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Abstract

We extend the three-step generalized methods of moments (GMM) approach of
Kapoor et al. (2007), which corrects for spatially correlated errors in static panel
data models, by introducing a spatial lag and a one-period lag of the dependent
variable as additional explanatory variables. Combining the extended Kapoor et al.
(2007) approach with the dynamic panel data model GMM estimators of Arellano
and Bond (1991) and Blundell and Bond (1998) and specifying moment conditions
for various time lags, spatial lags, and sets of exogenous variables yields new spatial
dynamic panel data estimators. We prove their consistency and asymptotic normal-
ity for a large number of spatial units N and a fixed small number of time periods
T . Monte Carlo simulations demonstrate that the root mean squared error of spa-
tially corrected GMM estimates—which are based on a spatial lag and spatial error
correction—is generally smaller than that of corresponding spatial GMM estimates
in which spatial error correlation is ignored. We show that the spatial Blundell-Bond
estimators outperform the spatial Arellano-Bond estimators.
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1 Introduction

The separate literatures on dynamic panel data models and spatial econometric models have

matured rapidly and have reached (graduate) textbooks during the last decade.1 Panel data may

feature state dependence—i.e., the dependent variable is correlated over time—as well as display

spatial dependence, that is, the dependent variable is correlated in space. Applied economists’

interest in frameworks that integrate spatial considerations into dynamic panel data models is

a fairly recent development, however.2 For this model class, Elhorst (2005, 2008, 2010), Su and

Yang (2008), Yu et al. (2008), Lee and Yu (2010b), and Yu and Lee (2010) have analyzed the

properties of maximum likelihood (ML) estimators and combinations of ML and corrected least

squares dummy variable estimators. During the last decade, the flexible generalized method of

moments (GMM) framework for dynamic panels has gained popularity,3 but it has not received

much attention in the spatial econometrics literature yet. The papers by Lee and Liu (2010),

Lin and Lee (2010), and Liu et al. (2010) study spatial GMM estimators for static panels.4 Our

paper integrates the two strands of literature by investigating theoretically and numerically the

performance of various spatial GMM estimators for dynamic panel data models with fixed effects.

Many economic interactions among agents are characterized by a spatially lagged dependent

variable, which consists of observations on the dependent variable in other locations than the

‘home’ location. In the public finance literature, for example, local governments take into ac-

count the behavior of neighboring governments in setting their tax rates (cf. Wilson, 1999, and

Brueckner, 2003) and deciding on the provision of public goods (cf. Case et al., 1993). In the

1See Arellano (2003) and Baltagi (2008, Chapter 8) for an analysis of dynamic panel data models and
Anselin (1988, 2006) for a treatment of spatial econometrics.

2Badinger et al. (2004), Foucault et al. (2008), Jacobs et al. (2010), Brady (2011), and Bartolini and
Santolini (2012) provide empirical applications of spatial dynamic panel data models. See Lee and Yu
(2010a) and Elhorst (2011) for an overview of dynamic spatial panel models.

3The GMM framework can handle multiple endogenous explanatory variables, fixed effects, and unbal-
anced panels.

4Using a Monte Carlo simulation study, Kukenova and Monteiro (2009), and Elhorst (2010) are the only
ones exploring GMM in a spatial dynamic panel data framework. Kukenova and Monteiro (2009) analyze
a spatial system GMM estimator and include an endogenous covariate in addition to a spatial lag and the
time lag of the dependent variable. Elhorst (2010) briefly touches upon difference GMM estimators with
a spatial lag in order to compare them to spatial ML estimators. However, both studies do not correct
their spatial GMM estimators for potential spatial error correlation.
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trade literature, foreign direct investment (FDI) inflows into the host country depend on FDI

inflows into proximate host countries (cf. Blonigen et al., 2007). The spatial lag structure al-

lows one to explicitly measure the strength of the spatial interaction. Spatial error dependence

is an alternative way of capturing spatial aspects and may arise due to an omitted explanatory

variable.5 Spatially correlated errors can be thought of as analogous to the well-known practice

of clustering error terms by groups, which are defined based on some directly observable charac-

teristic of the group. In spatial econometrics, the groups are based on spatial ‘similarity,’ which

is typically captured by some geographic characteristic (e.g., proximity). Spatial panel data ap-

plications typically employ either a spatial lag model or a spatial error model. Ignoring spatial

error correlation in static panel data models may give rise to a loss of efficiency of the estimates

and may thus erroneously suggest that strategic interaction is absent. In contrast, disregarding

spatial dependency in the dependent variable comes at a relatively high cost because it gives rise

to biased estimates (cf. LeSage and Pace, 2009, p. 158). Rather than using either a spatial

lag model or spatial error model, we allow both processes to be simultaneously present. Indeed,

in their empirical tax competition model, Egger et al. (2005) find evidence that spatial error

dependence may exist above and beyond the theoretically motivated spatial lag structure.6

Non-spatial dynamic panel data models are usually estimated using the GMM estimator of

Arellano and Bond (1991), which differs from static panel GMM estimators in the set of moment

conditions and the matrix of instruments.7 The standard Arellano-Bond estimator is known to

be rather inefficient when instruments are weak (e.g., if time dependency is strong) because it

makes use of information contained in first differences of variables only. Alternatively, authors

have used Blundell and Bond’s (1998) system approach, which consists of both first-differenced

5Spatial error correlation may also result from measurement error in variables, a misspecified functional
form of the regression equation, the absence of a spatial lag or a misspecified weighting matrix.

6Case et al. (1993), Jacobs et al. (2010), Baltagi and Bresson (2011), and Brady (2011) also consider
spatial models with both spatial lag and spatial error components. Only the study by Jacobs et al. (2010)
uses a spatial dynamic panel data model.

7In dynamic panels with unobserved heterogeneity, Nickell (1981) shows that the standard least squares
dummy variable estimator is biased and inconsistent for large N and fixed small T . Anderson and Hsiao
(1982) suggest simple instrument variable estimators for a first differenced model, which uses the second
lag of the dependent variable—either in differences or levels—to instrument the lagged dependent variable.
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and level equations and an extended set of internal instruments. In the following, we contribute to

the literature by developing spatial variants of the Arellano-Bond and Blundell-Bond estimators.

Our new approach involves defining appropriate instruments to control for the endogeneity of the

spatial lag and time lag of the dependent variable while correcting for spatial error correlation.

For this purpose, we use new spatial instruments—which are based on a combination of several

spatial lags and a modification of the approach of Kelejian and Robinson (1993)—combined with

standard instruments for dynamic panel data models.

To account for spatial error correlation, we analyze the properties of our estimators first

without and later with a correction for spatial error correlation. Throughout the paper, we use

the term ‘spatial’ GMM estimators to refer to GMM estimators for panel data models including

a spatial lag with or without correction for spatial error correlation.8 If a spatial GMM estimator

corrects for spatial error correlation, we speak of ‘spatially corrected’ GMM estimators. Recently,

Kapoor et al. (2007) designed a GMM procedure to deal with spatial error correlation in static

panels. We extend their three-step spatial procedure to panels with a spatially lagged dependent

variable, a one-period time lag of the dependent variable, and unit-specific fixed effects. In

addition, we modify their second-stage moment conditions by considering the first differences of

errors. We analytically investigate the asymptotic properties of the estimators for large N and

fixed small T and briefly discuss the case of large T and small N .9 Specifically, we show that our

spatial GMM estimators are consistent and asymptotically normal in the first case and explain

that the number of instruments has to be bounded to obtain consistency in the latter case.

The finite-sample performance of the spatial GMM estimators is investigated by means of

Monte Carlo simulations. The simulation experiments indicate that the root mean squared error

(RMSE) of spatially corrected GMM estimates—which are based on a spatial lag and spatial

error correction—is generally smaller than that of corresponding spatial GMM estimates in which

spatial error correlation is ignored, particularly for strong positive error correlation. The RMSE of

8Anselin et al. (2008) call this model class a ‘time-space simultaneous model.’
9Yu et al. (2008) and Pesaran and Tosetti (2011) study the properties of ML estimators in the context

of dynamic, possibly nonstationary, panels with fixed effects and spatial error correlation, assuming both
N and T large.
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the spatial GMM estimates, however, is not much affected by the size of the spatial lag parameter.

We also show that the spatial Blundell-Bond estimators outperform the spatial Arellano-Bond

estimators. Finally, we find that spatial estimators using spatially weighted endogenous variables

as instruments in addition to weighted exogenous variables are more efficient than those based

on weighted exogenous variables.

The paper is organized as follows. Section 2 sets out our spatial dynamic panel data model.

Section 3 develops the two estimators for spatial dynamic panel data models, that is, the spa-

tially corrected Arellano-Bond and Blundell-Bond estimators. Section 4 proves the consistency

and asymptotic normality of the spatial estimators. Section 5 presents Monte Carlo simulation

outcomes. Finally, Section 6 concludes. The proofs are in the Appendix.

2 The Spatial Dynamic Panel Data Model

Consider a panel with i = 1, ..., N spatial units and t = 1, ..., T time periods. The focus is on

panels with a small number of time periods relative to the number of spatial units. Assume that

the data at time t are generated according to the following model:

yN (t) = λyN (t− 1) + δWNyN (t) + XN (t)β + uN (t), t = 2, ..., T, (1)

where yN (t) is an N × 1 vector of observations on the dependent variable, yN (t − 1) is a one-

period time lag of the dependent variable, WN is an N × N matrix of spatial weights, XN (t)

is an N × K matrix of observations on the strictly exogenous explanatory variables (where K

denotes the number of covariates), and uN (t) is an N × 1 vector of error terms.10 If we later

need to refer to observations from all applicable time periods in a given context, we simply

omit the time specification in brackets; here, for example, yN = [y>N (1), . . . ,y>N (T )]> or XN =

[X>N (1), . . . ,X>N (T )]>, where > denotes a transpose. Further, the scalar parameter λ is the

coefficient of the lagged dependent variable, δ is the spatial autoregressive coefficient, which

10Our specification does not include WNyN (t− 1), which yields a so-called spatiotemporal model. See
Yu et al. (2008) for such an approach. We leave this extension for future research.
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measures the endogenous interaction effect among units, and β is a K × 1 vector of (fixed) slope

coefficients.

The spatial lag is denoted by WNyN (t), which captures the contemporaneous correlation

between unit i’s behavior and a weighted sum of the behavior of units j 6= i. The elements

of WN (denoted by wij) are exogenously given, non-negative, and zero on the diagonal of the

matrix. Note that there is little formal guidance on choosing the ‘correct’ spatial weights because

many definitions of neighbors are possible. The literature usually employs contiguity (i.e., units

having common borders) or physical distance between units as weighting factors. We assume the

elements of WN to be row normalized so that each row sums to one. This is not the only possible

normalization, see, for example, Kelejian and Prucha (2010). Row normalization is standard in

spatial applications and therefore we use it in the simulations of Section 5.

The reduced form of equation (1) amounts to:

yN (t) = (IN − δWN )−1 [λyN (t− 1) + XN (t)β + uN (t)] , (2)

where IN is an identity matrix of dimension N × N . Stationarity of the model does not only

require that |λ| < 1, but also that the characteristic roots of the matrix λ(IN − δWN )−1 should

lie in the unit circle, which is the case if (cf. Elhorst, 2008)

|λ|+ δωL < 1 if δ < 0 and |λ|+ δωU < 1 if δ ≥ 0, (3)

where ωL and ωU denote the smallest (i.e., the most negative) and largest characteristic roots of

WN , respectively. If WN is row normalized, we find ωU = 1.11 Equation (3) yields a tradeoff

between the size of λ and δ.

Spatial error correlation may arise, for example, when omitted variables follow a spatial

pattern, yielding a non-diagonal variance-covariance matrix of the error term uN (t). In the case

of spatial error correlation, the error structure in (1) is a spatially weighted average of the error

components of neighbors, where the weights are given by a row-normalized N × N matrix MN

11No general results hold for the smallest characteristic root of the matrix of spatial weights. The lower
bound ωL is typically less than −1; see Elhorst (2008, p. 422).
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of spatial weights (with typical element mij). More formally, the spatially autoregressive process

is given by:

uN (t) = ρMNuN (t) + εN (t), (4)

where MNuN (t) is the spatial error term, ρ is a (second) spatially autoregressive coefficient,

and εN (t) denotes a vector of innovations. The interpretation of the ‘nuisance’ parameter ρ

is very different from δ in the spatial lag model in that there is no particular relation to a

substantive theoretical underpinning of the spatial interaction. We follow the common practice

in the literature by assuming WN 6= MN , which allows us to identify both spatial parameters δ

and ρ in the absence of exogenous variables and a dynamic lag.12 The spatial error process in

reduced form is uN (t) = (IN − ρMN )−1εN (t). If |ρ| < 1, the spatial error process is stable thus

yielding feedback effects that are bounded.

The vector of innovations is defined as:

εN (t) = ηN + vN (t), vN (t) ∼ iid(0, σ2
vIN ), (5)

where ηN is an N × 1 vector representing unobservable unit-specific fixed effects and vN (t) is

an N × 1 vector of independently and identically distributed (iid) error terms with variance σ2
v ,

which is assumed to be constant across units and time periods. In the following, we consider a

specification in which ηN is possibly correlated with the regressors.

Equations (1), (4), and (5) can be written concisely as:

yN (t) = ZN (t)θ + uN (t), (6)

uN (t) = (IN − ρMN )−1[ηN + vN (t)], (7)

where ZN (t) = [yN (t − 1),WNyN (t),XN (t)] denotes the matrix of regressors, θ = [λ, δ,β>]>

is a vector of K + 2 parameters. Our general dynamic spatial panel data model embeds various

special cases discussed in the literature. If λ = ρ = 0 and δ > 0, our model reduces to the familiar

spatial lag model (also known as the mixed regressive-spatial autoregressive model; see Anselin,

12In the simulations of Section 5, we also consider WN = MN .
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1988), whereas for λ = ρ = 0 and β = 0 we get a pure spatial autoregressive model. If λ = δ = 0

and ρ > 0, we obtain the spatial error model. If λ > 0 and δ = ρ = 0, we arrive at Arellano and

Bond’s dynamic panel data model. Finally, the general spatial dynamic panel data model boils

down to a standard static panel data model if λ = δ = ρ = 0.

3 Spatial Dynamic Panel Estimators

In this section, the spatial dynamic panel estimators are proposed. We extend the static panel

data model of Kapoor et al. (2007)—which explicitly corrects for spatial error correlation—to

include both a time lag and a spatial lag of the dependent variable. Because the time lag is

endogenous, we apply a panel GMM procedure. We propose sets of instruments for both the

time lag and spatial lag of the dependent variable. This procedure yields consistent spatially

corrected Arellano-Bond estimators and spatially corrected Blundell-Bond estimators, which will

be derived in three stages.

3.1 The First Stage

3.1.1 Arellano-Bond Estimator

To estimate θ, we employ a GMM estimator defined by a set of linear moment conditions for the

error term uN (t). Later, equations identifying θ are obtained by substituting for the error term

from the model equation, uN (t) = yN (t)− ZN (t)θ.

First, to eliminate the unit-specific fixed effects ηN from εN (t), we take first differences of (6)

and (7):

∆yN (t) = ∆ZN (t)θ + ∆uN (t), (8)

∆uN (t) = (IN − ρMN )−1∆εN (t) = (IN − ρMN )−1∆vN (t), t = 3, ..., T, (9)

where ∆qN (t) ≡ qN (t) − qN (t − 1) for qN (t) = {yN (t),ZN (t),uN (t), εN (t),vN (t)}. Note that

the differenced model is specified only in T − 2 time periods (and thus T ≥ 3): one observation
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is lost due to the first differencing operation and another observation is dropped because of the

one-period time lag of the dependent variable.

In the differenced model, both the time lag and the spatial lag of the dependent variable

are endogenous. In addition, the two endogenous regressors are correlated with each other.

Consistent GMM estimation is possible if there are at least K+2 instruments that are correlated

with the time lagged, spatially lagged, and exogenous variables and are uncorrelated with the

errors ∆uN (t) for each t = 3, . . . , T . First, the moment conditions identifying the coefficients of

the strictly exogenous variables are

E[∆X>N (t)∆uN (t)] = 0, t = 3, ..., T, (10)

where E denotes an expectation operator.

Next, Arellano and Bond (1991) propose to use the levels of the dependent variable, yN (t−

2), ...,yN (1), as instruments for the time lag of the dependent variable in first differences (i.e.,

∆yN (t − 1)). The instruments are correlated with the time lag of the dependent variable in

first differences ∆yN (t− 1), but are uncorrelated with the ‘future’ error term in first differences,

∆uN (t), since the unit-specific effects are eliminated from the differenced variables. This property

holds even in the spatial model defined by (6) and (7) because the spatial correlation applies only

within a given time period t and, hence, yN (t − 2) is correlated with uN (t − 2), ...,uN (1), but

cannot be correlated with uN (t) and uN (t− 1). Consequently, we impose the following moment

conditions to identify λ:

E[y>N (t− s)∆uN (t)] = 0, t = 3, ..., T, s = 2, ..., t− 1. (11)

Equation (11) yields (T − 2)(T − 1)/2 moment conditions for a given N .

For the spatial lag, we consider two alternative set of instruments. The first approach instru-

ments the spatial lag by various time lags of the spatially lagged dependent variable. The validity

of such moment conditions follows by the same argument as given in the previous paragraph for

equation (11). This approach implies the following moment conditions for δ:

E[{Wl
NyN (t− s)}>∆uN (t)] = 0, t = 3, ..., T, s = 2, ..., t− 1, l = 1, ..., L, (12)

8



where l indicates various powers of WN and the integer L is the maximum spatial lag used

for instrumenting. For each power l ≥ 1, equation (12) yields again (T − 2)(T − 1)/2 moment

conditions. The second approach uses instruments based on a modification of Kelejian and

Robinson (1993). We expand the expected value of the spatial lag WNyN (t), which depends

on WNXN (t)β [see (1)], and take first differences to propose instruments WN∆XN (t). As

the strictly exogenous variables ∆XN (t) are not correlated with the error term ∆uN (t), the

instruments satisfy the following moment conditions:

E[{WN∆XN (t)}>∆uN (t)] = 0, t = 3, ..., T. (13)

Note that the moment conditions specified for the spatial autoregressive parameter δ for vari-

ous time lags s, spatial lags l, and sets of exogenous variables will have different precision and

power depending on the coefficients in model (1): large λ, δ, and β imply stronger correlation of

WNyN (t) with the instruments given in (12) for s ≥ 1 and l ≥ 1.

For each time period, we specified J ≥ K + 2 moment conditions, which can be concisely

written as E[H>N,AB(t)∆uN (t)] = 0, where the columns of HN,AB(t) represent the instruments

∆XN (t),yN (t− s),Wl
NyN (t− s), and WN∆XN (t) given above. Merging the information from

all available time periods, the proposed GMM estimator will minimize

[H>N,AB∆uN ]>AN,AB[H>N,AB∆uN ]

N
=

[H>N,AB(∆yN −∆ZNθ)]>AN,AB[H>N,AB(∆yN −∆ZNθ)]

N

with respect to θ, where HN,AB is a block-diagonal matrix consisting of blocks HN,AB(t), t =

3, . . . , T and AN,AB is a GMM weighting matrix (recall that here ∆yN = [∆y>N (3), . . . ,y>N (T )]>

and ∆ZN = [∆Z>N (3), . . . ,∆Z>N (T )]>). The resulting first-stage spatial Arellano-Bond estimator

then becomes:

θ̂N =
[
∆Z>NHN,ABAN,ABH>N,AB∆ZN

]−1
∆Z>NHN,ABAN,ABH>N,AB∆yN . (14)

The weighting matrix AN,AB recommended under the assumption of iid errors uN by Arellano

and Bond (1991) is equal to the J × J matrix AN,AB = [H>N,ABGN,ABHN,AB/N ]−1, where
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GN,AB = G⊗ IN is an N(T −2)×N(T −2) weighting matrix with elements (i, j = 1, . . . , T −2)

Gij =



2 if i = j

−1 if i = j + 1

−1 if j = i+ 1

0 otherwise

, (15)

and ⊗ denotes the Kronecker product. Although not necessarily optimal under the spatial cor-

relation of errors, we do not have a better choice at this stage without knowledge of ρ.

3.1.2 Blundell-Bond Estimator

The standard Arellano-Bond estimator is known to be rather inefficient when instruments are

weak because it makes use of information contained in first differences of variables only. To

address this shortcoming, the GMM approach of Blundell and Bond (1998)—often referred to

as the system GMM estimator—extends the Arellano and Bond (1991) conditions by specifying

moment conditions also for variables in levels rather than only for their first differences. The

Blundell-Bond estimator for the spatially autoregressive dynamic panel model can be derived by

stacking equation (8) and:

yN (t) = ZN (t)θ + uN (t), t = 3, . . . , T. (16)

The Blundell and Bond (1998) moment conditions for the level equation (16), which contains

individual effects ηN , are constructed using the first-differenced variables as instruments (i.e.,

using instruments not containing the individual effects). For example, for the strictly exogenous

variables

E[∆X>N (t)uN (t)] = 0, t = 3, ..., T, (17)

which—in contrast to the estimator in Section 3.1.1—requires the individual effects to be inde-

pendent of ∆XN (t). The equivalents of the instruments for both the time and spatially lagged

dependent variables given in (11), (12), and (13) for model (8) can thus be specified for model

10



(16) as

E[∆y>N (t− s)uN (t)] = 0, t = 3, ..., T, s = 1, ..., t− 2,

E[{Wl
N∆yN (t− s)}>uN (t)] = 0, t = 3, ..., T, s = 1, ..., t− 2, l = 1, 2, ..., L,

E[{WN∆XN (t)}>uN (t)] = 0, t = 3, ..., T,

respectively. These moment conditions can be concisely written as E[H>N,BB(t)uN (t)] = 0, where

the columns of HN,BB(t) represent the instruments ∆XN (t),∆yN (t − s),Wl
N∆yN (t − s), and

WN∆XN (t) given above.

Merging the information from all available time periods, let HN,BB be a block-diagonal matrix

consisting of blocks HN,BB(t), yN = [y>N (3), . . . ,y>N (T )]>, and ZN = [Z>N (3), . . . ,Z>N (T )]> for

t = 3, . . . , T . These instruments for the level equation (16) are typically used jointly with the

instruments introduced in Section 3.1.1 for the differenced equation (8). To define the Blundell-

Bond estimator for the spatially autoregressive dynamic panel model, we thus define merged

matrices for both systems: the vector of responses ~yN = [∆y>N ,y
>
N ]>, the matrix of explanatory

variables ~ZN = [∆Z>N ,Z
>
N ]>, the vector of errors ~uN = [∆u>N ,u

>
N ]>, the instruments ~HN =

diag{HN,AB,HN,BB}, and the weighting matrices ~GN = diag{GN,AB, IT−2 ⊗ IN} and ~AN =

[~H
>
N
~GN

~HN/N ]−1 (see Kiviet (2007) for alternatives).13 Minimizing

1

N
(~H
>
N∆~uN )>~AN (~H

>
N∆~uN ) =

1

N

[
~H
>
N (∆~yN −∆~ZN~θ)

]>
~AN

[
~H
>
N (∆~yN −∆~ZN~θ)

]

with respect to θ then leads to the first-stage spatial Blundell-Bond estimator:

θ̂N =
(
~Z
>
N
~HN

~AN
~H
>
N
~ZN

)−1
~Z
>
N
~HN

~AN
~H
>
N~yN . (18)

Given that the forms (14) and (18) are identical, we will use for the sake of simplicity only the

notation ~yN ,~uN ,~ZN , ~HN , . . . from now on, representing the vectors and matrices of responses,

errors, covariates, instruments and so on used for estimation, be it in the case of the spatial

13Without prior knowledge of (εi, ηi) moments, an asymptotically optimal weighting matrix cannot be
constructed in the first step (cf. Blundell and Bond, 1998).
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Arellano-Bond or Blundell-Bond estimators.

3.2 The Second Stage

Having derived the first-stage estimate θ̂N of regression coefficients, the parameters ρ and σ2
v of

the error distribution can be estimated. To estimate them, we construct a GMM estimator based

on errors uN (t), which are in turn replaced by the regression residuals ûN (t) = yN (t)−ZN (t)θ̂N .

The three proposed moment conditions are a modification of those derived by Kapoor et al.

(2007) for random effects static panel models. The main difference is that we base the estimation

of ρ and σ2
v on the first differences of errors to account for the presence of individual effects.

To define the moment conditions, let us first denote (with a slight abuse of notation) ∆εN =

[∆ε>N (2), . . . ,∆ε>N (T )]> and ∆uN = [∆u>N (2), . . . ,∆u>N (T )]>. Their counterparts spatially trans-

formed by matrix MN are ∆ε̄N = (IT−1 ⊗MN )∆εN , ∆ūN = (IT−1 ⊗MN )∆uN , and ∆¯̄uN =

(IT−1 ⊗MN )∆ūN , which implies that

∆εN ≡ ∆uN − ρ∆ūN , ∆ε̄N ≡ ∆ūN − ρ∆¯̄uN . (19)

The three equations identifying ρ and σ2
v are as follows (see Appendix A.1 for a derivation):

E


1

N(T−1)∆ε>N∆εN

1
N(T−1)∆ε̄>N∆ε̄N

1
N(T−1)∆ε̄>N∆εN

 =


2σ2

v

2σ2
v tr(M>

NMN )/N

0

 , (20)

where tr(M>
NMN ) denotes the trace of the matrix M>

NMN . If we now substitute for ∆εN and

∆ε̄N in (20), using ∆uN and ∆ūN [see (19)], we obtain the following moment conditions:

E[γN − ΓN (ρ, ρ2, σ2
v)
>] = 0, (21)

where γN = [ 1
N(T−1)∆u>N∆uN ,

1
N(T−1)∆ū>N∆ūN ,

1
N(T−1)∆ū>N∆uN ]> and

ΓN =


2

N(T−1)∆u>N∆ūN − 1
N(T−1)∆ū>N∆ūN 2

2
N(T−1)∆ū>N∆¯̄uN − 1

N(T−1)∆¯̄u>N∆¯̄uN
2
N tr(M>

NMN )

2
N(T−1)

[
∆ū>N∆ūN + ∆¯̄u>N∆uN

]
− 1
N(T−1)∆¯̄u>N∆ūN 0

 . (22)
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The nonlinear system of equations (21) can be solved by GMM to obtain estimates of ρ and

σ2
v . Since the ∆uN ’s are not known, we have to estimate them by regression residuals from (8):

∆ûN = ∆yN −∆ZN θ̂N , where θ̂N is an initial estimator obtained in Section 3.1. Denoting the

analogs of γN and ΓN based on the regression residuals ∆ûN by γ̂N and Γ̂N , respectively, the

GMM estimator of ρ and σv based on (21) is defined by

(ρ̂N , σ̂v,N ) = arg minρ,σv [γ̂N − Γ̂N (ρ, ρ2, σ2
v)
>]>B̂N [γ̂N − Γ̂N (ρ, ρ2, σ2

v)
>], (23)

where B̂N is a GMM weighting matrix; in Section 5, we use only B̂N = I3.

3.3 The Third Stage

In the final step, the estimate of ρ can be used to spatially transform the variables in (8) and

(16) to yield models with cross-sectionally uncorrelated errors:

∆ỹN (t) = ∆Z̃N (t)θ + ∆εN (t), (24)

ỹN (t) = Z̃N (t)θ + εN (t), (25)

where p̃N (t) = (IN − ρ̂NMN )pN (t) for pN = {yN ,ZN}. For this system, we can construct the

instruments, moment conditions, and GMM estimator in the same way as in Section 3.1. Note

that the moment conditions of Section 3.1 were constructed for any kind of spatial dependence

also including the currently proposed errors (IN− ρ̂NMN )uN = (IN− ρ̂NMN )(IN−ρ0MN )−1εN ,

where ρ0 represents the true value of the spatial correlation coefficient. Denoting the matrix of

dependent, explanatory, and instrumental variables used in all moment conditions ~̃yN , ~̃ZN , and

~̃HN as in Section 3.1.2, the final-stage GMM estimator for the spatially transformed model (24)

or (24)–(25) equals, analogously to (18),

θ̃N =

[
∆~̃Z
>
N
~̃H~̃AN

~̃H
>
N∆~̃ZN

]−1

∆~̃Z
>
N
~̃HN

~̃AN
~̃H
>
N∆~̃yN , (26)

where ~̃AN ≡
[
~̃H
>
N
~GN

~̃HN/N

]−1

. We will show in Section 4 that the weighting matrix ~̃AN

is the optimal weighting matrix for the Arellano-Bond estimator provided that εN = (IN −

13



ρ0MN )(yN − ZNθ
0) is homoscedastic, where θ0 represent the true value of θ (which requires

that MN is specified correctly).

Note that we do not attempt to estimate the optimal weighting matrix (see Section 4.2), even

though this is certainly possible. Given the size of the weighting matrix (in case of the Blundell-

Bond estimator for T = 5, up to 50 moment equations are used) and practically relevant sample

sizes (e.g., T = 5 and N = 60, see Section 5), we feel there is little to no benefit in using two-step

GMM in these models (especially given the risk of worsening the precision of estimation due to

mis-estimation of the weighting matrix); see Appendix A of Blundell and Bond (1998).

4 Asymptotic Properties of the Estimators

To formulate the asymptotic results for the estimators θN [given in (18)], ρ̂N and σ̂v,N [given

in (23)] and θ̃N [given in (26)], let θ0, ρ0, and σ0
v denote their true values. Note that θN (θ̃N )

can represent here the first (third) stage spatially corrected Arellano-Bond or Blundell-Bond

estimator depending on which moment conditions are used. Further, an extended notation for

the spatial matrices is needed: in the case of the Arellano-Bond estimator, let ~IN = IT−2 ⊗ IN ,

~MN = IT−2⊗MN , and ~WN = IT−2⊗WN ; in the case of the Blundell-Bond estimator, let~IN =

I2(T−2)⊗IN , ~MN = I2(T−2)⊗MN , and ~WN = I2(T−2)⊗WN . Additionally, we will extend the ‘~’

notation also to the vectors of error terms: ~uN = ~yN − ~ZNθ0, ~εN = (~IN − ρ0 ~MN )(~yN − ~ZNθ0),

and ~εN = (0,ηN )>+~vN . In what follows, we will first discuss the imposed assumptions (Section

4.1) and then the derived asymptotic results (Section 4.2).

4.1 Assumptions

First, the assumptions needed for the consistency and asymptotic normality of the three-stage

spatially corrected GMM estimator are specified. We use here high-level assumptions so that

some strict structure does not have to be imposed on the triangular array of dependent and

explanatory variables ~yN and ~XN . These assumptions are conceptually similar to Kapoor et

14



al. (2007), including the assumption of homoscedasticity, and can be relaxed by the method of

Kelejian and Prucha (2010), who allow for unknown heteroscedasticity in the innovations.

Throughout the section, we assume N → +∞ and T = c0, where c0 is a constant. Although

this is a standard setup in the literature, let us note that, if N is fixed and T → +∞, the

proposed estimators will be biased because the number of instruments for some moment conditions

is increasing with T (see Alvarez and Arellano, 2003, and Bun and Kiviet, 2006). Bun and

Kiviet (2006), however, show that limiting the number of instruments guarantees (asymptotic)

unbiasedness of the discussed GMM estimators even if N is fixed and T is large and increasing

above any bound. While the theoretical results presented here for a fixed T apply to any number

of instruments, we recommend for these theoretical and also practical reasons to limit the number

of instruments; in Section 5, the simulation results are obtained using at most three dynamic and

three spatial lags.

Now, the first set of assumptions specifies standard assumptions regarding the error terms,

which guarantee the validity of the moment conditions specified in Section 3 and the existence

of finite second moments for the central limit theorem. The only more restrictive assumption

on the individual effects follows from Blundell and Bond (1998), see Assumption E2 below, and

the existence of the fourth moments, which is made for the convenience of using some auxiliary

results of Kelejian and Prucha (2010).

Assumption E

1. The error vectors vN (t) = [vN1(t), . . . , vNN (t)]> are independent and identically distributed

for eachN ∈ N and t = 1, . . . , T with zero mean E[vNi(t)] = 0, a finite variance Var[vNi(t)] =

σ2
v , i = 1, . . . , N , and uniformly bounded fourth moments. Further, vN (t) is assumed to

be independent of ηN and XN (t) for any t = 1, . . . , T .

2. The fixed effects ηN have uniformly bounded fourth moments. In the case of the Blundell-

Bond estimator, ηN is additionally assumed to be uncorrelated with ∆ZN (s) and ex-

planatory variables have a time-invariant mean, E ZN (t) = E ZN (s), s = 1, ..., t − 1 and

15



t = 2, . . . , T .

3. The variance of Var(~εN |~HN ) = ~Σε,N = Σε ⊗~IN , where Σε is a positive-definite matrix.

4. The variance of Var(~uN |~HN ) = ~Σu,N = (~IN − ρ0 ~MN )−1~Σε,N (~IN − ρ0 ~MN )−1>.

The spatial structure described by matrices WN and MN is assumed to follow Assumption S,

which is made slightly more general than specified in Section 2—which assumed row normalized

matrices—by allowing various normalizations of spatial weight matrices (see Kelejian and Prucha,

2010).

Assumption S

1. All diagonal elements of WN and MN are zero.

2. There exist finite positive constants K
′
δ,K

′′
δ ,K

′
ρ, and K

′′
ρ such that matrices IN−δWN and

IN − ρMN are non-singular for all δ ∈ (−K ′
δ,K

′′
δ ) and ρ ∈ (−K ′

ρ,K
′′
ρ ).

3. The absolute values of the row and column sums of WN , MN , (IN − δ0WN )−1, and

(IN − ρ0MN )−1 are bounded uniformly in N ∈ N.

The assumptions concerning the explanatory variables and the imposed instrumental variables are

high level assumptions, which do not impose a particular structure or distributional assumptions,

but require only the existence of particular probability limits and the corresponding expectations

needed for the central limit theorem. The latter is used in the proof of the asymptotic normality

of θ̂N . Note that the assumption of the uniformly bounded (2 + ψ)th moments, see Assumption

V3 below, which implies the uniform integrability of the squared moment equations, replaces a

more restrictive, though often used condition of bounded nonstochastic regressors (e.g., Kapoor

et al., 2007).

Assumption V

1. ~ZN has a full rank almost surely.
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2. ~HN has a rank greater or equal to K + 2 almost surely.

3. The expectations E(~ZN,ij)
2+ψ and E(~HN,ij~εN,k)

2+ψ are bounded uniformly in i, j, k for

some ψ > 0.

4. The limits of variance matrices limN→∞ E(~H
>
N
~Σu,N

~HN/N) = ~QHΣH , limN→∞ E(~H
>
N
~M
>
N
~MN

~Σu,N
~MN

~M
>
N
~HN/N) = ~QHMΣMH , limN→∞ E[~H

>
N (~IN−ρ0 ~MN )~Σε,N (~IN−ρ0 ~MN )>~HN/N ] =

~QHEH , and limN→∞ E(~H
>
N
~M
>
N
~Σε,N

~MN
~HN/N) = ~QHMEMH are finite and positive defi-

nite.

5. The limits of matrices p-limN→∞N
−1~H

>
N
~ZN = ~QHZ , p-limN→∞N

−1~H
>
N
~MN

~ZN = ~QHMZ ,

p-limN→∞N
−1~H

>
N
~M
>
N
~ZN = ~QHM>Z , and p-limN→∞N

−1~H
>
N
~M
>
N
~MN

~ZN = ~QHMMZ are

finite and have full rank.

6. The matrix ~̃QHZ = ~QHZ − ρ0(~QHMZ + ~QHM>Z) + (ρ0)2~QHMMZ has full rank.

Finally, we have to specify assumptions important for the GMM estimator itself, that is, condi-

tions on the parameter space and the GMM weighting matrices. They mainly guarantee that the

spatial correlation matrices IN − δWN and IN − ρMN are invertible and GMM matrices ~AN ,

BN , and ΓN are non-singular.

Assumption G

1. The parameter space for θ = (λ, δ,β)> is Θ = (−1, 1)× (−K ′
δ,K

′′
δ )× RK .

2. Non-singular symmetric matrices ~AN satisfy p-limN→∞ ~AN = ~A, where ~A is a finite

positive definite matrix.

3. Non-singular symmetric matrices ~̃AN satisfy p-limN→∞
~̃AN = ~̃A, where ~̃A is a finite

positive definite matrix.

4. The parameter space Φ for φ = (ρ, σv)
> is a compact subset of (−K ′

ρ,K
′′
ρ )×R+. Moreover,

φ0 = (ρ0, σ0
v)
> ∈ Φ◦.
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5. The smallest eigenvalues of the matrix Γ>NΓN are uniformly larger than κΓ > 0.

6. Positive definite matrices B̂N satisfy p-limN→∞(B̂N − BN ) = 0, where BN are non-

stochastic positive definite matrices with eigenvalues uniformly larger than κB > 0 and

uniformly smaller than KB > 0.

4.2 Consistency and Asymptotic Normality

In this section, the asymptotic properties of the proposed estimators are derived. As the regression

parameters are estimated by a linear GMM estimator, we only have to account for the spatial

error correlation and its estimation to derive the asymptotic distributions in the classical way. On

the other hand, the estimation of the spatial error correlation is nonlinear and thus the uniform

identification of the parameters has to be verified to guarantee consistency (cf. Kelejian and

Prucha, 2010).

We will show first that the initial estimator θ̂N defined in (14) or (18) (recall that the latter

definition includes the first one as a special case) is consistent.

Theorem 1 Under Assumptions E, S, V, and G1–G2, the GMM estimator θ̂N defined in (18)

is
√
N -consistent and

√
N(θ̂N − θ0)

L→ N(0, [~Q
>
HZ
~A~QHZ ]−1~Q

>
HZ
~A~QHΣH

~A
>~QHZ [~Q

>
HZ
~A~QHZ ]−1)

as N → +∞.

Proof. See Appendix A.2.1. �

Although the asymptotic distribution of θ̂N is derived in Theorem 1, it is not practically

applicable at this stage: the variance matrix ~QHΣH of ~uN depends on an unknown parameter ρ0

(see Assumption E4). The spatial autocorrelation parameter ρ0 can be estimated by ρ̂N defined

by (23). Its consistency is proved in the following theorem:

Theorem 2 Let Assumptions E, S, V3, and G4–G6 hold and θ̂N be a
√
N -consistent estimator

of θ0,
√
N(θ̂N − θ0) = Op(1). Then the GMM estimator φ̂N = (ρ̂N , σ̂v,N )> of φ0 = (ρ0, σv)

> is

consistent, φ̂N → φ0 in probability as N →∞.
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Proof. See Appendix A.2.2. �

Having a consistent estimate ρN of ρ0, the asymptotic variance in Theorem 1 can be evaluated.

More importantly, it can be used to transform the model (24)–(25) to obtain spatially uncorrelated

errors as described in Section 3.3. The asymptotic properties of the GMM estimator based on

the model (24)–(25) are given in the next theorem.

Theorem 3 Under Assumptions E, S, V, and G1–G3, the GMM estimator θ̃N defined in (26)

is
√
N -consistent and

√
N(θ̃N − θ0)

L→ N(0, [~̃Q
>
HZ
~̃A~̃QHZ ]−1 ~̃Q

> ~̃A~̃QHEH
~̃A
> ~̃QHZ [~̃Q

>
HZ
~̃A~̃QHZ ]−1)

as N → +∞. For ~̃A = [~QHEH ]−1, this asymptotic variance matrix reduces to [~̃Q
>
HZ
~Q
−1

HEH
~̃QHZ ]−1.

Proof. See Appendix A.2.3. �

It is well-known that the optimal weighting matrix for GMM equals the inverse of the variance

of the moment conditions, which in the case of the third-stage estimator still depends on ρ0 and

is asymptotically equal to

~QHEH = lim
N→+∞

E[~H
>
N (~IN − ρ0 ~MN )>~Σε,N (~IN − ρ0 ~MN )~HN/N ],

see Assumption V4 and Theorem 2. Given an estimate ρ̂N , ~QHEH can be estimated by

~̂QHEH,N =
1

N
~H
>
N (~IN − ρ̂N ~MN )>~Σε,N (~IN − ρ̂N ~MN )~HN =

1

N
~̃H
>
N
~Σε,N

~̃HN

and the weighting matrix proposed in Section 3.3 is thus equal to ~̃AN = ~̂Q
−1

HEH,N if ~GN = ~Σε,N ,

that is, if the errors εN are homoscedastic and the Arellano-Bond estimator is considered.

Given the optimal weighting matrix, it is worth noting that, for ρ0 → 0, the optimal third-

stage GMM estimator converges to the first-stage estimator since ~̃HN = ~HN and εN = uN for

ρ̂N = ρ0 = 0. A general comparison of the variances of the first-stage and third-stage estimators

is, however, difficult as they depend on a general spatial matrix ~MN by means of (~IN −ρ0 ~MN )−1

and (~IN −ρ0 ~MN ), respectively. Some indication of the benefits of the spatial error correction are

therefore provided by means of simulations in Section 5.
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5 Monte Carlo Simulations

To assess the performance of the estimators presented in Section 3, this section reports a Monte

Carlo experiment. The design of the Monte Carlo experiment is discussed first before turning to

the results.

5.1 Simulation Design

We report the small sample properties of the estimators using data sets generated based on the

spatial dynamic panel data model of Section 2. In generating the data, we follow a three-step

procedure. First, we generate the vector of covariates, which includes only one exogenous variable.

Following Baltagi et al. (2007), the exogenous variable is defined as:

XN (t) = ς + χ(t), ς ∼ iid U[−7.5, 7.5], χ ∼ iid U[−5, 5], (27)

where ς represents the unit-specific component and χ(t) denotes a random component; both are

drawn from a uniform distribution U defined on a pre-specified interval.

The second step, using (4), (5), and

ηN ∼ iid U[−1, 1], vN ∼ iid N(0, IN ), (28)

yields the error component uN (t). The third step generates data for the dependent variable yN (t)

and the spatial lag WNyN (t). The data generation process is given by (6) and (7) for t = 2, ..., T

and y(1) = ηN . The first 100− T observations of the Monte Carlo runs are discarded to ensure

that the results are not unduly affected by the initial values (cf. Hsiao et al., 2002).14

Following standard practice in the literature, we use different weight matrices for the spatial

lag and spatial error component, that is, WN 6= MN . To accommodate a large N , we generate

artificial contiguity matrices. In doing so, we randomly assign a fixed number of neighbors n to

each spatial unit i—while maintaining symmetry—and row normalize the matrices. Throughout

the simulations, we keep the weights constant for a given N . In the benchmark scenario, we

14We have checked the robustness of the results with respect to changes in the initial values.
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assume five neighbors of each spatial unit, implying 91.7% zero entries, the so-called sparsity

of the weight matrix. As a robustness check, we vary the number of neighbors from 5 to 20 in

the random contiguity matrices. In addition, we consider the Bucky ball contiguity specification,

which assumes a fixed location of unit i’s neighbors. The matrix is shaped like a soccer ball, where

the distance from any point to its nearest neighbors is the same for all the points.15 Depending

on whether unit i is a pentagon or hexagon, there are five or six neighbors. Because of its fixed

geographic structure, the Bucky ball specification implies WN = MN . Finally, we consider row-

normalized weight matrices based on the inverse of squared geographical distance (in kilometers)

between the capitals of countries i and j. The bilateral distances are randomly drawn from the

distance matrix for 225 countries provided by CEPII.16

In the benchmark specification, we use N = 60 and T = 5. The parameters in (6) and

(7) take on the following values in the data generation process. As is standard practice in the

literature, the coefficient of the exogenous explanatory variable β is set to unity. We set λ = 0.3

and δ = 0.5, so that the stationarity conditions (3) are satisfied, and the spatial autocorrelation

coefficient ρ equals 0.3. For each experiment, the performance of the estimators is computed based

on 1000 replications. Following Kapoor et al. (2007) and others, we measure performance by the

RMSE =

√
bias2 +

( q1−q2
1.35

)2
, where bias denotes the difference between the median and the ‘true’

value of the parameter of interest (i.e., the value imposed in the data-generating process) and

q1− q2 is the interquantile range (where q1 is the 0.75 quantile and q2 is the 0.25 quantile). If the

distribution is normal, (q1 − q2)/1.35 comes close (aside from a rounding error) to the standard

deviation of the estimate.

5.2 Results

Table 1 reports the RMSE in estimating the spatial autoregressive parameter δ for various esti-

mators and different values of N starting at the benchmark value of N = 60 (T = 5 is fixed). The

rows report four different types of spatial GMM estimators all of which instrument the time lag of

15The Bucky ball specification assumes N = 60 and therefore cannot be used to vary N .
16See http://www.cepii.fr/anglaisgraph/bdd/distances.htm.
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the dependent variable in addition to addressing spatial aspects. We consider a spatial Arellano-

Bond estimator (labeled AB) and a spatial Blundell-Bond estimator (labeled BB), which do not

correct for spatial error correlation and correspond to the first stage of the three-stage spatial

GMM procedure. The spatially corrected Arellano-Bond estimator (labeled SAB) and spatially

corrected Blundell-Bond estimator (labeled SBB) explicitly correct for spatial error correlation

and correspond to the final stage of the three-stage spatial GMM procedure (as discussed in

Section 3.3). We use three time lags in instrumenting the one-period time lag of the dependent

variable. To instrument the spatial lag, we use various instrument sets: (i) the modified Kelejian

and Robinson (1993) instruments (indicated by the subscript X); (ii) time lags s and spatial lags

l of the spatially lagged dependent variable (indicated by the subscript Y ); and (iii) a combina-

tion of the instrument sets X and Y (represented by the subscript XY ). The numbers in the

subscripts denote the number of time lags s and spatial lags l of Wl
NyN (t−s), where we consider

only cases with an equal number of time lags and spatial lags. The instrument set Y captures

the case with only endogenous variables as instruments.17

We find that the spatially corrected estimators have generally a smaller RMSE than their

non-spatially corrected counterparts. Additionally in the benchmark case, the system-based

GMM estimators (labeled BB and SBB) give rise to a smaller RMSE than the difference-based

GMM estimators (labeled AB and SAB).18 For models with a large λ, which generates a strong

time dependency, the difference in RMSEs between system-based GMM estimators and difference-

based GMM estimators becomes larger; the RMSE increases for the SAB estimator and decreases

for the SBB estimator. In the benchmark case of N = 60 and λ = 0.3, SBB with instrument

set XY and three time and spatial lags shows the smallest RMSE.19 The bias of this estimator

(not shown in the table, see Č́ıžek et al., 2011) amounts to 5.8% of the true parameter value.

Note that the specifications without any exogenous variables in the instrument set yields larger

RMSEs than those with both X and Y instrument sets or X instrument set, particularly for

17The estimator can also be applied if there are no exogenous variables.
18Č́ıžek et al. (2011) show that this applies for various values of δ and λ.
19This is not a general result. Depending on the parameter values, either one, two, or three spatial lags

is optimal. See below.
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the difference-based estimators. Finally, using the XY instrument set improves the efficiency of

the spatially corrected estimates compared to using only the X instrument set. However, this is

not always the case for the AB/BB estimates. The bias of the AB and SAB estimators with X

instruments only amounts to 4.2% and 3.95% of δ, respectively (see Č́ıžek et al., 2011), which is

much smaller than that found by Elhorst (2010), who reports a value of 20% of δ for his version

of the AB estimator.20

In line with expectations, the RMSE in estimating δ decreases if N increases and thus yields

consistent estimates of the spatial interaction effect. Extending the number of spatial units

from 60 to 500 reduces the RMSE by more than 50% in the case of estimators using the spatially

weighted exogenous variables WN∆XN (t) as instruments and by 35–40% in the case of estimators

using only the spatially weighted lagged dependent variables Wl
NyN (t− s) as instruments. The

AB estimator using the Y instrument set exhibits a very large RMSE even for large N , which

likely indicates weak instruments. For N = 200, the optimal number of spatial lags in the XY

instrument set is smaller than three.

Table 2 presents the RMSE in estimating the parameter δ for various estimators and various

values of T starting at the benchmark value of T = 5 (N = 60 is fixed). If the time dimension

of the panel rises, techniques to limit the proliferation of instruments are needed. As before, we

limit the lag depth of the dynamic instruments to three, which reduces the RMSE in estimating

the spatial lag parameter substantially at higher values of T (cf. Jacobs et al., 2009). Increasing

the number of time periods from 5 to 20 in the benchmark case of λ = 0.3 reduces the average

RMSE by 34.8%. The decline in RMSE across difference-based estimators and system-based

estimators is rather similar. If λ takes on a value of 0.7, the fall in RMSE of the difference-based

estimators induced by a rise in T from 5 to 20 is larger than that of the system-based estimators

(57% compared with 51%).

Table 3 presents the RMSE of the estimators for several values of δ in the interval [0.2, 0.7]

and for different values of ρ. We vary ρ in the interval [−0.8, 0.8], where a negative ρ implies that

20Elhorst (2010) does not correct for spatial error correlation, employs slightly different parameters in
the Monte Carlo simulations, and uses a different instrument set.
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an unobserved positive shock in the equation for spatial unit i decreases the dependent variable

in other spatial units i 6= j. To make sure the stationarity condition (3) is met for large values of

δ, we have set λ to 0.2. We find that non-spatially corrected GMM estimators always have larger

RMSEs in estimating λ, δ, and β than their spatially corrected counterparts. The difference in

RMSEs between BB and SBB estimators increases for large positive values of ρ, is zero for a

pure spatial lag model (i.e., ρ = 0), and takes on small positive values for negative ρ values.

For intermediate values of ρ, the BB estimators with XY instruments and three spatial and time

lags yield smaller RMSEs than the BB estimators with X instruments. However, at high positive

values of ρ, in estimating λ and δ, the BB estimators with the set of XY instruments perform

less well than those with the set of X instruments. Once we correct for spatial error correlation,

the estimators with XY instruments have the lowest RMSE again. Regarding ρ, a larger RMSE

is found at negative values of ρ and a smaller RMSE is obtained at positive values of ρ. Finally,

the table shows that the RMSE of δ is not affected much by the size of the spatial lag parameter.

Table 4 investigates the effect of the specification of the weight matrices on the RMSE in

estimating δ for various values of ρ. Our key result of spatially corrected estimators having a

smaller RMSE than non-spatially corrected estimator holds for all investigated specifications of

the weight matrix. Reducing the sparsity of the random contiguity matrices increases the RMSE

of all estimators with the exception of the first-stage estimators based on the Y instrument set and

a negative ρ. In the benchmark case, the Bucky ball specification—which imposes WN = MN

and assumes five or six neighbors—yields a slightly larger RMSE than for the case of n = 5.

However, the RMSEs of estimators using weights based on physical distance—in which case all

cells of the weight matrix are non-zero—are smaller than in the benchmark case of rather sparse

random contiguity matrices.21

21Not only the sparsity of the weight matrix but also the variation in weights affects the RMSEs of the
estimators. Note that the coefficient of variation of the weights for both random contiguity matrices is
3.34, whereas it slightly smaller for the distance based matrices (i.e., 3.27 for WN and 3.31 for MN ).
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6 Conclusion

This paper deals with GMM estimation of spatial dynamic panel data models with fixed effects

and spatially correlated errors. We extend the three-step GMM approach of Kapoor et al. (2007),

which corrects for spatially correlated errors in static panel data models, by introducing a spatial

lag and a one-period lag of the endogenous variable as additional explanatory variables. Com-

bining the extended Kapoor et al. (2007) framework with the dynamic panel data model GMM

estimators of Arellano and Bond (1991) and Blundell and Bond (1998) and supplementing the

dynamic instruments by various spatial lags and weighted exogenous variables yields new spatial

dynamic panel data estimators.

We formally prove the consistency and asymptotic normality of our spatial GMM estimators

for the case of large N and fixed small T . For large T and fixed small N , the spatial estimators

are consistent if the instrument count per moment condition is bounded from above. Monte Carlo

simulations indicate that the RMSE of spatially corrected GMM estimates—which are based on a

spatial lag and spatial error correction—is generally smaller than that of the corresponding spatial

GMM estimates in which spatial error correlation is ignored, particularly for strong positive

spatial error correlation. The RMSE of the spatial GMM estimates, however, is not affected

much by the size of the spatial lag parameter in the data generating process. We also show that

the spatial Blundell-Bond estimators outperform the spatial Arellano-Bond estimators. Finally,

we find that spatial estimators using spatially weighted endogenous variables as instruments

in addition to weighted exogenous variables are more efficient than those based on weighted

exogenous variables.

In future research, we intend to add a spatially weighted time lag to the model. In addition,

we investigate the consequences of replacing a correction for spatial error correlation by spatially

weighted covariates in the model.
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Table 1: RMSE of Spatial GMM Estimators of δ for Various Values of N and λ

Estimator λ = 0.3 λ = 0.7
N = 60 N = 200 N = 500 N = 60 N = 200 N = 500

ABX 0.0873 0.0450 0.0307 0.1349 0.0728 0.0502
ABXY 1 0.0836 0.0447 0.0303 0.1316 0.0710 0.0492
ABXY 2 0.0871 0.0447 0.0307 0.1267 0.0677 0.0472
ABXY 3 0.0913 0.0490 0.0296 0.1269 0.0686 0.0458
ABY 1 0.2075 0.1738 0.1301 0.3022 0.2586 0.2311
ABY 2 0.1732 0.1551 0.1129 0.2397 0.1977 0.1690
ABY 3 0.1611 0.1350 0.1076 0.2136 0.1701 0.1353

SABX 0.0840 0.0462 0.0307 0.1292 0.0734 0.0484
SABXY 1 0.0812 0.0449 0.0300 0.1254 0.0718 0.0478
SABXY 2 0.0808 0.0443 0.0294 0.1177 0.0659 0.0460
SABXY 3 0.0830 0.0456 0.0280 0.1097 0.0670 0.0445
SABY 1 0.1927 0.1638 0.1205 0.2821 0.2429 0.2210
SABY 2 0.1609 0.1431 0.1118 0.2051 0.1850 0.1635
SABY 3 0.1481 0.1280 0.0986 0.1957 0.1620 0.1297

BBX 0.0789 0.0457 0.0327 0.0706 0.0547 0.0432
BBXY 1 0.0604 0.0386 0.0262 0.0516 0.0373 0.0263
BBXY 2 0.0598 0.0389 0.0260 0.0443 0.0358 0.0262
BBXY 3 0.0597 0.0387 0.0253 0.0417 0.0339 0.0252
BBY 1 0.0894 0.0748 0.0556 0.0567 0.0467 0.0370
BBY 2 0.0812 0.0663 0.0492 0.0482 0.0408 0.0338
BBY 3 0.0829 0.0636 0.0502 0.0446 0.0374 0.0301

SBBX 0.0759 0.0438 0.0325 0.0714 0.0509 0.0409
SBBXY 1 0.0570 0.0359 0.0246 0.0486 0.0373 0.0254
SBBXY 2 0.0547 0.0382 0.0240 0.0383 0.0353 0.0242
SBBXY 3 0.0533 0.0360 0.0237 0.0376 0.0324 0.0235
SBBY 1 0.0869 0.0748 0.0510 0.0547 0.0462 0.0338
SBBY 2 0.0759 0.0631 0.0472 0.0443 0.0406 0.0312
SBBY 3 0.0714 0.0594 0.0474 0.0408 0.0362 0.0273

Notes: RMSEs based on Monte Carlo simulations with 1000 replications. The parameters in the bench-
mark scenario are: N = 60, T = 5, n = 5, λ = 0.3, δ = 0.5, β = 1, and ρ = 0.3. To meet the
stability condition (3), δ is set to 0.2 if λ = 0.7. The labels AB, SAB, BB, and SBB denote the first-stage
spatial Arellano-Bond estimator, the spatially corrected Arellano-Bond estimator, the first-stage spatial
Blundell-Bond estimator, and the spatially corrected Blundell-Bond estimator, respectively. The sub-
scripts X and Y refer to instrument sets for the spatial lag based on spatially weighted values of XN and
yN , respectively. The subscript XY indicates that both instrument sets are employed. The numbers in
the subscripts report the number of time lags and spatial lags of the spatially lagged dependent variable
used for instrumenting the spatial lag. The one-period time lag of the dependent variable is instrumented
by three time lags of the dependent variable.
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Table 2: RMSE of Spatial GMM Estimators of δ for Various Values of T and λ

Estimator λ = 0.3 λ = 0.7
T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

ABX 0.0873 0.0628 0.0537 0.1349 0.0891 0.0665
ABXY 1 0.0836 0.0605 0.0496 0.1316 0.0782 0.0526
ABXY 2 0.0871 0.0696 0.0611 0.1267 0.0799 0.0605
ABXY 3 0.0913 0.0827 0.0792 0.1269 0.0893 0.0706
ABY 1 0.2075 0.1419 0.1220 0.3022 0.1513 0.0962
ABY 2 0.1732 0.1333 0.1120 0.2397 0.1363 0.0935
ABY 3 0.1611 0.1289 0.1154 0.2136 0.1294 0.0952

SABX 0.0840 0.0582 0.0467 0.1292 0.0827 0.0614
SABXY 1 0.0812 0.0541 0.0434 0.1254 0.0724 0.0484
SABXY 2 0.0808 0.0608 0.0511 0.1177 0.0715 0.0494
SABXY 3 0.0830 0.0710 0.0671 0.1097 0.0770 0.0579
SABY 1 0.1927 0.1271 0.1048 0.2821 0.1370 0.0833
SABY 2 0.1609 0.1154 0.0967 0.2051 0.1192 0.0778
SABY 3 0.1481 0.1108 0.0987 0.1957 0.1110 0.0761

BBX 0.0789 0.0518 0.0428 0.0706 0.0464 0.0350
BBXY 1 0.0604 0.0452 0.0385 0.0516 0.0386 0.0289
BBXY 2 0.0598 0.0436 0.0369 0.0443 0.0269 0.0198
BBXY 3 0.0597 0.0482 0.0448 0.0417 0.0269 0.0212
BBY 1 0.0894 0.0742 0.0704 0.0567 0.0426 0.0319
BBY 2 0.0812 0.0639 0.0554 0.0482 0.0299 0.0216
BBY 3 0.0829 0.0680 0.0621 0.0446 0.0299 0.0235

SBBX 0.0759 0.0497 0.0394 0.0714 0.0462 0.0324
SBBXY 1 0.0570 0.0426 0.0346 0.0486 0.0365 0.0261
SBBXY 2 0.0547 0.0388 0.0314 0.0383 0.0241 0.0173
SBBXY 3 0.0533 0.0415 0.0377 0.0376 0.0236 0.0181
SBBY 1 0.0869 0.0710 0.0598 0.0547 0.0406 0.0293
SBBY 2 0.0759 0.0533 0.0470 0.0443 0.0253 0.0187
SBBY 3 0.0714 0.0573 0.0511 0.0408 0.0248 0.0194

Notes: RMSEs based on Monte Carlo simulations with 1000 replications. The parameters in
the benchmark scenario are: N = 60, T = 5, n = 5, λ = 0.3, δ = 0.5, β = 1, and ρ = 0.3. To
meet the stability condition (3), δ is set to 0.2 if λ = 0.7. The labels AB, SAB, BB, and SBB
denote the first-stage spatial Arellano-Bond estimator, the spatially corrected Arellano-Bond
estimator, the first-stage spatial Blundell-Bond estimator, and the spatially corrected Blundell-
Bond estimator, respectively. The subscripts X and Y refer to instrument sets for the spatial
lag based on spatially weighted values of XN and yN , respectively. The subscript XY indicates
that both instrument sets are employed. The numbers in the subscripts report the number of
time lags and spatial lags of the spatially lagged dependent variable used for instrumenting the
spatial lag. The one-period time lag of the dependent variable is instrumented by three time lags
of the dependent variable.

27



T
ab

le
3:

R
M

S
E

of
S
p
at

ia
l

B
lu

n
d
el

l-
B

on
d

E
st

im
at

or
s

fo
r

V
ar

io
u
s

V
al

u
es

of
δ

an
d
ρ

E
st

im
at

or
P

ar
am

et
er

δ
=

0.
3

an
d

va
ri

ou
s
ρ

δ
=

0.
5

an
d

va
ri

ou
s
ρ

δ
=

0.
7

an
d

va
ri

ou
s
ρ

−
0.

8
−

0.
4

0
0.

4
0.

8
−

0.
8
−

0.
4

0
0.

4
0.

8
−

0.
8
−

0.
4

0
0.

4
0.

8

B
B
X

λ
0.

05
4

0.
04

7
0.

04
5

0.
04

7
0.

08
6

0.
04

7
0.

04
2

0.
04

2
0.

04
3

0.
08

2
0.

04
1

0.
03

6
0.

03
6

0.
04

1
0.

09
4

B
B
X
Y

3
0.

04
4

0.
04

0
0.

03
9

0.
04

3
0.

08
3

0.
04

1
0.

03
7

0.
03

6
0.

03
9

0.
09

0
0.

03
7

0.
03

1
0.

03
1

0.
03

9
0.

10
1

S
B

B
X

0.
04

2
0.

04
4

0.
04

5
0.

04
4

0.
04

2
0.

03
8

0.
04

1
0.

04
1

0.
04

0
0.

03
9

0.
03

1
0.

03
4

0.
03

6
0.

03
4

0.
03

4
S
B

B
X
Y

3
0.

03
3

0.
03

6
0.

03
8

0.
03

7
0.

03
4

0.
03

0
0.

03
4

0.
03

5
0.

03
4

0.
03

3
0.

02
6

0.
03

0
0.

03
1

0.
03

2
0.

03
1

B
B
X

δ
0.

10
9

0.
09

6
0.

09
2

0.
10

0
0.

19
7

0.
09

0
0.

07
7

0.
07

6
0.

08
3

0.
17

6
0.

06
0

0.
05

2
0.

05
2

0.
06

0
0.

13
9

B
B
X
Y

3
0.

08
0

0.
06

7
0.

06
7

0.
08

3
0.

25
6

0.
06

9
0.

05
7

0.
05

6
0.

07
0

0.
21

6
0.

05
0

0.
04

2
0.

04
2

0.
05

5
0.

15
1

S
B

B
X

0.
07

5
0.

08
5

0.
08

9
0.

09
2

0.
09

0
0.

06
1

0.
06

6
0.

07
5

0.
07

6
0.

07
6

0.
04

0
0.

04
6

0.
05

1
0.

05
4

0.
05

3
S
B

B
X
Y

3
0.

05
3

0.
06

0
0.

06
7

0.
06

7
0.

06
6

0.
04

3
0.

05
1

0.
05

7
0.

05
8

0.
05

9
0.

03
2

0.
03

6
0.

04
2

0.
04

3
0.

04
5

B
B
X

β
0.

05
2

0.
04

6
0.

04
5

0.
04

8
0.

08
3

0.
05

2
0.

04
5

0.
04

5
0.

05
0

0.
09

0
0.

05
4

0.
04

8
0.

04
8

0.
05

5
0.

10
5

B
B
X
Y

3
0.

04
6

0.
04

1
0.

03
9

0.
04

3
0.

07
7

0.
04

8
0.

04
2

0.
04

1
0.

04
5

0.
08

3
0.

04
9

0.
04

3
0.

04
2

0.
04

7
0.

09
0

S
B

B
X

0.
04

3
0.

04
5

0.
04

5
0.

04
3

0.
04

0
0.

04
4

0.
04

5
0.

04
5

0.
04

3
0.

04
0

0.
04

7
0.

04
9

0.
04

7
0.

04
4

0.
04

3
S
B

B
X
Y

3
0.

03
6

0.
03

9
0.

03
8

0.
03

7
0.

03
6

0.
03

8
0.

04
0

0.
04

1
0.

03
9

0.
03

6
0.

03
9

0.
04

2
0.

04
2

0.
03

9
0.

03
7

S
B

B
X

ρ
0.

13
4

0.
14

4
0.

13
6

0.
11

0
0.

08
0

0.
13

5
0.

14
7

0.
13

8
0.

11
0

0.
08

5
0.

13
4

0.
14

6
0.

14
0

0.
11

2
0.

09
0

S
B

B
X
Y

3
0.

14
0

0.
14

9
0.

14
0

0.
11

1
0.

06
7

0.
14

0
0.

14
7

0.
13

8
0.

11
1

0.
07

3
0.

14
1

0.
14

7
0.

13
8

0.
11

4
0.

08
6

N
o
te
s
:

R
M

S
E

s
b

a
se

d
o
n

M
o
n
te

C
a
rl

o
si

m
u

la
ti

o
n

s
w

it
h

1
0
0
0

re
p

li
ca

ti
o
n

s.
T

h
e

re
m

a
in

in
g

p
a
ra

m
et

er
s

a
re

:
N

=
6
0
,
T

=
5
,
n

=
5
,
λ

=
0
.2

,
a
n

d
β

=
1
.

T
h

e
la

b
el

s
B

B
a
n

d
S

B
B

d
en

o
te

th
e

fi
rs

t-
st

a
g
e

sp
a
ti

a
l

B
lu

n
d

el
l-

B
o
n

d
es

ti
m

a
to

r
a
n

d
th

e
sp

a
ti

a
ll
y

co
rr

ec
te

d
B

lu
n

d
el

l-
B

o
n

d
es

ti
m

a
to

r,
re

sp
ec

ti
v
el

y.
T

h
e

su
b

sc
ri

p
ts
X

a
n

d
Y

re
fe

r
to

in
st

ru
m

en
t

se
ts

fo
r

th
e

sp
a
ti

a
l

la
g

b
a
se

d
o
n

sp
a
ti

a
ll
y

w
ei

g
h
te

d
v
a
lu

es
o
f
X

N
a
n

d
y
N

,
re

sp
ec

ti
v
el

y.
T

h
e

su
b

sc
ri

p
t
X
Y

in
d

ic
a
te

s
th

a
t

b
o
th

in
st

ru
m

en
t

se
ts

a
re

em
p

lo
y
ed

.
T

h
e

n
u

m
b

er
s

in
th

e
su

b
sc

ri
p

ts
re

p
o
rt

th
e

n
u
m

b
er

o
f

ti
m

e
la

g
s

a
n

d
sp

a
ti

a
l

la
g
s

o
f

th
e

sp
a
ti

a
ll

y
la

g
g
ed

d
ep

en
d

en
t

v
a
ri

a
b

le
u

se
d

fo
r

in
st

ru
m

en
ti

n
g

th
e

sp
a
ti

a
l

la
g
.

T
h

e
o
n

e-
p

er
io

d
ti

m
e

la
g

o
f

th
e

d
ep

en
d

en
t

v
a
ri

a
b

le
is

in
st

ru
m

en
te

d
b
y

th
re

e
ti

m
e

la
g
s

o
f

th
e

d
ep

en
d

en
t

v
a
ri

a
b

le
.

28



T
ab

le
4:

R
M

S
E

of
S
p
at

ia
l

G
M

M
E

st
im

at
or

s
of
δ

fo
r

V
ar

io
u
s

W
ei

gh
t

M
at

ri
ce

s
an

d
V

al
u
es

of
ρ

ρ
=
−

0.
8

ρ
=

0.
3

ρ
=

0.
8

E
st

im
at

or
C

on
ti

gu
it

y
D

is
ta

n
ce

C
on

ti
gu

it
y

D
is

ta
n
ce

C
on

ti
gu

it
y

D
is

ta
n
ce

n
=

5
n

=
10

n
=

20
B

u
ck

y
n

=
5

n
=

10
n

=
20

B
u
ck

y
n

=
5

n
=

10
n

=
20

B
u
ck

y

A
B
X

0.
09

7
0.

12
4

0.
15

3
0.

14
0

0.
09

8
0.

08
7

0.
12

7
0.

16
9

0.
08

1
0.

08
7

0.
20

1
0.

26
8

0.
34

6
0.

21
6

0.
19

6
A

B
X
Y

1
0.

09
2

0.
11

5
0.

12
3

0.
14

1
0.

09
1

0.
08

4
0.

12
3

0.
17

1
0.

08
1

0.
08

7
0.

21
2

0.
29

2
0.

38
0

0.
22

8
0.

19
7

A
B
X
Y

2
0.

09
1

0.
11

0
0.

12
3

0.
15

1
0.

08
7

0.
08

7
0.

13
0

0.
18

2
0.

08
7

0.
08

2
0.

23
5

0.
31

8
0.

40
4

0.
27

9
0.

22
0

A
B
X
Y

3
0.

09
5

0.
11

3
0.

12
7

0.
17

8
0.

08
4

0.
09

1
0.

13
8

0.
18

9
0.

09
4

0.
08

2
0.

25
6

0.
32

9
0.

40
5

0.
31

0
0.

22
6

A
B
Y

1
0.

21
3

0.
20

4
0.

19
3

0.
31

4
0.

19
5

0.
20

7
0.

22
9

0.
27

1
0.

26
3

0.
18

4
0.

39
5

0.
41

3
0.

45
3

0.
46

3
0.

35
5

A
B
Y

2
0.

17
8

0.
15

0
0.

14
5

0.
32

7
0.

15
2

0.
17

3
0.

19
5

0.
22

7
0.

22
9

0.
14

3
0.

37
0

0.
40

3
0.

43
5

0.
45

8
0.

32
4

A
B
Y

3
0.

15
9

0.
14

6
0.

13
4

0.
34

5
0.

12
8

0.
16

1
0.

18
3

0.
21

4
0.

20
8

0.
13

0
0.

35
4

0.
38

8
0.

42
4

0.
45

0
0.

30
9

S
A

B
X

0.
07

0
0.

09
6

0.
11

4
0.

07
8

0.
07

0
0.

08
4

0.
12

6
0.

18
2

0.
08

5
0.

08
5

0.
08

5
0.

13
1

0.
23

3
0.

12
8

0.
07

9
S
A

B
X
Y

1
0.

06
6

0.
09

1
0.

10
1

0.
07

4
0.

06
7

0.
08

1
0.

12
5

0.
17

6
0.

08
3

0.
08

1
0.

07
9

0.
13

4
0.

25
2

0.
13

4
0.

07
0

S
A

B
X
Y

2
0.

06
7

0.
08

8
0.

10
1

0.
07

8
0.

06
2

0.
08

1
0.

12
6

0.
17

5
0.

08
8

0.
07

7
0.

07
8

0.
14

6
0.

27
8

0.
18

5
0.

06
6

S
A

B
X
Y

3
0.

06
9

0.
08

9
0.

10
9

0.
08

2
0.

06
1

0.
08

3
0.

12
9

0.
18

2
0.

08
7

0.
07

4
0.

07
9

0.
15

6
0.

29
2

0.
22

0
0.

06
9

S
A

B
Y

1
0.

14
1

0.
15

2
0.

14
8

0.
21

6
0.

12
4

0.
19

3
0.

22
4

0.
29

2
0.

28
2

0.
17

5
0.

18
2

0.
24

8
0.

38
9

0.
44

2
0.

15
2

S
A

B
Y

2
0.

11
9

0.
11

6
0.

11
8

0.
19

5
0.

09
2

0.
16

1
0.

18
5

0.
23

0
0.

23
5

0.
13

5
0.

15
8

0.
22

6
0.

35
6

0.
42

1
0.

12
0

S
A

B
Y

3
0.

10
5

0.
11

3
0.

11
3

0.
18

3
0.

08
1

0.
14

8
0.

16
9

0.
21

2
0.

20
5

0.
11

8
0.

14
9

0.
21

4
0.

33
1

0.
41

3
0.

11
5

B
B
X

0.
08

8
0.

09
9

0.
11

4
0.

12
5

0.
08

7
0.

07
9

0.
10

2
0.

12
5

0.
07

6
0.

07
1

0.
18

1
0.

22
4

0.
27

2
0.

20
5

0.
16

7
B

B
X
Y

1
0.

06
6

0.
06

8
0.

07
2

0.
10

3
0.

06
4

0.
06

0
0.

07
5

0.
09

7
0.

06
2

0.
05

3
0.

16
5

0.
22

3
0.

28
3

0.
19

2
0.

15
2

B
B
X
Y

2
0.

06
3

0.
06

6
0.

06
6

0.
10

1
0.

05
8

0.
06

0
0.

07
5

0.
09

6
0.

06
3

0.
05

3
0.

18
3

0.
24

4
0.

29
6

0.
22

2
0.

16
2

B
B
X
Y

3
0.

06
5

0.
06

6
0.

06
6

0.
10

6
0.

05
5

0.
06

0
0.

07
8

0.
10

1
0.

06
4

0.
05

4
0.

19
7

0.
25

2
0.

29
7

0.
24

0
0.

17
2

B
B
Y

1
0.

10
1

0.
08

9
0.

08
4

0.
15

9
0.

09
1

0.
08

9
0.

10
0

0.
10

8
0.

12
0

0.
08

0
0.

24
4

0.
26

8
0.

30
7

0.
31

3
0.

21
4

B
B
Y

2
0.

08
8

0.
07

7
0.

07
2

0.
14

2
0.

07
6

0.
08

1
0.

09
3

0.
11

0
0.

10
9

0.
07

1
0.

23
9

0.
28

2
0.

31
4

0.
32

2
0.

20
7

B
B
Y

3
0.

08
4

0.
07

4
0.

06
8

0.
14

0
0.

06
8

0.
08

3
0.

09
4

0.
10

6
0.

10
3

0.
06

8
0.

24
3

0.
28

1
0.

30
9

0.
32

5
0.

21
0

S
B

B
X

0.
06

0
0.

07
3

0.
07

6
0.

06
8

0.
05

2
0.

07
6

0.
10

7
0.

13
6

0.
08

3
0.

07
3

0.
07

5
0.

11
2

0.
18

2
0.

12
3

0.
06

8
S
B

B
X
Y

1
0.

04
4

0.
05

2
0.

06
0

0.
05

3
0.

04
0

0.
05

7
0.

07
2

0.
09

6
0.

06
2

0.
05

4
0.

05
5

0.
08

2
0.

15
2

0.
09

7
0.

05
1

S
B

B
X
Y

2
0.

04
2

0.
05

0
0.

05
7

0.
04

8
0.

03
8

0.
05

5
0.

07
0

0.
09

2
0.

05
7

0.
05

1
0.

05
4

0.
08

4
0.

16
8

0.
11

6
0.

04
6

S
B

B
X
Y

3
0.

04
1

0.
05

2
0.

05
7

0.
04

8
0.

03
6

0.
05

3
0.

07
4

0.
09

6
0.

05
7

0.
04

8
0.

05
3

0.
09

2
0.

17
4

0.
13

4
0.

04
4

S
B

B
Y

1
0.

06
4

0.
06

9
0.

06
6

0.
09

1
0.

05
5

0.
08

7
0.

09
5

0.
11

3
0.

12
2

0.
07

6
0.

08
3

0.
10

9
0.

19
3

0.
23

5
0.

07
3

S
B

B
Y

2
0.

05
6

0.
06

0
0.

06
0

0.
07

9
0.

04
6

0.
07

6
0.

08
5

0.
10

2
0.

10
1

0.
06

6
0.

07
2

0.
10

5
0.

19
5

0.
24

3
0.

05
8

S
B

B
Y

3
0.

05
2

0.
05

7
0.

05
9

0.
06

9
0.

04
0

0.
07

1
0.

08
7

0.
10

1
0.

08
8

0.
06

1
0.

07
2

0.
10

6
0.

18
8

0.
24

0
0.

05
8

N
o
te
s
:

R
M

S
E

s
b

a
se

d
o
n

M
o
n
te

C
a
rl

o
si

m
u

la
ti

o
n

s
w

it
h

1
0
0
0

re
p

li
ca

ti
o
n

s.
T

h
e

re
m

a
in

in
g

p
a
ra

m
et

er
s

a
re

:
N

=
6
0
,
T

=
5
,
λ

=
0
.3

,
δ

=
0
.5

,
a
n

d
β

=
1
.

B
u

ck
y

re
fe

rs
to

th
e

B
u

ck
y

b
a
ll

w
ei

g
h
t

m
a
tr

ix
a
n

d
n

d
en

o
te

s
th

e
n
u

m
b

er
o
f

n
ei

g
h
b

o
rs

in
th

e
ra

n
d

o
m

co
n
ti

g
u

it
y

sp
ec

ifi
ca

ti
o
n

s.
T

h
e

la
b

el
s

A
B

,
S

A
B

,
B

B
,

a
n

d
S

B
B

d
en

o
te

th
e

fi
rs

t-
st

a
g
e

sp
a
ti

a
l

A
re

ll
a
n

o
-B

o
n

d
es

ti
m

a
to

r,
th

e
sp

a
ti

a
ll
y

co
rr

ec
te

d
A

re
ll
a
n

o
-B

o
n

d
es

ti
m

a
to

r,
th

e
fi

rs
t-

st
a
g
e

sp
a
ti

a
l

B
lu

n
d

el
l-

B
o
n

d
es

ti
m

a
to

r,
a
n

d
th

e
sp

a
ti

a
ll
y

co
rr

ec
te

d
B

lu
n

d
el

l-
B

o
n

d
es

ti
m

a
to

r,
re

sp
ec

ti
v
el

y.
T

h
e

su
b

sc
ri

p
ts
X

a
n

d
Y

re
fe

r
to

in
st

ru
m

en
t

se
ts

fo
r

th
e

sp
a
ti

a
l

la
g

b
a
se

d
o
n

sp
a
ti

a
ll
y

w
ei

g
h
te

d
v
a
lu

es
o
f
X

N
a
n

d
y
N

,
re

sp
ec

ti
v
el

y.
T

h
e

su
b

sc
ri

p
t
X
Y

in
d

ic
a
te

s
th

a
t

b
o
th

in
st

ru
m

en
t

se
ts

a
re

em
p

lo
y
ed

.
T

h
e

n
u

m
b

er
s

in
th

e
su

b
sc

ri
p

ts
re

p
o
rt

th
e

ti
m

e
la

g
s

a
n
d

sp
a
ti

a
l

la
g
s

o
f

th
e

sp
a
ti

a
ll
y

la
g
g
ed

d
ep

en
d

en
t

v
a
ri

a
b

le
u

se
d

fo
r

in
st

ru
m

en
ti

n
g

th
e

sp
a
ti

a
l

la
g
.

T
h

e
o
n

e-
p

er
io

d
ti

m
e

la
g

o
f

th
e

d
ep

en
d

en
t

v
a
ri

a
b

le
is

in
st

ru
m

en
te

d
b
y

th
re

e
ti

m
e

la
g
s

o
f

th
e

d
ep

en
d

en
t

v
a
ri

a
b

le
.

29



Appendix

A.1 Derivation of Moment Conditions in Stage Two

To arrive at the moment conditions in (20), we define the spatially transformed counterpart of

∆εN by ∆ε̄ = (IT−1 ⊗MN )∆εN . We make use of the following properties of the error term:

∆εN = ∆vN , E[vNv>N ] = σ2
vIN(T−1), (A.1)

which follows from Assumption E. In addition, we apply E[v>NAvN ] = tr(AE vNv>N ), where A is

a conformable matrix. Finally, we use:

tr[IT−1 ⊗ (M>
NMN )] = (T − 1) tr(M>

NMN ), tr(M>
N ) = 0. (A.2)

Using the above leads to the following moment conditions:

E[∆ε>N∆εN ] = E[∆v>N∆vN ]

= 2σ2
v tr(IN(T−1)) = 2σ2

vN(T − 1), (A.3)

E[∆ε̄>N∆ε̄N ] = E[∆v>N (IT−1 ⊗M>
NMN )∆vN ]

= 2σ2
v tr(IT−1M

>
NMN ) = 2σ2

v(T − 1) tr(M>
NMN ), (A.4)

E[∆ε̄>N∆εN ] = E[∆v>N (IT−1 ⊗M>
N )∆vN ]

= 2σ2
v tr(IT−1M

>
N ) = 2σ2

v(T − 1) tr(M>
N ) = 0. (A.5)

Dividing (A.3)–(A.5) by N(T − 1) gives the moment conditions in (20).

A.2 Proofs of Asymptotic Properties

A.2.1 Proof of Theorem 1

Definition (18) and models (8) and (16) imply

θ̂N =
[
~Z
>
N
~HN

~AN
~H
>
N
~ZN

]−1
~Z
>
N
~HN

~AN
~H
>
N~yN

= θ0 +
[
~Z
>
N
~HN

~AN
~H
>
N
~ZN

]−1
~Z
>
N
~HN

~AN
~H
>
N~uN .
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Since Assumptions G and V imply ~AN = ~A + op(1) and N−1~H
>
N
~ZN = ~QHZ + op(1) and

~Z
>
N
~HN

~AN
~H
>
N
~Z
>
N is non-singular, it follows from definition (4) that

√
N(θ̂N − θ0) =

[
1

N
~Z
>
N
~HN · ~AN ·

1

N
~H
>
N
~ZN

]−1 1

N
~Z
>
N
~HN · ~AN ·

1√
N
~H
>
N~uN

=
[
~Q
>
HZ
~A~QHZ

]−1
~Q
>
HZ
~A ·N−1/2~H

>
N (~IN − ρ0 ~MN )−1~εN + op(1)

as N → +∞. The triangular array ξN = N−1/2~H
>
N (~IN−ρ0 ~MN )−1~εN has zero mean, E[N−1/2~H

>
N

(~IN − ρ0 ~MN )−1~εN ] = E[~HN~uN ] = 0, and a bounded variance matrix since for N → +∞

Var[N−1/2~H
>
N (~IN − ρ0 ~MN )−1~εN ] = E[N−1~H

>
N (~IN − ρ0 ~MN )−1~Σε,N (~IN − ρ0 ~MN )−1>~H

>
N ]

= E(N−1~H
>
N
~Σu,N

~HN ) = ~QN,HΣH → ~QHΣH

by Assumptions E and V. Since ~Q
−1/2

N,HΣHξN forms a triangular array of martingale differences,

the finite second moments and uniform integrability of ~Q
−1/2

N,HΣHξN (implied by Assumption V3

and the uniform boundedness of (~IN − ρ0 ~MN )−1 by Assumption S3) allows us to apply the

central limit theorem for martingale differences (e.g., Davidson, 1994, Theorems 24.3 and 24.4),

which results in the asymptotic normality of ξN with the finite asymptotic variance matrix ~QHΣH .

Consequently,
√
N(θ̂N−θ0) = Op(1) and

√
N(θ̂N−θ0)

L→ N(0, [~Q
>
HZ
~A~QHZ ]−1~Q

>
HZ
~A~QHΣH

~A
>

~QHZ [~Q
>
HZ
~A~QHZ ]−1) as N → +∞, where L denotes convergence in distribution. �

A.2.2 Proof of Theorem 2

The proof is similar to the one of Kelejian and Prucha (2010, Theorem 1). First, the GMM

estimator (23) is based on the vector γN and matrix ΓN defined in (21)–(22). They both have each

random element of the form ∆u>NDN∆uN/[N(T − 1)], where DN = ~M
k>
N
~M
l

N for k, l ∈ {0, 1, 2}.

To derive the limits of ΓN and γN and also of Γ̂N and γ̂N , we will now verify Assumption 4 of

Kelejian and Prucha (2010, Lemma C.1) to apply it to ΓN and γN (Assumptions 1–3 of Kelejian

and Prucha, 2010, are implied by Assumptions E, S, and V). This Assumption 4 concerns the

estimates ∆ûN of the error term ∆uN , which is equal here to ∆ûN = ∆yN −∆ZN θ̂N . Hence,

∆ûN −∆uN = −∆ZN (θ̂N − θ0)
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and Assumption 4 of Kelejian and Prucha (2010, Lemma C.1) requires that ∆ZN has the uni-

formly bounded (2 + ψ)th moments and that
√
N(θ̂N − θ0) is bounded in probability. The

first claim follows from Assumption V3 and the Minkowski inequality and the second claim is a

consequence of the
√
N -consistence of the initial estimator θ̂N .

Next, for any t = 2, . . . , T , ∆uN (t) = (IN − ρ0MN )∆εN (t), where ∆εN (t) is a vector of

independent random variables, and consequently, Lemma C.1(a) of Kelejian and Prucha (2010)

can be applied to obtain the following results: E[∆u>N (t)DN∆uN (t)]/N is uniformly bounded,

∆u>N (t)DN∆uN (t)/N − E[∆u>N (t)DN∆uN (t)]/N = op(1), and

1

N
∆û>N (t)DN∆ûN (t)− 1

N
E[∆u>N (t)DN∆uN (t)] = op(1)

as N → +∞ for any matrix DN with uniformly bounded rows and column sums such as

DN = ~M
k>
N
~M
l

N for k, l ∈ {0, 1, 2}. Since ∆uN = [∆u>N (2), . . . ,∆u>N (T )]>, we proved that

E{∆u>NDN∆uN/[N(T − 1)]} = O(1) and ∆û>NDN∆ûN/[N(T − 1)]− E{∆u>NDN∆uN/[N(T −

1)]} = op(1), and consequently, that E ΓN and EγN are uniformly bounded and ΓN − E ΓN =

op(1), γN − EγN = op(1), Γ̂N − E ΓN = op(1), and γ̂N − EγN = op(1). Moreover, due to

Assumption G5, Γ>NΓN is non-singular; similarly, Assumption G6 implies that also Γ>NBNΓN is

non-singular and thus positive definite.

To prove the consistency of the GMM estimator (23), we can use a general result of Pötscher

and Prucha (1997, Lemma 3.1), which states that the GMM estimator is consistent if (i) it exists,

(ii) the minimum of JN (φ) = {EγN − E ΓNν(φ)}>BN{EγN − E ΓNν(φ)} at φ0 is identifiably

unique, and (iii) the sample objective function ĴN (φ) = {γ̂N − Γ̂Nν(φ)}>B̂N{γ̂N − Γ̂Nν(φ)}

converges uniformly to JN (φ), where ν(φ) = (ρ, ρ2, σ2
v)
>, φ = (ρ, σv)

>, and φ0 = (ρ0, σ0
v)
>.

First, the existence of the GMM estimate follows from the continuity of ĴN (φ): it is continuous

in φ on a compact space Φ and it thus attains its minimum.
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Regarding the identification, the objective function JN (φ) attains its minimum only at φ0 =

(ρ0, σ0
v)
> because E ΓNν(φ0) = EγN , and by Assumption G,

JN (φ)− JN (φ0) = JN (φ) = {ν(φ)− ν(φ0)}> E Γ>NBN E ΓN{ν(φ)− ν(φ0)}

≥ κΓκB{ν(φ)− ν(φ0)}>{ν(φ)− ν(φ0)}

≥ κΓκB{(ρ− ρ0)2 + [σ2
v − (σ0

v)
2]}.

Consequently, for any ε > 0 it holds inf{(ρ,σv)∈Φ:‖(ρ,σv)−(ρ0,σ0
v)‖>ε} JN (φ)− JN (φ0) > κΓκBε

2 > 0

and φ0 = (ρ0, σ0
v)
> is identifiably unique.

Finally, ĴN (φ) can be shown to uniformly converge to JN (φ) on Φ. Since

ĴN (φ)− JN (φ) = (γ>N B̂NγN − Eγ>NBN EγN )− 2(γ̂>N B̂N Γ̂N − Eγ>NBN E ΓN )ν(φ)

+ ν(φ)>(Γ̂
>
N B̂N Γ̂N − E Γ>NBN E ΓN )ν(φ),

and φ ∈ Φ, where Φ is compact, ‖φ‖ < Kφ < +∞, we only have to show that the three differences

of the type Γ̂
>
N B̂N Γ̂N − E Γ>NBN E ΓN = op(1) as N → +∞. This however directly follows from

ΓN − E ΓN = op(1), γN − EγN = op(1), Γ̂N − E ΓN = op(1), and γ̂N − EγN = op(1) as all

these random variables are bounded in probability (see Assumption G), the expectations E ΓN

and EγN were shown to be uniformly bounded, and

Γ̂
>
N B̂N Γ̂N − E Γ>NBN E ΓN = (Γ̂

>
N − E Γ>N )B̂N Γ̂N + E Γ>N B̂N (Γ̂N − E ΓN )

+ E Γ>N (B̂N −BN ) E ΓN ).

Hence, Lemma 3.1 of Pötscher and Prucha (1997) implies consistency of the estimate (23). �

A.2.3 Proof of Theorem 3

Definition (18) and models (24) and (25) imply

θ̃N =

[
~̃Z
>
N
~̃HN

~̃AN
~̃H
>
N
~̃ZN

]−1
~̃Z
>
N
~̃HN

~̃AN
~̃H
>
N
~̃yN = θ0 +

[
~̃Z
>
N
~̃HN

~̃AN
~̃H
>
N
~̃ZN

]−1
~̃Z
>
N
~̃HN

~̃AN
~̃H
>
N
~̃εN ,
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where ~̃εN = ~̃yN −
~̃ZNθ

0 = (~IN − ρ̂N ~MN )(~yN − ~ZNθ0). First, note that the consistency of

ρ̂N → ρ0 and Assumption V imply

N−1 ~̃H
>
N
~̃ZN = N−1~H

>
N (~IN − ρ̂N ~MN )>(~IN − ρ̂N ~MN )~ZN

= N−1~H
>
N
~ZN − ρ̂NN−1~H

>
N
~MN

~ZN

− ρ̂NN
−1~H

>
N
~M
>
N
~ZN + ρ̂2

NN
−1~H

>
N
~M
>
N
~MN

~ZN

= ~QHZ − ρ0(~QHMZ + ~QHM>Z) + (ρ0)2~QHMMZ + op(1).

Matrix N−1 ~̃H
>
N
~̃ZN , which is non-singular by Assumptions S2, V, and G4, thus converges to a non-

singular matrix ~̃QHZ in probability. Assumptions G and V further imply that ~̃AN = ~̃A + op(1)

and that ~̃Z
>
N
~̃HNÃN

~̃H
>
N
~̃Z
>
N is non-singular. Using definition (4), ~uN − ρ0 ~MN~uN = ~εN , results in

~̃εN = (~IN − ρ̂N ~MN )~uN = ~uN − ρ̂N ~MN~uN = ~εN + (ρ0 − ρ̂N ) ~MN~uN . We can thus write

√
N(θ̃N − θ0) =

[
1

N
~̃Z
>
N
~̃HN · ~̃AN ·

1

N
~̃H
>
N
~̃ZN

]−1 1

N
~̃ZN

~̃H
>
N
~̃AN

1√
N

~̃H
>
N~εN

−
[

1

N
~̃Z
>
N
~̃HN · ~̃AN ·

1

N
~̃H
>
N
~̃ZN

]−1 1

N
~̃Z
>
N
~̃HN

~̃AN
1√
N

~̃H
>
N (ρ̂N − ρ0) ~MN~uN

=

[
~̃Q
>
HZ
~̃A~̃QHZ

]−1
~̃Q
>
HZ
~̃A · 1√

N
~H
>
N (~IN − ρ0 ~MN )>~εN + op(1) (A.6)

−
[
~̃Q
>
HZ
~̃A~̃QHZ

]−1
~̃Q
>
HZ
~̃A · 1√

N
~H
>
N (ρ̂N − ρ0) ~M

>
N~εN + op(1) (A.7)

−
[
~̃Q
>
HZ
~̃A~̃QHZ

]−1
~̃Q
>
HZ
~̃A

· 1√
N
~H
>
N (~IN − ρ̂N ~MN )>(ρ̂N − ρ0) ~MN~uN + op(1) (A.8)

1. Let us again consider the triangular array ξN = N−1/2~H
>
N (~IN−ρ0 ~MN )>~εN in (A.6), which

has zero mean E{~H>N (~IN − ρ0 ~MN )>~εN} = 0 and bounded variance since

Var[N−1/2~H
>
N (~IN − ρ0 ~MN )>~εN ] = E[N−1~H

>
N (~IN − ρ0 ~MN )>~Σε,N (~IN − ρ0 ~MN )~HN ]

= ~QN,HEH → ~QHEH
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as N → +∞ by Assumptions E and V. Since ~Q
−1/2

N,HEHξN forms a triangular array of

martingale differences, the finite second moments and uniform integrability (implied by

Assumption V3 and the uniform boundedness of (~IN − ρ0 ~MN )> by Assumptions S3 and

G4) allows us to apply the central limit theorem for martingale differences (e.g., Davidson,

1994, Theorems 24.3 and 24.4), which results in the asymptotic normality of ξN with the

finite asymptotic variance matrix ~QHEH .

2. Now, we only have to show that the remaining terms in (A.6)–(A.8) are negligible in

probability (knowing that ρ̂N − ρ0 = op(1) as N → +∞). For N → +∞, the first term

(ρ̂N − ρ0) ·
[
~̃Q
>
HZ
~̃A~̃QHZ

]−1
~̃Q
>
HZ
~̃A ·N−1/2~H

>
N
~M
>
N~εN = op(1)

because ρ̂N − ρ0 = op(1) and the second part of the product is asymptotically normal (i.e.,

bounded in probability) by the same argument as in point 1 (see Assumption V).

The same argument can be used also for the last term (A.8) after rewriting it as

(ρ̂N − ρ0) ·
[
~̃Q
>
HZ
~̃A~̃QHZ

]−1
~̃Q
>
HZ
~̃A ·N−1/2~H

>
N (~IN − ρ0 ~MN )> ~MN (~IN − ρ0 ~MN )−1~εN

−(ρ̂N − ρ0)2 ·
[
~̃Q
>
HZ
~̃A~̃QHZ

]−1
~̃Q
>
HZ
~̃A ·N−1/2~H

>
N
~M
>
N
~MN (~IN − ρ0 ~MN )−1~εN ;

that is, each element of the sum is a product of an asymptotically normal random variable

and a random variable negligible in probability as N → +∞ and behaves thus as op(1).

3. Because we proved
√
N(θ̃N − θ0) = [~̃Q

>
HZ
~̃A~̃QHZ ]−1 ~̃Q

>
HZ
~̃A · ξN + op(1),

√
N(θ̃N − θ0)

is asymptotically normally distributed with a zero mean and finite asymptotic variance

matrix

VSGMM =

[
~̃Q
>
HZ
~̃A~̃QHZ

]−1
~̃Q
>
HZ
~̃A~QHEH

~̃A~̃QHZ

[
~̃Q
>
HZ
~̃A~̃QHZ

]−1

.

For the weighting matrix ~̃A = [~QHEH ]−1, this clearly reduces to [~̃Q
>
HZ
~Q
−1

HEH
~̃QHZ ]−1. �
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