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Abstract

We extend the three-step generalized methods of moments (GMM) approach of
Kapoor et al. (2007), which corrects for spatially correlated errors in static panel
data models, by introducing a spatial lag and a one-period lag of the dependent
variable as additional explanatory variables. Combining the extended Kapoor et al.
(2007) approach with the dynamic panel data model GMM estimators of Arellano
and Bond (1991) and Blundell and Bond (1998) and specifying moment conditions
for various time lags, spatial lags, and sets of exogenous variables yields new spatial
dynamic panel data estimators. We prove their consistency and asymptotic normal-
ity for a large number of spatial units IV and a fixed small number of time periods
T. Monte Carlo simulations demonstrate that the root mean squared error of spa-
tially corrected GMM estimates—which are based on a spatial lag and spatial error
correction—is generally smaller than that of corresponding spatial GMM estimates
in which spatial error correlation is ignored. We show that the spatial Blundell-Bond
estimators outperform the spatial Arellano-Bond estimators.
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1 Introduction

The separate literatures on dynamic panel data models and spatial econometric models have
matured rapidly and have reached (graduate) textbooks during the last decadeE| Panel data may
feature state dependence—i.e., the dependent variable is correlated over time—as well as display
spatial dependence, that is, the dependent variable is correlated in space. Applied economists’
interest in frameworks that integrate spatial considerations into dynamic panel data models is
a fairly recent development, howeverE| For this model class, Elhorst (2005, 2008, 2010), Su and
Yang (2008), Yu et al. (2008), Lee and Yu (2010b), and Yu and Lee (2010) have analyzed the
properties of maximum likelihood (ML) estimators and combinations of ML and corrected least
squares dummy variable estimators. During the last decade, the flexible generalized method of
moments (GMM) framework for dynamic panels has gained popularityﬂ but it has not received
much attention in the spatial econometrics literature yet. The papers by Lee and Liu (2010),
Lin and Lee (2010), and Liu et al. (2010) study spatial GMM estimators for static panelsﬁ Our
paper integrates the two strands of literature by investigating theoretically and numerically the
performance of various spatial GMM estimators for dynamic panel data models with fixed effects.

Many economic interactions among agents are characterized by a spatially lagged dependent
variable, which consists of observations on the dependent variable in other locations than the
‘home’ location. In the public finance literature, for example, local governments take into ac-
count the behavior of neighboring governments in setting their tax rates (cf. Wilson, 1999, and

Brueckner, 2003) and deciding on the provision of public goods (cf. Case et al., 1993). In the

1See Arellano (2003) and Baltagi (2008, Chapter 8) for an analysis of dynamic panel data models and
Anselin (1988, 2006) for a treatment of spatial econometrics.

2Badinger et al. (2004), Foucault et al. (2008), Jacobs et al. (2010), Brady (2011), and Bartolini and
Santolini (2012) provide empirical applications of spatial dynamic panel data models. See Lee and Yu
(2010a) and Elhorst (2011) for an overview of dynamic spatial panel models.

3The GMM framework can handle multiple endogenous explanatory variables, fixed effects, and unbal-
anced panels.

4Using a Monte Carlo simulation study, Kukenova and Monteiro (2009), and Elhorst (2010) are the only
ones exploring GMM in a spatial dynamic panel data framework. Kukenova and Monteiro (2009) analyze
a spatial system GMM estimator and include an endogenous covariate in addition to a spatial lag and the
time lag of the dependent variable. Elhorst (2010) briefly touches upon difference GMM estimators with
a spatial lag in order to compare them to spatial ML estimators. However, both studies do not correct
their spatial GMM estimators for potential spatial error correlation.



trade literature, foreign direct investment (FDI) inflows into the host country depend on FDI
inflows into proximate host countries (cf. Blonigen et al., 2007). The spatial lag structure al-
lows one to explicitly measure the strength of the spatial interaction. Spatial error dependence
is an alternative way of capturing spatial aspects and may arise due to an omitted explanatory
variableﬂ Spatially correlated errors can be thought of as analogous to the well-known practice
of clustering error terms by groups, which are defined based on some directly observable charac-
teristic of the group. In spatial econometrics, the groups are based on spatial ‘similarity,” which
is typically captured by some geographic characteristic (e.g., proximity). Spatial panel data ap-
plications typically employ either a spatial lag model or a spatial error model. Ignoring spatial
error correlation in static panel data models may give rise to a loss of efficiency of the estimates
and may thus erroneously suggest that strategic interaction is absent. In contrast, disregarding
spatial dependency in the dependent variable comes at a relatively high cost because it gives rise
to biased estimates (cf. LeSage and Pace, 2009, p. 158). Rather than using either a spatial
lag model or spatial error model, we allow both processes to be simultaneously present. Indeed,
in their empirical tax competition model, Egger et al. (2005) find evidence that spatial error
dependence may exist above and beyond the theoretically motivated spatial lag structureﬁ
Non-spatial dynamic panel data models are usually estimated using the GMM estimator of
Arellano and Bond (1991), which differs from static panel GMM estimators in the set of moment
conditions and the matrix of instruments[] The standard Arellano-Bond estimator is known to
be rather inefficient when instruments are weak (e.g., if time dependency is strong) because it
makes use of information contained in first differences of variables only. Alternatively, authors

have used Blundell and Bond’s (1998) system approach, which consists of both first-differenced

®Spatial error correlation may also result from measurement error in variables, a misspecified functional
form of the regression equation, the absence of a spatial lag or a misspecified weighting matrix.

6Case et al. (1993), Jacobs et al. (2010), Baltagi and Bresson (2011), and Brady (2011) also consider
spatial models with both spatial lag and spatial error components. Only the study by Jacobs et al. (2010)
uses a spatial dynamic panel data model.

"In dynamic panels with unobserved heterogeneity, Nickell (1981) shows that the standard least squares
dummy variable estimator is biased and inconsistent for large N and fixed small T'. Anderson and Hsiao
(1982) suggest simple instrument variable estimators for a first differenced model, which uses the second
lag of the dependent variable—either in differences or levels—to instrument the lagged dependent variable.



and level equations and an extended set of internal instruments. In the following, we contribute to
the literature by developing spatial variants of the Arellano-Bond and Blundell-Bond estimators.
Our new approach involves defining appropriate instruments to control for the endogeneity of the
spatial lag and time lag of the dependent variable while correcting for spatial error correlation.
For this purpose, we use new spatial instruments—which are based on a combination of several
spatial lags and a modification of the approach of Kelejian and Robinson (1993)—combined with
standard instruments for dynamic panel data models.

To account for spatial error correlation, we analyze the properties of our estimators first
without and later with a correction for spatial error correlation. Throughout the paper, we use
the term ‘spatial’ GMM estimators to refer to GMM estimators for panel data models including
a spatial lag with or without correction for spatial error correlationﬁ If a spatial GMM estimator
corrects for spatial error correlation, we speak of ‘spatially corrected” GMM estimators. Recently,
Kapoor et al. (2007) designed a GMM procedure to deal with spatial error correlation in static
panels. We extend their three-step spatial procedure to panels with a spatially lagged dependent
variable, a one-period time lag of the dependent variable, and unit-specific fixed effects. In
addition, we modify their second-stage moment conditions by considering the first differences of
errors. We analytically investigate the asymptotic properties of the estimators for large N and
fixed small T and briefly discuss the case of large 7" and small N ﬂ Specifically, we show that our
spatial GMM estimators are consistent and asymptotically normal in the first case and explain
that the number of instruments has to be bounded to obtain consistency in the latter case.

The finite-sample performance of the spatial GMM estimators is investigated by means of
Monte Carlo simulations. The simulation experiments indicate that the root mean squared error
(RMSE) of spatially corrected GMM estimates—which are based on a spatial lag and spatial
error correction—is generally smaller than that of corresponding spatial GMM estimates in which

spatial error correlation is ignored, particularly for strong positive error correlation. The RMSE of

8 Anselin et al. (2008) call this model class a ‘time-space simultaneous model.’

9Yu et al. (2008) and Pesaran and Tosetti (2011) study the properties of ML estimators in the context
of dynamic, possibly nonstationary, panels with fixed effects and spatial error correlation, assuming both
N and T large.



the spatial GMM estimates, however, is not much affected by the size of the spatial lag parameter.
We also show that the spatial Blundell-Bond estimators outperform the spatial Arellano-Bond
estimators. Finally, we find that spatial estimators using spatially weighted endogenous variables
as instruments in addition to weighted exogenous variables are more efficient than those based
on weighted exogenous variables.

The paper is organized as follows. Section 2 sets out our spatial dynamic panel data model.
Section 3 develops the two estimators for spatial dynamic panel data models, that is, the spa-
tially corrected Arellano-Bond and Blundell-Bond estimators. Section 4 proves the consistency
and asymptotic normality of the spatial estimators. Section 5 presents Monte Carlo simulation

outcomes. Finally, Section 6 concludes. The proofs are in the Appendix.

2 The Spatial Dynamic Panel Data Model

Consider a panel with 4 = 1,..., NV spatial units and t = 1,...,T time periods. The focus is on
panels with a small number of time periods relative to the number of spatial units. Assume that

the data at time ¢ are generated according to the following model:
yn(@) =Ayn(t = 1) + 0Wny N () + Xn(6)B +un(t),  t=2,..T, (1)

where yn(t) is an N x 1 vector of observations on the dependent variable, y (¢t — 1) is a one-
period time lag of the dependent variable, Wy is an N x N matrix of spatial weights, Xy ()
is an N x K matrix of observations on the strictly exogenous explanatory variables (where K
denotes the number of covariates), and uy(t) is an N x 1 vector of error termsm If we later
need to refer to observations from all applicable time periods in a given context, we simply
omit the time specification in brackets; here, for example, yx = [y (1),...,y A (T)]" or Xy =
(XN (1),..., XA (T)]T, where T denotes a transpose. Further, the scalar parameter X is the

coefficient of the lagged dependent variable, § is the spatial autoregressive coefficient, which

00ur specification does not include W yy 5 (t — 1), which yields a so-called spatiotemporal model. See
Yu et al. (2008) for such an approach. We leave this extension for future research.



measures the endogenous interaction effect among units, and 3 is a K x 1 vector of (fixed) slope
coefficients.

The spatial lag is denoted by Wy (t), which captures the contemporaneous correlation
between unit i’s behavior and a weighted sum of the behavior of units j # i. The elements
of Wy (denoted by w;;) are exogenously given, non-negative, and zero on the diagonal of the
matrix. Note that there is little formal guidance on choosing the ‘correct’ spatial weights because
many definitions of neighbors are possible. The literature usually employs contiguity (i.e., units
having common borders) or physical distance between units as weighting factors. We assume the
elements of Wy to be row normalized so that each row sums to one. This is not the only possible
normalization, see, for example, Kelejian and Prucha (2010). Row normalization is standard in
spatial applications and therefore we use it in the simulations of Section 5.

The reduced form of equation amounts to:

yn(t) = AIx = W)™ Py (t — 1) + Xn ()8 + un(t)], (2)

where Iy is an identity matrix of dimension N x NN. Stationarity of the model does not only
require that |[A| < 1, but also that the characteristic roots of the matrix A(Iy — §W )~! should

lie in the unit circle, which is the case if (cf. Elhorst, 2008)
IA| +owr <1 if 6<0 and Al + 0wy <1 if § >0, (3)

where wy, and wy denote the smallest (i.e., the most negative) and largest characteristic roots of
Wy, respectively. If Wy is row normalized, we find wy = 1@ Equation yields a tradeoff
between the size of A and 4.

Spatial error correlation may arise, for example, when omitted variables follow a spatial
pattern, yielding a non-diagonal variance-covariance matrix of the error term uy(¢). In the case
of spatial error correlation, the error structure in is a spatially weighted average of the error

components of neighbors, where the weights are given by a row-normalized N x N matrix My

1No general results hold for the smallest characteristic root of the matrix of spatial weights. The lower
bound wy, is typically less than —1; see Elhorst (2008, p. 422).



of spatial weights (with typical element m;;). More formally, the spatially autoregressive process

is given by:
uy (t) = pMyuy(t) +en(t), (4)

where Myuy(t) is the spatial error term, p is a (second) spatially autoregressive coefficient,
and ex(t) denotes a vector of innovations. The interpretation of the ‘nuisance’ parameter p
is very different from ¢ in the spatial lag model in that there is no particular relation to a
substantive theoretical underpinning of the spatial interaction. We follow the common practice
in the literature by assuming Wy # My, which allows us to identify both spatial parameters ¢
and p in the absence of exogenous variables and a dynamic lagE The spatial error process in
reduced form is uy(t) = (Ixy — pMp) " ten(t). If |p| < 1, the spatial error process is stable thus
yielding feedback effects that are bounded.

The vector of innovations is defined as:
en(t) =ny +vn(t), v (t) ~iid(0,071x), (5)

where 1y is an N X 1 vector representing unobservable unit-specific fixed effects and vy (¢) is

2

an N x 1 vector of independently and identically distributed (iid) error terms with variance oy,

which is assumed to be constant across units and time periods. In the following, we consider a
specification in which 7, is possibly correlated with the regressors.

Equations , , and can be written concisely as:

yn(t) = Zn(1)0 +un(t), (6)

uy(t) = Iy —pMy) " [0y + v ()], (7)

where Zn(t) = [yn(t — 1), Wy (1), Xn(t)] denotes the matrix of regressors, 8 = [X\,8,8"]T
is a vector of K + 2 parameters. Our general dynamic spatial panel data model embeds various
special cases discussed in the literature. If A = p = 0 and § > 0, our model reduces to the familiar

spatial lag model (also known as the mixed regressive-spatial autoregressive model; see Anselin,

2Tn the simulations of Section 5, we also consider Wy = My



1988), whereas for A = p =0 and 3 = 0 we get a pure spatial autoregressive model. If A =§ =0
and p > 0, we obtain the spatial error model. If A > 0 and 6 = p = 0, we arrive at Arellano and
Bond’s dynamic panel data model. Finally, the general spatial dynamic panel data model boils

down to a standard static panel data model if A =0 = p = 0.

3 Spatial Dynamic Panel Estimators

In this section, the spatial dynamic panel estimators are proposed. We extend the static panel
data model of Kapoor et al. (2007)—which explicitly corrects for spatial error correlation—to
include both a time lag and a spatial lag of the dependent variable. Because the time lag is
endogenous, we apply a panel GMM procedure. We propose sets of instruments for both the
time lag and spatial lag of the dependent variable. This procedure yields consistent spatially
corrected Arellano-Bond estimators and spatially corrected Blundell-Bond estimators, which will

be derived in three stages.

3.1 The First Stage

3.1.1 Arellano-Bond Estimator

To estimate 8, we employ a GMM estimator defined by a set of linear moment conditions for the
error term uy(t). Later, equations identifying @ are obtained by substituting for the error term
from the model equation, uy(t) = yy(t) — Zn(t)6.

First, to eliminate the unit-specific fixed effects ny from en(t), we take first differences of ()

and :

Ayn(t) = AZpn(1)0 + Aupn(t), (8)

AuN(t) = (IN — pMN)_lAEN(t) = (IN - pMN)_lAVN(t), t=3,...,T, (9)

where Aqy(t) = qn(t) —an(t — 1) for qn(t) = {yn(t),Zn(t),un(t),en(t), vn(t)}. Note that

the differenced model is specified only in 7' — 2 time periods (and thus 7" > 3): one observation

7



is lost due to the first differencing operation and another observation is dropped because of the
one-period time lag of the dependent variable.

In the differenced model, both the time lag and the spatial lag of the dependent variable
are endogenous. In addition, the two endogenous regressors are correlated with each other.
Consistent GMM estimation is possible if there are at least K + 2 instruments that are correlated
with the time lagged, spatially lagged, and exogenous variables and are uncorrelated with the
errors Auy(t) for each t = 3,...,T. First, the moment conditions identifying the coefficients of

the strictly exogenous variables are
E[AX}(H)Auy(t)] =0, t=3,..,T, (10)

where E denotes an expectation operator.

Next, Arellano and Bond (1991) propose to use the levels of the dependent variable, y (¢ —
2),...,yn(1), as instruments for the time lag of the dependent variable in first differences (i.e.,
Aypn(t —1)). The instruments are correlated with the time lag of the dependent variable in
first differences Ay (t — 1), but are uncorrelated with the ‘future’ error term in first differences,
Aup (), since the unit-specific effects are eliminated from the differenced variables. This property
holds even in the spatial model defined by @ and @ because the spatial correlation applies only
within a given time period t and, hence, yx(t — 2) is correlated with uy (¢ — 2),...,un(1), but
cannot be correlated with uy(¢) and uy (¢ — 1). Consequently, we impose the following moment

conditions to identify A:
Elyy(t—s)Auy(t)] =0, t=3,..,T, s=2 ..,t—1. (11)

Equation yields (T' — 2)(T — 1) /2 moment conditions for a given N.

For the spatial lag, we consider two alternative set of instruments. The first approach instru-
ments the spatial lag by various time lags of the spatially lagged dependent variable. The validity
of such moment conditions follows by the same argument as given in the previous paragraph for

equation . This approach implies the following moment conditions for §:

E{Whyy(t—s)} Auy(t)] =0, t=3,.,T, s=2,.,t—1, Il=1,., L, (12)



where [ indicates various powers of Wy and the integer L is the maximum spatial lag used
for instrumenting. For each power [ > 1, equation yields again (T — 2)(T — 1)/2 moment
conditions. The second approach uses instruments based on a modification of Kelejian and
Robinson (1993). We expand the expected value of the spatial lag W ny (t), which depends
on WxyXy(t)3 [see ()], and take first differences to propose instruments WyAXy(t). As
the strictly exogenous variables AXy(t) are not correlated with the error term Auy(t), the

instruments satisfy the following moment conditions:
E{WNAXN ()} Auy(t)] =0, t=3,..,T. (13)

Note that the moment conditions specified for the spatial autoregressive parameter § for vari-
ous time lags s, spatial lags [, and sets of exogenous variables will have different precision and
power depending on the coefficients in model : large A, 9, and § imply stronger correlation of
Wy (t) with the instruments given in fors>1and > 1.

For each time period, we specified J > K 4 2 moment conditions, which can be concisely
written as E[H}’AB(t)AuN(t)] = 0, where the columns of Hy 4p(t) represent the instruments
AX N (1), yn(t =), Whyn(t — s), and WyAX y(t) given above. Merging the information from

all available time periods, the proposed GMM estimator will minimize

[H},ABAUN]TAN,AB [H;,ABAUN] _ [HE,AB(AYN - AZN‘S’)]TAN,AB [H%,AB(AYN — AZpN0)]

N N

with respect to 6, where Hy ap is a block-diagonal matrix consisting of blocks Hy ap(t),t =
3,...,T and Ay ap is a GMM weighting matrix (recall that here Ayy = [Ay N (3),...,y L (T)]T
and AZy = [AZN(3),...,AZ(T)]T). The resulting first-stage spatial Arellano-Bond estimator

then becomes:
A T T -1 T T
ON = [AZNHN,ABAN,ABHN7ABAZN AZNHN,ABAN,ABHN7ABAYN- (14)

The weighting matrix Ay 4p recommended under the assumption of iid errors uy by Arellano

and Bond (1991) is equal to the J x J matrix Ay ap = [Hy 4,5GnasHna5/N]™', where



Gy ap =G®1Iyisan N(T —2) x N(T — 2) weighting matrix with elements (i,j =1,...,T —2)

;

2 ifi=j
1 ifi=j+1
Gij = , (15)
—1 if j=i+1
\ 0 otherwise

and ® denotes the Kronecker product. Although not necessarily optimal under the spatial cor-

relation of errors, we do not have a better choice at this stage without knowledge of p.

3.1.2 Blundell-Bond Estimator

The standard Arellano-Bond estimator is known to be rather inefficient when instruments are
weak because it makes use of information contained in first differences of variables only. To
address this shortcoming, the GMM approach of Blundell and Bond (1998)—often referred to
as the system GMM estimator—extends the Arellano and Bond (1991) conditions by specifying
moment conditions also for variables in levels rather than only for their first differences. The
Blundell-Bond estimator for the spatially autoregressive dynamic panel model can be derived by

stacking equation and:

yn(t) = Zy)0 +un(t), t=3,... T (16)

The Blundell and Bond (1998) moment conditions for the level equation (16]), which contains
individual effects 1y, are constructed using the first-differenced variables as instruments (i.e.,
using instruments not containing the individual effects). For example, for the strictly exogenous

variables
E[AX\(Dun(t)] =0, t=3,..,T, (17)

which—in contrast to the estimator in Section [3.1.1}—requires the individual effects to be inde-
pendent of AXy(¢). The equivalents of the instruments for both the time and spatially lagged
dependent variables given in , , and for model can thus be specified for model

10



@) =

E[Ay%(t—S)UN(t)] = 07 t:37"‘7T7 s = 17'”7t_27
E{WyAyy(t—9s)}Tun®)] = 0, t=3,...7, s=1,..t—2, =12 .,L,
E[{WNAXN(t)}TuN(t)] = 0, t=3,..T,

respectively. These moment conditions can be concisely written as E[H}\—, pe(t)un(t)] = 0, where
the columns of Hy gp(t) represent the instruments AXy (), Ay (t — s), Wiy Ay y(t — ), and
WnAXN(t) given above.

Merging the information from all available time periods, let Hy gp be a block-diagonal matrix
consisting of blocks Hy pp(t), yy = [YNB3), -, YN(T)]T, and Zx = [ZL(3),..., ZN(T)]T for
t =3,...,T. These instruments for the level equation are typically used jointly with the
instruments introduced in Section for the differenced equation . To define the Blundell-
Bond estimator for the spatially autoregressive dynamic panel model, we thus define merged
matrices for both systems: the vector of responses ¥ = [Ay}, y]—l\—,]—r, the matrix of explanatory
variables Zy = [AZN,ZN]T, the vector of errors iy = [Au),uy]’, the instruments Hy =
diag{Hn 4B, Hn pp}, and the weighting matrices Gy = diag{Gn 4B, I7—2 ® In} and Ay =

- — —
[HyGyHy/N]™! (see Kiviet (2007) for alternatives) Minimizing

—

1 =7 R — T 1 — T - o 77 — T - - =
~(Hyaty) T Ay(AyAiy) = + [Ay(A7y - AZn0)| Ay [Hy(A7y - AZx0)|

with respect to @ then leads to the first-stage spatial Blundell-Bond estimator:

~ 2T 5 = =T = LT o ST,
Oy = (ZyAnANANZy)  ZyHvANALTy. (18)

Given that the forms and are identical, we will use for the sake of simplicity only the
notation ¥, Uy, Z N FIN, ... from now on, representing the vectors and matrices of responses,

errors, covariates, instruments and so on used for estimation, be it in the case of the spatial

13Without prior knowledge of (g;, ;) moments, an asymptotically optimal weighting matrix cannot be
constructed in the first step (cf. Blundell and Bond, 1998).

11



Arellano-Bond or Blundell-Bond estimators.

3.2 The Second Stage

Having derived the first-stage estimate @y of regression coefficients, the parameters p and o2 of
the error distribution can be estimated. To estimate them, we construct a GMM estimator based
on errors uy(t), which are in turn replaced by the regression residuals iy (t) = y x(t) — Zn ()0
The three proposed moment conditions are a modification of those derived by Kapoor et al.
(2007) for random effects static panel models. The main difference is that we base the estimation
of p and o2 on the first differences of errors to account for the presence of individual effects.

To define the moment conditions, let us first denote (with a slight abuse of notation) Aey =
[Ael(2),...,Ae(T)]T and Auy = [Aug(2),...,Aui(T)]". Their counterparts spatially trans-
formed by matrix My are Aéxy = (Ir—1 @ My)Aey, Aty = (Iy—1 ® My)Auy, and Auay =

(Ir—1 ® M)At y, which implies that
Aey = Auy — pAuy, AEn = Auy — ,OA1=1N. (19)

The three equations identifying p and o2 are as follows (see Appendix A.1 for a derivation):

N(T 1)A€NA5N 202
E N(T Nr—AENAEN | = | 207 tr(MIMy)/N | (20)
N(T 1)A€NA€N 0

where tr(MyMy) denotes the trace of the matrix M My. If we now substitute for Aey and

A&y in , using Auy and AGy [see ], we obtain the following moment conditions:
E[’YN - FN(p7 p27 UE)T] = 07 (21)

where vy = [mAuﬁAuN, mAﬁLAﬁN, mAﬁ?\,Au]\/]T and

N(T I)AuNAuN N(T 1)AUNAUN 2
Iy = N(T 1)AuNAuN N(T 1)AuNAuN %tl‘(M;MN) . (22)
ﬁ Al_lNAﬁN + AﬁNAuN _mAﬁNAﬁN 0

12



The nonlinear system of equations can be solved by GMM to obtain estimates of p and
o2. Since the Auy’s are not known, we have to estimate them by regression residuals from :
Aty = Ayy — AZ Né N, Where ] N 1s an initial estimator obtained in Section Denoting the
analogs of v and I'y based on the regression residuals Aty by 45 and 'y, respectively, the

GMM estimator of p and o, based on is defined by
(ﬁNa &'U,N) = arg minp,crv [;yN - f‘N(pa p27 Ug)T]TBN[&N - fN(ﬁ? :027 Ug)T]a (23)

where By is a GMM weighting matrix; in Section |5, we use only By = Is.

3.3 The Third Stage

In the final step, the estimate of p can be used to spatially transform the variables in and

to yield models with cross-sectionally uncorrelated errors:

Ayn(t) = AZn(t)0 + Aey(t), (24)

In(t) = Zn(t)0+en(t), (25)
where py(t) = (In — pvMpy)py(t) for py = {yn,Zn}. For this system, we can construct the
instruments, moment conditions, and GMM estimator in the same way as in Section Note
that the moment conditions of Section [3.1] were constructed for any kind of spatial dependence
also including the currently proposed errors (Iy — pyMpy)uy = (Iy — pvMpy)(In — p°My) ey,
where p represents the true value of the spatial correlation coefficient. Denoting the matrix of

dependent, explanatory, and instrumental variables used in all moment conditions j_'; N Zy, and

Hy as in Section [3.1.2] the final-stage GMM estimator for the spatially transformed model

or f equals, analogously to ,

>T = -

~ 2T =22 =T = 17! T2 = =T

= =>T _, = -1 =
where Ay = [HNGNHN/N} . We will show in Section [4] that the weighting matrix A

is the optimal weighting matrix for the Arellano-Bond estimator provided that ey = (Iy —
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P"Mp)(yn — Zn6) is homoscedastic, where 8° represent the true value of @ (which requires
that My is specified correctly).

Note that we do not attempt to estimate the optimal weighting matrix (see Section 4.2), even
though this is certainly possible. Given the size of the weighting matrix (in case of the Blundell-
Bond estimator for 7' = 5, up to 50 moment equations are used) and practically relevant sample
sizes (e.g., T'=5 and N = 60, see Section 5), we feel there is little to no benefit in using two-step
GMM in these models (especially given the risk of worsening the precision of estimation due to

mis-estimation of the weighting matrix); see Appendix A of Blundell and Bond (1998).

4 Asymptotic Properties of the Estimators

To formulate the asymptotic results for the estimators @y [given in ], pn and 6, N [given
in (23)] and On [given in ([26))], let 8°, p°, and 0¥ denote their true values. Note that @y (éN)
can represent here the first (third) stage spatially corrected Arellano-Bond or Blundell-Bond
estimator depending on which moment conditions are used. Further, an extended notation for
the spatial matrices is needed: in the case of the Arellano-Bond estimator, let fN =I7r_5 ® Iy,
1\7[N =Ir_o®My, and WN = Ir_o® Wy in the case of the Blundell-Bond estimator, let TN =
Lyr_2 @Iy, My = Iyr_9 @My, and Wy = Iyp_o) @ Wy. Additionally, we will extend the ‘™
notation also to the vectors of error terms: Gy = ¥y — ZNBO, gy = (fN — pOMN)(y’N — ZNOO),
and &y = (0,my) " + V. In what follows, we will first discuss the imposed assumptions (Section

and then the derived asymptotic results (Section [4.2)).

4.1 Assumptions

First, the assumptions needed for the consistency and asymptotic normality of the three-stage
spatially corrected GMM estimator are specified. We use here high-level assumptions so that
some strict structure does not have to be imposed on the triangular array of dependent and

explanatory variables ¥, and X . These assumptions are conceptually similar to Kapoor et
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al. (2007), including the assumption of homoscedasticity, and can be relaxed by the method of
Kelejian and Prucha (2010), who allow for unknown heteroscedasticity in the innovations.

Throughout the section, we assume N — +o0o and T = ¢y, where ¢q is a constant. Although
this is a standard setup in the literature, let us note that, if N is fixed and T — 400, the
proposed estimators will be biased because the number of instruments for some moment conditions
is increasing with 7' (see Alvarez and Arellano, 2003, and Bun and Kiviet, 2006). Bun and
Kiviet (2006), however, show that limiting the number of instruments guarantees (asymptotic)
unbiasedness of the discussed GMM estimators even if IV is fixed and T is large and increasing
above any bound. While the theoretical results presented here for a fixed T" apply to any number
of instruments, we recommend for these theoretical and also practical reasons to limit the number
of instruments; in Section 5| the simulation results are obtained using at most three dynamic and
three spatial lags.

Now, the first set of assumptions specifies standard assumptions regarding the error terms,
which guarantee the validity of the moment conditions specified in Section [3| and the existence
of finite second moments for the central limit theorem. The only more restrictive assumption
on the individual effects follows from Blundell and Bond (1998), see Assumption E2 below, and
the existence of the fourth moments, which is made for the convenience of using some auxiliary

results of Kelejian and Prucha (2010).

Assumption E

1. The error vectors v (t) = [un1(t),...,vnn(t)]" are independent and identically distributed
foreach N € Nandt = 1,...,T with zero mean E[vy;(t)] = 0, a finite variance Var|vy;(t)] =
02, i =1,...,N, and uniformly bounded fourth moments. Further, vy () is assumed to

be independent of ny and Xy (t) for any t =1,...,T.

2. The fixed effects m,y have uniformly bounded fourth moments. In the case of the Blundell-
Bond estimator, n, is additionally assumed to be uncorrelated with AZy(s) and ex-

planatory variables have a time-invariant mean, EZx(t) = EZy(s), s = 1,...,t — 1 and
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t=2,.. . T.
3. The variance of Var(é’N|FIN) = ia,N =3.® fN, where X, is a positive-definite matrix.

4. The variance of Var(ﬁN|ﬁN) = f)%N = Iy — p"Mp) 'S nv(Iy — pP'Mpy) T

The spatial structure described by matrices Wy and My is assumed to follow Assumption S,
which is made slightly more general than specified in Section [2}—which assumed row normalized
matrices—by allowing various normalizations of spatial weight matrices (see Kelejian and Prucha,

2010).

Assumption S
1. All diagonal elements of Wy and My are zero.

2. There exist finite positive constants K :;, Kg, K//,, and KIZ such that matrices Iy —dW y and

Iy — pMy are non-singular for all § € (—Kj, K5) and p € (—K;,Kg).

3. The absolute values of the row and column sums of Wy, My, (Iy — "Wy)~!, and

(Iny — p°Mp)~! are bounded uniformly in N € N.

The assumptions concerning the explanatory variables and the imposed instrumental variables are
high level assumptions, which do not impose a particular structure or distributional assumptions,
but require only the existence of particular probability limits and the corresponding expectations
needed for the central limit theorem. The latter is used in the proof of the asymptotic normality
of 6. Note that the assumption of the uniformly bounded (2 + 1)th moments, see Assumption
V3 below, which implies the uniform integrability of the squared moment equations, replaces a
more restrictive, though often used condition of bounded nonstochastic regressors (e.g., Kapoor

et al., 2007).

Assumption V
1. Zy has a full rank almost surely.
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2. Hy has a rank greater or equal to K + 2 almost surely.

3. The expectations E(Z‘Nvij)”w and E(}_’INvijé'N,k)Q“/’ are bounded uniformly in i, j, k for
some ) > 0.

4. The limits of variance matrices limy_,oc E(H 3, NHN/N) = Qs imy oo E(HyMyMy

8 NMyMAHN/N) = Qprarsagsr Ty oo B (Ty M) S v (Ty 0 My) THy /N] =
Qp s and imy o0 E(ﬁ;M;f]gNMNﬁN/N) = Qs pary are finite and positive defi-
nite.

5. The limits of matrices p-limpy_, N‘lﬁ;Z’N = QHZ, p-limpy oo N‘lﬁ]T\,MNZN = QHMZ,
p-limpy_, o N_lﬁ;M;ZN = QHMTZ, and p-limy_, N—lﬁ;M;MNZN = QHMMZ are

finite and have full rank.
6. The matrix Qzz; = Quz — P°(Quirz + Quarr2) + (1°)*Qrarnsz has full rank.

Finally, we have to specify assumptions important for the GMM estimator itself, that is, condi-
tions on the parameter space and the GMM weighting matrices. They mainly guarantee that the
spatial correlation matrices Iy — Wy and Iy — pMpy are invertible and GMM matrices A N,
By, and I'y are non-singular.

Assumption G

1. The parameter space for 8 = (), 6,8)" is © = (—1,1) x (—K:;,Kg) x RE,

2. Non-singular symmetric matrices An satisfy p-limy_, o Ay = K, where A is a finite

positive definite matrix.

3. Non-singular symmetric matrices An satisfy p-limpy_ o Ay = A, where A is a finite

positive definite matrix.

4. The parameter space ® for ¢ = (p,0,)" is a compact subset of (—K;, K;) x R™. Moreover,

¢° = (p°, o))" € o°.
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5. The smallest eigenvalues of the matrix I‘}\—,I‘ n are uniformly larger than kr > 0.

6. Positive definite matrices By satisfy p-limy_,. (By — By) = 0, where By are non-
stochastic positive definite matrices with eigenvalues uniformly larger than kg > 0 and

uniformly smaller than Kg > 0.

4.2 Consistency and Asymptotic Normality

In this section, the asymptotic properties of the proposed estimators are derived. As the regression
parameters are estimated by a linear GMM estimator, we only have to account for the spatial
error correlation and its estimation to derive the asymptotic distributions in the classical way. On
the other hand, the estimation of the spatial error correlation is nonlinear and thus the uniform
identification of the parameters has to be verified to guarantee consistency (cf. Kelejian and
Prucha, 2010).

We will show first that the initial estimator 6y defined in or (recall that the latter

definition includes the first one as a special case) is consistent.

Theorem 1 Under Assumptions E, S, V, and G1-G2, the GMM estimator On defined in (|18))

is vV N -consistent and

T = = N T = =

VN(Oy - 0% 5 N(0, [QHZAQHZ]_IQI—;ZAQHZHA QuzQuzAQu,™)
as N — +o0.

Proof. See Appendiz[A.2.1. O

Although the asymptotic distribution of O is derived in Theorem [l it is not practically
applicable at this stage: the variance matrix Q s of @y depends on an unknown parameter p°
(see Assumption E4). The spatial autocorrelation parameter p° can be estimated by py defined

by . Its consistency is proved in the following theorem:

Theorem 2 Let Assumptions E, S, V3, and G4—G6 hold and Oy be a /N-consistent estimator
of 8°, VN(Oy — 8°) = O,(1). Then the GMM estimator ¢ = (pn,60.n)" of ¢° = (0°,0,) 7" is

consistent, (Q)N — ¢ in probability as N — .
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Proof. See Appendiz[A.2.9 O

Having a consistent estimate py of p¥, the asymptotic variance in Theorem [1|can be evaluated.
More importantly, it can be used to transform the model f to obtain spatially uncorrelated
errors as described in Section [3.3] The asymptotic properties of the GMM estimator based on

the model — are given in the next theorem.

Theorem 3 Under Assumptions E, S, V, and G1-G3, the GMM estimator Oy defined in

is vV N -consistent and

2T == >z = >z

- =T T = =T
VN@y 6% 5 N(0,[Qu,AQn7]'Q AQurnA QuzlQuzAQy, ™)

——1 =

=2 - =T
as N — +oo. For A = [Quey|~!, this asymptotic variance matriz reduces to [Qp,QuryQuzl~t

Proof. See Appendiz[A.2.3 O

It is well-known that the optimal weighting matrix for GMM equals the inverse of the variance
of the moment conditions, which in the case of the third-stage estimator still depends on p° and

is asymptotically equal to

— . -] — — — — — —
Qupn = Nl_lgrlooE[HN(IN — p"My) " E. Iy — p°My)Hy /N,

see Assumption V4 and Theorem 2. Given an estimate py, Q yEn can be estimated by

2 I O L
Queun = NHN(IN —pnMpy) E. n(Iy — pvMpy)Hy = NHNSE,NHN

—-—1

and the weighting matrix proposed in Section is thus equal to KN = Qupu N if Gy = iaN,
that is, if the errors ey are homoscedastic and the Arellano-Bond estimator is considered.
Given the optimal weighting matrix, it is worth noting that, for p° — 0, the optimal third-
stage GMM estimator converges to the first-stage estimator since fIN = H N and ey = uy for
pn = p° = 0. A general comparison of the variances of the first-stage and third-stage estimators
is, however, difficult as they depend on a general spatial matrix My by means of (fN — pOM N) !
and (fN — pol\_;I N ), respectively. Some indication of the benefits of the spatial error correction are

therefore provided by means of simulations in Section
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5 Monte Carlo Simulations

To assess the performance of the estimators presented in Section [3] this section reports a Monte
Carlo experiment. The design of the Monte Carlo experiment is discussed first before turning to

the results.

5.1 Simulation Design

We report the small sample properties of the estimators using data sets generated based on the
spatial dynamic panel data model of Section In generating the data, we follow a three-step
procedure. First, we generate the vector of covariates, which includes only one exogenous variable.

Following Baltagi et al. (2007), the exogenous variable is defined as:
Xn(t) =¢+ x(t), ¢ ~iid U[-7.5,7.5], x ~ iid U[-5, 5], (27)

where ¢ represents the unit-specific component and x(t) denotes a random component; both are

drawn from a uniform distribution U defined on a pre-specified interval.

The second step, using , , and
ny ~ iid U[—1, 1], vy ~iid N(0,Iy), (28)

yields the error component uy(¢). The third step generates data for the dependent variable y 5 (t)
and the spatial lag W yy 5 (t). The data generation process is given by @ and fort=2,...,T
and y(1) = ny. The first 100 — T" observations of the Monte Carlo runs are discarded to ensure
that the results are not unduly affected by the initial values (cf. Hsiao et al., 2002){131
Following standard practice in the literature, we use different weight matrices for the spatial
lag and spatial error component, that is, Wy # Mpy. To accommodate a large N, we generate
artificial contiguity matrices. In doing so, we randomly assign a fixed number of neighbors n to
each spatial unit —while maintaining symmetry—and row normalize the matrices. Throughout

the simulations, we keep the weights constant for a given N. In the benchmark scenario, we

14We have checked the robustness of the results with respect to changes in the initial values.
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assume five neighbors of each spatial unit, implying 91.7% zero entries, the so-called sparsity
of the weight matrix. As a robustness check, we vary the number of neighbors from 5 to 20 in
the random contiguity matrices. In addition, we consider the Bucky ball contiguity specification,
which assumes a fixed location of unit ¢’s neighbors. The matrix is shaped like a soccer ball, where
the distance from any point to its nearest neighbors is the same for all the pointsB Depending
on whether unit ¢ is a pentagon or hexagon, there are five or six neighbors. Because of its fixed
geographic structure, the Bucky ball specification implies W y = My. Finally, we consider row-
normalized weight matrices based on the inverse of squared geographical distance (in kilometers)
between the capitals of countries ¢ and j. The bilateral distances are randomly drawn from the
distance matrix for 225 countries provided by CEPIIE

In the benchmark specification, we use N = 60 and T" = 5. The parameters in @ and
take on the following values in the data generation process. As is standard practice in the
literature, the coefficient of the exogenous explanatory variable g is set to unity. We set A = 0.3
and 0 = 0.5, so that the stationarity conditions are satisfied, and the spatial autocorrelation
coefficient p equals 0.3. For each experiment, the performance of the estimators is computed based

on 1000 replications. Following Kapoor et al. (2007) and others, we measure performance by the

RMSE = \/ bias® + (qig? )2, where bias denotes the difference between the median and the ‘true’
value of the parameter of interest (i.e., the value imposed in the data-generating process) and
¢1 — g2 is the interquantile range (where ¢; is the 0.75 quantile and ¢ is the 0.25 quantile). If the

distribution is normal, (g1 — ¢2)/1.35 comes close (aside from a rounding error) to the standard

deviation of the estimate.

5.2 Results

Table [1] reports the RMSE in estimating the spatial autoregressive parameter § for various esti-
mators and different values of N starting at the benchmark value of N = 60 (7' = 5 is fixed). The

rows report four different types of spatial GMM estimators all of which instrument the time lag of

15The Bucky ball specification assumes N = 60 and therefore cannot be used to vary N.
16See http://www.cepii.fr/anglaisgraph/bdd/distances.htm.
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the dependent variable in addition to addressing spatial aspects. We consider a spatial Arellano-
Bond estimator (labeled AB) and a spatial Blundell-Bond estimator (labeled BB), which do not
correct for spatial error correlation and correspond to the first stage of the three-stage spatial
GMM procedure. The spatially corrected Arellano-Bond estimator (labeled SAB) and spatially
corrected Blundell-Bond estimator (labeled SBB) explicitly correct for spatial error correlation
and correspond to the final stage of the three-stage spatial GMM procedure (as discussed in
Section . We use three time lags in instrumenting the one-period time lag of the dependent
variable. To instrument the spatial lag, we use various instrument sets: (i) the modified Kelejian
and Robinson (1993) instruments (indicated by the subscript X); (ii) time lags s and spatial lags
[ of the spatially lagged dependent variable (indicated by the subscript Y); and (iii) a combina-
tion of the instrument sets X and Y (represented by the subscript XY'). The numbers in the
subscripts denote the number of time lags s and spatial lags [ of WlNy N (t—s), where we consider
only cases with an equal number of time lags and spatial lags. The instrument set Y captures
the case with only endogenous variables as instrumentsﬂ

We find that the spatially corrected estimators have generally a smaller RMSE than their
non-spatially corrected counterparts. Additionally in the benchmark case, the system-based
GMM estimators (labeled BB and SBB) give rise to a smaller RMSE than the difference-based
GMM estimators (labeled AB and SAB)E For models with a large A, which generates a strong
time dependency, the difference in RMSEs between system-based GMM estimators and difference-
based GMM estimators becomes larger; the RMSE increases for the SAB estimator and decreases
for the SBB estimator. In the benchmark case of N = 60 and A = 0.3, SBB with instrument
set XY and three time and spatial lags shows the smallest RMSE[™’] The bias of this estimator
(not shown in the table, see Cizek et al., 2011) amounts to 5.8% of the true parameter value.
Note that the specifications without any exogenous variables in the instrument set yields larger

RMSEs than those with both X and Y instrument sets or X instrument set, particularly for

1"The estimator can also be applied if there are no exogenous variables.

18Cizek et al. (2011) show that this applies for various values of § and .

19This is not a general result. Depending on the parameter values, either one, two, or three spatial lags
is optimal. See below.
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the difference-based estimators. Finally, using the XY instrument set improves the efficiency of
the spatially corrected estimates compared to using only the X instrument set. However, this is
not always the case for the AB/BB estimates. The bias of the AB and SAB estimators with X
instruments only amounts to 4.2% and 3.95% of 4, respectively (see Cizek et al., 2011), which is
much smaller than that found by Elhorst (2010), who reports a value of 20% of ¢ for his version
of the AB estimator ]

In line with expectations, the RMSE in estimating d decreases if IV increases and thus yields
consistent estimates of the spatial interaction effect. Extending the number of spatial units
from 60 to 500 reduces the RMSE by more than 50% in the case of estimators using the spatially
weighted exogenous variables W yAX () as instruments and by 35-40% in the case of estimators
using only the spatially weighted lagged dependent variables WlNy n(t — s) as instruments. The
AB estimator using the Y instrument set exhibits a very large RMSE even for large N, which
likely indicates weak instruments. For N = 200, the optimal number of spatial lags in the XY
instrument set is smaller than three.

Table [2| presents the RMSE in estimating the parameter § for various estimators and various
values of T' starting at the benchmark value of 7' =5 (N = 60 is fixed). If the time dimension
of the panel rises, techniques to limit the proliferation of instruments are needed. As before, we
limit the lag depth of the dynamic instruments to three, which reduces the RMSE in estimating
the spatial lag parameter substantially at higher values of T' (cf. Jacobs et al., 2009). Increasing
the number of time periods from 5 to 20 in the benchmark case of A = 0.3 reduces the average
RMSE by 34.8%. The decline in RMSE across difference-based estimators and system-based
estimators is rather similar. If A takes on a value of 0.7, the fall in RMSE of the difference-based
estimators induced by a rise in T" from 5 to 20 is larger than that of the system-based estimators
(57% compared with 51%).

Table |3| presents the RMSE of the estimators for several values of ¢ in the interval [0.2,0.7]

and for different values of p. We vary p in the interval [—0.8,0.8], where a negative p implies that

20Elhorst (2010) does not correct for spatial error correlation, employs slightly different parameters in
the Monte Carlo simulations, and uses a different instrument set.
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an unobserved positive shock in the equation for spatial unit ¢ decreases the dependent variable
in other spatial units i # j. To make sure the stationarity condition is met for large values of
0, we have set A to 0.2. We find that non-spatially corrected GMM estimators always have larger
RMSE:s in estimating A, §, and 8 than their spatially corrected counterparts. The difference in
RMSEs between BB and SBB estimators increases for large positive values of p, is zero for a
pure spatial lag model (i.e., p = 0), and takes on small positive values for negative p values.
For intermediate values of p, the BB estimators with XY instruments and three spatial and time
lags yield smaller RMSEs than the BB estimators with X instruments. However, at high positive
values of p, in estimating A and §, the BB estimators with the set of XY instruments perform
less well than those with the set of X instruments. Once we correct for spatial error correlation,
the estimators with XY instruments have the lowest RMSE again. Regarding p, a larger RMSE
is found at negative values of p and a smaller RMSE is obtained at positive values of p. Finally,
the table shows that the RMSE of § is not affected much by the size of the spatial lag parameter.

Table [4] investigates the effect of the specification of the weight matrices on the RMSE in
estimating § for various values of p. Our key result of spatially corrected estimators having a
smaller RMSE than non-spatially corrected estimator holds for all investigated specifications of
the weight matrix. Reducing the sparsity of the random contiguity matrices increases the RMSE
of all estimators with the exception of the first-stage estimators based on the Y instrument set and
a negative p. In the benchmark case, the Bucky ball specification—which imposes Wy = My
and assumes five or six neighbors—yields a slightly larger RMSE than for the case of n = 5.
However, the RMSEs of estimators using weights based on physical distance—in which case all
cells of the weight matrix are non-zero—are smaller than in the benchmark case of rather sparse

random contiguity matrices@

2INot only the sparsity of the weight matrix but also the variation in weights affects the RMSEs of the
estimators. Note that the coefficient of variation of the weights for both random contiguity matrices is
3.34, whereas it slightly smaller for the distance based matrices (i.e., 3.27 for Wy and 3.31 for My).

24



6 Conclusion

This paper deals with GMM estimation of spatial dynamic panel data models with fixed effects
and spatially correlated errors. We extend the three-step GMM approach of Kapoor et al. (2007),
which corrects for spatially correlated errors in static panel data models, by introducing a spatial
lag and a one-period lag of the endogenous variable as additional explanatory variables. Com-
bining the extended Kapoor et al. (2007) framework with the dynamic panel data model GMM
estimators of Arellano and Bond (1991) and Blundell and Bond (1998) and supplementing the
dynamic instruments by various spatial lags and weighted exogenous variables yields new spatial
dynamic panel data estimators.

We formally prove the consistency and asymptotic normality of our spatial GMM estimators
for the case of large N and fixed small T'. For large T and fixed small NV, the spatial estimators
are consistent if the instrument count per moment condition is bounded from above. Monte Carlo
simulations indicate that the RMSE of spatially corrected GMM estimates—which are based on a
spatial lag and spatial error correction—is generally smaller than that of the corresponding spatial
GMM estimates in which spatial error correlation is ignored, particularly for strong positive
spatial error correlation. The RMSE of the spatial GMM estimates, however, is not affected
much by the size of the spatial lag parameter in the data generating process. We also show that
the spatial Blundell-Bond estimators outperform the spatial Arellano-Bond estimators. Finally,
we find that spatial estimators using spatially weighted endogenous variables as instruments
in addition to weighted exogenous variables are more efficient than those based on weighted
exogenous variables.

In future research, we intend to add a spatially weighted time lag to the model. In addition,
we investigate the consequences of replacing a correction for spatial error correlation by spatially

weighted covariates in the model.
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Table 1: RMSE of Spatial GMM Estimators of ¢ for Various Values of N and A

Estimator A=0.3 A=0.7

N=60 N=200 N =500 N=60 N=200 N =500
ABx 0.0873 0.0450 0.0307 0.1349 0.0728 0.0502
ABxvy1 0.0836 0.0447 0.0303 0.1316 0.0710 0.0492
ABxya 0.0871 0.0447 0.0307 0.1267 0.0677 0.0472
ABxys 0.0913 0.0490 0.0296 0.1269 0.0686 0.0458
ABy, 0.2075 0.1738 0.1301 0.3022 0.2586 0.2311
ABy» 0.1732 0.1551 0.1129 0.2397 0.1977 0.1690
ABy3 0.1611 0.1350 0.1076 0.2136 0.1701 0.1353
SABx 0.0840 0.0462 0.0307 0.1292 0.0734 0.0484
SABxy1 0.0812 0.0449 0.0300 0.1254 0.0718 0.0478
SABxyo 0.0808 0.0443 0.0294 0.1177 0.0659 0.0460
SABxvys 0.0830 0.0456 0.0280 0.1097 0.0670 0.0445
SABy, 0.1927 0.1638 0.1205 0.2821 0.2429 0.2210
SABy» 0.1609 0.1431 0.1118 0.2051 0.1850 0.1635
SABy3 0.1481 0.1280 0.0986 0.1957 0.1620 0.1297
BBx 0.0789 0.0457 0.0327 0.0706 0.0547 0.0432
BBxv1 0.0604 0.0386 0.0262 0.0516 0.0373 0.0263
BBxyo 0.0598 0.0389 0.0260 0.0443 0.0358 0.0262
BBxys 0.0597 0.0387 0.0253 0.0417 0.0339 0.0252
BBy 0.0894 0.0748 0.0556 0.0567 0.0467 0.0370
BBy 0.0812 0.0663 0.0492 0.0482 0.0408 0.0338
BBy3 0.0829 0.0636 0.0502 0.0446 0.0374 0.0301
SBBx 0.0759 0.0438 0.0325 0.0714 0.0509 0.0409
SBBxy1 0.0570 0.0359 0.0246 0.0486 0.0373 0.0254
SBBxy2 0.0547 0.0382 0.0240 0.0383 0.0353 0.0242
SBBxy3 0.0533 0.0360 0.0237 0.0376 0.0324 0.0235
SBBy1 0.0869 0.0748 0.0510 0.0547 0.0462 0.0338
SBBy» 0.0759 0.0631 0.0472 0.0443 0.0406 0.0312
SBBy3 0.0714 0.0594 0.0474 0.0408 0.0362 0.0273

Notes: RMSEs based on Monte Carlo simulations with 1000 replications. The parameters in the bench-
mark scenario are: N = 60, 7' =5, n =5, A = 0.3, § = 0.5, 8 = 1, and p = 0.3. To meet the
stability condition , § is set to 0.2 if A = 0.7. The labels AB, SAB, BB, and SBB denote the first-stage
spatial Arellano-Bond estimator, the spatially corrected Arellano-Bond estimator, the first-stage spatial
Blundell-Bond estimator, and the spatially corrected Blundell-Bond estimator, respectively. The sub-
scripts X and Y refer to instrument sets for the spatial lag based on spatially weighted values of X and
Y n, respectively. The subscript XY indicates that both instrument sets are employed. The numbers in
the subscripts report the number of time lags and spatial lags of the spatially lagged dependent variable
used for instrumenting the spatial lag. The one-period time lag of the dependent variable is instrumented
by three time lags of the dependent variable.
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Table 2: RMSE of Spatial GMM Estimators of § for Various Values of T" and A

Estimator A=0.3 A=0.7

T=5 T=10 T=20 T=5 T=10 T=20
ABx 0.0873  0.0628  0.0537 0.1349  0.0891  0.0665
ABxy1 0.0836  0.0605 0.0496 0.1316  0.0782  0.0526
ABxy2 0.0871  0.0696  0.0611 0.1267  0.0799  0.0605
ABxys3 0.0913 0.0827 0.0792 0.1269  0.0893  0.0706
AByq 0.2075 0.1419  0.1220 0.3022  0.1513  0.0962
AByo 0.1732 0.1333  0.1120 0.2397 0.1363  0.0935
ABys 0.1611  0.1289  0.1154 0.2136  0.1294  0.0952
SABx 0.0840  0.0582  0.0467 0.1292  0.0827  0.0614
SABxy1 0.0812  0.0541 0.0434 0.1254  0.0724  0.0484
SABxy2 0.0808 0.0608  0.0511 0.1177  0.0715  0.0494
SABxys 0.0830 0.0710 0.0671 0.1097  0.0770  0.0579
SABy4 0.1927  0.1271  0.1048 0.2821  0.1370  0.0833
SABys 0.1609 0.1154  0.0967 0.2051  0.1192  0.0778
SABy3 0.1481 0.1108  0.0987 0.1957  0.1110  0.0761
BBx 0.0789  0.0518  0.0428 0.0706  0.0464  0.0350
BBxy1 0.0604  0.0452  0.0385 0.0516  0.0386  0.0289
BBxvy2 0.0598  0.0436  0.0369 0.0443  0.0269  0.0198
BBxvs 0.0597  0.0482  0.0448 0.0417  0.0269  0.0212
BBy1 0.0894  0.0742  0.0704 0.0567 0.0426  0.0319
BBy 0.0812 0.0639  0.0554 0.0482  0.0299  0.0216
BBy3 0.0829  0.0680  0.0621 0.0446  0.0299  0.0235
SBBx 0.0759  0.0497  0.0394 0.0714  0.0462  0.0324
SBBxy1 0.0570  0.0426  0.0346 0.0486  0.0365  0.0261
SBBxvy2 0.0547  0.0388 0.0314 0.0383  0.0241  0.0173
SBBxvys3 0.0533  0.0415 0.0377 0.0376  0.0236  0.0181
SBBy1 0.0869 0.0710  0.0598 0.0547  0.0406  0.0293
SBBy 0.0759  0.0533  0.0470 0.0443  0.0253  0.0187
SBBy3 0.0714  0.0573  0.0511 0.0408 0.0248  0.0194

Notes: RMSEs based on Monte Carlo simulations with 1000 replications. The parameters in
the benchmark scenario are: N =60, 7T =5, n=5, A=0.3,6 =0.5, =1, and p = 0.3. To
meet the stability condition , 6 is set to 0.2 if A = 0.7. The labels AB, SAB, BB, and SBB
denote the first-stage spatial Arellano-Bond estimator, the spatially corrected Arellano-Bond
estimator, the first-stage spatial Blundell-Bond estimator, and the spatially corrected Blundell-
Bond estimator, respectively. The subscripts X and Y refer to instrument sets for the spatial
lag based on spatially weighted values of Xy and y 5, respectively. The subscript XY indicates
that both instrument sets are employed. The numbers in the subscripts report the number of
time lags and spatial lags of the spatially lagged dependent variable used for instrumenting the
spatial lag. The one-period time lag of the dependent variable is instrumented by three time lags
of the dependent variable.
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Appendix

A.1 Derivation of Moment Conditions in Stage Two

To arrive at the moment conditions in (20), we define the spatially transformed counterpart of

Aen by A€ = (Ir—; ® My)Aey. We make use of the following properties of the error term:
A&‘N = AVN, E[VNVE] = UglN(T—l)y (Al)

which follows from Assumption E. In addition, we apply E[v;Av N| =tr(AEv NVJTV)7 where A is

a conformable matrix. Finally, we use:
tr[Ir_; ® (MAMp)] = (T — 1) tr(MyMy), tr(MJY) = 0. (A.2)

Using the above leads to the following moment conditions:

E[AeyAey] = E[AviAvy]

= 20, tr(Iy(r_1)) = 200N (T — 1), (A.3)
E[AeyAen] = E[Avy(Ir ® MyMy)Avy]

= 20, tr(Iy - 1MyMy) = 200(T — 1) tr(MyMy), (A4)
E[AéyAen] = E[Avi(Ir-1 @ My)Avy]

= 202 tr(Ip_ M) = 26T — 1) tr(M}) = 0. (A.5)

Dividing (A.3)—(A.5) by N(T — 1) gives the moment conditions in ([20).

A.2 Proofs of Asymptotic Properties
A.2.1 Proof of Theorem

Definition and models and imply
Oy = [ZNHNANHNZN} 7 ENANH Ty

ST o = =T 171575 T
- 90+[ZNHNANHNZN} 7 HNANH iy,
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- - T = -
Since Assumptions G and V imply Ay = A + 0,(1) and N"'HyZy = Qpyz + 0p(1) and

ZyHyANHNZ )y is non-singular, it follows from definition that

o 1 5T - 1 5T = _11 T — 1 -7,
= [QHZAQHZ QpuzA-N""Hy(In — p"Mp) En + o0p(1)

amTa = ~ ~
=E(N"Hy S, vHy) = Qyusy — Qusy

by Assumptions E and V. Since Q;I/JQE g€y forms a triangular array of martingale differences,
the finite second moments and uniform integrability of QJ_Vll/fE g€x (implied by Assumption V3
and the uniform boundedness of (Iy — p°My)~! by Assumption S3) allows us to apply the
central limit theorem for martingale differences (e.g., Davidson, 1994, Theorems 24.3 and 24.4),
which results in the asymptotic normality of € 5y with the finite asymptotic variance matrix Q HSH -
Consequently, \/N(éN—OO) = Op(1) and \/N(éN*QO) 5 N(0, [QIIZAQHZ]_l(j;ZAQHzHAT

— -] — =
QusQusAQy,]™1) as N — +o0, where £ denotes convergence in distribution. [J

A.2.2 Proof of Theorem [2

The proof is similar to the one of Kelejian and Prucha (2010, Theorem 1). First, the GMM
estimator is based on the vector v and matrix I' y defined in —. They both have each
random element of the form Aul,DyAuy/[N(T — 1)], where Dy = 1\711;\?1\7[?\, for k,1 € {0,1,2}.
To derive the limits of I'y and ~, and also of 'y and 4 n, we will now verify Assumption 4 of
Kelejian and Prucha (2010, Lemma C.1) to apply it to I'y and «y (Assumptions 1-3 of Kelejian
and Prucha, 2010, are implied by Assumptions E, S, and V). This Assumption 4 concerns the

estimates Aty of the error term Aujy, which is equal here to Aty = Ayy — AZNéN. Hence,
Aty — Auy = —AZy(Oy — 60)
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and Assumption 4 of Kelejian and Prucha (2010, Lemma C.1) requires that AZy has the uni-
formly bounded (2 + t)th moments and that v N(@y — 6°) is bounded in probability. The
first claim follows from Assumption V3 and the Minkowski inequality and the second claim is a
consequence of the v/N-consistence of the initial estimator 0 N-

Next, for any t = 2,...,T, Auyn(t) = (In — p°Mpn)Aen(t), where Aey(t) is a vector of
independent random variables, and consequently, Lemma C.1(a) of Kelejian and Prucha (2010)
can be applied to obtain the following results: E[Au} (1)DyAuy(t)]/N is uniformly bounded,
Auj () DyAup(t)/N — E[Au (t)DyAuy(t)]/N = 0,(1), and

1

CARL()Dx Ay (1) - %E{Au;(t)DNAuN(t)] — 0, (1)

as N — +oo for any matrix Dy with uniformly bounded rows and column sums such as
Dy = M’;VTI\_/IZZV for k,1 € {0,1,2}. Since Auy = [Auy(2),...,Auy(T)]", we proved that
E{AuDyAuy/[N(T —1)]} = O(1) and AayDyAiy/[N(T —1)] — E{AuDyAuy/[N(T —
1)]} = o0p(1), and consequently, that ET'; and E~y are uniformly bounded and T'y —ET'y =
0p(1), vy — Evy = 0p(1), I'n — ETx = 0y(1), and 45 — E4y = 0,(1). Moreover, due to
Assumption G5, I‘}I‘ N~ 1s non-singular; similarly, Assumption G6 implies that also I‘}B NIy is
non-singular and thus positive definite.

To prove the consistency of the GMM estimator , we can use a general result of Potscher
and Prucha (1997, Lemma 3.1), which states that the GMM estimator is consistent if (i) it exists,
(ii) the minimum of Jy(¢) = {Evy — ETyv(¢)} 'By{E~vy — ETnv()} at ¢ is identifiably
unique, and (i) the sample objective function Jy(¢) = {§x — Dnv(0)} "Ba{dy — Tnv(h)}
converges uniformly to Jy (@), where v(¢) = (p,p%,02)7, ¢ = (p,0,)", and ¢° = (p°,0)7.

First, the existence of the GMM estimate follows from the continuity of Jy(¢): it is continuous

in ¢ on a compact space ® and it thus attains its minimum.
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Regarding the identification, the objective function Jy(¢) attains its minimum only at ¢ =

(p°, 09T because ET yv(¢?) = E~y, and by Assumption G,

IN(®) — In(9%) = In(p) = {v(¢)—v(¢°)} ETYByETN{v(¢) — v(¢")}
> rrep{v(e) — v(e")} {v(p) —v(¢°)}

> rrep{(p—p°)* + [02 — (D))}

Consequently, for any & > 0 it holds infy(, 5 )ed:|(p,00)—(00,09) >} IN (D) — In(@°) > krkpe? >0
and ¢° = (p°,09) 7 is identifiably unique.

Finally, J ~(¢) can be shown to uniformly converge to Jy(¢) on ®. Since

A

IN(®) — In(P) = (YABNYN —EAVBNE~y) - 2(34ByTN —EvyByETN)v(0)

AT A =~
+ v(¢) (DyByTy — ETYBy ETN)u(9),

and ¢ € ®, where ® is compact, ||¢|| < Ky < +00, we only have to show that the three differences
of the type f‘]T\]ENf‘N - EI‘}\—[BN ET'y = o0p(1) as N — +o00. This however directly follows from
Tn —ETy = 0,(1), vy —Evn = 0,(1), Ty —ETx = 0,(1), and 4y — Eyy = 0,(1) as all
these random variables are bounded in probability (see Assumption G), the expectations ET y

and E -~ were shown to be uniformly bounded, and

I ByIy —ETLBNEDy = (I'y - ETL)Baly + ETLBy(Dy — ETw)

+ ETY(By —By)ETy).
Hence, Lemma 3.1 of Pétscher and Prucha (1997) implies consistency of the estimate (23). O

A.2.3 Proof of Theorem [3

Definition and models and imply

2T o = =T 17175 o - 2T 17175 o

33



where €y = yy — Zn0° = (In — pnMn)(Fy — Zn6°). First, note that the consistency of

pn — p° and Assumption V imply

—

NHyZy = N 'HN(Ty - pnNy) @y — pyMy)Z
— N'HNZy - pyN T THAMAZy
— pyNHAMAZy + AN TTH A MMy Zy
= Quz — /" Quurz + Quarrz) + (0°)?Quararz + 0p(1).

2T =

Matrix N ~'H yZy, which is non-singular by Assumptions S2, V, and G4, thus converges to a non-

singular matrix Q 1z in probability. Assumptions G and V further imply that Ay =A+ op(1)
2T = - =TT .

and that ZyHyANH Z ) is non-singular. Using definition , iy — pP"Mpyiiy = €y, results in

E?,‘:N = (TN — ﬁNl\_;IN)ﬁN =y — ﬁNl\_/INﬁN =N+ (po - ﬁN)l\_/INﬁN. We can thus write

~ (1 =T = = 1 =2T= *11:» >T = 1 =T
VN(Oy —6° = NZNHN~AN-NHNZN} NZNHNAN\/—NHNEN
:1.—:: = 1 =2T= *11:»7.—:.—: 1 =T O
::*T e = 1 =T = i~
= |QuzAQuz| QuzA- ﬁHN(IN —p My) En +o0p(1) (A.6)
(2T == 1-1 =T = 1 -7, - T,
— |QuzAQpuz| QuzA- ﬁHN(pN — p)MyEN + 0p(1) (A7)
:.—:T -z 1-1 =T =
- |QuzAQpuz| QuzA
R T O\NA i3
WHN(IN — PNMnN) " (pn — p")MpyTN + 0p(1) (A.8)

-] — —
1. Let us again consider the triangular array &€y = N~ Y2Hy (Iy —p°My) " &y in (A.6), which

ST = .
has zero mean E{H y(Ixy — p°My) &y} = 0 and bounded variance since

- _ —aT - — — - — —
T EN"THy(Iy — p°'Mpy) TS v Iy — p°°Mpy)Hy]

)

—»T -
Var[N~V2H y (I — p°

2
Z
m
=
I

= Qnuen = Quen
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as N — +4o0o by Assumptions E and V. Since (_2’]_\,1]/{2EH£ y forms a triangular array of
martingale differences, the finite second moments and uniform integrability (implied by
Assumption V3 and the uniform boundedness of (fN — pOMN)T by Assumptions S3 and
G4) allows us to apply the central limit theorem for martingale differences (e.g., Davidson,
1994, Theorems 24.3 and 24.4), which results in the asymptotic normality of &, with the

finite asymptotic variance matrix Q-

. Now, we only have to show that the remaining terms in (A.6)—(A.8)) are negligible in

probability (knowing that pn — p° = 0,(1) as N — +00). For N — +o0, the first term

-

(bn —p°) - HzAQpz QuzA-N HyMyEn = 0,(1)

because py — p® = 0,(1) and the second part of the product is asymptotically normal (i.e.,
bounded in probability) by the same argument as in point 1 (see Assumption V).

The same argument can be used also for the last term (A.8)) after rewriting it as

T = =>T = - . - o -
1=

-1
= = — |
(bn = ") - [QHZAQHZ] QuzA N VPHy(Iy — p'My) "My (Iy — p"My) &y
2T == “LoT S I R N -
—(pv —p")*- [QHZAQHz:l QuzA - NTVPHNMyMy(Ty — p)'My) 'En;
that is, each element of the sum is a product of an asymptotically normal random variable

and a random variable negligible in probability as N — +o00 and behaves thus as o,(1).

~ 2T == T = ~
. Because we proved VN (Ox — 0°) = [Qpu,AQu,]'QuzA - €x + 0,(1), VN(Oy — 6°)
is asymptotically normally distributed with a zero mean and finite asymptotic variance
matrix

-1

2T ==

o1 o -z 2T ==
VSGMM = |:QHZAQHZ:| QHZAQHE'HAQHZ [QHZAQHZ:|

= - 2T L1 =
For the weighting matrix A = [Qpgg] ", this clearly reduces to [Qy, Qe Quzl L. O
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