skewness propagation

In order to numerically assess how structural skewness propagates in the LS model, we simulated

10000 samples of observables, each consisting of 600 observations. Two cases were considered.

In the first case shocks were assumed to be normal, whereas in the second one structural

skewness was introduced by assuming that exactly one shock follows a closed skew normal

distribution. Parameters of csn distributions were chosen in such a way, that the skewness

coefficient of each shock was equal to 0.50, so that structural skewness is always positive, which

means shocks draws from above the mean value are less probable than those from below the

mean. Behavioral parameters and standard deviations of shocks as well as autocorrelation

coefficients of states were motivated by LS’s central values of priors (see Lubik and Schorfheide,

2007, p. 1077). Standard deviations of measurement errors are approximately 10% of observed

variables’ standard deviations. Table 2.1 shows the basic set of parameters of LS model.

In each of the considered cases skewness of states and observables was calculated. Results

are reported in Table 2.2, columns of which contain skewness coefficients under normality

(column 2), when exactly one shock is skewed (columns 3–7), and when all shocks are skewed

(column 8), both in the block of state variables and observable ones. Let us first notice that the

skewness of autoregressive variables1
�zt , ∆�qt , �y

�
t , �π�t , and ut(R) depends on their autoregressive

coefficients (which are reported in Table 2.1), as predicted in Proposition 1.3.1, i.e. the higher the

autoregressive coefficient, the smaller the skewness. Under reported parametrization skewness

of states and observable variables when all shocks are assumed to be skewed is roughly equal to

sum of skewnesses implied by each of the shocks, but in general this does not have to be the

case. Furthermore, inflation does not have its own shock in the model, but factors which induce

positive skewness of CPI inflation — foreign demand and foreign price dynamics, generate

1The monetary policy shock ut (R) can also be perceived as an autoregressive process with autoregression coefficient
equal to zero.
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positive skewness of the nominal interest rate, which reveals the pattern of propagation through

the monetary policy rule. And the other way round — positively skewed monetary policy shock

is reflected by positive skewness of the interest rate and a negative contribution to skewness of

inflation. Finally, skewness of output is driven mainly by skewness of growth rates of technology.

Positive skewness of foreign inflation is also the main cause of skewness of changes in exchange

rate.

The results raise the question whether it is possible to replicate with the LS model, the pattern

of skewness observed in the real data as presented in the introduction — positive skewness for

inflation, nominal interest rate and depreciation rate, and negative skewness of output growth

rates. Although such combination of skewed shocks exists it would require highly positively

skewed foreign output shock which is not reasonable as we expect it to be negatively skewed.

However, it is possible to replicate the pattern of skewness if we change specification of the

exchange rate equation in the model, replacing relative PPP with some version of uncovered

interest rate parity and introducing risk premium shock.

Table 2.1. The basic set parameters of Lubik-Schorfheide DSGE model.
Behavioral Disturbances Measurement errors

Param. Value Note Param. Value Note Param. Value Note

ψπ 1.500 ρẑ 0.200 σy 0.01 kept fixed

ψy 0.250 ρ∆q̂ 0.400 σπ 0.09 kept fixed

ψ∆e 0.100 ρ ŷ� 0.900 σR 0.09 kept fixed

ρR 0.600 ρπ̂� 0.800 σ∆e 0.16 kept fixed

α 0.150 ρε̂R 0.000 kept fixed σ∆q 0.04 kept fixed

κ 0.500 σẑ 1.000

τ 0.500 σ∆q̂ 1.900

rA 0.750 σ ŷ� 1.890

πA 2.000 kept fixed σπ̂� 3.000

γQ 0.800 σR̂ 0.400

σu — standard deviation of u; ρu —- autocorrelation coefficient of u

Table 2.2. Skewness (measured by sample skewness coefficient) in simulated data
Variable Normal Skew normal distribution

distribution u(z) u(∆q) u(y�) u(π�) u(R) all

State variables
�y 0.00 0.00 0.00 −0.12 0.00 −0.01 −0.12
�π 0.00 0.00 0.00 0.03 0.09 −0.03 0.08
�r 0.00 0.00 −0.01 0.03 0.03 0.05 0.09
∆�e 0.00 0.00 −0.02 0.00 −0.16 0.00 −0.19
�z 0.00 0.47 0.00 0.00 0.00 0.00 0.47
∆�q 0.00 0.00 0.41 0.00 0.00 0.00 0.41
�y� 0.00 0.00 0.00 0.14 0.00 0.00 0.14
�π� 0.00 0.00 0.00 0.00 0.21 0.00 0.22
u(R) 0.00 0.00 0.00 0.00 0.00 0.50 0.50

Observable variables
GDP growth rate 0.00 0.25 0.00 −0.03 0.00 0.00 0.21
Inflation 0.00 0.00 0.00 0.03 0.08 −0.03 0.08
Interest rate 0.00 0.00 −0.01 0.03 0.03 0.04 0.09
Exchange rate 0.00 0.00 −0.02 0.00 −0.16 0.00 −0.19
Terms of trade 0.00 0.00 0.40 0.00 0.00 0.00 0.40
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Following Lubik and Schorfheide, we use five observable variables to link the model with

the data: real GDP growth, annualised inflation rate, annual nominal interest rate, change in

exchange rate, and change in terms of trade. The measurement equations take the form:

πt = 4
� πA

400
+ 1
�

�πt +πA, (2.14)

∆et =∆�et , (2.15)

yt =∆�yt + �zt + γQ, (2.16)

∆qt =∆�qt , (2.17)

Rt = 4
�

πA+ rA+ 4γQ

400
+ 1
�

�Rt ,+πA+ rA+ 4γQ, (2.18)

where underlined variables denote observable variables. Parameter πA is annual rate of inflation,

γQ is quarterly growth rate of non–stationary technology process (zt in steady state), and rA is

an element of real interest rate r = rA+ 4γQ.
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�zt , ∆�qt , �y

�
t , �π�t , and ut(R) depends on their autoregressive
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positive skewness of CPI inflation — foreign demand and foreign price dynamics, generate

1The monetary policy shock ut (R) can also be perceived as an autoregressive process with autoregression coefficient
equal to zero.
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positive skewness of the nominal interest rate, which reveals the pattern of propagation through

the monetary policy rule. And the other way round — positively skewed monetary policy shock

is reflected by positive skewness of the interest rate and a negative contribution to skewness of

inflation. Finally, skewness of output is driven mainly by skewness of growth rates of technology.
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rate.
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rates. Although such combination of skewed shocks exists it would require highly positively

skewed foreign output shock which is not reasonable as we expect it to be negatively skewed.

However, it is possible to replicate the pattern of skewness if we change specification of the

exchange rate equation in the model, replacing relative PPP with some version of uncovered

interest rate parity and introducing risk premium shock.
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σu — standard deviation of u; ρu —- autocorrelation coefficient of u

Table 2.2. Skewness (measured by sample skewness coefficient) in simulated data
Variable Normal Skew normal distribution

distribution u(z) u(∆q) u(y�) u(π�) u(R) all

State variables
�y 0.00 0.00 0.00 −0.12 0.00 −0.01 −0.12
�π 0.00 0.00 0.00 0.03 0.09 −0.03 0.08
�r 0.00 0.00 −0.01 0.03 0.03 0.05 0.09
∆�e 0.00 0.00 −0.02 0.00 −0.16 0.00 −0.19
�z 0.00 0.47 0.00 0.00 0.00 0.00 0.47
∆�q 0.00 0.00 0.41 0.00 0.00 0.00 0.41
�y� 0.00 0.00 0.00 0.14 0.00 0.00 0.14
�π� 0.00 0.00 0.00 0.00 0.21 0.00 0.22
u(R) 0.00 0.00 0.00 0.00 0.00 0.50 0.50

Observable variables
GDP growth rate 0.00 0.25 0.00 −0.03 0.00 0.00 0.21
Inflation 0.00 0.00 0.00 0.03 0.08 −0.03 0.08
Interest rate 0.00 0.00 −0.01 0.03 0.03 0.04 0.09
Exchange rate 0.00 0.00 −0.02 0.00 −0.16 0.00 −0.19
Terms of trade 0.00 0.00 0.40 0.00 0.00 0.00 0.40

21



Estimation of models’ parameters

N a t i o n a l  B a n k  o f  P o l a n d24

3

Chapter 3

Estimation of models’ parameters

In order to work with (first order perturbations of) DSGE models with structural skewness

we have to develop a parameter estimation technique for a (linear) state space model with

skewed shocks. A state space model which represents a reduced form of a DSGE model under

normal shocks is usually estimated by the Kalman filter (KF) maximum likelihood (ML) estimator

(see e.g. Hamilton, 1994; Meinhold and Singpurwalla, 1983). Calculation of likelihood function

value via KF typically constitutes also a step of Bayesian estimation (see Fernández-Villaverde

(2009)). Popularity of KF estimation is motivated by the fact that for normally distributed shocks

and measurement errors KF produces analytical filtration, i.e. it yields exact likelihood value

— not an approximation, it is fast and easy to implement. Robustness of KF for non-Gaussian

shocks in the transition equation is sometimes negated, e.g. (Meinhold and Singpurwalla, 1989).

Nonetheless, we keep in mind that KF is an optimal1 linear filter for arbitrary, hence also for

closed skewed normal shocks2.

Ideally, we would like to extend the KF formulation to the case of csn shocks, which would

allow us to perform analytical filtration and obtain exact likelihood function in each step of

the ML routine for inference of parameters. It is possible, but under assumptions which are not

met in case of most DSGE models (see e.g. Naveau et al. (2005)). The problem is a reduced

rank of the autoregressive matrix in the transition equation3 and the fact that calculation of

likelihood function value, which has to be a fast task for KF-type filters, requires calculation

of a cumulative distribution function value of a highly dimensional normal distribution with

arbitrary dependency structure. In practice, the latter task can be done only by Monte Carlo

techniques. Also in comparison with numerical burden of methods like particle filtering (see

for example Fernández-Villaverde and Rubio-Ramirez (2007); An (2005)) or fully Bayesian

parameter estimation which simultaneously involves evaluation of the likelihood, numerical

1Optimal in the sense that it produces minimal trace of one-step ahead prediction errors covariance matrix.
2This means that better filters are only nonlinear ones.
3The issue could be solved via proper transformation of the matrix, however.
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optimization, posterior sampling e.g. via Metropolis-Hastings type of methods and highly

dimensional numerical integration via e.g. MCMC-type of methods, a simple two-step KF-based

(limited information) approach can be desirable:

1. Kalman filter (quasi-) maximum likelihood (Q-ML) estimation4 of models’ parameters

(deep parameters, second moments of shocks and measurement errors, etc.) neglecting

skewness,

2. filtration (estimation) of shocks conditional upon parameter estimates from step 1; method

of moments estimation of parameters of shocks’ csn probability distribution functions

(let us call them shocks’ parameters), conditional upon filtration; testing for skewness of

shocks.

Estimates of all the parameters obtained in step 1, but for shocks’ parameters, become final

estimates. Final estimates of shocks’ parameters are in turn obtained in step 2, in which it is

assumed that shocks have a csn distribution.

Above procedure omits direct optimization-based estimation of shocks’ parameters. It may be an

advantage, because the log-likelihood function for the csn distribution exhibits anomalies, e.g.

improper shape, inflection points in profile likelihood (singularity of Fisher information matrix)

at points where skewness vanishes, divergence of parameters of the distribution, see Azzalini

and Capitanio (1999), Azzalini (2004)), see also Azzalini and Genton (2008). Only some of

these anomalies may be removed via proper parametrization.5.

4We use the therm quasi maximum likelihood estimator in a very broad sense, as a case when maximum likelihood
principle is applied to a misspecified (statistical) model, see White (1982). We do not relay on properties of Q-ML
estimators given by (e.g.) Wedderburn (1974), Gourieroux et al. (1984), Nadler and Lee (1992).

5Azzalini et al. (2010) considered a more general case of estimation of a skew-symmetric distribution’s parameters. A
simple version of the probability density function of a scalar skew-symmetric random variable may be written, up to a
constant, in the form:

fSS(z) = f0(z;θa)π(z;θa ,θb), z ∈ R (3.1)

where: f0 is a symmetric density, and π is a skewing function, such that π(−z) = 1−π(z)≥ 0 for all z ∈ R. The location
and scale parameters are introduced via definition Y = ν +ω Z . The (closed) skew-normal distribution is a special case
of skew-symmetric family, the multivariate extension is straightforward. „The class of distributions (3.1) can be obtained
via a suitable censoring mechanism, regulated by π(z), applied to samples generated by the base density f0, [...]. Under
this perspective, it is of interest to estimate the parameters of f0 via a method which does not depend, or depends only
to a limited extent, on the component π(z), which in many cases is not known, or is not of interest to be estimated [...]”,
(see Azzalini et al., 2010, p. 2). A distributional invariance property of skew-symmetric distribution is a key concept in
their method of estimating equations. The distributional invariance is defined in the following way: If X , Y are two

random variables X ∼ f0, Y ∼ fSS , and T (.) is an even function, then T (X )
d
= T (Y ). This property ensures that for any

choice of even function Tk the expected value

ETk

�

Y − ν
ω

�

= ck , (k = 1,2, ..)

depend only on f0, provided they exist. The authors use that feature to build estimation equations. Ma et al. (2005)
considered a semiparametric model, where the parameters of interest are mean and variance but the skewness parameter
is a nuisance parameter. The authors tested properties of regular asymptotically linear (RAL) estimators of Newey
(1990). Fletcher et al. (2008) tested a variant of method of moment estimators of csn parameters. Akdemir (2009)
considered maximum product spacing estimation.
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optimization, posterior sampling e.g. via Metropolis-Hastings type of methods and highly

dimensional numerical integration via e.g. MCMC-type of methods, a simple two-step KF-based

(limited information) approach can be desirable:
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skewness,
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shocks.
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3.1 Quasi-maximum likelihood estimation

A first order perturbation of a DSGE model with structural skewness obtains the following state

space form:






















ξt = Aξt−1 + But , ut ∼ csnpu,pu

�

µ̃u, Σ̃u, Du, 0, I
�

,

µu = E(ut) = 0, var(ut) = Σu;

ξ0 ∼ N
�

µξ0
,Σξ0

�

,

yt = Fξt + et , et ∼ N
�

0,Σe
�

.

(3.2)

for t = 1, 2, ..., T , where ξt denote states, yt observables, et and ut denote martingale difference

measurement errors and structural shocks respectively. The covariance matrix Σξ0
can be zero,

i.e. states at t = 0 (ξ0) can be non-stochastic. Matrices A, B, F are functions of models’ deep

parameters vector θ� and A can be singular (and generally is), but not explosive. If Du = 0,

i.e. shocks’ skewness parameter vanishes, then µ̃u = µu, Σ̃u = Σu and shocks ut are normally

distributed. Structural shocks ut are, by definition, independent, therefore matrices Σ̃u, Du and

Σu are diagonal, see corollary (1.1.6), with: Σ̃u = diag(σ̃ui
, i = 1,2, ..., pu), Du = diag(dui

, i =
1, 2, ..., pu) and Σu = diag(σui

, i = 1, 2, ..., pu). This, by remark (1.1.3), means, that each ut,i , i.e.

each component of ut , has an Azzalini-type skewed normal distribution, see (Azzalini and Valle,

1996). Applying corollary (1.1.4), we see that first three central moments of ut,i are:

E(ut,i) = κ1(ut,i) = µ̃ui
+

�

2

π

dui
σ̃ui
�

1+ d2
ui
σ̃ui

, (3.3)

var(ut,i) = κ2(ut,i) = σ̃ui
−

2

π

d2
ui
σ̃2

ui

1+ d2
ui
σ̃ui

(3.4)

E(ut,i − E(ut,i))
3 = κ3(ut,i) =

��

2

π

�3
�

2−
π

2

�







dui
σ̃ui
�

1+ d2
ui
σ̃ui







3

(3.5)

which means, that skewness coefficients of ut,i are equal to:

γ(ut,i) = γ(ui) =
	

4−π
2

�

	

�

2
π

dui
σ̃ui
�

1+d2
ui
σ̃ui

�3

	

σ̃ui
− 2
π

d2
ui
σ̃2

ui

1+d2
ui
σ̃ui

�
3
2

. (3.6)

and satisfies the condition: |γ(ut,i)|< γmax ≈ 0.9956.

Note that shocks ut , as structural ones, are required to be martingale differences for every Σ̃u

and Du, which is obtained by forcing µ̃u to adjust so that E(ut,i) = 0, see the first eq. in (3.3).

If θ� is fixed, skewness of shocks has therefore no impact on the steady state of the model.

Variances of shocks Σu are functions of shocks’ distribution parameters Σ̃u and Du, however,

6In a general case γmax is an increasing function of ϑi and a decreasing function of δ̃i , (i = 1, ..., q), see the definition
1.1.2 of csn probability function.
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optimization, posterior sampling e.g. via Metropolis-Hastings type of methods and highly

dimensional numerical integration via e.g. MCMC-type of methods, a simple two-step KF-based

(limited information) approach can be desirable:

1. Kalman filter (quasi-) maximum likelihood (Q-ML) estimation4 of models’ parameters

(deep parameters, second moments of shocks and measurement errors, etc.) neglecting

skewness,

2. filtration (estimation) of shocks conditional upon parameter estimates from step 1; method

of moments estimation of parameters of shocks’ csn probability distribution functions

(let us call them shocks’ parameters), conditional upon filtration; testing for skewness of

shocks.

Estimates of all the parameters obtained in step 1, but for shocks’ parameters, become final

estimates. Final estimates of shocks’ parameters are in turn obtained in step 2, in which it is

assumed that shocks have a csn distribution.

Above procedure omits direct optimization-based estimation of shocks’ parameters. It may be an

advantage, because the log-likelihood function for the csn distribution exhibits anomalies, e.g.

improper shape, inflection points in profile likelihood (singularity of Fisher information matrix)

at points where skewness vanishes, divergence of parameters of the distribution, see Azzalini

and Capitanio (1999), Azzalini (2004)), see also Azzalini and Genton (2008). Only some of

these anomalies may be removed via proper parametrization.5.

4We use the therm quasi maximum likelihood estimator in a very broad sense, as a case when maximum likelihood
principle is applied to a misspecified (statistical) model, see White (1982). We do not relay on properties of Q-ML
estimators given by (e.g.) Wedderburn (1974), Gourieroux et al. (1984), Nadler and Lee (1992).

5Azzalini et al. (2010) considered a more general case of estimation of a skew-symmetric distribution’s parameters. A
simple version of the probability density function of a scalar skew-symmetric random variable may be written, up to a
constant, in the form:

fSS(z) = f0(z;θa)π(z;θa ,θb), z ∈ R (3.1)

where: f0 is a symmetric density, and π is a skewing function, such that π(−z) = 1−π(z)≥ 0 for all z ∈ R. The location
and scale parameters are introduced via definition Y = ν +ω Z . The (closed) skew-normal distribution is a special case
of skew-symmetric family, the multivariate extension is straightforward. „The class of distributions (3.1) can be obtained
via a suitable censoring mechanism, regulated by π(z), applied to samples generated by the base density f0, [...]. Under
this perspective, it is of interest to estimate the parameters of f0 via a method which does not depend, or depends only
to a limited extent, on the component π(z), which in many cases is not known, or is not of interest to be estimated [...]”,
(see Azzalini et al., 2010, p. 2). A distributional invariance property of skew-symmetric distribution is a key concept in
their method of estimating equations. The distributional invariance is defined in the following way: If X , Y are two

random variables X ∼ f0, Y ∼ fSS , and T (.) is an even function, then T (X )
d
= T (Y ). This property ensures that for any

choice of even function Tk the expected value

ETk

�

Y − ν
ω

�

= ck , (k = 1,2, ..)

depend only on f0, provided they exist. The authors use that feature to build estimation equations. Ma et al. (2005)
considered a semiparametric model, where the parameters of interest are mean and variance but the skewness parameter
is a nuisance parameter. The authors tested properties of regular asymptotically linear (RAL) estimators of Newey
(1990). Fletcher et al. (2008) tested a variant of method of moment estimators of csn parameters. Akdemir (2009)
considered maximum product spacing estimation.
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Chapter 3

Estimation of models’ parameters

In order to work with (first order perturbations of) DSGE models with structural skewness

we have to develop a parameter estimation technique for a (linear) state space model with

skewed shocks. A state space model which represents a reduced form of a DSGE model under

normal shocks is usually estimated by the Kalman filter (KF) maximum likelihood (ML) estimator

(see e.g. Hamilton, 1994; Meinhold and Singpurwalla, 1983). Calculation of likelihood function

value via KF typically constitutes also a step of Bayesian estimation (see Fernández-Villaverde

(2009)). Popularity of KF estimation is motivated by the fact that for normally distributed shocks

and measurement errors KF produces analytical filtration, i.e. it yields exact likelihood value

— not an approximation, it is fast and easy to implement. Robustness of KF for non-Gaussian

shocks in the transition equation is sometimes negated, e.g. (Meinhold and Singpurwalla, 1989).

Nonetheless, we keep in mind that KF is an optimal1 linear filter for arbitrary, hence also for

closed skewed normal shocks2.

Ideally, we would like to extend the KF formulation to the case of csn shocks, which would

allow us to perform analytical filtration and obtain exact likelihood function in each step of

the ML routine for inference of parameters. It is possible, but under assumptions which are not

met in case of most DSGE models (see e.g. Naveau et al. (2005)). The problem is a reduced

rank of the autoregressive matrix in the transition equation3 and the fact that calculation of

likelihood function value, which has to be a fast task for KF-type filters, requires calculation

of a cumulative distribution function value of a highly dimensional normal distribution with

arbitrary dependency structure. In practice, the latter task can be done only by Monte Carlo

techniques. Also in comparison with numerical burden of methods like particle filtering (see

for example Fernández-Villaverde and Rubio-Ramirez (2007); An (2005)) or fully Bayesian

parameter estimation which simultaneously involves evaluation of the likelihood, numerical

1Optimal in the sense that it produces minimal trace of one-step ahead prediction errors covariance matrix.
2This means that better filters are only nonlinear ones.
3The issue could be solved via proper transformation of the matrix, however.
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3.1 Quasi-maximum likelihood estimation

A first order perturbation of a DSGE model with structural skewness obtains the following state

space form:






















ξt = Aξt−1 + But , ut ∼ csnpu,pu

�

µ̃u, Σ̃u, Du, 0, I
�

,

µu = E(ut) = 0, var(ut) = Σu;

ξ0 ∼ N
�

µξ0
,Σξ0

�

,

yt = Fξt + et , et ∼ N
�

0,Σe
�

.

(3.2)

for t = 1, 2, ..., T , where ξt denote states, yt observables, et and ut denote martingale difference

measurement errors and structural shocks respectively. The covariance matrix Σξ0
can be zero,

i.e. states at t = 0 (ξ0) can be non-stochastic. Matrices A, B, F are functions of models’ deep

parameters vector θ� and A can be singular (and generally is), but not explosive. If Du = 0,

i.e. shocks’ skewness parameter vanishes, then µ̃u = µu, Σ̃u = Σu and shocks ut are normally

distributed. Structural shocks ut are, by definition, independent, therefore matrices Σ̃u, Du and

Σu are diagonal, see corollary (1.1.6), with: Σ̃u = diag(σ̃ui
, i = 1,2, ..., pu), Du = diag(dui

, i =
1, 2, ..., pu) and Σu = diag(σui

, i = 1, 2, ..., pu). This, by remark (1.1.3), means, that each ut,i , i.e.

each component of ut , has an Azzalini-type skewed normal distribution, see (Azzalini and Valle,

1996). Applying corollary (1.1.4), we see that first three central moments of ut,i are:

E(ut,i) = κ1(ut,i) = µ̃ui
+

�

2

π

dui
σ̃ui
�

1+ d2
ui
σ̃ui

, (3.3)

var(ut,i) = κ2(ut,i) = σ̃ui
−

2

π

d2
ui
σ̃2

ui

1+ d2
ui
σ̃ui

(3.4)

E(ut,i − E(ut,i))
3 = κ3(ut,i) =

��

2

π

�3
�

2−
π

2

�







dui
σ̃ui
�

1+ d2
ui
σ̃ui







3

(3.5)

which means, that skewness coefficients of ut,i are equal to:

γ(ut,i) = γ(ui) =
	

4−π
2

�

	

�

2
π

dui
σ̃ui
�

1+d2
ui
σ̃ui

�3

	

σ̃ui
− 2
π

d2
ui
σ̃2

ui

1+d2
ui
σ̃ui

�
3
2

. (3.6)

and satisfies the condition: |γ(ut,i)|< γmax ≈ 0.9956.

Note that shocks ut , as structural ones, are required to be martingale differences for every Σ̃u

and Du, which is obtained by forcing µ̃u to adjust so that E(ut,i) = 0, see the first eq. in (3.3).

If θ� is fixed, skewness of shocks has therefore no impact on the steady state of the model.

Variances of shocks Σu are functions of shocks’ distribution parameters Σ̃u and Du, however,

6In a general case γmax is an increasing function of ϑi and a decreasing function of δ̃i , (i = 1, ..., q), see the definition
1.1.2 of csn probability function.
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given θ� and Σu, these parameters imply structure of shocks’ variance (shape and scale) and

not its magnitude, see the second eq. in (3.3). This is a heuristic motivation of our estimation

procedure which first step neglects skewness of the distribution, i.e. the skewing function, and

approximates likelihood using the normal distribution.

Let θu =
�

Σ̃u, Du

�

and θe = (Σe). We know (see section 1.3) that observables yt are distributed

according to a csn
�

µ̃y,t , Σ̃y,t , Dy,t ,ϑy,t ,∆y,t

�

distribution and, given observables, likelihood

function of the models’ parameters θ =
�

θ� ,θu,θe
�

is denoted by � (θ). We are interested

in finding θ which maximizes � (θ). Maximizer of θ , denoted by θ̂ , will be approximated in

two steps. Let θ̄u = (Σ̃u, 0) = (Σu, 0), θ̄ = (θ� , θ̄u,θe) and �̄ (θ̄) = � (θ̄ ). �̄ (θ̄) is the quasi-

likelihood function in the sense that it represents the original likelihood function conditioned

upon D = 0, which means that it neglects shocks’ skewness7. In the first step a maximizer:

�θ̄ = (�θ� , �θ̄u, �θe) = argmax
θ̄∈Θ̄

�

�̄
�

θ̄
��

(3.7)

is found. With D = 0, this is a standard maximum likelihood estimation of a state space model

with normally distributed shocks. Then, shocks ut are filtered using model (3.2) with parameters
�θ̄ plugged in it8, and sample estimates of shocks’ skewness coefficients (method of moment

estimators) �γ̂ui
for i = 1, 2, ..., pu are established. If only skewness coefficients are of interest, then

the procedure ends yielding �γ̂u = (�γ̂ui
, i = 1,2, ..., pu). Otherwise, original shocks parameters

Σ̃u and Du are recovered from �γ̂u and �Σu according to equations (3.3–3.6), which results in

estimates of Σ̃u and Du respectively, and final estimate of θ becomes �θ̂ = (�θ� , �θu, �θe) where
�θu =
�

�Σ̃u(�γ̂u, �Σu), �Du(�γ̂u, �Σu)
�

.

3.2 The procedure of stochastic simulations

To asses properties of our two-steps quasi-maximum likelihood/method of moments estimator

we run several stochastic simulation experiments. A single iteration of our stochastic simulation

procedure looks as follows:

1. A sample of shocks ut and measurement errors et are simulated. States ξt and observables

yt are computed according to (3.2).

2. Given observables from step 1, a Newton-type optimization routine is applied to find θ̄ ,

i.e. the maximizer of the quasi likelihood function �̄ (θ̄ ) (the first step of the estimation

procedure described earlier). If optimization fails to converge, steps 3–4 are skipped and

estimation results are discarded9. In this situation a new iteration is initiated.

3. Given �θ̄ , i.e. parameters obtained in step 2, states, observables and shocks �ut are filtered

using the Kalman smoother.

7Notice, that in the case under consideration Σ̃u = Σu, hence the variances of shocks are estimated.
8In fact, filtration of shocks is a byproduct of estimation of �θ̄ using the Kalman filter. From now on we will denote

filtered (smoothed) shocks by �u.
9The number of rejected trials varied with sample size. It was up to 40% for samples of small sample, and just a few

for large samples.
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which means, that skewness coefficients of ut,i are equal to:

γ(ut,i) = γ(ui) =
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and satisfies the condition: |γ(ut,i)|< γmax ≈ 0.9956.

Note that shocks ut , as structural ones, are required to be martingale differences for every Σ̃u

and Du, which is obtained by forcing µ̃u to adjust so that E(ut,i) = 0, see the first eq. in (3.3).

If θ� is fixed, skewness of shocks has therefore no impact on the steady state of the model.

Variances of shocks Σu are functions of shocks’ distribution parameters Σ̃u and Du, however,

6In a general case γmax is an increasing function of ϑi and a decreasing function of δ̃i , (i = 1, ..., q), see the definition
1.1.2 of csn probability function.
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given θ� and Σu, these parameters imply structure of shocks’ variance (shape and scale) and

not its magnitude, see the second eq. in (3.3). This is a heuristic motivation of our estimation

procedure which first step neglects skewness of the distribution, i.e. the skewing function, and

approximates likelihood using the normal distribution.

Let θu =
�

Σ̃u, Du

�

and θe = (Σe). We know (see section 1.3) that observables yt are distributed

according to a csn
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distribution and, given observables, likelihood

function of the models’ parameters θ =
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θ� ,θu,θe
�

is denoted by � (θ). We are interested

in finding θ which maximizes � (θ). Maximizer of θ , denoted by θ̂ , will be approximated in

two steps. Let θ̄u = (Σ̃u, 0) = (Σu, 0), θ̄ = (θ� , θ̄u,θe) and �̄ (θ̄) = � (θ̄ ). �̄ (θ̄) is the quasi-

likelihood function in the sense that it represents the original likelihood function conditioned

upon D = 0, which means that it neglects shocks’ skewness7. In the first step a maximizer:

�θ̄ = (�θ� , �θ̄u, �θe) = argmax
θ̄∈Θ̄

�

�̄
�

θ̄
��

(3.7)

is found. With D = 0, this is a standard maximum likelihood estimation of a state space model

with normally distributed shocks. Then, shocks ut are filtered using model (3.2) with parameters
�θ̄ plugged in it8, and sample estimates of shocks’ skewness coefficients (method of moment

estimators) �γ̂ui
for i = 1, 2, ..., pu are established. If only skewness coefficients are of interest, then

the procedure ends yielding �γ̂u = (�γ̂ui
, i = 1,2, ..., pu). Otherwise, original shocks parameters

Σ̃u and Du are recovered from �γ̂u and �Σu according to equations (3.3–3.6), which results in

estimates of Σ̃u and Du respectively, and final estimate of θ becomes �θ̂ = (�θ� , �θu, �θe) where
�θu =
�

�Σ̃u(�γ̂u, �Σu), �Du(�γ̂u, �Σu)
�

.

3.2 The procedure of stochastic simulations

To asses properties of our two-steps quasi-maximum likelihood/method of moments estimator

we run several stochastic simulation experiments. A single iteration of our stochastic simulation

procedure looks as follows:

1. A sample of shocks ut and measurement errors et are simulated. States ξt and observables

yt are computed according to (3.2).

2. Given observables from step 1, a Newton-type optimization routine is applied to find θ̄ ,

i.e. the maximizer of the quasi likelihood function �̄ (θ̄ ) (the first step of the estimation

procedure described earlier). If optimization fails to converge, steps 3–4 are skipped and

estimation results are discarded9. In this situation a new iteration is initiated.

3. Given �θ̄ , i.e. parameters obtained in step 2, states, observables and shocks �ut are filtered

using the Kalman smoother.

7Notice, that in the case under consideration Σ̃u = Σu, hence the variances of shocks are estimated.
8In fact, filtration of shocks is a byproduct of estimation of �θ̄ using the Kalman filter. From now on we will denote

filtered (smoothed) shocks by �u.
9The number of rejected trials varied with sample size. It was up to 40% for samples of small sample, and just a few

for large samples.
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procedure which first step neglects skewness of the distribution, i.e. the skewing function, and

approximates likelihood using the normal distribution.

Let θu =
�

Σ̃u, Du

�

and θe = (Σe). We know (see section 1.3) that observables yt are distributed

according to a csn
�

µ̃y,t , Σ̃y,t , Dy,t ,ϑy,t ,∆y,t

�

distribution and, given observables, likelihood

function of the models’ parameters θ =
�

θ� ,θu,θe
�

is denoted by � (θ). We are interested

in finding θ which maximizes � (θ). Maximizer of θ , denoted by θ̂ , will be approximated in

two steps. Let θ̄u = (Σ̃u, 0) = (Σu, 0), θ̄ = (θ� , θ̄u,θe) and �̄ (θ̄) = � (θ̄ ). �̄ (θ̄) is the quasi-

likelihood function in the sense that it represents the original likelihood function conditioned

upon D = 0, which means that it neglects shocks’ skewness7. In the first step a maximizer:

�θ̄ = (�θ� , �θ̄u, �θe) = argmax
θ̄∈Θ̄

�

�̄
�

θ̄
��

(3.7)

is found. With D = 0, this is a standard maximum likelihood estimation of a state space model

with normally distributed shocks. Then, shocks ut are filtered using model (3.2) with parameters
�θ̄ plugged in it8, and sample estimates of shocks’ skewness coefficients (method of moment

estimators) �γ̂ui
for i = 1, 2, ..., pu are established. If only skewness coefficients are of interest, then

the procedure ends yielding �γ̂u = (�γ̂ui
, i = 1,2, ..., pu). Otherwise, original shocks parameters

Σ̃u and Du are recovered from �γ̂u and �Σu according to equations (3.3–3.6), which results in

estimates of Σ̃u and Du respectively, and final estimate of θ becomes �θ̂ = (�θ� , �θu, �θe) where
�θu =
�

�Σ̃u(�γ̂u, �Σu), �Du(�γ̂u, �Σu)
�

.

3.2 The procedure of stochastic simulations

To asses properties of our two-steps quasi-maximum likelihood/method of moments estimator

we run several stochastic simulation experiments. A single iteration of our stochastic simulation

procedure looks as follows:

1. A sample of shocks ut and measurement errors et are simulated. States ξt and observables

yt are computed according to (3.2).

2. Given observables from step 1, a Newton-type optimization routine is applied to find θ̄ ,

i.e. the maximizer of the quasi likelihood function �̄ (θ̄ ) (the first step of the estimation

procedure described earlier). If optimization fails to converge, steps 3–4 are skipped and

estimation results are discarded9. In this situation a new iteration is initiated.

3. Given �θ̄ , i.e. parameters obtained in step 2, states, observables and shocks �ut are filtered

using the Kalman smoother.

7Notice, that in the case under consideration Σ̃u = Σu, hence the variances of shocks are estimated.
8In fact, filtration of shocks is a byproduct of estimation of �θ̄ using the Kalman filter. From now on we will denote

filtered (smoothed) shocks by �u.
9The number of rejected trials varied with sample size. It was up to 40% for samples of small sample, and just a few

for large samples.
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4. Smoothed shocks �ut are used to investigate some characteristic of skewness estimators

and tests for skewness. In particular we analyze properties of adjusted sample skewness

coefficients estimator as well as and size and power of tests for skewness of shocks.

All parameters, except for shocks’ parameters, i.e. θ� , θe as well as matrix of second moments

of shocks Σu (a part of θu), are common for all simulation trials, see Table2.1. Table 3.1 reports

shocks’ skewness parameters Du (a component of θu) and equivalent skewness coefficients γui

given dui
and σui

. We use these parameters to generate three variants of data in this experimental

setup. These variants are: normal shocks variant, which is our benchmark, moderate skewness

of all shocks (CSN-1), and strong skewness of all shocks (CSN-2).

Random number generator for the skewed normal distribution follows Gupta et al. (2004,

Prop. 2.5, p. 184), see also Roch and Valdez (2009); Dunajeva et al. (2003); González-Farías

et al. (2004); Iversen (2010). The length of samples varies from 75 („small sample”) up to 600

(„large sample”). For each case of given length over 2000 replications were generated.

Table 3.1. Simulations specific skewness parameters of shocks
Variant du(z) γu(z) du(∆q) γu(∆q) du(y�) γu(y�) du(π�) γu(π�) du(R) γu(R)

Normal 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00

CSN-1 1.498 0.50 0.788 0.50 0.756 0.50 0.499 0.50 3.744 0.50

CSN-2 5.688 0.95 2.994 0.95 2.873 0.95 1.896 0.95 14.20 0.95

γu(i) — skewness coefficient of u(i); du(i) — csn distribution parameter of shock u(i).

3.3 Quasi-maximum likelihood estimator of models’ param-

eters

The selected results of stochastic simulations are presented in Table 3.210. Table 3.2 reports

relative percentage biases11 and standard deviations of models parameter estimates �θ� obtained

in the second step of the simulation procedure (the first step of the estimation procedure). The

general point is that results obtained for the normal case (the first row, the ML estimator) and

for variants CSN1–CSN2 (rows 2–3, the Q-ML estimator) do not differ substantially, although

shocks skewness is neglected during the estimation in csn variants. Bias of the Q-ML procedure

in short sample is considerable, but this is also the case for the ML estimator. There is likely

an identification problem for interest rate rule parameters (ψπ, ψy ψ∆e) as well as for rA and

σy�
12. The magnitude of Q-ML estimators’ bias and ML estimators’ bias is similar. However, ML

estimators are often slightly more precise (taking into account their standard deviations). The

biases as well as the standard deviations of estimators are (approximatively) declining functions

of sample size. This means that our ad hoc Q-ML estimators have properties of consistent

estimators, at least in the problem at hand.

10Detailed results are available from the authors upon request.
11The relative bias is defined as: 100

�θ−θ
θ

.
12It might be seen as a support for Cochrane (2007) thesis, who noticed that parameters of the Taylor rule in a simple

new-Keynesian model of economy are unidentified (the model specification issue), but if J.H. Cochrane is right, sample
size should not matter. The results of our exercise indicate however, that we likely faced a data related issue.
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given θ� and Σu, these parameters imply structure of shocks’ variance (shape and scale) and

not its magnitude, see the second eq. in (3.3). This is a heuristic motivation of our estimation

procedure which first step neglects skewness of the distribution, i.e. the skewing function, and

approximates likelihood using the normal distribution.

Let θu =
�

Σ̃u, Du

�

and θe = (Σe). We know (see section 1.3) that observables yt are distributed

according to a csn
�

µ̃y,t , Σ̃y,t , Dy,t ,ϑy,t ,∆y,t

�

distribution and, given observables, likelihood

function of the models’ parameters θ =
�

θ� ,θu,θe
�

is denoted by � (θ). We are interested

in finding θ which maximizes � (θ). Maximizer of θ , denoted by θ̂ , will be approximated in

two steps. Let θ̄u = (Σ̃u, 0) = (Σu, 0), θ̄ = (θ� , θ̄u,θe) and �̄ (θ̄) = � (θ̄ ). �̄ (θ̄) is the quasi-

likelihood function in the sense that it represents the original likelihood function conditioned

upon D = 0, which means that it neglects shocks’ skewness7. In the first step a maximizer:

�θ̄ = (�θ� , �θ̄u, �θe) = argmax
θ̄∈Θ̄

�

�̄
�

θ̄
��

(3.7)

is found. With D = 0, this is a standard maximum likelihood estimation of a state space model

with normally distributed shocks. Then, shocks ut are filtered using model (3.2) with parameters
�θ̄ plugged in it8, and sample estimates of shocks’ skewness coefficients (method of moment

estimators) �γ̂ui
for i = 1, 2, ..., pu are established. If only skewness coefficients are of interest, then

the procedure ends yielding �γ̂u = (�γ̂ui
, i = 1,2, ..., pu). Otherwise, original shocks parameters

Σ̃u and Du are recovered from �γ̂u and �Σu according to equations (3.3–3.6), which results in

estimates of Σ̃u and Du respectively, and final estimate of θ becomes �θ̂ = (�θ� , �θu, �θe) where
�θu =
�

�Σ̃u(�γ̂u, �Σu), �Du(�γ̂u, �Σu)
�

.

3.2 The procedure of stochastic simulations

To asses properties of our two-steps quasi-maximum likelihood/method of moments estimator

we run several stochastic simulation experiments. A single iteration of our stochastic simulation

procedure looks as follows:

1. A sample of shocks ut and measurement errors et are simulated. States ξt and observables

yt are computed according to (3.2).

2. Given observables from step 1, a Newton-type optimization routine is applied to find θ̄ ,

i.e. the maximizer of the quasi likelihood function �̄ (θ̄ ) (the first step of the estimation

procedure described earlier). If optimization fails to converge, steps 3–4 are skipped and

estimation results are discarded9. In this situation a new iteration is initiated.

3. Given �θ̄ , i.e. parameters obtained in step 2, states, observables and shocks �ut are filtered

using the Kalman smoother.

7Notice, that in the case under consideration Σ̃u = Σu, hence the variances of shocks are estimated.
8In fact, filtration of shocks is a byproduct of estimation of �θ̄ using the Kalman filter. From now on we will denote

filtered (smoothed) shocks by �u.
9The number of rejected trials varied with sample size. It was up to 40% for samples of small sample, and just a few

for large samples.
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filtered (smoothed) shocks by �u.
9The number of rejected trials varied with sample size. It was up to 40% for samples of small sample, and just a few

for large samples.
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4. Smoothed shocks �ut are used to investigate some characteristic of skewness estimators

and tests for skewness. In particular we analyze properties of adjusted sample skewness

coefficients estimator as well as and size and power of tests for skewness of shocks.

All parameters, except for shocks’ parameters, i.e. θ� , θe as well as matrix of second moments

of shocks Σu (a part of θu), are common for all simulation trials, see Table2.1. Table 3.1 reports

shocks’ skewness parameters Du (a component of θu) and equivalent skewness coefficients γui

given dui
and σui

. We use these parameters to generate three variants of data in this experimental

setup. These variants are: normal shocks variant, which is our benchmark, moderate skewness

of all shocks (CSN-1), and strong skewness of all shocks (CSN-2).

Random number generator for the skewed normal distribution follows Gupta et al. (2004,

Prop. 2.5, p. 184), see also Roch and Valdez (2009); Dunajeva et al. (2003); González-Farías

et al. (2004); Iversen (2010). The length of samples varies from 75 („small sample”) up to 600

(„large sample”). For each case of given length over 2000 replications were generated.

Table 3.1. Simulations specific skewness parameters of shocks
Variant du(z) γu(z) du(∆q) γu(∆q) du(y�) γu(y�) du(π�) γu(π�) du(R) γu(R)

Normal 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00

CSN-1 1.498 0.50 0.788 0.50 0.756 0.50 0.499 0.50 3.744 0.50

CSN-2 5.688 0.95 2.994 0.95 2.873 0.95 1.896 0.95 14.20 0.95

γu(i) — skewness coefficient of u(i); du(i) — csn distribution parameter of shock u(i).

3.3 Quasi-maximum likelihood estimator of models’ param-

eters

The selected results of stochastic simulations are presented in Table 3.210. Table 3.2 reports

relative percentage biases11 and standard deviations of models parameter estimates �θ� obtained

in the second step of the simulation procedure (the first step of the estimation procedure). The

general point is that results obtained for the normal case (the first row, the ML estimator) and

for variants CSN1–CSN2 (rows 2–3, the Q-ML estimator) do not differ substantially, although

shocks skewness is neglected during the estimation in csn variants. Bias of the Q-ML procedure

in short sample is considerable, but this is also the case for the ML estimator. There is likely

an identification problem for interest rate rule parameters (ψπ, ψy ψ∆e) as well as for rA and

σy�
12. The magnitude of Q-ML estimators’ bias and ML estimators’ bias is similar. However, ML

estimators are often slightly more precise (taking into account their standard deviations). The

biases as well as the standard deviations of estimators are (approximatively) declining functions

of sample size. This means that our ad hoc Q-ML estimators have properties of consistent

estimators, at least in the problem at hand.

10Detailed results are available from the authors upon request.
11The relative bias is defined as: 100

�θ−θ
θ

.
12It might be seen as a support for Cochrane (2007) thesis, who noticed that parameters of the Taylor rule in a simple

new-Keynesian model of economy are unidentified (the model specification issue), but if J.H. Cochrane is right, sample
size should not matter. The results of our exercise indicate however, that we likely faced a data related issue.
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3.4 Method of moments estimator of shocks’ skewness

To estimate skewness one may use method of a moment estimator — the sample skewness

coefficient �γ defined as:

�γ(Z) =
1
T

∑T
t=1

�

Zt − Z
�3

��

1
T

∑T
t=1

�

Zt − Z
�2
�3 , (3.8)

where Z is the sample mean. Bai and Ng (2005, p. 55) noticed that skewness measured by

the sample skewness coefficient is usually underestimated. That observation agrees with our

findings. Taking it into account data presented in Table A.6 (see Appendix), one can conclude

that, when shocks are skew-normal, a variant of sample skewness coefficient (�γ) is biased

(skewness is underestimated) in a limited sample13. The range of skewness coefficient is the

second problem worth noting. The skewness coefficient of closed skew-normal shocks is limited,

it must satisfy the condition: |γi | < γmax ≈ 0.995. The sample skewness coefficient could be

arbitrary large. Hence the sample coefficient of skewness should be simultaneously rescaled into

proper range and scaled up to minimize bias, but these two transformations are contradictory.

We checked several propositions of such adjustments and chose one that remains asymptotic

properties of the sample estimator of skewness coefficient. We find that it is reasonable to treat

separately irregular cases where the coefficient is outside the admissible range. Our adjusted

sample skewness coefficient estimator is defined as follows:

�γ̂T,i =







γ̃i if |γ̃i | ≤ γmax

sig(γ̃i)
�

γ0 (T ) +
�

γmax − γ0 (T )
�

erf
�

|γ̃i |
��

otherwise
(3.9)

where: T — is the sample size, γmax = 0.995 and the functions γ̃i and γ0(T ) are defined as:

γ̃i ≡ γ̃i(Z) =
T

T − 3

�

T (T − 1)

T − 2
�γi(Z), for T > 10 (3.10)

γ0(T ) =max
�

0.45,
2

π

�

0.5+ erf
�

1−
�

3
π
�

T

��


(3.11)

The results of stochastic simulations presented in Table A.6 (see Appendix) allow to assess its

main properties when the estimator is applied to simulated shocks ut . The adjusted estimator of

skewness coefficient is not very precise. It still underestimates skewness if the sample size T is

small or even moderate. The bias is, however, a decreasing function of sample, the variance of

the estimator is a decreasing function of sample size as well. Even when the „true” coefficient of

skewness γ is close to the bound |0.995|, the bias declines but very slowly, so it behaves as a

consistent estimator.

Table 3.3 shows properties of the estimator applied to smoothed shocks �ut . In this case the

bias seems to be a declining function of sample so the estimator behaves as asymptotically

13Dunajeva et al. (2003) derived an approximate formula for the bias.
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separately irregular cases where the coefficient is outside the admissible range. Our adjusted

sample skewness coefficient estimator is defined as follows:

�γ̂T,i =







γ̃i if |γ̃i | ≤ γmax
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γ0 (T ) +
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γmax − γ0 (T )
�

erf
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��

otherwise
(3.9)

where: T — is the sample size, γmax = 0.995 and the functions γ̃i and γ0(T ) are defined as:
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T
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T (T − 1)
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γ0(T ) =max
�

0.45,
2

π

�

0.5+ erf
�

1−
�

3
π
�

T

��


(3.11)

The results of stochastic simulations presented in Table A.6 (see Appendix) allow to assess its

main properties when the estimator is applied to simulated shocks ut . The adjusted estimator of

skewness coefficient is not very precise. It still underestimates skewness if the sample size T is

small or even moderate. The bias is, however, a decreasing function of sample, the variance of

the estimator is a decreasing function of sample size as well. Even when the „true” coefficient of

skewness γ is close to the bound |0.995|, the bias declines but very slowly, so it behaves as a

consistent estimator.

Table 3.3 shows properties of the estimator applied to smoothed shocks �ut . In this case the

bias seems to be a declining function of sample so the estimator behaves as asymptotically

13Dunajeva et al. (2003) derived an approximate formula for the bias.
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unbiased as well. Nevertheless the fall of bias is slow and even in the large sample the estimates

of skewness for the „difficult” shocks, u(y�) and u(z) are very imprecise. However, this is an

outcome of imprecise estimation of variances of these shocks (the first step of the estimation

procedure). We suspect a model and/or data related issues, e.g. an identification problem,

because that phenomenon occurs also for normal shocks and ML estimation. Imprecise estimates

of shocks’ variances distort filtering and the estimated (smoothed) shocks �ut are imprecise

approximation of ”true” shocks ut (see Table A.4 in Appendix).

Table 3.3. Properties of the adjusted sample skewness estimator �γ̂(�u). 2000 replications
Shocks Bias Bias % Mean Mode Median St.Dev Skewn. Kurtosis 5% 95%

CSN-1 Sample size = 75+7

u(z) -0.178 -35.641 0.322 0.319 0.319 0.291 0.070 2.741 -0.151 0.846
u(∆q) -0.025 -5.058 0.475 0.471 0.471 0.278 -0.086 2.447 0.009 0.947
u(y�) -0.270 -53.956 0.230 0.228 0.228 0.290 -0.031 3.058 -0.238 0.715
u(π�) -0.051 -10.234 0.449 0.449 0.449 0.268 -0.002 2.450 0.011 0.933
u(εR) -0.077 -15.498 0.422 0.426 0.426 0.284 -0.122 2.718 -0.048 0.931

CSN-1 Sample size = 150+7

u(z) -0.165 -32.916 0.336 0.332 0.277 0.210 0.120 3.027 -0.006 0.691
u(∆q) -0.023 -4.567 0.478 0.472 0.395 0.207 0.062 2.772 0.149 0.837
u(y�) -0.241 -48.149 0.259 0.254 0.136 0.215 0.203 3.210 -0.084 0.615
u(π�) -0.037 -7.393 0.463 0.449 0.405 0.210 0.143 2.932 0.129 0.840
u(εR) -0.063 -12.565 0.437 0.431 0.431 0.215 0.137 2.919 0.103 0.820

CSN-1 Sample size = 600+7

u(z) -0.140 -27.901 0.361 0.361 0.294 0.110 0.069 3.075 0.182 0.548
u(∆q) -0.010 -2.080 0.490 0.487 0.458 0.111 0.165 3.299 0.313 0.673
u(y�) -0.219 -43.796 0.281 0.280 0.244 0.106 0.028 3.090 0.110 0.464
u(π�) -0.027 -5.366 0.473 0.466 0.466 0.110 0.316 3.178 0.308 0.666
u(εR) -0.046 -9.288 0.453 0.448 0.361 0.111 0.199 3.365 0.271 0.641

CSN-2 Sample size = 75+7

u(z) -0.350 -36.797 0.600 0.623 0.935 0.266 -0.496 2.776 0.126 0.966
u(∆q) -0.137 -14.377 0.813 0.882 0.933 0.174 -1.102 3.497 0.470 0.984
u(y�) -0.524 -55.209 0.426 0.422 0.311 0.288 -0.120 2.690 -0.042 0.935
u(π�) -0.142 -14.980 0.808 0.878 0.945 0.179 -1.029 3.303 0.465 0.982
u(εR) -0.201 -21.144 0.749 0.799 0.939 0.212 -0.840 3.030 0.356 0.978

CSN-2 Sample size = 150+7

u(z) -0.317 -33.384 0.633 0.636 0.636 0.197 -0.092 2.393 0.309 0.957
u(∆q) -0.097 -10.258 0.853 0.906 0.947 0.132 -1.074 3.396 0.594 0.980
u(y�) -0.462 -48.672 0.488 0.481 0.392 0.215 0.076 2.810 0.140 0.881
u(π�) -0.113 -11.901 0.837 0.876 0.957 0.139 -0.923 3.132 0.568 0.980
u(εR) -0.152 -16.049 0.798 0.828 0.950 0.161 -0.744 2.832 0.495 0.978

CSN-2 Sample size = 600+7

u(z) -0.268 -28.210 0.682 0.678 0.597 0.111 0.140 3.127 0.505 0.874
u(∆q) -0.049 -5.106 0.901 0.922 0.961 0.075 -0.978 3.438 0.761 0.979
u(y�) -0.412 -43.383 0.538 0.534 0.479 0.115 0.186 3.072 0.356 0.735
u(π�) -0.066 -6.926 0.884 0.902 0.963 0.085 -0.771 2.861 0.725 0.978
u(εR) -0.103 -10.811 0.847 0.857 0.962 0.096 -0.506 2.619 0.679 0.972

�u — estimated (smoothed) shocks
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3.5 Tests for skewness of smoothed shocks

The final step of the estimation procedure involves testing for skewness of filtered (smoothed)

shocks. We employ significance test of shocks’ skewness coefficients (one-tailed)14, the test

based on adjusted sample skewness coefficient �γ̂ as well as two parametric tests developed

by Bai and Ng (2005). We verify properties of these tests, since to our best knowledge their

sampling distributions have not been established for the smoothed variables15. Given asymptotic

distribution of �γ (under null hypothesis of normality16 /symmetry/)
�

T �γ
d−→ N(0, 6), it is easy to

notice, that (under null)
�

T γ̃
d−→ N(0, 6) as well. However, since the number of irregular cases

(under null) declines when the sample size grows, therefore one concludes that
�

T �γ̂
d−→ N(0, 6).

Table 3.4 reports the rejections ratios for some skewness tests computed for 10% critical values17.

We verify size and power of the tests for simulated (”true”) shocks and estimated (smoothed)

shocks. The collected data indicate, that the rejection ratio of true hypothesis (symmetric shocks)

is approximately 8–11%. The distortion created by LM estimator and two-sided Kalman filter

(smoother) is quite moderate in the case of normal shocks — the size of tests is similar for

simulated and estimated (smoothed) shocks. Only, the Bai-Ng joint test (χ2 test) reject slightly

less frequently. This is a feature of this test however. In the case of skew-normal shocks, the

rejection ratio is sensitive to sample type. The power of tests is lower for estimated shocks.

The loss of test power is differentiated. There are two „difficult” shocks, u(y�) and u(z), where

the decline is considerable and two shocks where the decline is small. From the other hand,

the power of test in small sample is rather low, especially when skewness is moderate (variant

CSN-1). Hence, it may be difficult to identify skewness if the sample is small and/or skewness is

small/moderate. Nevertheless, even in the worst case (small sample, moderate skewness and

„difficult” shocks) one correctly detects skewness in 34% cases (and 60–67% for regular shocks)

using out test based on �γ̂. Bai-Ng π3 skewness test gives very similar results.

The data shown the Table suggest that one-tailed Bai-Ng π3 as well as one-tailed sample skewness

coefficients �γ, �γ̂ perform similar. Our test based on adjusted sample skewness coefficient �γ̂ has

slightly hight power (and more precise size) but it could be a result of sampling noise18.

14In general we prefer one-tailed tests, because of theirs higher power. The direction of skewness may be investigated
having estimates of skewness coefficient.

15Bai and Ng (2005) skewness tests are valid also for likely serially correlated disturbances of the linear regression
model — they proved asymptotic equivalence of test based on disturbances and estimated regression residuals.

16Compare (Bai and Ng, 2005). In general, under null of symmetry, asymptotic variance of sample skewness coefficient
�γ is given by the following formula:

var
�

�γ
�

=
�µ6 − 6 �µ2 �µ4 + 9 �µ3

2

N �µ3
2

provided that population central moments µi (t = 1, ..., 6) exist. The formula is valid for any symmetric distribution and
iid samples, see Gupta (1967) for details.

17Note, that the alternative hypothesis of these tests are not the same. The alternative for the test based on �γ̂ indicates
constrained value of the skewness coefficient.

18In addition, we run several stochastic simulation exercises using the triples test (a non-parametric test for asymmetry
designed by Randles et al. (1980)) and normal as well as skew-normal shocks. The results suggest that the power of the
triples test is slightly lower that the power of our adjusted sample skewness coefficient test applied to simulated data.
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iid samples, see Gupta (1967) for details.

17Note, that the alternative hypothesis of these tests are not the same. The alternative for the test based on �γ̂ indicates
constrained value of the skewness coefficient.

18In addition, we run several stochastic simulation exercises using the triples test (a non-parametric test for asymmetry
designed by Randles et al. (1980)) and normal as well as skew-normal shocks. The results suggest that the power of the
triples test is slightly lower that the power of our adjusted sample skewness coefficient test applied to simulated data.
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4

Chapter 4

Impulse response functions

For shocks which follow skewed distribution instead of typically assumed symmetric distribution,

it may be more meaningful not to depict impulse response function to a single impulse (e.g. one

standard deviation) but to create confidence intervals based on uncertainty of a shock. Figure

4.1 shows 30, 60, and 90% confidence intervals, as well as median, of response to a monetary

policy shock. Confidence intervals include only shock uncertainty with parameters kept fixed.

The exact procedure looks as follows. Based on a sample of smoothed shocks obtained after

applying Kalman smoother, we calculate desired empirical percentiles of shocks distribution.

Then, we obtain impulse responses to shocks equal to each of them. Monetary policy shock in

this exercise is assumed to be positively skewed hence positive skewness of nominal interest

rate. It means that nominal interest rate in response to a shock is more often below zero than

above, but the probability of very high interest rate is higher than the probability of very low

interest rate. If so, inflation, output and exchange rate will be negatively skewed.

32

Chapter 4

Impulse response functions

For shocks which follow skewed distribution instead of typically assumed symmetric distribution,

it may be more meaningful not to depict impulse response function to a single impulse (e.g. one

standard deviation) but to create confidence intervals based on uncertainty of a shock. Figure

4.1 shows 30, 60, and 90% confidence intervals, as well as median, of response to a monetary

policy shock. Confidence intervals include only shock uncertainty with parameters kept fixed.

The exact procedure looks as follows. Based on a sample of smoothed shocks obtained after

applying Kalman smoother, we calculate desired empirical percentiles of shocks distribution.

Then, we obtain impulse responses to shocks equal to each of them. Monetary policy shock in

this exercise is assumed to be positively skewed hence positive skewness of nominal interest

rate. It means that nominal interest rate in response to a shock is more often below zero than

above, but the probability of very high interest rate is higher than the probability of very low

interest rate. If so, inflation, output and exchange rate will be negatively skewed.

32

Figure 4.1. Monetary policy shock
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5

Chapter 5

Concluding remarks

Skewness of observables is not accounted for in the domain of DSGE models, at least when first

order perturbations are employed, which is quite often the case both in the literature as well

as in practice. On the other hand, most important macroeconomic time series – notably output

growth, inflation and interest rates – reveal skewness. This paper attempts to fill this gap.

In the paper we stressed the fact, that skewness in observed variables can be a result of skewness

in structural shocks. In fact, in a linear (or a linearized) DSGE model there is no other way to

get skewed observables. Propagation of skewness in liner state-space models undergoes certain

laws, e.g. skewness of states of univariate autoregressions decreases with time reaching a zero

or non-zero limit for random walks and stationary specifications respectively.

Simulation exercises indicate that a simple two-step quasi-maximum likelihood/method of

moments parameters’ estimation procedure, which neglects shocks’ skewness in the first step,

does not distort estimates of models’ parameter, at least for the problem at hand. This allows us

to filter shocks, given parameters, and then estimate shocks’ skewness parameters. Properties of

skewness tests of filtered shocks are far less satisfactory. Then, quality of estimates of shocks

skewness parameters seems to be shock dependent.

34



Appendix A: Test for skewness and results of stochastic simulations

N a t i o n a l  B a n k  o f  P o l a n d36

Appendix A

Tests for skewness and results of

stochastic simulations

A.1 Tests for skewness

Distribution of sample skewness coefficient

For a series {Xt}
T
t=1 with mean µ and variance σ we defined its r-th central moment by

µr = E
�

�

x −µ
�r�, the coefficient of skewness is defined as (see also equation (1.6)):

γ=
µ3

σ3 =
E
�

�

x −µ
�3�

E
�

�

x −µ
�2�

3
2

. (A.1)

The sample estimate of skewness coefficient is given by (compare equation (3.8));

�γ=
1
T

∑T
t=1

�

Xt − X
�3

��

1
T

∑T
t=1

�

Xt − X
�2
�3 . (A.2)

where X is the sample mean. If Xt is iid and normally distributed then
�

T �γ
d−→ N(0, 6).

Bai-Ng tests for skewness

Below we present tests for skewness proposed by Bai and Ng (2005). If Xt is weakly dependent

and stationary up to sixth order, under the null hypothesis that γ= 0

�
T�γ=

α

�σ3

1
�

T

T
∑

t=1

Zt + op(1) (A.3)
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α=
�

1 −3σ2
�

, Zt =





�

Xt −µ
�3

�

Xt −µ
�



 , (A.4)

and
1
�

T

T
∑

t=1

Zt
d−→ N (0,Γ ) , Γ = lim

T→∞
T E
�

ZZ
T
�

(A.5)

with Z being the sample mean of Zt and Γ is the spectral density matrix at frequency 0 of Zt .

Additionally
�

T�γ
d−→ N

�

0,
αΓαT

σ6

�

or
�

T �µ3
d−→ N
�

0,αΓαT
�

(A.6)

Let �σ2 and �Γ be consistent estimates of σ2 and Γ . Let �α =
�

1,−3�σ2
�

, s
�

�µ3

�

=
�

�α�Γ�αT
�1/2

and

s
�

�γ
�

=
�

�α�Γ�αT/�σ6
�1/2

. Under the null hypothesis that γ= 0

�π3 =

�
T �µ3

s
�

�µ3

� =

�
T�γ

s
�

�θ
�

d−→ N(0, 1). (A.7)

Long-run variance matrix can be obtained nonparametrically by kernel estimation, e.g. the

Bartlett kernel (see Newey and West (1987)).

Possible low power of the test can be increased by applying either a one-tailed test (direction of

skewness is usually suspected) or a joint test of two odd moments, r1 and r2. Let

Yt =





1�
T

∑T
t=1

�

Xt −µ
�r1

1�
T

∑T
t=1

�

Xt −µ
�r2



 (A.8)

It can be shown that

Yt = α
1
�

T

T
∑

t=1

Zt + op(1) (A.9)

where

α=





1 0 −r1µr1−1

0 1 −r2µr2−1



 , Zt =









�

Xt −µ
�r1

�

Xt −µ
�r2

�

Xt −µ
�









. (A.10)

Under the null hypothesis of symmetry, if

1
�

T

T
∑

t=1

Zt
d−→ N (0,Γ ) , Γ = lim

T→∞
T E
�

ZZ
T
�

(A.11)

then YT
d−→ N
�

0,αΓαT�. Let �α�Γ�αT be a consistent estimate of αΓαT . Then

�µr1,r2
= YT

T

�

�α�Γ�αT
�−1

YT
d−→ χ2

2 (A.12)

We refer to the above joint test as Bai-Ng χ2 test. The Gauss code of the test was downloaded

from Serena Ng’s webpage (http://www.columbia.edu/~sn2294/).
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A.2 Results of stochastic simulations

A.2.1 Estimation of the basic set of parameters

Table A.1. Normal shocks — Kalman filter ML estimators, 2000 replications=2000
Parameter Bias Bias % Mean Mode Median St.Dev Skewn. Kurtosis 5% 95%

Sample size = 75+7
ψπ 0.481 32.09 1.981 1.604 1.208 1.215 2.895 13.47 1.022 4.552
ψy 0.219 87.50 0.469 0.295 0.214 0.532 3.375 18.19 0.075 1.518
ψ∆e 0.056 56.44 0.156 0.115 0.073 0.136 3.030 14.89 0.048 0.411
ρR 0.015 2.462 0.615 0.613 0.615 0.120 0.016 2.884 0.420 0.819
α 0.002 1.407 0.152 0.150 0.151 0.029 0.256 3.027 0.107 0.201
κ 0.034 6.891 0.534 0.511 0.432 0.174 1.202 6.239 0.299 0.842
τ -0.010 -1.912 0.490 0.486 0.382 0.202 -0.065 2.316 0.146 0.825
rA 0.176 23.49 0.926 0.861 0.614 0.562 0.637 3.131 0.135 1.955
γQ -0.034 -4.276 0.766 0.774 0.789 0.127 -0.383 3.048 0.535 0.959

ρẑ 0.007 3.530 0.207 0.206 0.207 0.047 0.751 7.872 0.135 0.285
ρ∆q̂ -0.010 -2.593 0.390 0.397 0.434 0.102 -0.358 3.284 0.214 0.552
ρ ŷ� -0.020 -2.188 0.880 0.888 0.926 0.059 -0.918 4.279 0.770 0.961
ρπ� -0.006 -0.786 0.794 0.797 0.793 0.053 -0.445 3.210 0.698 0.875
σẑ -0.050 -4.970 0.950 0.951 0.951 0.113 -0.216 3.897 0.771 1.135
σ∆q̂ -0.012 -0.657 1.888 1.886 1.815 0.161 0.126 3.074 1.623 2.149
σ ŷ� 1.155 61.11 3.045 1.830 0.818 3.376 2.188 8.164 0.233 10.847
σπ̂� -0.031 -1.017 2.969 2.964 2.961 0.253 0.058 3.035 2.562 3.388
σε̂R 0.015 3.816 0.415 0.405 0.390 0.096 13.21 379.4 0.315 0.549

Sample size = 150+7
ψπ 0.236 15.72 1.736 1.538 1.285 0.746 3.298 23.58 1.033 3.024
ψy 0.099 39.72 0.349 0.263 0.201 0.290 2.948 17.80 0.083 0.902
ψ∆e 0.028 27.51 0.128 0.106 0.079 0.080 2.858 17.00 0.051 0.273
ρR 0.009 1.463 0.609 0.603 0.597 0.093 0.192 2.846 0.466 0.767
α 0.001 0.769 0.151 0.150 0.149 0.021 0.227 2.916 0.118 0.187
κ 0.013 2.522 0.513 0.503 0.438 0.112 0.594 3.666 0.349 0.713
τ 0.002 0.443 0.502 0.505 0.568 0.155 -0.086 2.777 0.243 0.763
rA 0.070 9.338 0.820 0.777 0.699 0.438 0.425 2.720 0.159 1.608
γQ -0.014 -1.723 0.786 0.792 0.819 0.094 -0.287 2.834 0.624 0.931

ρẑ 0.008 3.750 0.208 0.205 0.187 0.035 0.428 3.301 0.155 0.270
ρ∆q̂ -0.003 -0.637 0.397 0.398 0.437 0.071 -0.113 3.078 0.280 0.509
ρ ŷ� -0.009 -0.976 0.891 0.896 0.896 0.039 -0.752 3.683 0.823 0.945
ρπ̂� -0.005 -0.580 0.795 0.799 0.799 0.036 -0.340 3.077 0.731 0.851
σẑ -0.025 -2.546 0.975 0.977 0.950 0.080 -0.049 3.222 0.843 1.102
σ∆q̂ -0.009 -0.470 1.891 1.891 1.926 0.111 0.083 3.165 1.711 2.076
σ ŷ� 0.757 40.06 2.647 1.950 1.570 2.423 2.541 11.52 0.480 7.618
σhatπ� -0.007 -0.217 2.993 2.988 2.959 0.180 0.042 2.953 2.697 3.294
σε̂R 0.006 1.561 0.406 0.400 0.398 0.057 6.028 126.6 0.335 0.498

Sample size = 600+7
ψπ 0.045 2.990 1.545 1.504 1.395 0.264 0.907 4.343 1.195 2.027
ψy 0.019 7.635 0.269 0.252 0.219 0.103 1.034 4.696 0.132 0.463
ψ∆e 0.006 5.516 0.106 0.101 0.104 0.029 0.923 4.409 0.067 0.157
ρR 0.001 0.145 0.601 0.601 0.605 0.049 0.010 2.900 0.522 0.681
α -0.000 -0.043 0.150 0.150 0.146 0.011 0.047 2.930 0.131 0.169
κ 0.003 0.546 0.503 0.499 0.468 0.055 0.341 3.175 0.417 0.599
τ 0.001 0.276 0.501 0.503 0.503 0.088 -0.053 3.001 0.358 0.642
rA 0.011 1.511 0.761 0.751 0.629 0.239 0.141 2.873 0.381 1.163
γQ -0.002 -0.190 0.798 0.799 0.778 0.051 -0.057 2.871 0.713 0.882

ρẑ 0.003 1.305 0.203 0.201 0.199 0.020 0.502 3.475 0.173 0.238
ρ∆q̂ -0.000 -0.073 0.400 0.400 0.387 0.035 -0.042 2.836 0.342 0.457
ρ ŷ� -0.002 -0.265 0.898 0.899 0.898 0.017 -0.382 3.173 0.868 0.924
ρπ̂� -0.002 -0.237 0.798 0.799 0.792 0.018 -0.323 3.095 0.766 0.827
σẑ -0.007 -0.675 0.993 0.995 0.997 0.041 -0.147 3.080 0.925 1.057
σ∆q̂ -0.002 -0.097 1.898 1.897 1.876 0.055 0.075 2.846 1.807 1.989
σ ŷ� 0.226 11.96 2.116 1.915 1.894 0.999 1.577 7.571 0.906 3.931
σπ̂� -0.004 -0.136 2.996 2.995 2.999 0.088 -0.021 2.987 2.849 3.141
σε̂R 0.001 0.227 0.401 0.400 0.406 0.024 0.292 3.326 0.363 0.443
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Table A.2. CSN-1 shocks — Kalman filter Q-ML estimator, 2000 replications
Param. Bias Bias % Mean Mode Median St.Dev Skewn. Kurtosis 5% 95%

Sample size = 75+7
ψπ 0.542 36.14 2.042 1.608 1.212 1.290 2.634 11.44 1.032 4.713
ψy 0.235 93.96 0.485 0.307 0.174 0.551 3.314 17.92 0.077 1.425
ψ∆e 0.063 62.88 0.163 0.114 0.074 0.148 3.036 15.54 0.048 0.452
ρR 0.017 2.797 0.617 0.610 0.580 0.124 0.039 2.785 0.417 0.832
α 0.003 1.708 0.153 0.151 0.147 0.029 0.309 3.073 0.107 0.203
κ 0.037 7.383 0.537 0.517 0.457 0.172 1.061 5.169 0.299 0.864
τ -0.013 -2.613 0.487 0.486 0.497 0.200 -0.004 2.316 0.160 0.826
rA 0.184 24.57 0.934 0.877 0.769 0.563 0.510 2.810 0.115 1.917
γQ -0.035 -4.351 0.765 0.772 0.812 0.123 -0.244 2.788 0.555 0.951

ρẑ 0.008 3.944 0.208 0.204 0.190 0.048 0.562 4.488 0.137 0.292
ρ∆q̂ -0.007 -1.842 0.393 0.401 0.411 0.103 -0.335 3.128 0.208 0.549
ρ ŷ� -0.018 -1.965 0.882 0.893 0.911 0.059 -0.896 3.823 0.770 0.960
ρπ̂� -0.007 -0.834 0.793 0.796 0.789 0.052 -0.545 3.571 0.700 0.869
σẑ -0.057 -5.669 0.943 0.945 0.879 0.119 -0.134 3.378 0.749 1.136
σ∆q̂ -0.021 -1.098 1.879 1.876 1.934 0.172 0.115 3.077 1.601 2.177
σ ŷ� 1.137 60.16 3.027 1.783 0.322 3.446 2.217 8.208 0.255 10.86
σπ̂� -0.013 -0.418 2.987 2.988 2.907 0.269 0.026 3.013 2.548 3.423
σε̂R 0.019 4.659 0.419 0.406 0.400 0.121 18.16 551.8 0.312 0.551

Sample size = 150+7
ψπ 0.233 15.51 1.733 1.524 1.320 0.831 4.076 29.27 1.048 3.053
ψy 0.100 39.80 0.350 0.257 0.219 0.344 4.317 32.21 0.084 0.937
ψ∆e 0.027 27.21 0.127 0.105 0.089 0.091 4.165 30.71 0.051 0.268
ρR 0.006 0.969 0.606 0.601 0.597 0.092 0.276 3.127 0.463 0.763
α 0.001 0.539 0.151 0.150 0.147 0.022 0.310 3.072 0.117 0.188
κ 0.014 2.885 0.514 0.502 0.495 0.113 0.711 3.727 0.356 0.723
τ 0.004 0.767 0.504 0.504 0.437 0.159 -0.048 2.705 0.243 0.767
rA 0.064 8.598 0.814 0.786 0.946 0.427 0.362 2.727 0.158 1.568
γQ -0.014 -1.769 0.786 0.791 0.817 0.091 -0.217 2.852 0.630 0.926

ρẑ 0.007 3.304 0.207 0.205 0.194 0.034 0.274 3.038 0.152 0.268
ρ∆q̂ -0.006 -1.394 0.394 0.397 0.408 0.072 -0.205 3.024 0.273 0.508
ρ ŷ� -0.008 -0.865 0.892 0.897 0.899 0.038 -0.777 3.753 0.823 0.945
ρπ̂� -0.004 -0.554 0.796 0.797 0.780 0.037 -0.293 3.071 0.732 0.852
σẑ -0.032 -3.187 0.968 0.969 0.948 0.082 -0.096 3.158 0.834 1.102
σ∆q̂ -0.003 -0.177 1.897 1.891 1.815 0.120 0.148 2.997 1.704 2.100
σ ŷ� 0.856 45.29 2.746 1.961 0.940 2.598 2.580 11.82 0.480 7.758
σπ̂� -0.014 -0.466 2.986 2.978 2.940 0.193 0.154 2.936 2.686 3.317
σε̂R 0.005 1.224 0.405 0.398 0.379 0.050 0.821 4.490 0.334 0.499

Sample size = 600+7
ψπ 0.043 2.859 1.543 1.502 1.432 0.291 1.661 10.72 1.169 2.070
ψy 0.016 6.533 0.266 0.247 0.216 0.113 1.932 12.04 0.128 0.466
ψ∆e 0.005 4.820 0.105 0.100 0.092 0.032 1.706 11.04 0.064 0.162
ρR 0.000 0.056 0.600 0.599 0.600 0.050 0.178 3.263 0.519 0.684
α -0.000 -0.019 0.150 0.150 0.152 0.012 -0.024 2.971 0.130 0.169
κ 0.003 0.635 0.503 0.499 0.487 0.055 0.332 3.126 0.418 0.599
τ 0.006 1.269 0.506 0.505 0.509 0.085 0.114 3.029 0.369 0.649
rA -0.000 -0.026 0.750 0.753 0.837 0.239 -0.001 2.920 0.354 1.150
γQ 0.000 0.054 0.800 0.800 0.793 0.051 0.002 2.849 0.717 0.885

ρẑ 0.004 1.765 0.204 0.202 0.197 0.019 0.684 3.824 0.176 0.239
ρ∆q̂ -0.000 -0.073 0.400 0.400 0.415 0.037 -0.133 3.021 0.335 0.460
ρ ŷ� -0.002 -0.196 0.898 0.900 0.900 0.017 -0.403 3.185 0.868 0.924
ρπ̂� -0.001 -0.084 0.799 0.800 0.802 0.018 -0.211 3.051 0.767 0.829
σẑ -0.008 -0.754 0.992 0.993 0.991 0.042 -0.125 3.055 0.923 1.059
σ∆q̂ -0.001 -0.061 1.899 1.900 1.881 0.059 -0.013 3.036 1.800 1.995
σ ŷ� 0.263 13.89 2.153 1.959 1.496 0.988 1.716 8.943 0.975 3.984
σπ̂� -0.005 -0.157 2.995 2.991 2.967 0.096 0.085 3.114 2.840 3.153
σε̂R 0.000 0.003 0.400 0.399 0.400 0.026 0.400 3.874 0.360 0.445
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Table A.3. CSN-2 shocks — Kalman filter Q-ML estimator, 2000 replications.
Param. Bias Bias % Mean Mode Median St.Dev Skewn. Kurtosis 5% 95%

Sample size = 75+7
ψπ 0.485 32.33 1.985 1.575 1.227 1.223 2.672 11.63 1.026 4.488
ψy 0.217 86.84 0.467 0.303 0.125 0.509 2.885 13.96 0.073 1.506
ψ∆e 0.057 57.45 0.157 0.114 0.064 0.137 2.879 14.38 0.048 0.422
ρR 0.015 2.567 0.615 0.609 0.599 0.121 0.076 2.804 0.427 0.830
α 0.002 1.577 0.152 0.151 0.153 0.028 0.262 3.032 0.108 0.202
κ 0.034 6.856 0.534 0.515 0.444 0.169 1.028 5.020 0.309 0.837
τ -0.015 -2.928 0.485 0.485 0.521 0.195 -0.031 2.365 0.156 0.812
rA 0.171 22.75 0.921 0.872 0.448 0.565 0.596 3.038 0.121 1.942
γQ -0.035 -4.351 0.765 0.770 0.769 0.122 -0.316 2.984 0.551 0.955

ρẑ 0.008 3.825 0.208 0.205 0.203 0.047 0.449 3.526 0.137 0.290
ρ∆q̂ -0.011 -2.707 0.389 0.392 0.413 0.101 -0.177 3.024 0.220 0.549
ρy� -0.018 -2.031 0.882 0.892 0.896 0.060 -1.082 4.957 0.768 0.961
ρπ� -0.008 -0.974 0.792 0.795 0.811 0.053 -0.308 2.944 0.699 0.874
σẑ -0.059 -5.916 0.941 0.943 0.978 0.123 -0.033 3.503 0.740 1.138
σ∆q̂ -0.022 -1.138 1.878 1.874 2.029 0.185 0.217 3.003 1.583 2.193
σ ŷ� 1.014 53.64 2.904 1.791 0.630 3.265 2.368 9.373 0.253 9.801
σπ̂� -0.028 -0.949 2.972 2.960 2.907 0.289 0.288 3.132 2.524 3.457
σε̂R 0.014 3.536 0.414 0.404 0.428 0.075 0.887 4.172 0.313 0.553

Sample size = 150+7
ψπ 0.206 13.72 1.706 1.509 1.414 0.745 3.025 17.49 1.038 3.030
ψy 0.094 37.51 0.344 0.261 0.147 0.298 2.840 14.27 0.084 0.890
ψ∆e 0.024 24.14 0.124 0.103 0.073 0.081 2.940 17.09 0.049 0.274
ρR 0.002 0.346 0.602 0.597 0.563 0.094 0.245 3.173 0.458 0.767
α 0.000 0.007 0.150 0.149 0.145 0.022 0.216 3.136 0.115 0.186
κ 0.019 3.752 0.519 0.505 0.466 0.116 0.768 4.228 0.355 0.726
τ 0.005 0.907 0.505 0.503 0.505 0.159 -0.031 2.591 0.250 0.770
rA 0.068 9.116 0.818 0.799 0.744 0.412 0.331 2.830 0.179 1.529
γQ -0.015 -1.893 0.785 0.791 0.806 0.090 -0.265 2.908 0.626 0.923

ρẑ 0.005 2.570 0.205 0.203 0.193 0.034 0.414 3.558 0.152 0.264
ρ∆q̂ -0.004 -1.028 0.396 0.397 0.363 0.071 -0.157 3.100 0.279 0.511
ρ ŷ� -0.011 -1.190 0.889 0.894 0.899 0.038 -0.786 3.987 0.819 0.944
ρπ̂� -0.004 -0.549 0.796 0.799 0.801 0.037 -0.359 3.196 0.730 0.852
σẑ -0.032 -3.247 0.968 0.968 0.971 0.083 -0.024 3.082 0.832 1.104
σ∆q̂ -0.011 -0.555 1.889 1.887 1.837 0.129 0.234 2.973 1.686 2.112
σ ŷ� 0.845 44.73 2.735 1.940 1.165 2.555 2.462 11.19 0.460 7.847
σπ̂� -0.015 -0.503 2.985 2.985 2.984 0.214 0.205 3.275 2.640 3.335
σε̂R 0.005 1.264 0.405 0.396 0.381 0.054 0.791 4.076 0.331 0.502

Sample size = 600+7
ψπ 0.040 2.680 1.540 1.489 1.469 0.313 6.702 134.6 1.190 2.022
ψy 0.016 6.525 0.266 0.249 0.206 0.114 4.565 73.65 0.135 0.452
ψ∆e 0.005 4.537 0.105 0.100 0.095 0.032 4.866 81.35 0.066 0.156
ρR -0.001 -0.141 0.599 0.598 0.597 0.048 0.122 2.969 0.522 0.682
α 0.000 0.047 0.150 0.150 0.155 0.011 0.038 2.986 0.132 0.169
κ 0.005 1.080 0.505 0.503 0.476 0.058 1.799 27.49 0.417 0.598
τ 0.003 0.684 0.503 0.502 0.483 0.084 0.067 3.179 0.369 0.643
rA 0.004 0.515 0.754 0.756 0.693 0.240 0.040 2.790 0.349 1.149
γQ -0.001 -0.171 0.799 0.799 0.804 0.051 -0.005 2.712 0.714 0.885

ρẑ 0.003 1.303 0.203 0.200 0.194 0.019 0.593 3.895 0.175 0.239
ρ∆q̂ -0.002 -0.549 0.398 0.399 0.381 0.035 -0.076 2.956 0.338 0.455
ρy� -0.002 -0.254 0.898 0.899 0.902 0.018 -0.511 3.425 0.866 0.925
ρπ� -0.001 -0.180 0.799 0.799 0.797 0.019 -0.127 3.228 0.767 0.829
σẑ -0.008 -0.808 0.992 0.991 1.007 0.044 0.008 2.998 0.919 1.066
σ∆q̂ -0.004 -0.189 1.896 1.895 1.880 0.065 0.124 3.040 1.789 2.005
σ ŷ� 0.226 11.96 2.116 1.913 1.590 0.978 1.891 10.32 0.951 3.873
σπ̂� -0.004 -0.127 2.996 2.996 2.999 0.103 0.102 2.996 2.829 3.168
σε̂R 0.001 0.332 0.401 0.400 0.392 0.054 30.473 1198. 0.361 0.445
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A.2.2 Estimation of state variables

Table A.4. Simulated and estimated /smoothed/ shocks, 2000 replications.
Simul. Shock Simulated shocks /average in sample/ Estimated shocks /average in sample /
Variant u(i) Mean Median St.Dev Skewn. Kurt. Mean Median St.Dev Skewn. Kurt.

Sample size = 75+7
Normal z -0.025 -0.023 0.995 -0.009 2.988 0.001 0.004 0.859 -0.008 2.988

∆q 0.001 0.001 1.898 -0.001 3.007 0.002 0.002 1.877 -0.004 3.004
y� 0.001 0.000 1.880 -0.003 3.011 0.007 0.012 2.627 -0.004 2.985
π� -0.015 -0.006 2.983 -0.012 3.013 -0.012 -0.004 2.929 -0.013 3.012
εR 0.004 0.003 0.398 -0.002 2.955 -0.001 -0.001 0.405 -0.005 2.964

CSN-1 z -0.025 -0.113 0.989 0.483 3.352 0.002 -0.047 0.853 0.315 3.204
∆q 0.003 -0.164 1.890 0.480 3.323 0.002 -0.158 1.871 0.470 3.315
y� -0.001 -0.168 1.877 0.459 3.274 -0.017 -0.128 2.608 0.223 3.101
π� -0.013 -0.294 2.997 0.469 3.267 -0.009 -0.269 2.947 0.440 3.251
εR 0.004 -0.032 0.399 0.475 3.304 -0.000 -0.032 0.408 0.412 3.253

CSN-2 z -0.025 -0.219 0.986 0.926 3.724 0.003 -0.101 0.850 0.605 3.423
∆q 0.002 -0.359 1.891 0.914 3.724 0.003 -0.340 1.870 0.879 3.689
y� -0.002 -0.355 1.872 0.895 3.666 0.007 -0.210 2.503 0.420 3.262
π� -0.014 -0.580 2.985 0.918 3.732 -0.007 -0.541 2.932 0.870 3.682
εR 0.002 -0.074 0.399 0.905 3.685 0.000 -0.065 0.404 0.782 3.571

Sample size = 150+7
Normal z -0.010 -0.012 0.999 -0.003 3.005 0.001 0.000 0.878 -0.001 2.994

∆q 0.004 0.004 1.898 0.007 3.000 0.005 0.008 1.880 0.006 3.000
y� -0.009 -0.010 1.885 0.005 3.004 -0.014 -0.015 2.264 0.008 3.000
π� -0.004 0.005 2.998 -0.005 2.991 -0.003 0.001 2.951 -0.007 2.992
εR 0.002 0.002 0.399 -0.006 3.014 0.000 0.000 0.395 -0.002 3.011

CSN-1 z -0.011 -0.101 0.995 0.483 3.316 0.000 -0.052 0.871 0.330 3.197
∆q 0.003 -0.169 1.902 0.484 3.309 0.004 -0.166 1.886 0.470 3.297
y� -0.001 -0.174 1.888 0.484 3.314 0.003 -0.099 2.349 0.255 3.145
π� -0.007 -0.286 2.994 0.482 3.310 -0.005 -0.258 2.944 0.456 3.292
εR 0.000 -0.036 0.399 0.484 3.321 0.000 -0.031 0.394 0.430 3.278

CSN-2 z -0.011 -0.205 0.992 0.929 3.737 0.001 -0.111 0.872 0.630 3.436
∆q 0.001 -0.366 1.895 0.928 3.743 0.001 -0.353 1.878 0.904 3.717
y� -0.002 -0.364 1.884 0.925 3.734 0.000 -0.216 2.335 0.481 3.304
π� 0.003 -0.567 2.990 0.927 3.765 0.005 -0.528 2.942 0.881 3.717
εR 0.001 -0.076 0.399 0.932 3.772 0.000 -0.067 0.394 0.827 3.665

Sample size = 600+7
Normal z -0.001 -0.001 1.001 0.001 3.008 0.000 0.000 0.894 0.002 3.004

∆q 0.001 0.002 1.899 -0.001 3.001 0.001 0.001 1.887 -0.001 3.001
y� 0.001 -0.001 1.891 -0.000 3.002 -0.001 0.000 1.784 -0.001 2.998
π� -0.003 -0.006 2.998 -0.001 2.990 -0.004 -0.006 2.953 -0.001 2.988
εR 0.001 0.001 0.400 -0.001 2.992 0.000 0.000 0.389 -0.000 2.995

CSN-1 z 0.000 -0.092 1.000 0.501 3.351 0.000 -0.058 0.893 0.359 3.230
∆q 0.002 -0.172 1.900 0.498 3.347 0.003 -0.166 1.888 0.488 3.337
y� -0.001 -0.175 1.890 0.496 3.345 0.001 -0.088 1.814 0.280 3.166
π� -0.003 -0.280 2.997 0.494 3.337 -0.003 -0.260 2.952 0.471 3.317
εR 0.000 -0.037 0.400 0.496 3.338 0.000 -0.033 0.388 0.451 3.303

CSN-2 z -0.001 -0.196 0.999 0.950 3.824 -0.000 -0.119 0.893 0.679 3.533
∆q 0.001 -0.369 1.898 0.944 3.799 0.001 -0.359 1.886 0.926 3.779
y� 0.004 -0.364 1.891 0.950 3.830 0.005 -0.173 1.782 0.535 3.392
π� -0.000 -0.584 2.999 0.942 3.786 -0.000 -0.548 2.953 0.901 3.741
εR -0.000 -0.078 0.400 0.943 3.787 -0.000 -0.068 0.390 0.853 3.685
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A.2.3 The test for skewness

Table A.5. The modified sample skewness estimator γ̃. Percent of cases outside the admissible
range. 100000 replications, u ∼ csn, var(u) = 1, E(u) = 0.

Shock’s Sample size
skewness coeff. 50 75 150 300 600 1200 4800 9600

0.000 0.97 0.16 0.00 0.00 0.00 0.00 0.00 0.00
0.250 2.92 1.14 0.11 0.00 0.00 0.00 0.00 0.00
0.500 9.12 6.04 1.87 0.26 0.10 0.00 0.00 0.00
0.750 22.73 19.27 12.94 6.73 2.17 0.26 0.00 0.00
0.900 35.76 33.88 30.57 25.59 19.36 12.31 1.28 0.09
0.950 40.35 39.58 38.21 36.45 32.94 27.85 13.46 6.39
0.995 45.00 45.35 46.45 46.88 47.87 48.31 48.74 49.13

Table A.6. Properties of the adjusted sample skewness estimator ��γ(u). 100000 replications,
u∼ csn, var(u) = 1, E(u) = 0.

Skewn. Estim. Sample size
coeff. feature 50 75 150 300 600 1200 4800 9600

0.000 Bias -0.002 0.000 -0.001 0.000 0.000 -0.000 0.000 0.000
St.dev. 0.356 0.288 0.201 0.143 0.101 0.071 0.035 0.025

Skewness 0.007 -0.008 0.007 -0.007 -0.014 -0.003 0.001 0.016
Kurtosis 2.979 3.172 3.168 3.149 3.066 3.050 2.978 2.978

-0.250 Bias 0.016 0.008 0.002 0.001 0.001 0.000 0.000 -0.000
St.dev. 0.356 0.296 0.213 0.150 0.107 0.075 0.038 0.027

Skewness 0.058 -0.068 -0.158 -0.151 -0.106 -0.087 -0.032 -0.014
Kurtosis 2.800 2.950 3.166 3.165 3.082 3.114 2.981 2.988

0.500 Bias -0.042 -0.022 -0.008 -0.003 -0.001 -0.001 -0.001 0.000
St.dev. 0.331 0.283 0.212 0.156 0.112 0.078 0.039 0.028

Skewness -0.281 -0.137 0.107 0.213 0.189 0.126 0.088 0.043
Kurtosis 2.520 2.512 2.741 3.047 3.110 3.098 3.034 3.019

-0.750 Bias 0.086 0.060 0.027 0.010 0.003 0.002 0.000 0.000
St.dev. 0.273 0.235 0.183 0.144 0.110 0.080 0.041 0.029

Skewness 0.700 0.621 0.393 0.179 -0.025 -0.157 -0.091 -0.066
Kurtosis 2.751 2.673 2.403 2.406 2.615 2.941 3.019 3.019

0.900 Bias -0.131 -0.103 -0.064 -0.040 -0.021 -0.009 -0.001 -0.000
St.dev. 0.223 0.188 0.143 0.112 0.087 0.068 0.040 0.029

Skewness -1.085 -1.040 -0.991 -0.861 -0.733 -0.520 -0.074 0.070
Kurtosis 3.475 3.337 3.245 2.977 2.809 2.559 2.696 2.963

0.950 Bias -0.152 -0.123 -0.085 -0.057 -0.038 -0.023 -0.006 -0.002
St.dev. 0.205 0.171 0.128 0.095 0.072 0.054 0.032 0.026

Skewness -1.257 -1.242 -1.252 -1.248 -1.167 -1.083 -0.708 -0.426
Kurtosis 3.950 3.894 3.963 3.958 3.731 3.581 2.964 2.690

-0.995 Bias 0.172 0.144 0.106 0.079 0.059 0.045 0.028 0.023
St.dev. 0.189 0.156 0.112 0.080 0.056 0.039 0.018 0.012

Skewness 1.396 1.451 1.520 1.638 1.722 1.887 1.886 1.290
Kurtosis 4.357 4.570 4.773 5.325 5.655 6.629 7.885 7.177
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