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Estimating investment functions for a small-scale econometric model

Introduction

This note summarises the results of an exercise in estimating investment functions

for inclusion in a small-scale econometric model of the economy.  The overall

exercise in model-building is a joint project involving three staff from Economic

Analysis, Research and Publications.  Its aim is to produce a small-scale model of

the economy with reasonably good forecasting and policy simulation properties.

One of the main difficulties with previous versions of the model and, indeed, with

other models of the Irish economy is their relatively unsatisfactory modelling of

investment.  The estimated equations generally have a poor fit compared to other

areas of the model resulting in rather large forecasting errors and undermining

confidence in policy simulations.

Types of investment

The normal procedure is not to attempt to model investment as one aggregate but

to divide it into at least two components - investment in machinery and equipment

and investment in building and construction.  This is retained in the present model

with a further disaggregation of building and construction into that component

accounted for by state activity and that undertaken by the private sector.

The are a number of factors which motivate the separate treatment of the two

components.  Machinery and equipment investment is generally undertaken by the

corporate sector and is usually thought of as being driven by an expectation of

output growth and some sort of cost or relative price variable. (Some of this

investment is generated by the public sector but this component is quite small and it

is not separately distinguished in the present analysis.)

Building and construction activity, by contrast, is undertaken by a number of

different groupings - the corporate sector drives commercial and industrial building

activity, the private household sector typically creates the demand for residential

construction while the public sector undertakes significant infrastructural investment.
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Each set of agents presumably reacts to different variables - or, indeed, to the same

variables in different ways.

There are, however, other reasons for treating these categories separately.  In

particular, the outcome of the activity - the addition to the capital stock - may have

different effects depending on the type of investment, as the impact on the

productive capacity of the economy of the various forms of investment is

presumably different.  Because distinct supply-side effects may need to be

identified in the model at a later stage, a complete aggregation of investment would

seem unwise.  Of course, on the other hand, exhaustive disaggregation would be

both unsuitable for a small-scale model and would run into difficulties in terms of

data availability.

Therefore, as a reasonable compromise, a three-way distinction is proposed -

Machinery and Equipment Investment -  Non-Building Investment (INB)

Building and Construction - public sector  - Public Building Investment (PUBI)

                                         - private sector - Other Building Investment (IBO)

It would be convenient to treat Public Building Investment (PUBI) as purely

exogenous variable - essentially a policy variable which can be reset in simulations

but which does not respond to changes in other variables in the model.  However,

the question  of this variable’s exogeneity is examined as an integral part of this

analysis.

Literature Review

There is a reasonable amount of research available on the determinants of

investment in an Irish context, a brief summary of which is provided below.  This

research has been examined in an attempt to encompass as many theories as

possible in the present exercise.

It may be useful to briefly outline the meaning of some ‘labels’ used in the

discussion. The typical ‘accelerator’ or ‘Keynesian’ model of investment is one in

which the level of investment generally depends solely on output - factor proportions

are assumed fixed.  The ‘neo-classical’ model, on the other hand, emphasises the
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relative price of capital and labour as a determining variable.  ‘Tobin’s q’ is a type of

neo-classical model relating investment to the ratio of the market value of a firm - as

determined on the stock market - to the replacement value of its assets.

Kelleher (1976) appears to be the first econometric study of any significance and

was undertaken as part of a previous model-building exercise.   He models total

private non-residential investment as a function of its own lagged value and current

and lagged values of real GNP.  This is based on the optimal capital stock being

directly related to the value of real GNP - a type of accelerator mechanism.  Some

interest rate and cost variables were examined but found to be of no significance.

A similar model was used for private residential investment with disposable income

replacing GNP.

Bradley (1979) reviews a wide range of investment models for private non-

residential investment including the simple accelerator model and a number of more

neo-classical approaches.  His conclusions are that there is no clear ‘winner’.  The

results of estimating some of the neo-classical models are considered a little

disappointing by the author in that strong price effects are not typically found.

Boyle and Sloane (1981) estimate demand for capital and labour inputs for a large

number of sectors of Irish manufacturing.  While their main focus is on labour

demand - for production and non-production workers - a neo-classical demand for

capital is also estimated but not directly related to investment demand.  They point

to the difficulties involved in obtaining a proper cost of capital variable.

Kelly (1986) examines ‘Tobin’s q’ theory in an Irish setting but comes to the

conclusion that various models based on the theory do not fit the data well -

although he does not appear to disaggregate investment in any way.  (Including

public investment is likely to distort the results as the theory cannot really be applied

to it.)

Bradley and FitzGerald (1988) follow a different and more sophisticated approach to

modelling factor input demands.  They pointed to a three-stage decision making

process applying to the industrial sector of an open economy which  is open to

inward investment.  A firm - typically, a multinational - would initially decide how

much to produce, then where to produce it and finally, the combination of inputs to

use.  Normally, output is assumed to be given in estimating factor demands - but the

paper points out that a vital element is missed in this approach.  All other things
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being equal - an increase in the price of a factor of production in Ireland will not only

lead to substitution away from that factor in Ireland but also a substitution of

production itself away from Ireland.

Bradley et al. (1989) describes the estimation of the ESRI’s large-scale model

HERMES.  Again the authors point to the multi-stage process of determining factor

demands, as noted in Bradley and FitzGerald (1988).  A desired level of the capital

stock is derived based on the desired level of output in Ireland and (expected)

relative factor prices.  Investment is then modelled as a function of the change in

the desired capital stock and the lagged ratio of investment to the desired capital

stock - a type of  error correction mechanism.  A variable representing the deviation

of unit costs from their long-run average is also included - on the grounds that if unit

costs are ‘high’ then this tends to depress investment.

In the same HERMES model, non-residential investment in the other non-industrial

sectors is modelled in a much simpler manner.  In the case of agriculture, it is a

simple accelerator mechanism with a real cost of capital variable.  For marketed

services the change in the capital stock is simply related to output changes but

including an ECM term and a time trend - this followed an attempt to model

investment in the sector using a similar approach to that used for the industrial

sector but which gave rise to simulation difficulties.  Residential investment - per

capita - is modelled as a function of disposable income per capita, government

housing transfers, real interest rates and inflation although the actual estimation

results indicate a lack of significance for the last two variables.  Public investment is

treated as being exogenous in HERMES.

Bradley, Whelan and Wright (1993) gives a description of investment as modelled in

the ESRI’s small-scale model HERMIN.  Non-residential investment is divided

between the ‘tradeable’ and ‘non-tradeable’ sectors.  In each case a factor

proportions equation  - investment per person employed - is estimated using a very

similar approach to that used in the industrial sector of the HERMES model.  Private

residential construction per capita, on the other hand, is simply modelled as a

function of per capita personal disposable income.  While a sound theoretical

justification is given for the functional forms the actual results indicate some

estimation problems.
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The related issue of actually measuring the cost of capital to Irish industry has

produced a long line of papers, including Geary, Walsh and Copeland (1975),

Geary and McDonnell (1976), Flynn and Honahan (1984), Ruane and John (1984)

and, most recently, Frain (1990).  The difficulties involved in actually producing a

meaningful series are considerable - given the complexities of the tax and grant

systems.

There have also been a number of studies which concerned themselves exclusively

with a component of building investment - the private residential housing market.

These include Kenneally and McCarthy (1982), Thom (1983) and Irvine (1986).  The

first of these uses high frequency data over a relatively short time-frame of seven

years 1969-1976.  Variables include the cost of capital, income, real house prices,

household formation, cost of raw materials, the stock of Local Authority housing and

mortgage availability.  The are separate relationships for housing starts and housing

completions with an adjustment mechanism of the actual to the desired stock of

housing.  The model is a multi-equation one which contains much more detail than

would be appropriate for the present exercise.  Thom (1983) concentrates more on

the determinants of real house prices using similar but not identical variables.  Irvine

(1986) deals with the effect of inflation on housing demand and concludes - based

on a micro-simulation rather then aggregate data - that an increase in inflation

should reduce housing demand.  This slightly counter-intuitive results is based on

the fact that inflation erodes the real value of the tax ‘breaks’ given to mortgage

holders, which are typically not indexed.

Methodology

The overall approach to estimation is in line with the ‘Hendry’ or LSE approach - it

has been described already in a number of places - see, for example, Hendry and

Doornik (1994) - and a further description is not given here.  The actual method of

implementing this approach is two-fold. Initially, relationships between a dependent

variables and supposedly exogenous variables are explored using conventional

regression techniques (OLS) in order to try to identify long-run cointegrating

relationships and error correction mechanisms.

However, another wider and possibly more satisfactory approach is then applied.

As a first step a VAR is estimated imposing no structure on the data - allowing it to
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speak for itself.  Formal tests of cointegration are then applied using the Johansen

procedure to try to identify the long-run relationships in the system.  The

cointegrating vectors thus obtained are then examined and, if appropriate,

incorporated into a parsimonious model of the VAR system in first differences - i.e.

an I(0) system.

This strategy has been described by Hendry as ‘encompassing the VAR’ as it is an

attempt to arrive at a structural econometric model which is consistent with the

evidence of an unrestricted VAR, see Hendry and Mizon (1993) and Hendry and

Doornik (1994).  A comparison is then made between these results and the initial

OLS regression results to see if the relationships implied by the former are valid

restrictions on the data when viewed in this broader context.

Private Building Investment (IBO)

In estimating a relationship for the volume of private building investment (IBO) a

straight-forward OLS regression - equation 1- incorporating all relevant variables

suggested by theory and previous research is the initial starting point.  The general

equation includes lagged values of the dependent variable as well as current and

lagged values of real GNP (LGNP), real interest rates (RI), real public investment

(LRPUBI) and the change in the population aged 15 and over (DLPOP).  All the

variables are in logs except the interest rate and they are all I(1) - including the

population change variable - and cover the period from 1961 to 1991.  Two lags are

used for each variable with the exception of the population change variable where

only one lag is used.  (The second lag was initially included but was found to be

non-significant).

Some other potentially influential variables identified in earlier studies have been

also omitted - namely the real price of investment, real housing transfers and

inflation.  Their influence will be tested for at a later stage using omitted variable

tests.  Those familiar with the Hendry approach will be surprised at this strategy, as

it seems to fly in the face of the general to specific philosophy, but it seems

unavoidable given the low number of observations.  Putting all the variables in the

initial equation would overload it - exhausting degrees of freedom and making the

process of model reduction difficult.
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EQ( 1) Modelling LIBO by OLS
The present sample is:  1963 to 1991

Variable Coefficient Std.Error t-value t-prob PartR²

 Constant -1.7393 0.71634 -2.428 0.0282 0.2821
 LIBO_1 0.52912 0.21135 2.503 0.0243 0.2947
 LIBO_2 -0.13924 0.23147 -0.602 0.5565 0.0236
 LGNP 0.050522 0.68828 0.073 0.9425 0.0004
 LGNP_1 1.0363 1.0235 1.012 0.3274 0.0640
 LGNP_2 -0.64880 0.61308 -1.058 0.3067 0.0695
 RI -0.31046 0.45372 -0.684 0.5042 0.0303
 RI_1 -0.32837 0.43452 -0.756 0.4615 0.0367
 RI_2 -0.67079 0.44951 -1.492 0.1564 0.1293
 DLPOP   0.66886 4.7671 0.140 0.8903 0.0013
 DLPOP_1   -15.495 5.5618 -2.786 0.0138 0.3410
 LRPUBI 0.41980 0.13743 3.055 0.0080 0.3835
 LRPUBI_1 -0.14407 0.23635 -0.610 0.5513 0.0242
 LRPUBI_2 0.073411 0.20681 0.355 0.7276 0.0083

R² = 0.974498  F(13, 15) = 44.092 [0.0000]  SEE=0.0565575
DW = 2.26
RSS = 0.04798121584 for 14 variables and 29 observations
AR 1- 2F( 2, 13) =    0.50951 [0.6123]
ARCH 1 F( 1, 13) =    0.28169 [0.6045]
Normality Chi²(2)=    0.65049 [0.7223]
RESET  F( 1, 14) =     2.9802 [0.1063]

As will be shown latter, the typical ‘conundrum’ pointed out by Hendry in which the

model-builder is faced with discovering omitted variables at later stage of the

modelling process - which were not included in the original specification - does not

arise in this case.  All these ‘omitted variables’ are found to be non-significant when

tested at a later stage.

The only other variable identified in previous research which might be of interest is

raw material costs.  However, a data series was not available on a consistent basis

over a sufficiently long period so it has been omitted.

Ostensibly, equation 1 has reasonably good explanatory power and a substantial

number of significant variables.  However, there are also a fair number of apparently

redundant variables.  Its test diagnostics seem quite acceptable.  (Each equation or

system of equations in this analysis has a test summary attached to it - indicating

the extent to which the model conforms to the classical assumptions, in particular,

as they relate to the distribution of the residual.  Failure to conform to these
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assumptions undermines - to a greater or lesser extent - the ability to make any

inferences.  The tests are fairly self-explanatory with the possible exception of the

RESET test - which is one of functional form.  The significance level is indicated in

brackets with an asterisk or double asterisk indicating 5% or 1% significance.  The

tests are described in detail in Hendry and Doornik (1994))

The task now is to reduce this equation to a more parsimonious form by the

elimination of redundant variables without leading to any significant deterioration in

either its test summary or its explanatory power.  This process of model reduction is

monitored by a series of F-tests to show if each step in the process eliminates

significant information or not.  A failure of an F-test suggests that the particular

model reduction in question is inappropriate and the modeller should move back a

step.  The Schwartz Criterion (SC) is also calculated at each stage to guide the

model reduction process.  This statistic takes account of the benefits of reducing the

number of variables as against the costs of the reduction in explanatory power.  The

progress summary is outlined in table 1 on page 11.

The first variable to be eliminated is the second lag of real public investment.  This

does not alter the equation much and the F-test and SC both indicate a valid and

useful reduction.  This is followed by the elimination of the first lag of public

investment, the current value of the GNP variable and the current value of the

population variable.  This results is equation 3.  All of these reductions are

accepted by the F-test and the absolute value of the SC has risen.  The test

summary also indicates no major problem - a heteroscedasticity test has been

added as the degrees of freedom have increased.

Model reduction now becomes a little more difficult. The least significant variables

are the current value and first lag of the real interest rate variable.  The current

value is the weaker of the two and is chosen for elimination.  This reduction is also

accepted by the F-test and further improves the SC statistic. This brings us to

equation 4.
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EQ( 3) Modelling LIBO by OLS

The present sample is:  1963 to 1991

Variable Coefficient Std.Error t-value t-prob PartR²

 Constant -1.8106 0.52024 -3.480 0.0024 0.3772
 LIBO_1 0.39468 0.14856 2.657 0.0151 0.2608
 LGNP_1 1.3562 0.40917 3.314 0.0035 0.3545
 LGNP_2 -0.91335 0.41684 -2.191 0.0405 0.1936
 RI -0.31882 0.39006 -0.817 0.4233 0.0323
 RI_1 -0.40964 0.37898 -1.081 0.2926 0.0552
 RI_2 -0.78182 0.37770 -2.070 0.0516 0.1764
 DPLOP_1     -16.217 3.5074 -4.624 0.0002 0.5167
 LRPUBI     0.34987 0.098412 3.555 0.0020 0.3872

R² = 0.972276  F(8, 20) = 87.673 [0.0000]  SEE= 0.0510699
DW = 1.84
RSS = 0.05216266311 for 9 variables and 29 observations
AR 1- 2F( 2, 18) = 0.076907 [0.9263]
ARCH 1 F( 1, 18) = 0.16394 [0.6903]
Normality Chi²(2)= 0.019657 [0.9902]
Xi² F(16,  3) = 0.1411 [0.9970]
RESET  F( 1, 19) = 3.0553 [0.0966]

At this stage, the only further reduction that will not cause either a failure of the F-

test or a deterioration in the SC statistic would be the elimination of the first lag of

the real interest rate variable.  This is not proceeded with, however, as it represents

the elimination of a possibly significant policy influence.  In any case, the model has

now been considerably reduced in size, has almost the same explanatory power as

the original general equation and has quite acceptable test statistics.
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EQ( 4) Modelling LIBO by OLS

The present sample is:  1963 to 1991

Variable Coefficient Std.Error t-value t-prob PartR²

 Constant - 1.6461 0.47595 -3.459 0.0024 0.3629
 LIBO_1   0.36715 0.14355 2.558 0.0183 0.2375
 LGNP_1   1.4014 0.40220 3.484 0.0022 0.3663
 LGNP_2 - 0.96031 0.40959 -2.345 0.0290 0.2075
 RI_1 - 0.49445 0.36161 -1.367 0.1860 0.0818
 RI_2 - 0.76562 0.37418 -2.046 0.0535 0.1662
 DLPOP_1     -14.867 3.0697 -4.843 0.0001 0.5276
 LRPUBI 0.35511 0.097423 3.645 0.0015 0.3875

R² = 0.971349  F(7, 21) = 101.71 [0.0000]  SEE= 0.0506647
DW = 1.82
RSS = 0.05390514307 for 8 variables and 29 observations
AR 1- 2F( 2, 19) = 0.15031 [0.8615]
ARCH 1 F( 1, 19) = 0.16702 [0.6873]
Normality Chi²(2)= 0.57156 [0.7514]
Xi² F(14,  6) = 0.3001 [0.9703]
RESET  F( 1, 20) = 2.2058 [0.1531]

A comment on the coefficients, however, might be warranted at this stage.  The

lagged dependent variable (LIBO_1), the first lag of the GNP variable (LGNP_1)

and the real interest rate variables (RI_1, RI_2) all have the expected sign.  The

second lag of GNP (LGNP_2) has a negative coefficient but this is more than offset

by the larger positive coefficient on the first lag implying a long-run positive

relationship between GNP and building investment.  The volume of real public

investment (LRPUBI) has a positive coefficient.  This suggest that public investment

stimulates private construction investment.  One might have expected some

substitution effect between public and private housing investment - e.g. a greater

supply of public housing investment might adversely affect the demand for private

housing.  However, the estimated relationship suggests that positive spillover

effects from public spending outweigh this effect if, indeed, it exists.
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Table 1:  Progress to date for modelling LIBO:

model T k df Schwarz
  4 29 8 21 -5.3589
  3 29 9 20 -5.2757
  2 29 12 17 -4.997
  1 29 14 1 -4.7787

Tests of model reduction

Model 1 -->  2: F( 2,  15) =   0.10507 [0.9009]
Model 1 -->  3: F( 5,  15) =   0.26144 [0.9272]
Model 2 -->  3: F( 3,  17) =   0.40872 [0.7487]
Model 1 -->  4: F( 6,  15) =   0.30866 [0.9226]
Model 2 -->  4: F( 4,  17) =   0.45875 [0.7649]
Model 3 -->  4: F( 1,  20) =   0.66809 [0.4233]

However, the most problematic coefficient  is the one on the lagged population

change variable (DLPOP_1).  This would appear - on first sight - to have the wrong

sign.  An increase in the rate of change of the population might be expected to

generate greater investment, at least in the housing sector.  However, one must

remember that what one is looking at here is a partial elasticity only - it assumes all

other variables are held constant.  In fact, if the population growth rate increases

and GNP is held constant income per head will be on a declining path which is, in

fact, likely to depress investment rather than stimulate it.  The size of the coefficient

might also seem large but one has to remember that even small changes in the rate

of population change can have significant results in terms of per capita incomes.

Nevertheless, even allowing for these factors, one has to admit that this is a

surprisingly large coefficient - but there is no statistical justification for removing this

variable from the equation as it appears highly significant.

Test of stability were also conducted on equation 4 by two methods.  The within-

sample stability of each coefficient was tested using the tests of Hansen (1992) -

there was no sign of parameter instability at either the 5 or 1 per cent. level although

these tests are compromised somewhat by the non-stationarity of the variables.

The equation was also estimated using recursive least squares starting with a

minimum number of observations.  Chow tests were applied but these did not

indicate any significant break in the overall relationship.  They are reproduced

graphically in the appendix along with graphs of the actual and fitted series.
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At this point omitted variable test were also conducted using two lags of each of the

variables already mentioned - the real price of investment, real housing transfers

and inflation.  Their omission was tested individually and jointly but the results

indicated a lack of significance.

The implied long-run relationship between the variables as indicated by the reduced

model  - equation 4 - is given below with standard errors in brackets.  This is a

candidate for a cointegrating relationship.  Its residual - the error correction or

cointegrating variable - is stationary as can be seen from the unit root test.

Solved Static Long Run equation

LIBO = - 2.601 + 0.697 LGNP - 1.991 RI + 0.5611 LRPUBI
(SE)    (0.7444) (0.09638)    (0.918)    (0.1116)

        - 23.49 DLPOP
         (6.577)

 Unit root tests 1965 to 1991

 Critical values: 5%=-1.954 1%=-2.652

 t-adf lag
ECM -2.8489** 2
ECM -3.4124** 1
ECM -3.5409** 0

One way of examining the reliability of this relationship - in advance of formal

cointegration tests - is to convert the equation to one in first differences.  The result

is shown in equation 5 below.  The inferences from the t-statistics are now quite

reliable as the variables are I(0) and the test diagnostics are satisfactory.  The

significance of the variables generally drops as one might expect but they all have

the expected sign.  The explanatory power of the equation is much lower but it is

quite respectable for a relationship in first differences of an investment equation.
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EQ( 5) Modelling DLIBO by OLS

The present sample is:  1964 to 1991

 Variable   Coefficient Std.Error  t-value t-prob    PartR²

 Constant - 0.0042151 0.027247 -0.155 0.8786 0.0012
 DLIBO_1  0.030246 0.19865 0.152 0.8805 0.0012
 DLGNP_1  1.3194 0.58809 2.243 0.0363 0.2011
 DLGNP_2 - 0.38532 0.61368 -0.628 0.5372 0.0193
 DRI_1 - 0.23214 0.39546 -0.587 0.5638 0.0169
 DRI_2 - 0.60729 0.38336 -1.584 0.1289 0.1115
 DLRPUBI   0.32846 0.13091 2.509 0.0208 0.2394
 DDLPOP_1  -10.656 4.3922 -2.426 0.0248 0.2274

R² = 0.558954  F(7, 20) = 3.621 [0.0111]  SEE= 0.0635752
DW = 2.30
RSS = 0.08083604339 for 8 variables and 28 observations
AR 1- 2F( 2, 18) = 1.3441 [0.2857]
ARCH 1 F( 1, 18) = 1.2934 [0.2703]
Normality Chi²(2)= 0.34288 [0.8425]
Xi² F(14,  5) = 1.1339 [0.4817]
RESET  F( 1, 19) = 0.39691 [0.5362]

A final test before moving to a wider framework is to simply insert the residual from

the long-run relationship as an explanatory variable in the differenced equation to

see if it is significant and of the right sign.  As can be seen from equation 6, the

ECM variable is highly significant with the expected negative coefficient.  The

resulting equation also has significantly higher explanatory power and its

diagnostics are quite acceptable.  However, the ECM variable dominates the

equation somewhat leading to a number of previously significant variables

becoming insignificant.
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EQ( 6) Modelling DLIBO by OLS

The present sample is:  1964 to 1991

Variable   Coefficient  Std.Error  t-value t-prob  PartR²
 Constant 0.013529 0.022409 0.604 0.5532 0.0188
 DLIBO_1 0.059181 0.15933 0.371 0.7144 0.0072
 DLGNP_1 0.60028 0.51416 1.168 0.2574 0.0669
 DLGNP_2 -0.14903 0.49619 -0.300 0.7672 0.0047
 DRI_1 0.87160 0.44765 1.947 0.0665 0.1663
 DRI_2 0.19424 0.38348 0.507 0.6183 0.0133
 DLRPUBI 0.45784 0.11122 4.117 0.0006 0.4714
 DDLPOP_1    3.2586 5.3180 0.613 0.5473 0.0194
 ECM_1 -0.70379 0.20170 -3.489 0.0025 0.3905

R² = 0.731194  F(8, 19) = 6.4604 [0.0004]  SEE= 0.0509217
DW = 1.87
RSS = 0.04926739369 for 9 variables and 28 observations
AR 1- 2F( 2, 17) = 0.089574 [0.9147]
ARCH 1 F( 1, 17) = 0.012974 [0.9106]
Normality Chi²(2)= 0.76209 [0.6831]
Xi² F(16,  2) = 0.16855 [0.9882]
RESET  F( 1, 18) = 0.21136 [0.6512]

Having identified a contender for a possible cointegrating relationship from OLS,

one can now try to establish the validity of this relationship by a more general

approach which avoids some of the weakness of the initial OLS strategy.  The first

step is to estimate an unrestricted system - a vector autoregression - with the five

variables in question.

The results using two lags of each variable are shown as system 1.   A test

summary is also shown.  As can be seen, these diagnostics are more or less

satisfactory or - in Hendry’s terminology - the system is ‘data-congruent’.   A small

glitch on the test summary is some sign of autocorrelation in the population change

variable equation at the five per cent. level.  This problem could be eliminated by

increasing the number of lags to three but it is not thought to be serious enough to

justify doing so.  Stability tests similar to those carried on the single OLS

relationship were applied but did not reveal any problems.
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SYS( 1) Estimating the unrestricted reduced form by OLS
The present sample is:  1964 to 1991

 URF Equation 1 for LIBO
 Variable    Coefficient  Std.Error  t-value  t-prob
 LIBO_1        0.78259 0.26968 2.902 0.0099
 LIBO_2      - 0.045829 0.26641 -0.172 0.8655
 LGNP_1        1.0257 0.71545 1.434 0.1698
 LGNP_2      - 0.71539 0.75552 -0.947 0.3570
 RI_1        - 0.33140 0.52187 -0.635 0.5339
 RI_2        - 0.77553 0.50874 -1.524 0.1458
 DLPOP_1     -13.190 5.1391 -2.567 0.0200
 DLPOP_2       7.8559 6.0136 1.306 0.2088
 LRPUBI_1      0.11536 0.19460 0.593 0.5611
 LRPUBI_2    - 0.16586 0.17185 -0.965 0.3480
 Constant    - 0.65380 0.78205 -0.836 0.4147
 SEE = 0.0662458 RSS = 0.07460457031

URF Equation 2 for LGNP
 Variable     Coefficient    Std.Error  t-value  t-prob
LIBO_1 -0.011996 0.097683 -0.123 0.9037
LIBO_2 0.00084937 0.096502 0.009 0.9931
LGNP_1 1.2451 0.25915 4.804 0.0002
LGNP_2 -0.20112 0.27367 -0.735 0.4724
RI_1 -0.097313 0.18903 -0.515 0.6133
RI_2 -0.17866 0.18428 -0.970 0.3459
DLPOP_1 -1.2565 1.8615 -0.675 0.5088
DLPOP_2 -0.20001 2.1783 -0.092 0.9279
LRPUBI_1 -0.10191 0.070490 -1.446 0.1664
LRPUBI_2 0.055750 0.062249 0.896 0.3830
Constant -0.0039783 0.28328 -0.014 0.9890
SEE = 0.0239958 RSS = 0.009788534553

URF Equation 3 for RI
Variable     Coefficient Std.Error  t-value     t-prob
LIBO_1 0.10437 0.12338 0.846 0.4093
LIBO_2 -0.071069 0.12188 -0.583 0.5675
LGNP_1 0.042463 0.32732 0.130 0.8983
LGNP_2 -0.028659 0.34565 -0.083 0.9349
RI_1 0.25686 0.23875 1.076 0.2970
RI_2 -0.070530 0.23275 -0.303 0.7655
DLPOP_1 -5.7517 2.3511 -2.446 0.0256
DLPOP_2 0.11751 2.7512 0.043 0.9664
LRPUBI_1 0.017572 0.089031 0.197 0.8459
LRPUBI_2 0.043667 0.078622 0.555 0.5859
Constant -0.68746 0.35778 -1.921 0.0716
SEE = 0.0303072 RSS = 0.01561496616
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URF Equation 4 for DLPOP
Variable     Coefficient  Std.Error  t-value    t-prob
LIBO_1 -0.013774 0.013560 -1.016 0.3240
LIBO_2 0.018950 0.013396 1.415 0.1752
LGNP_1 0.019782 0.035975 0.550 0.5895
LGNP_2 -0.010890 0.037989 -0.287 0.7778
RI_1 -0.033453 0.026241 -1.275 0.2195
RI_2 -0.044922 0.025581 -1.756 0.0971
DLPOP_1 0.64088 0.25841 2.480 0.0239
DLPOP_2 -0.23374 0.30238 -0.773 0.4501
LRPUBI_1 0.015739 0.0097852 1.608 0.1261
LRPUBI_2 -0.021421 0.0086412 -2.479 0.0240
Constant -0.079811 0.039323 -2.030 0.0583
SEE = 0.003331 RSS = 0.0001886249297

URF Equation 5 for LRPUBI
Variable     Coefficient Std.Error  t-value  t-prob
LIBO_1 0.81102 0.32281 2.512 0.0224
LIBO_2 0.15906 0.31891 0.499 0.6243
LGNP_1 0.0074234 0.85643 0.009 0.9932
LGNP_2 -0.40471 0.90439 -0.447 0.6602
RI_1 0.36334 0.62470 0.582 0.5685
RI_2 -0.15961 0.60899 -0.262 0.7964
DLPOP_1 -1.6179 6.1518 -0.263 0.7957
DLPOP_2 23.989 7.1985 3.332 0.0039
LRPUBI_1 0.56013 0.23295 2.405 0.0279
LRPUBI_2 -0.51810 0.20572 -2.518 0.0221
Constant 2.4573 0.93615 2.625 0.0177

SEE = 0.0792993 RSS = 0.106902342

correlation of URF residuals

   LIBO        LGNP   RI    DLPOP     LRPUBI
LIBO    1.000
LGNP    0.1408      1.000
RI   -0.1955      0.08062   1.000
DPOP      0.1922      0.5441   -0.1648  1.000
LRPUBI    0.5970      0.2390   -0.1249  0.2600    1.000

standard deviations of URF residuals
LIBO2  LGNP  RI    DLPOP LRPUBI

0.06625    0.02400    0.03031   0.003331 0.07930
R²(LR) = 0.999982  R²(LM) = 0.679738

correlation of actual and fitted
LIBO    LGNP      RI      DLPOP   LRPUBI
0.9752   0.9974     0.8672 0.9105     0.9699
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LIBO : Portmanteau  4 lags= 0.8806
LGNP : Portmanteau  4 lags= 4.1122
RI : Portmanteau  4 lags=   11.193
DLPOP   : Portmanteau  4 lags= 6.471
LRPUBI : Portmanteau  4 lags= 5.4714
LIBO : AR 1- 2F( 2, 15) = 0.3672 [0.6987]
LGNP : AR 1- 2F( 2, 15) = 2.6832 [0.1009]
RI : AR 1- 2F( 2, 15) = 0.6491 [0.5366]
DLPOP   : AR 1- 2F( 2, 15) = 4.4263 [0.0308] *
LRPUBI : AR 1- 2F( 2, 15) = 2.2521 [0.1395]
LIBO : Normality Chi²(2)=    0.79938 [0.6705]
LGNP : Normality Chi²(2)=    0.49398 [0.7811]
RI : Normality Chi²(2)= 4.2081 [0.1220]
DLPOP   : Normality Chi²(2)= 2.2286 [0.3281]
LRPUBI : Normality Chi²(2)=    0.94889 [0.6222]
LIBO : ARCH 1 F( 1, 15) =   0.055754 [0.8165]
LGNP : ARCH 1 F( 1, 15) = 0.00058043 [0.9811]
RI : ARCH 1 F( 1, 15) =   0.055309 [0.8173]
DLPOP   : ARCH 1 F( 1, 15) =   0.067807 [0.7981]
LRPUBI : ARCH 1 F( 1, 15) =    0.62189 [0.4426]
Vector portmanteau  4 lags= 102.17
Vector AR 1-2 F(50, 17) = 2.3967 [0.0254] *
Vector normality Chi²(10)= 14.058 [0.1704]

There are, of course, no conventional measures of explanatory power in the VAR

framework - i.e. each equation does not have an R-square, as such, for the simple

reason that  there are no exogenous ‘explanatory’ variables in the system.  The

overall fit can be judged from either of two ‘manufactured’ R-squares based on the

likelihood ratio or Lagrange Multiplier principles but the most intuitive measure is

simply the degree of correlation of actual and fitted values of the variables which is

quite high.

The next step is to move to an application of the Johansen procedure to test for

cointegration between the five variables.  This procedure is described in Johansen

(1988) but a brief outline might be useful.  At the moment, we are considering a

VAR system in which there are no exogenous variables

Yt = 
i

m

−
∑

1

πi Yt-i + Vt,   Vt ∼   IN (0, Ω )
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As the data are I(1), one can usefully to transform the system to error correction

form:

∆Yt = 
i

m

=

−

∑
1

1

δi ∆Yt-i + P0 Yt-1 + Vt

Clearly, this system is balanced only if both ∆Yt  and P0 Yt-1 are I(0).  For this to be

the case, the rank of P0 must be less than the number of variables n - i.e.  r(P0) =

p<n.  P0 can be broken down into two matrices P0 = ab’   where a and b are n x p

matrices of rank p and b’Yt comprises p cointegrating I(0) relationships.

∆Yt  = 
i

m

=

−

∑
1

1

δi ∆Yt-i + a(b’Yt) + Vt

The Johansen procedure involves the use of maximum likelihood methods to arrive

at the rank of P0 and values for both the a and b matrices.  While the b matrix - as

already noted - is simply the matrix of cointegrating vectors which give rise to error

correction or disequilibrium values, the a matrix represents the loadings or weights

for each of these variables in the equation for the change in each of variables.  The

procedure also allows tests of restrictions on the rank of P0 and on the elements of

both the a and b matrices.  The results of the cointegration analysis are present in

table 2.

There are two tests for determining the rank of the ‘b’ matrix - the ‘trace’ test and

‘maximum eigenvalue’test.  The ‘trace test’ is a likelihood ratio of the hypotheses r

(P0) = P against r(P0) > P while the maximum eginvalue test is one of r(P0) = P

against r(P0) =P + 1.  The exact number of cointegrating vectors is rather

indeterminate as is frequently the case but a reasonable interpretation of the trace

test would seem to be that there is at least one cointegrating relationship.  If the

significance level is taken at 10% this result is supported by the maximum

eigenvalue test.
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Table 2: Cointegration analysis 1964 to 1991

eigenvalue µi loglik for    rank
520.784 0

0.69357 537.342 1
0.506588 547.232 2
0.411915 554.664 3
0.17165 557.301 4

0.0310423 557.742 5

Ho:rank=p -Tlog(1-µ) T-nm 95% -Tlg(1-µ)  T-nm 95%
p ==  0 33.12 21.29 33.5 73.92* 47.52 68.5
p <=  1 19.78 12.72 27.1 40.8 26.23 47.2
p <=  2 14.86     9.556 21.0 21.02 13.51 29.7
p <=  3 5.273    3.39 14.1    6.156     3.957 15.4
p <=  4 0.883    0.5676 3.8    0.883     0.5676 3.8

standardised ß' eigenvectors
LIBO2  LGNP  RI    DLPOP LRPUBI

1.000    -0.7136      2.650 36.57    -0.8439
-4.693 1.000 11.57 9.924  3.315
1.066    -0.7991      1.000 1.811 0.1209

0.03175    0.01138     0.3290 1.000   -0.07367
2.144     -3.315     -3.774     -67.92  1.000

standardised a coefficients
LIBO2  -0.1403   -0.04063   -0.2659   -0.1355   -0.01205
LGNP  -0.02734  -0.01548   -0.07025   0.2035    0.005584
RI   -0.1249   -0.02780    0.03259  -0.5355    0.004635
DLni561  -0.01637  -0.004533  -0.001653  0.05896   7.521e-005
LRPUBI    0.6378   -0.1163    -0.1878   0.06148  -0.007043

long-run matrix Po= aß', rank 5
 LGNP RI DLPOP       LRPUBI   LIBO2

LIBO2 -0.2632   0.3103     -1.107 -5.334  -0.05050
LGNP -0.01115   0.04396    -0.2760 -1.457  -0.04616
RI  0.03330   0.01380    -0.8137 -5.634   0.06124
DlPOP   0.005176  0.008892   -0.07837 -0.5929 -0.005682
LRPUBI  0.9701   -0.3973      0.2037 22.37   -0.9580

The vector corresponding to the largest eigenvalue is familiar - matching very

closely the long-run relationship which was arrived at using OLS.  The signs on the

coefficients are all the same and the size of the coefficients are also broadly similar.

In fact, the closeness of the two relationships can be easily seen in the attached

graphs - the first panel shows the residuals from the OLS long-run relationship - the

ECM variable - and the second panel shows the variable generated by the first

cointegrating vector derived from the Johansen procedure CIvec1 (hereafter CIa).
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They are essentially the same - as can be seen clearly when they are mean-

corrected and placed together.

In fact, one can formally test the proposition that there is one cointegrating

relationship and that it is the one identified by the earlier OLS regression.  This

involves imposing the restriction that the rank of the cointegrating matrix b is one

and that the relationship identified by the OLS regression is the single cointegrating

vector.  This can be tested within the Johansen procedure.  Unsurprisingly, this joint

restriction cannot be rejected at either the one or five per cent. levels.

LR-test, rank (P0) = 1 :  Chi2 (≈ 4) = 7.3333 (0.1193)

However, in order to accept the validity of the OLS relationship further steps need to

be taken.  One also has to impose the restriction that the cointegrating variable

influences - and only influences - the evolution of the first variable in the system -

i.e. the building investment.  This a test of the weak exogeneity of the conditioning

variables in the OLS relationship, in the sense of Engle, Hendry and Richard (1983).

Put at simplest, it is a test to establish that a disequilibrium in the system is

eliminated by changes in the supposedly endogenous variable.  If this is not the

case the picture is more complicated and the OLS relationship may be rather

misleading.

There are two ways in which this test can be carried out.  The restriction that the a

matrix - the matrix determining the weights or loadings of the cointegrating vectors

in the relationships for each variable - is of the form {a 0 0 0} a ≠  0 could be tested

within the Johansen procedure.  However, an alternative and possibly clearer way

of looking at this problem is to return to the VAR framework and move to modelling

the system in first differences i.e. to actually modelling

∆Yt = 
i

m

=

−

∑
1

1

δi ∆Yt-1 + a(b’ Yt-1) + Vt.
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In this case, we place the single cointegrating variable CIa, estimated from the

Johansen procedure with rank (P0) = 1, into the system since we believe that it

helps to determine system dynamics.  One lag is used in this differenced system

corresponding to two lags in the levels system.  The system test statistics are

satisfactory - the Vector AR test is only marginally significant at the five per cent.

level.  The system fit is much poorer, of course, but one would expect this to be the

case given that it is now in first differences.  The CIa variable is reasonably

significant in the first equation.  However, it is worth noting that it has some level of

significance in the other equations particularly that for the policy variable.

SYS( 2) Estimating the unrestricted reduced form by OLS
The present sample is:  1964 to 1991

URF Equation 1 for DLIBO
Variable     Coefficient Std.Error t-value  t-prob
DLIBO_1 0.25384 0.22554 1.125 0.2731
DLGNP_1 1.4749 0.60378 2.443 0.0235
DRI_1 0.49626 0.46132 1.076 0.2942
DDLPOP_1 -6.6492 5.9377 -1.120 0.2754
DLRPUBI_1 0.048218 0.14130 0.341 0.7363
CIa_1 -0.41820 0.21553 -1.940 0.0659
Constant -1.2232 0.61543 -1.988 0.0601

SEE = 0.0685944 RSS = 0.09880908166

URF Equation 2 for DLGNP
Variable     Coefficient Std.Error  t-value   t-prob
DLIBO_1 0.085161 0.080958 1.052 0.3048
DLGNP_1 0.44775 0.21673 2.066 0.0514
DRI_1 0.080892 0.16559 0.489 0.6303
DDLPOP_1 -0.024823 2.1313 -0.012 0.9908
DLRPUBI_1 -0.098081 0.050719 -1.934 0.0667
CIa_1 -0.078852 0.077363 -1.019 0.3197
Constant -0.20757 0.22091 -0.940 0.3581

SEE = 0.0246221 RSS = 0.01273122211
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URF Equation 3 for DRI
Variable     Coefficient Std.Error  t-value   t-prob
DLIBO_1 0.17057 0.10596 1.610 0.1224
DLGNP_1 -0.29011 0.28365 -1.023 0.3181
DRI_1 -0.15200 0.21672 -0.701 0.4908
DDLPOP_1 -1.1601 2.7895 -0.416 0.6817
DLRPUBI_1 -0.022254 0.066381 -0.335 0.7408
CIa_1 -0.11893 0.10125 -1.175 0.2533
Constant -0.33261 0.28913 -1.150 0.2629

SEE = 0.0322254 RSS = 0.02180799862

URF Equation 4 for DDLPOP
Variable     Coefficient Std.Error  t-value   t-prob
DLIBO_1 0.0038700 0.012496 0.310 0.7598
DLGNP_1 0.038189 0.033453 1.142 0.2665
DRI_1 0.024721 0.025559 0.967 0.3445
DDLPOP_1 0.032874 0.32898 0.100 0.9214
DLRPUBI_1 0.0099852 0.0078287 1.275 0.2161
CIa_1 -0.015425 0.011941 -1.292 0.2105
Constant -0.045525 0.034098 -1.335 0.1961

SEE = 0.00380052 RSS = 0.0003033223873

URF Equation 5 for DLRPUBI
Variable     Coefficient  Std.Error   t-value   t-prob
DLIBO_1 0.29111 0.32674 0.891 0.3830
DLGNP_1  1.6345 0.87470 1.869 0.0757
DRI_1 -0.56998 0.66831 -0.853 0.4034
DDLPOP_1 -21.095 8.6020 -2.452 0.0230
DLRPUBI_1 0.31995 0.20470 1.563 0.1330
CIa_1 0.57623 0.31223 1.846 0.0791
Constant  1.5946 0.89157 1.789 0.0881

See = 0.0993733 RSS = 0.2073761838
correlation of URF residuals

            DLIBO     DLGNP     DRI      DDLPOP  DLRPUBI
DLIBO       1.000
DLGNP     0.3179   1.000
DRI    -0.1838   0.03465   1.000
DDLPOP      0.2285   0.5388    0.04575   1.000
DLRPUBI     0.7062   0.4142   -0.06315   0.2763  1.000

standard deviations of URF residuals
DLIBO DLGNP      DRI      DDLPOP      DLRPUBI
0.06859    0.02462    0.03223   0.003801 0.09937

R²(LR) = 0.921614  R²(LM) = 0.355451

correlation of actual and fitted
DLIBO DLGNP    DRI     DDLPOP    DLRPUBI
0.6789  0.5610  0.5501   0.5093      0.6563
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DLIBO     : Portmanteau  4 lags  =    1.7782
DLGNP    : Portmanteau  4 lags  =    5.6283
DRI    : Portmanteau  4 lags  =   10.999
DDLPOP    : Portmanteau  4 lags  =    3.1906
DLRPUBI   : Portmanteau  4 lags  =    3.2319
DLIBO     : AR 1- 2F( 2, 19)     =    1.1937 [0.3248]
DLGNP    : AR 1- 2F( 2, 19)     =    1.4112 [0.2683]
DRI   : AR 1- 2F( 2, 19)     =    0.36788 [0.6970]
DDLPOP    : AR 1- 2F( 2, 19)     =    0.54657 [0.5878]
DLRPUBI   : AR 1- 2F( 2, 19)     =    0.96069 [0.4005]
DLIBO     : Normality Chi²(2)    =    0.64549 [0.7242]
DLGNP   : Normality Chi²(2)    =    0.61606 [0.7349]
DRI   : Normality Chi²(2)    =    4.8311 [0.0893]
DDLPOP    : Normality Chi²(2)    =    1.3246 [0.5157]
DLRPUBI   : Normality Chi²(2)    =    2.4437 [0.2947]
DLIBO     : ARCH 1 F( 1, 19)     =    0.17659 [0.6790]
DLGNP   : ARCH 1 F( 1, 19)     =    0.41692 [0.5262]
DRI   : ARCH 1 F( 1, 19)     =    0.026271 [0.8730]
DDLPOP    : ARCH 1 F( 1, 19)     =    0.23803 [0.6312]
DLRPUBI   : ARCH 1 F( 1, 19)     =    1.2044 [0.2862]
DLIBO     : Xi² F(12,  8)       =    0.2194 [0.9905]
DLGNP   : Xi² F(12,  8)       =    0.44722 [0.8990]
DRI   : Xi² F(12,  8)       =    0.27394 [0.9782]
DDLPOP    : Xi² F(12,  8)       =    0.25202 [0.9839]
DLRPUBI   : Xi² F(12,  8)       =    1.3871 [0.3284]
Vector portmanteau  4 lags       =   93.808
Vector AR 1-2 F(50, 35)          =    1.7554 [0.0412] *
Vector normality Chi²(10)        =   15.232 [0.1238]
Vector Xi²    Chi²(180)          =  168.53 [0.7199]

In particular, the results suggest that the policy variable - i.e. the volume of public

investment is not weakly exogenous as far as private building investment is

concerned. The term ‘weakly exogenous’ means that it should make no difference

whether the variable is modelled or not.  Clearly, the VAR results suggest that this is

not the case since the error correction variable in the private building equation

appears fairly significant in the equation for the policy variable itself . In other words,

there may be a degree of feedback in the system, in particular, between the

disequilibrium in the private building market and the policy variable.  The results

indicate that suppression of this feedback would appear to be an unacceptable

restriction on the data.

In order to confirm this, one can carry out in the VAR framework the test of the

restrictions on the ‘a’ matrix in the Johansen procedure. This is done by simply

deleting the variable CIa from all equations but the first and reestimating the system

using full information maximum likelihood.  The deletions can then be tested using
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an Chi2 test for a valid restriction.  Unsurprisingly, this points to a rejection, at least

at the 5 per cent. level although not at the 1 per cent. level.

Chi2 (4) = 10.133 (0.0382)*

The only way one can move to accepting the validity of the original OLS results is by

simply overriding the statistical results relating to policy formation.  There are, in

fact, two apparently significant results  in the VAR which would have to be

suppressed.  The first is the one already mentioned - the fact that the cointegrating

variable - the ECM in the OLS regression - probably affects one of the supposedly

exogenous variables.  However, a second problem is the fact that the policy variable

is also apparently affected by the population change variable with a lag.  Given that

both variables appear as separate exogenous variables in the OLS relationship, this

linkage is ignored which could make the result of simulations rather misleading.

If one simply imposes exogeneity on the policy variable - by not modelling it in the

system - one can see from system 3 that the first equation simply collapses towards

the earlier OLS result or very close to it.  In this system the population change

variable has also been exogenised - but this is not as contentious, as its change

appears to be genuinely exogenous, in that no variables in its equation in system 2

seem particularly significant.  Indeed, the evidence from the VAR is that one might

even consider exogenising the real interest rate variable before one would

exogenise the volume of public investment.

SYS( 3) Estimating the model by FIML
The present sample is:  1964 to 1991

Equation 1 for DLIBO
Variable    Coefficient Std.Error  t-value  t-prob   HCSE
DLIBO_1 0.11466 0.16650 0.689 0.4989 0.16229
DLGNP_1 0.65099 0.47630 1.367 0.1869 0.41173
DRI_1 0.78137 0.34972 2.234 0.0370 0.43242
DDLni561_1 3.9322 4.8894 0.804 0.4307 4.7069
DLRPUBI_1 -0.11449 0.10992 -1.042 0.3101 0.10177
CIa_1 -0.70922 0.17633 -4.022 0.0007 0.17955
DLRPUBI 0.48721 0.11317 4.305 0.0003 0.12206
DDLPOP 0.51129 2.9629 0.173 0.8647 2.8646
Constant -2.0287 0.50264 -4.036 0.0006     ---
SEE = 0.0497244
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Equation 2 for DLGNP
Variable    Coefficient Std.Error  t-value  t-prob   HCSE
DLIBO_1 0.042954 0.068247 0.629 0.5362 0.058391
DLGNP_1 0.25900 0.19299 1.342 0.1946 0.17957
DRI_1 -0.035739 0.11899 -0.300 0.7670 0.10660
DDLni561_1 -0.043683 1.4584 -0.030 0.9764 1.2293
DLRPUBI_1 -0.14317 0.044931 -3.186 0.0046 0.037847
DLRPUBI 0.050957 0.042396 1.202 0.2434 0.043474
DDLPOP 3.4092 1.1502 2.964 0.0077 0.95322
Constant 0.025101 0.0075265 3.335 0.0033    ---
SEE = 0.0205926

Equation 3 for DRI
Variable     Coefficient Std.Error  t-value  t-prob  HCSE
DLIBO_1 0.16332 0.11069 1.475 0.1557 0.10822
DLGNP_1 -0.21596 0.31301 -0.690 0.4982 0.42716
DRI_1 -0.28853 0.19299 -1.495 0.1505 0.18040
DDLni561_1 -3.5613 2.3653 -1.506 0.1478 3.2706
DLRPUBI_1 -0.010048 0.072873 -0.138 0.8917 0.079825
DLRPUBI -0.052497 0.068762 -0.763 0.4541 0.057715
DDLPOP 1.1339 1.8656 0.608 0.5502 1.4893
Constant 0.0058619 0.012207 0.480 0.6363   ---
SEE = 0.0333986

LR test of over-identifying restrictions: Chi²(2) =
2.15818 [0.3399]

correlation of residuals
DLIBO      DLGNP  DRI

DLIBO 1.000
DLGNP 0.01070      1.000
DRI        -0.2030    0.07726 1.000

DLIBO   : Portmanteau  4 lags=  0.13431
DLGNP : Portmanteau  4 lags=   3.2478
DRI : Portmanteau  4 lags=   11.164
DLIBO   : AR 1- 2F( 2, 17) = 0.012771 [0.9873]
DLGNP : AR 1- 2F( 2, 17) =  1.1492 [0.3403]
DRI : AR 1- 2F( 2, 17) = 0.39338 [0.6808]
DLIBO   : Normality Chi²(2)=  1.0666 [0.5867]
DLGNP : Normality Chi²(2)=  5.2333 [0.0730]
DRI : Normality Chi²(2)=   5.007 [0.0818]
DLIBO   : ARCH 1 F( 1, 17) = 0.047442 [0.8302]
DLGNP : ARCH 1 F( 1, 17) = 0.38624 [0.5425]
DRI : ARCH 1 F( 1, 17) = 0.010052 [0.9213]
DLIBO   : Xi² F(16,  2) = 0.10836 [0.9978]
DLGNP : Xi² F(16,  2) = 0.14937 [0.9923]
DRI     : Xi²    F(16,  2) =   0.087074 [0.9992]
Vector portmanteau  4 lags= 32.94
Vector AR 1-2 F(18, 34) = 1.5822 [0.1218]
Vector normality Chi²( 6)=    12.627 [0.0494] *
Vector Xi²    Chi²( 96) =     89.664 [0.6625]
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Once the variables have been exogenised and system conditioned on them, the

error correction variable can safely be deleted from all equations but the first.  This

is a quite acceptable restriction in the context of the reduced system.   The

importance of the exogeneity of the policy variable rests on the fact that it will

remain as a contemporaneous conditioning variable in the wider model.  In fact, it

would be desirable, therefore, for it to have the properties of both weak and strong

exogeneity in the sense of Engle, Hendry and Richard (1983).  As already notes,

the term ‘weak exogeneity’ means that the policy variable does not respond to the

disequilibrium in the system.  A lack of weak exogeneity means that the policy

variable must be modelled in order for the relationship between the variables to be

valid.

‘Strong exogeneity’ means that, in addition to this weak for of exogeneity, the policy

variable must not be influenced by the previous history of modelled variables - it

must not be Granger-caused by these variables.  A lack of ‘strong’ exogeneity does

not require the modelling of the policy variable in order for the estimated relationship

to be valid but it does undermine the validity of conditional dynamic forecasts or

simulations.  This is because it cuts across the idea that the variable can simply be

reset in simulations or forecasts - that  the variable is, in some sense, determined

completely outside of the model and will be uninfluenced by develop ments within

the model.

Unfortunately, the results of the VAR approach are not particularly reassuring on

either of these points.  The two disturbing pieces of evidence are the semi-

significance of the cointegrating variable from the policy  variable equation in

system 3 and the appearance of significant variables in the policy variable equation

in system 1.  In the latter case, most of these variables will assume the status of

modelled variables in the wider model.  This undermines the treatment of the policy

variable as a non-modelled exogenous one.

Of course, one could simply decide to ignore all this evidence on the grounds that it

is implausible.  For instance, the apparent link between a disequilibrium in the long-
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run relationship and public investment, for instance, has no obvious rationale,

particularly as the link is a positive one, i.e. a positive disequilibrium pushes up

public investment.  Equally, one could argue that the apparent influence of other

variables on the policy variable makes little sense.  However, in adopting such an

approach, one is, strictly speaking, ‘over-riding’ rather than ‘encompassing’ the

evidence of the VAR and one would have to be aware that a strategy of using the

basis OLS relationship in the wider model without modelling of the policy variable

has the potential weakness.

Non-Building Investment

The approach to modelling non-building investment is essentially similar.  The initial

starting point is the estimation of another general equation - equation 1 below.  The

explanatory variables include the lag of GNP (LGNP), the real interest rate (RI) and

the real value of government grants to industry LRGRANT).  Other variables were

tested using omitted variable test at a latter stage - including a competitiveness

measure and a measure of relative factor prices.

Unfortunately, these did not seem to be significant although it must be noted that

obtaining an adequate measure of both these variables is not that straight-forward

and it is possible that there exists some formulation of each of these variables which

would be significant if tested. The exclusion of relative factor prices is disappointing

as it means that the model is of the accelerator type  which is in some ways rather

unsatisfactory.  However, this is not to say that some of the mechanisms identified

in Bradley et al. (1989) will not be contained within the wider model.  Clearly,

competitiveness must enter the determination of exports and, thereby, output and

investment.  However, a direct role for relative factor prices within Ireland is not

included.  Further work in this area might be useful. and will be carried out as part of

the overall modelling exercise.
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EQ( 1) Modelling LINB by OLS

The present sample is:  1963 to 1991

Variable Coefficient Std.Error t-value t-prob PartR²
 Constant  -9.4367 4.7519 -1.986 0.0634 0.1883
 LINB_1 0.16578 0.32444 0.511 0.6159 0.0151
 LINB_2 -0.26287 0.33348 -0.788 0.4414 0.0353
 LGNP 1.5692 0.83264 1.885 0.0767 0.1728
 LGNP_1 -0.24412 1.3383 -0.182 0.8574 0.0020
 LGNP_2 0.28699 1.0810 0.265 0.7938 0.0041
 RI -0.072423 0.69377 -0.104 0.9181 0.0006
 RI_1 -0.60756 0.71234 -0.853 0.4056 0.0410
 RI_2 -0.38845 0.69949 -0.555 0.5859 0.0178
 LRGRANT 0.19430 0.17579 1.105 0.2844 0.0670
 LRGRANT_1 -0.13732 0.21869 -0.628 0.5384 0.0227
 LRGRANT_2 0.32793 0.17562 1.867 0.0792 0.1702

R² = 0.976856  F(11, 17) = 65.231 [0.0000]  SEE =0.0922806
DW = 1.82
RSS = 0.1447669535 for 12 variables and 29 observations
AR 1 -2F (2, 15) = 0.30441 [0.7420]
ARCH 1 F (1, 15) = 0.99224 [0.3350]
Normality Chi2 (2) = 0.93025 [0.6281]
RESET F (1, 16) = 0.09011 [0.7679]

However, allowing for these defects the explanatory power of the general model

with two lags of each variable is quite good and no defects are obvious from the test

summary.  The process of model reduction now takes place with the careful

elimination of redundant variables. This is done on a step by step basis, as before,

eventually arriving at equation 7 below.  The insignificance of these reductions is

again illustrated by the F-test results and Schwartz Criteria in Table 3 on page 29.

The test summary is also satisfactory for this reduced equation.
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EQ( 7) Modelling LINB by OLS

The present sample is:  1963 to 1991

Variable Coefficient Std.Error t-value t-prob PartR²
Constant -8.2750 0.65960 -12.545 0.0000 0.8677
LGNP 1.4258 0.089700 15.896 0.0000 0.9133
RI_1 -0.78239 0.50261 -1.557 0.1326 0.0917
LRGRANT 0.13317 0.082161 1.621 0.1181 0.0987
LRGRANT_2 0.23601 0.069748 3.384 0.0025 0.3230

R² = 0.973517  F(4, 24) = 220.56 [0.0000] SEE = 0.0830799
DW = 1.62
RSS = 0.1656544987 for 5 variables and 29 observations
AR 1- 2F( 2, 22) = 1.0902 [0.3536]
ARCH 1 F( 1, 22) =   0.42473 [0.5213]
Normality Chi²(2)= 3.2758 [0.1944]
Xi² F( 8, 15) = 1.0807 [0.4260]
Xi*Xj  F(14,  9) = 1.1315 [0.4385]
RESET  F( 1, 23) =   0.18091 [0.6745]

This formulation does not contain a lagged dependent variable but does contain

current real GNP and is, therefore, quite different from the model for building

investment.  The further elimination of the lagged real interest rate variable would

be accepted on statistical grounds but it is not proceeded with - again because of

the wish to include some sort of effect from interest-rate changes.  For the same

reason, the current value of the real level of grants is maintained in the relationship

although its significance is in some doubt.  The solved static long-run equation

corresponding to this model is given below.  The coefficients seem to be correctly-

signed with the main features being the rather weak interest rate effects contrasting

with the much greater significance of the grant variables.  This result is probably not

all that surprising given the nature of industrial policy.
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Solved Static Long Run equation

LINB = -8.275 +1.426 LGNP -0.7824 RI
(SE)    (0.5026)     (0.6596)    (0.0897)

+0.3692 LRGRANT
(  0.07196)

Table 3: Progress to date for modelling LINB:

model T k df Schwarz
7 29 5 24 -4.5846
6 29 6 23 -4.4963
5 29 7 22 -4.3826
4 29 8 21 -4.2672
3 29 9 20 -4.1816
2 29 10 19 -4.0959
1 29 12 17 -3.9066

 Tests of model reduction

 Model 1 -->  2: F( 2,  17) = 0.37231 [0.6946]
 Model 1 -->  3: F( 3,  17) = 0.43091 [0.7335]
 Model 2 -->  3: F( 1,  19) = 0.58689 [0.4530]

 Model 1 -->  4: F( 4,  17) = 0.4651 [0.7605]
 Model 2 -->  4: F( 2,  19) = 0.59736 [0.5603]
 Model 3 -->  4: F( 1,  20) = 0.62065 [0.4400]

 Model 1 -->  5: F( 5,  17) = 0.37466 [0.8591]
 Model 2 -->  5: F( 3,  19) = 0.40284 [0.7526]
 Model 3 -->  5: F( 2,  20) = 0.31737 [0.7317]
 Model   4 -->  5: F( 1,  21) =  0.014345 [0.9058]

 Model 1 -->  6: F( 6,  17) = 0.31965 [0.9177]
 Model 2 -->  6: F( 4,  19) = 0.31407 [0.8650]
 Model 3 -->  6: F( 3,  20) = 0.22784 [0.8759]
 Model 4 -->  6: F( 2,  21) =  0.032006 [0.9685]
 Model   5 -->  6: F( 1,  22) =  0.051996 [0.8217]

 Model 1 -->  7: F( 7,  17) = 0.3504 [0.9185]
 Model 2 -->  7: F( 5,  19) = 0.36581 [0.8656]
 Model 3 -->  7: F( 4,  20) = 0.31709 [0.8632]
 Model 4 -->  7: F( 3,  21) = 0.21988 [0.8815]
 Model 5 -->  7: F( 2,  22) = 0.33778 [0.7170]
 Model 6 -->  7: F( 1,  23) = 0.65037 [0.4282]

The equation has also been tested for parameter stability.  The within sample

stability of the coefficients is acceptable at the usual confidence levels using the

Hansen tests.   However, using a minimum number of observations and estimating
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the equation recursively 1-step at a time reveals something of a break towards the

very end of the sample - using conventional Chow tests, reproduced in the

appendix.  This indicates that the relationship is less stable than that for building

investment - but since no other relationship can be found among the present set of

variables then on has no choice but to live with this.

EQ( 8) Modelling DLINB by OLS

The present sample is:  1964 to 1992

Variable Coefficient Std.Error t-value t-prob PartR²
Constant -0.024980 0.033018 -0.757 0.4567 0.0233
DLGNP 1.8842 0.79746 2.363 0.0266 0.1887
DRI_1 -0.42756 0.63098 -0.678 0.5045 0.0188
DLRGRANT -0.0013587 0.14038 -0.010 0.9924 0.0000
DLRGRANT_2 0.12057 0.12940 0.932 0.3608 0.0349

R² = 0.252831  F(4, 24) = 2.0303 [0.1221] SEE = 0.104682
DW = 2.03
RSS = 0.2630000837 for 5 variables and 29 observations
AR 1- 2F( 2, 22) = 0.37956 [0.6886]
ARCH 1 F( 1, 22) =  0.0093649 [0.9238]
Normality Chi²(2)= 2.097 [0.3505]
Xi² F( 8, 15) = 0.23659 [0.9772]
Xi*Xj  F(14,  9) =    0.14844 [0.9991]
RESET  F( 1, 23) =     1.3735 [0.2532]

Moving to first differences produces equation 8 which also has a favourable  test

summary.  The variables have the expected signs but the explanatory power of the

equation is low.  Adding an ECM variable from the long-run relationship - equation 9

- does not improve the situation much although it has an appropriately signed

though not very significant coefficient.  As with the previous equation, the

significance of variables other than the change in GNP has dropped away rather

disappointingly.
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EQ( 9) Modelling DLINB by OLS

The present sample is:  1964 to 1992

Variable Coefficient Std.Error t-value t-prob PartR²
Constant -0.023762 0.032026 -0.742 0.4656 0.0234
DLGNP 1.7897 0.77556 2.308 0.0304 0.1880
DRI_1 -0.061538 0.65377 -0.094 0.9258 0.0004
DLRGRANT 0.040005 0.13859 0.289 0.7754 0.0036
DLRGRANT_2 -0.016064 0.15211 -0.106 0.9168 0.0005
ECM_1 -0.38688 0.24348 -1.589 0.1257 0.0989

R² = 0.326738  F(5, 23) = 2.2324 [0.0855] SEE = 0.101507
DW = 1.61
RSS = 0.2369851741 for 6 variables and 29 observations
AR 1- 2F( 2, 21) =    0.75537 [0.4822]
ARCH 1 F( 1, 21) =     1.2599 [0.2743]
Normality Chi²(2)=       5.18 [0.0750]
Xi² F(10, 12) =    0.56155 [0.8157]
Xi*Xj  F(20,  2) =   0.081204 [0.9997]
RESET  F( 1, 22) =    0.39484 [0.5362]

Having obtained these slightly unsatisfactory results, the wider VAR approach is

used.  In this case, the system is estimated using three lags of each variable -

system 1 below.  The lag length of three is chosen as using only two lags leaves

quite significant autocorrelation in the residuals of some of the equations.  With

three lags, however, the system test summary does not show significant problems

and the systems fit seems reasonably satisfactory although stability show some

signs of instability towards the end of the sample.
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SYS (1)  Estimating the unrestricted reduced form by OLS

The present sample is:  1964 to 1991

 URF Equation 1 for LINB

 Variable Coefficient Std.Error t-value t-prob
 LINB_1 0.34004 0.40558 0.838 0.4150
 LINB_2 -0.52609 0.38872 -1.353 0.1960
 LINB_3 0.11445 0.40464 0.283 0.7812
 LGNP_1 2.0803 1.1043 1.884 0.0791
 LGNP_2 -0.52022 1.8787 -0.277 0.7856
 LGNP_3 -0.0048753 1.4223 -0.003 0.9973
 RI_1 -1.0062 0.82512 -1.219 0.2415
 RI_2 -0.11655 0.86741 -0.134 0.8949
 RI_3 0.0094882 0.87220 0.011 0.9915
 LRGRANT_1 0.16047 0.21634 0.742 0.4697
 LRGRANT_2 0.049608 0.28585 0.174 0.8645
 LRGRANT_3 0.13673 0.23339 0.586 0.5667
 Constant -8.8576 7.1967 -1.231 0.2374

SEE = 0.109583 RSS = 0.1801270515

URF Equation 2 for LGNP

 Variable Coefficient Std.Error` t-value t-prob
 LINB_1 0.021173 0.099329 0.213 0.8341
 LINB_2 -0.18404 0.095200 -1.933 0.0723
 LINB_3 -0.063434 0.099098 -0.640 0.5318
 LGNP_1 1.2349 0.27045 4.566 0.0004
 LGNP_2 -0.31082 0.46009 -0.676 0.5096
 LGNP_3 0.45755 0.34833 1.314 0.2087
 RI_1 -0.16285 0.20208 -0.806 0.4329
 RI_2 0.061677 0.21243 0.290 0.7755
 RI_3 -0.10131 0.21360 -0.474 0.6421
 LRGRANT_1 0.068162 0.052982 1.287 0.2178
 LRGRANT_2 -0.069784 0.070006 -0.997 0.3347
 LRGRANT_3 0.046812 0.057158 0.819 0.4256
 Constant -2.2000 1.7625 -1.248 0.2311
SEE = 0.0268373 RSS = 0.01080359824



35

URF Equation 3 for RI

Variable Coefficient Std.Error t-value t-prob
LINB_1 -0.10129 0.10773 -0.940 0.3620
LINB_2 -0.19948 0.10325 -1.932 0.0725
LINB_3 0.015553 0.10748 0.145 0.8869
LGNP_1 -0.088310 0.29332 -0.301 0.7675
LGNP_2 0.42616 0.49899 0.854 0.4065
LGNP_3 0.20594 0.37779 0.545 0.5937
RI_1 0.43719 0.21916 1.995 0.0646
RI_2 0.28378 0.23040 1.232 0.2370
RI_3 -0.44240 0.23167 -1.910 0.0755
LRGRANT_1 -0.0012413 0.057462 -0.022 0.9831
LRGRANT_2 0.085539 0.075926 1.127 0.2776
LRGRANT_3 -0.050459 0.061991 -0.814 0.4284
Constant -3.2717 1.9115 -1.712 0.1076
SEE = 0.0291066 RSS = 0.01270792074

URF Equation 4 for LRGRANT

Variable Coefficient Std.Error t-value t-prob
LINB_1 0.77896 0.49152 1.585 0.1339
LINB_2 0.22717 0.47109 0.482 0.6366
LINB_3 0.11863 0.49038 0.242 0.8121
LGNP_1 0.49074 1.3383 0.367 0.7190
LGNP_2 -1.7996 2.2767 -0.790 0.4416
LGNP_3 -0.43609 1.7237 -0.253 0.8037
RI_1 -1.1598 0.99995 -1.160 0.2642
RI_2 1.5538 1.0512 1.478 0.1601
RI_3 -0.54216 1.0570 -0.513 0.6155
LRGRANT_1 0.99236 0.26217 3.785 0.0018
LRGRANT_2 -0.58834 0.34642 -1.698 0.1101
LRGRANT_3 0.048430 0.28284 0.171 0.8663
Constant 11.278 8.7215 1.293 0.2155
SEE = 0.132802   RSS = 0.2645455771

correlation of URF residuals
LINB       LGNP RI    LRGRANT

LINB 1.000
LGNP 0.4395      1.000
RI 0.02817   -0.05260 1.000
LRGRANT 0.2720    0.08219   0.006807  1.000

standard deviations of URF residuals
LINB LGNP RI    LRGRANT

     0.1096 0.02684    0.02911     0.1328
R²(LR) = 0.999866  R²(LM) = 0.706997

correlation of actual and fitted
LINB LGNP RI    LRGRANT

     0.9829 0.9971     0.8934     0.9479
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LINB  : Portmanteau  4 lags=   4.9883
LGNP  : Portmanteau  4 lags=   1.1452
RI  : Portmanteau  4 lags=   3.8036
LRGRANT : Portmanteau  4 lags=   3.1023
LINB  : AR 1- 2F( 2, 13) = 0.12426 [0.8842]
LGNP  : AR 1- 2F( 2, 13) = 0.66013 [0.5333]
RI  : AR 1- 2F( 2, 13) =  1.3101 [0.3032]
LRGRANT : AR 1- 2F( 2, 13) =  1.0408 [0.3808]
LINB  : Normality Chi²(2)=     1.3591 [0.5068]
LGNP  : Normality Chi²(2)=     2.0913 [0.3515]
RI  : Normality Chi²(2)=   0.051248 [0.9747]
LRGRANT : Normality Chi²(2)=     5.0502 [0.0801]
LINB  : ARCH 1 F( 1, 13) =   0.076885 [0.7859]
LGNP  : ARCH 1 F( 1, 13) =     1.0844 [0.3167]
RI  : ARCH 1 F( 1, 13) =    0.41796 [0.5292]
LRGRANT : ARCH 1 F( 1, 13) =    0.40877 [0.5337]
Vector portmanteau  4 lags =   44.01
Vector AR 1-2 F(32, 16)    =   1.413 [0.2342]    
Vector normality Chi²( 8)  =    8.324 [0.4025]

Table 4: Cointegration analysis 1964 to 1991

 eigenvalue µi loglik for rank
339.999   0

0.387056   346.852   1
0.35232   352.933   2

0.221368   356.436   3
0.100411   357.917   4

Ho:rank=p -Tlog(1-µ) T-nm 95% -T_lg(1-µ) T-nm 95%
 p ==0 13.71 7.832 27.1 35.84 20.48 47.2
 p <=1 12.16 6.95 21.0 22.13 12.65 29.7
 p <=2 7.006 4.003 14.1 9.969 5.697 15.4
 p <=3 2.963 1.693 3.8 2.963 1.693 3.8

standardised ß' eigenvectors
LINB LGNP   RI LRGRANT
1.000     -1.691 1.396 -0.2623

-1.297 1.000 2.858 1.171
-0.1793 0.3885 1.000 0.1830
-4.497 7.142 1.963 1.000

standardised α coefficients
LINB         -0.8181     0.1680 -0.5063    0.02811
LGNP         -0.1431  -0.009086   -0.01970    0.02191
RI         -0.3933   -0.04903   -0.01381  -0.009349
LRGRANT 0.7802    -0.1849 -0.7197   0.005415

long-run matrix Po= αß', rank 4
LINB LGNP RI    LRGRANT

LINB          -1.072 1.555  -1.113     0.3468
LGNP         -0.2263     0.3817 -0.2025    0.04519
RI         -0.2852     0.5438 -0.7214    0.03384
LRGRANT          1.125     -1.745    -0.1481    -0.5476
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The Johansen procedure was then applied as before.  The results are a little more

disappointing, in fact, as one can see from table 4, one cannot reject the hypothesis

that there is no cointegrating relationship between the variables.  While this is a

significant finding in itself, it may still be useful to look at the results in more detail.

Table 5: General cointegration test 1964 to 1991

ß'
LINB LGNP   RI LRGRANT

-0.8486 1.138    -0.6024 0.3697

 LINB 1.000
 LGNP 0.0000
 RI 0.0000
 LRGRANT 0.0000

standardised ß' eigenvectors
LINB LGNP   RI LRGRANT
1.000     -1.341     0.7098 -0.4356

standardised α coefficients
LINB -0.8486
LGNP 0.0000
RI 0.0000
LRGRANT 0.0000

Restricted long-run matrix Po= αß', rank 1
LINB  LGNP RI    LRGRANT

LINB -0.8486 1.138    -0.6024 0.3697
LGNP 0.0000 0.0000 0.0000 0.0000
RI 0.0000 0.0000 0.0000 0.0000
LRGRANT 0.0000 0.0000 0.0000 0.0000

Reduced form ß'
LGNP RI    LRGRANT

LINB 1.341    -0.7098 0.4356

loglik = 345.332 unrloglik = 346.852
LR-test, rank=1: Chi²(_3) = 3.0396 [0.3856]

The first cointegrating vector is the only one which appears to have any economic

meaning - in the other vectors the variables appear to have perverse coefficients.

However, it is not as close to the OLS long-run relationship as appeared to be the
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case in the case of building investment.  If, however, we impose the restriction that

the rank of b is one and that the a matrix is of the form { 1 0 0 0 ] - i.e. the single

cointegrating variable has full weight in the first equation and none in the others -

and let the Johensen procedure estimate the one cointegrating vector itself, it

produces a result similar to the OLS one in Table 5.  The interesting feature in this

test is not so much the actual results as the fact that restrictions are not rejected.

Moving back to a VAR system in first differences - system 2 - one can see what the

full system would look like utilising this CRvec variable from this constrained

Johansen procedure which is, of course, only significant in the first equation.

However, the overall fit of the system is poor - as was the fit of the OLS regression.

This, together with the earlier finding that the variables may not cointegrate,

suggests that the group of variables examined may not be the most appropriate and

some further work is probably required in order to try to find a different - though

possibly overlapping - set of more strongly cointegrating variables and, perhaps,

using a different functional form .

SYS (2)  Estimating the unrestricted reduced form by OLS

The present sample is:  1965 to 1991

URF Equation 1 for DLINB

Variable Coefficient Std.Error t-value t-prob
DLINB_1 0.27329 0.34678 0.788 0.4415
DLINB_2 -0.21921 0.28851 -0.760 0.4578
DLGNP_1 1.1014 1.0147 1.085 0.2929
DLGNP_2 0.059883 1.3411 0.045 0.9649
DRI_1 -0.27731 0.73572 -0.377 0.7109
DRI_2 -0.20736 0.75361 -0.275 0.7865
DLRGRANT_1 -0.16930 0.18004 -0.940 0.3602
DLRGRANT_2 -0.14557 0.21730 -0.670 0.5119
CRvec1_1 -0.83119 0.35476 -2.343 0.0316
Constant -6.4800 2.7721 -2.338 0.0319
SEE = 0.105476 RSS = 0.1891275577
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URF Equation 2 for DLGNP

Variable Coefficient Std.Error t-value t-prob
DLINB_1 0.11335 0.089327 1.269 0.2216
DLINB_2 -0.023123 0.074318 -0.311 0.7595
DLGNP_1 0.26864 0.26137 1.028 0.3184
DLGNP_2 -0.39404 0.34547 -1.141 0.2699
DRI_1 -0.080400 0.18951 -0.424 0.6767
DRI_2 0.010633 0.19412 0.055 0.9570
DLRGRANT_1 0.052014 0.046376 1.122 0.2776
DLRGRANT_2 -0.034895 0.055974 -0.623 0.5413
CRvec1_1 -0.018288 0.091384 -0.200 0.8438
Constant -0.10992 0.71406 -0.154 0.8795
SEE = 0.0271696 RSS = 0.01254920136

URF Equation 3 for DRI
Variable Coefficient Std.Error t-value t-prob
DLINB_1 -0.00061233 0.10930 -0.006 0.9956
DLINB_2 -0.12573 0.090936 -1.383 0.1847
DLGNP_1 -0.11075 0.31982 -0.346 0.7334
DLGNP_2 -0.10467 0.42271 -0.248 0.8074
DRI_1 -0.29964 0.23189 -1.292 0.2136
DRI_2 0.13022 0.23753 0.548 0.5907
DLRGRANT_1 -0.014368 0.056746 -0.253 0.8032
DLRGRANT_2 0.074268 0.068490 1.084 0.2933
CRvec1_1 0.010032 0.11182 0.090 0.9296
Constant 0.095850 0.87373 0.110 0.9139
SEE = 0.0332449   RSS = 0.01878879443

URF Equation 4 for DLRGRANT

Variable Coefficient Std.Error t-value t-prob
DLINB_1 0.31682 0.47408 0.668 0.5129
DLINB_2 0.26376 0.39443 0.669 0.5127
DLGNP_1 1.0141 1.3872 0.731 0.4747
DLGNP_2 -0.24506 1.8335 -0.134 0.8952
DRI_1 -1.5374 1.0058 -1.529 0.1448
DRI_2 0.46183 1.0303 0.448 0.6596
DLRGRANT_1 0.40845 0.24613 1.659 0.1154
DLRGRANT_2 -0.19217 0.29707 -0.647 0.5263
CRvec1_1 0.31149 0.48500 0.642 0.5293
Constant 2.3900 3.7897 0.631 0.5366
SEE = 0.144197   RSS = 0.3534761403
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correlation of URF residuals

DLINB      DLGNP        DRI   DLRGRANT
 DLINB 1.000
 DLGNP 0.4697      1.000
 DRI        0.09930    0.05956      1.000
 DLRGRANT 0.2956    0.06844   -0.01175  1.000

standard deviations of URF residuals
DLINB DLGNP        DRI   DLRGRANT
0.1055    0.02717    0.03324     0.1442

 R²(LR) = 0.873957  R²(LM) = 0.383981

DLINB : Portmanteau  4 lags= 4.7546
DLGNP : Portmanteau  4 lags= 0.3648
DRI : Portmanteau  4 lags= 4.4458
DLRGRANT: Portmanteau  4 lags=  0.87982
DLINB : AR 1- 2F( 2, 15) = 0.14102 [0.8696]
DLGNP : AR 1- 2F( 2, 15) = 0.0032082 [0.9968]
DRI : AR 1- 2F( 2, 15) = 1.2069 [0.3266]
DLRGRANT: AR 1- 2F( 2, 15) = 0.37477 [0.6937]
DLINB : Normality Chi²(2)= 0.90948 [0.6346]
DLGNP : Normality Chi²(2)= 0.099445 [0.9515]
DRI : Normality Chi²(2)= 5.7842 [0.0555]
DLRGRANT: Normality Chi²(2)= 4.6912 [0.0958]
DLINB : ARCH 1 F( 1, 15) = 0.40506 [0.5341]
DLGNP : ARCH 1 F( 1, 15) = 0.43759 [0.5183]
DRI : ARCH 1 F( 1, 15) = 0.40017 [0.5365]
DLRGRANT: ARCH 1 F( 1, 15) = 0.17117 [0.6849]
Vector portmanteau  4 lags=   38.047
Vector AR 1-2 F(32, 23) =    0.54594 [0.9437]
Vector normality Chi²( 8)=    12.214 [0.1419]

Undoubtedly, one of the reasons for this slightly disappointing result is the difficult in

measuring certain variables.  In particular, while the real interest is a suitable

variable for a parsimonious model the linkage between this variable and the actual

cost of capital variable is highly complex, see Frain (1990).  Even Frain’s own

calculations yield a variety of series which are not weighted together to form a

variable that would be useful.  Measurement problems may also explain the failure

to find significant relationships between both relative factor prices and

competitiveness and investment.  Another problem relates to changes in the quality

of investment over time.  In particular, the improved performance of the economy in

more recent years seems to have been achieved with relatively little investment.

This may be because the quality of investment in latter years has been of a

consistently higher quality.  Unfortunately, this is not the kind of development which

can easily be incorporated within a modelling framework.
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Conclusions

As far as building investment is concerned certain relationships have been identified

using OLS which seem to fit the data well.  However, the results are undermined to

some extent by a wider VAR analysis which suggests that current policy variable

cannot, strictly speaking, be viewed as being exogenous.  Nevertheless, apart from

this caveat, the relationship seems reasonably satisfactory when analysed in a

wider cointegration/VAR framework.

The results for non-building investment are somewhat more disappointing.  While

the relationships estimated by OLS are not at variance with the results of a wider

VAR/cointegration analysis, they are not all that inspiring in terms of fit and would

produce rather large forecasting errors if used in a small-scale model.  A wider

search for relationships amongst a slightly different set of variables might produce

better results, but in the interim, the existing relationship will be used.
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