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Abstract. When simultaneously monitoring two possibly dependent, positive risks one is

often interested in quantile regions with very small probability p. These extreme quantile regions

contain hardly or no data and therefore statistical inference is difficult. In particular when we

want to protect ourselves against a calamity that has not yet occurred, we take p < 1/n, with n

the sample size. We consider quantile regions of the form {(x, y) ∈ (0,∞)2 : f(x, y) ≤ β}, where

f , the joint density, is decreasing in both coordinates. Such a region has the property that it

consists of the less likely points and hence that its complement is as small as possible. Using

extreme value theory, we construct a natural, semiparametric estimator of such a quantile region

and prove a refined form of consistency. As an illustration, we compute the estimated quantile

regions for simulated data sets.
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1 Introduction

Since there is no natural ordering of the two-dimensional Euclidean space, the concept

of a quantile in R2 is not well defined. If, however, we can find a nice, natural class of

nested regions, we are essentially back in the one-dimensional situation and a quantile

can be defined to be an appropriate region in this class. Such a class of regions can be

generated by the level sets of a function, in particular of the probability density function.

When the density has some monotonicity property, these regions or their complements

have desirable properties, like connectedness. E.g. for elliptical distributions - like the

normal - the boundary of the quantile region is an ellipse. When a density on (0,∞)2

is monotone in both variables separately, similar quantile regions can be defined. In this

paper, we shall consider estimation of such quantiles in the far tail, in a semiparametric

setup, using multivariate extreme value theory.

Suppose we simultaneously monitor two possibly dependent, positive risks X and Y .

Let the pair (X,Y ) have df F with density f on (0,∞)2. Assume that - outside a square

(0,M ]2 - the probability density is decreasing in each variable. Denote the probability

measure corresponding to f with P . The probability measure on the underlying probability

space will be denoted by P. We define quantile regions determined by the levels of f :

Q = {(x, y) ∈ (0,∞)2 : f(x, y) ≤ β}.

So, for a (small) p ∈ (0, 1) we try to find a Q of this form such that PQ = p. The region

Qc = {(x, y) ∈ (0,∞)2 : f(x, y) > β} has the property that everywhere on Qc, f is larger

than everywhere on Q, i.e. the quantile region Q is the set of less likely points. As a

consequence, Qc is the region with smallest area such that PQc = 1− p.

Now suppose that we have a random sample (X1, Y1), . . . , (Xn, Yn) from F . Let p = pn

be very small; for the asymptotics think of np → c ∈ [0,∞), so c = 0 is possible.

In particular when we want to protect ourselves against a calamity that has not yet

occurred, we consider the case where p < 1/n. The question comes up how to estimate

Q = Qn. Such a quantile region Q contains hardly or no data and therefore the estimation

is statistically difficult. It is the aim of this paper to propose an estimation procedure for

these quantiles Q – connected with a very low probability and in the right upper tail –

in the framework of extreme value theory (EVT). The fact that under the EVT condition
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the tail of a distribution is close to a multivariate generalized Pareto distribution (cf. for

example Rootzén and Tajvidi, 2006) of rather simple structure is helpful.

Our results can be applied in, e.g., aviation safety. The Federal Aviation Administra-

tion (FAA) needs a system that provides instant assessments of airline performances and

that in particular signals those that appear to be extreme. Available is a data set for two

possibly dependent key airline performance measures (Incident Rate and Operational Un-

favorable Ratio). The bivariate data are positive and higher values correspond to a worse

performance. The task now is to identify an extreme risk region desired by the FAA. Our

estimator of Q – for very small p – is a very natural extreme risk region and hence could

be used for flagging events of extreme aviation risk. See for more details Einmahl, Li and

Liu (2009).

The paper is organized as follows. In Section 2 we derive our estimator and present

the main asymptotic result. The method is illustrated on simulated data in Section 3 and

the proofs are deferred to Section 4.

2 Main Results

We assume throughout that F is in the max-domain of attraction of an extreme-value dis-

tribution function G, with positive extreme-value indices γ1, γ2. The marginal distribution

functions of F are denoted by F1, F2, respectively. In this case the domain of attraction

condition can be written as

t (1− F (U1(t)x
γ1 , U2(t)y

γ2)) → − log G(xγ1 , yγ2), t →∞,(1)

on (0,∞]2 \ {(∞,∞)}, with

Uj(t) = F−1
j (1− 1/t), j = 1, 2;

here − log G(xγ1 ,∞) = − log G(∞, xγ2) = 1/x. This implies the existence of a measure

ν, the exponent measure, such that for all Borel sets A ⊂ [0,∞]2 that are bounded away

from the origin and satisfy ν(∂A) = 0

tP ({(U1(t)x
γ1 , U2(t)y

γ2) : (x, y) ∈ A}) → ν(A), t →∞.(2)
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For such an A and a > 0, we have ν(aA) = ν(A)/a. Also, for every a > 0 the exponent

measure is a finite measure on [0,∞]2 \ [0, a]2. For more details, see de Haan and Resnick

(1977).

We also require the convergence in (1) at the density level. Let g be the density

corresponding to the right-hand side of (1), i.e. we have

− log G(xγ1 , yγ2) = ν({(u, v) : u > x or v > y}) =

∫∫

u>x or v>y

g(u, v)dudv.

We assume

qt(x, y) := tU1(t)U2(t)f (U1(t)x
γ1 , U2(t)y

γ2)

→ 1
γ1γ2

x1−γ1y1−γ2g(x, y) =: q(x, y), t →∞,(3)

on (0,∞)2. In addition, we assume that

f is decreasing in each coordinate, outside (0,M ]2 (for some M > 0),

and that on (0,M ]2, f is bounded away from zero.(4)

Set Aλ = {(x, y) ∈ (0,∞)2 : x ∧ y ≥ λ}. It follows that the convergence in (3) is

uniform on Aλ, for every λ > 0, since the monotone functions qt converge pointwise to q

on Aλ and the range of values of q on Aλ is bounded.

We mention a few properties of g, q and f . They follow easily from multivariate

extreme-value theory and standard arguments. We have

g(ax, ay) = a−3g(x, y), x, y > 0, a > 0,

i.e. g is homogeneous of degree −3. Also, q is decreasing in each coordinate on (0,∞)2, g

and q are continuous on (0,∞)2, g and f are positive on (0,∞)2, and g(cx, x) is decreasing

in x, for all c > 0.

Condition (1) implies the existence of the spectral measure: a finite measure Ψ on

[0, π/2] such that

− log G(xγ1 , yγ2) =

∫ π/2

0

cos θ

x
∨ sin θ

y
dΨ(θ),

with
∫ π/2

0
cos θdΨ(θ) =

∫ π/2

0
sin θdΨ(θ) = 1; see Corollary 2 in de Haan and Resnick (1977).

We have

ν
({

(u, v) : u2 + v2 > r2,
v

u
≤ tan θ

})
=

1

r
Ψ(θ).
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(Without confusion, we use Ψ to denote both the spectral measure and its distribution

function.) The existence of g implies the existence of ψ := Ψ′ on (0, π/2) and

ψ(θ) = g(cos θ, sin θ).

It follows that ψ is continuous on (0, π/2) and that Ψ({0}) = Ψ({π/2}) = 0.

Recall

Qn = {(x, y) ∈ (0,∞)2 : f(x, y) ≤ β}
where β is taken such that PQn = p, with p = pn such that np → c ∈ [0,∞), or slightly

weaker p = O(1/n). It is the aim of the paper to estimate Qn, more precisely we want to

show consistency of our estimator Q̂n in the following appropriate sense:

P (Q̂n4Qn)

p

P→ 0.

(Here 4 denotes ‘symmetric difference’: A4B = A \B ∪B \ A.)

Set

S = {(x, y) : x1−γ1y1−γ2g(x, y) ≤ γ1γ2},
see (3). S is a fixed (i.e. not depending on n) ‘basis’ for our estimator of Qn. We will esti-

mate S later and then transform - using in particular p - that estimator into an estimator

of Qn. Throughout

(5) k = kn is a sequence of positive integers such that k →∞ and k/n → 0.

A first step is to find an approximate value of β. In this way, Qn is approximated by

Q̄n given by

Q̄n =

{
(x, y) ∈ (0,∞)2 : f(x, y) ≤

(
np

kν(S)

)γ1+γ2+1
1

(n/k)U1(n/k)U2(n/k)

}
.

Next, using (3), approximate Q̄n by a similar expression involving g, the density of the

limiting measure, rather than f . Let z = (x, y) and define, in vector notation, the map

Tt, t > 1, by

Tt(z) = U(t)zγ = (U1(t)x
γ1 , U2(t)y

γ2),

hence (2) can be written as

(6) tP (Tt(z) : z ∈ A) → ν(A), t →∞.
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Set

Q̃n = Tn/k

(
kν(S)

np
S

)
= U

(n

k

) (
kν(S)

np

)γ

Sγ.

The obvious step to obtain an estimator of Qn is now to estimate Q̃n, which can be

done by estimating Tn/k, ν(S), and in particular S. It is convenient to write S in polar

coordinates (r =
√

x2 + y2, θ = arctan(y/x)):

(7) S =

{
(x, y) : r ≥

(
1

γ1γ2

ψ(θ) cos1−γ1 θ sin1−γ2 θ

) 1
γ1+γ2+1

, θ ∈ [0, π/2]

}
.

Note that

ν(S) =

∫∫

r≥
(

1
γ1γ2

ψ(θ) cos1−γ1 θ sin1−γ2 θ
) 1

γ1+γ2+1

1

r2
ψ(θ)drdθ

=

∫ π/2

0

(
1

γ1γ2

ψ(θ) cos1−γ1 θ sin1−γ2 θ

)− 1
γ1+γ2+1

ψ(θ)dθ.(8)

In order to estimate Tn/k, ν(S), and S, it is sufficient to estimate U1(n/k), U2(n/k), γ1, γ2,

and the spectral density ψ. Estimation of the first four is well-known. We estimate U1(n/k)

and U2(n/k) with the corresponding order statistics Xn−k:n and Yn−k:n, respectively, so

Û(n/k) = (Û1(n/k), Û2(n/k)) = (Xn−k:n, Yn−k:n).

For the two extreme-value indices any
√

k-consistent estimator can be chosen, e.g. the

moment estimator in Dekkers, Einmahl and de Haan (1989). The estimator for ψ will

be obtained by smoothing a
√

k-consistent estimator Ψ̂ of the spectral measure Ψ, in

particular we can choose the maximum empirical likelihood estimator of Ψ in Einmahl

and Segers (2009). To be more precise let K be a probability density function being 0

outside (−1, 1), symmetric around 0, and of bounded variation. Define

ψ̂(θ) =

∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
dΨ̂(t), h = hn > 0.

Combining the various estimators we obtain, in vector notation, the following novel esti-

mator of an extreme bivariate quantile region:

Q̂n = Û
(n

k

) (
kν̂(S)

np

)γ̂

Ŝ γ̂,
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with (see (7))

Ŝ =

{
(x, y) : r ≥

(
1

γ̂1γ̂2

ψ̂(θ) cos1−γ̂1(θ ∧ (π/2− h)) sin1−γ̂2(θ ∨ h)

) 1
γ̂1+γ̂2+1

}

and (see (8))

ν̂(S) =

∫ π/2

0

(
1

γ̂1γ̂2

ψ̂(θ) cos1−γ̂1(θ ∧ (π/2− h)) sin1−γ̂2(θ ∨ h)

)− 1
γ̂1+γ̂2+1

ψ̂(θ)dθ.

We are now in a position to present our main result. We need the following marginal

second order conditions: for j = 1, 2, there exist functions Aj with limt→∞ Aj(t) = 0 and

constant sign near infinity, such that

(9) lim
t→∞

Uj(tx)

Uj(t)
− xγj

Aj(t)
= xγj

xρj − 1

ρj

for all x > 0 and some ρj < 0.

Theorem Let p = O(1/n). Assume (1), (3), (4), (5), (9) hold and that γ̂1, γ̂2 and Ψ̂

are such that
√

k(γ̂j − γj) = Op(1), j = 1, 2, and
√

k(Ψ̂ − Ψ) converges in distribution

on D[0, π/2] to a continuous process. Also assume infθ∈(0,π/2) ψ(θ) > 0, limn→∞h = 0,

lim infn→∞ h
√

k > 0, and limn→∞(log np)/
√

k = 0. Then we have that, as n →∞,

(10)
P (Q̂n4Qn)

p

P→ 0.

Remark 1 The consistency formulation in a ratio setting is appropriate here. Since

p = O(1/n), the statement P (Q̂n4Qn)
P→ 0 is pointless: it even holds when taking Q̂n the

empty set. Actually our result is rather strong, stating that the estimation error is much

smaller than the already extremely small p. Observe that it follows from the Theorem

that
P (Q̂n)

p

P→ 1.

Remark 2 In practice it is important that the tuning parameters k used in the estimation

of the marginal quantities (γj and Uj, j = 1, 2) and in the estimation of ψ can be chosen
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to be different, i.e. we take k1, k2 and kψ. (E.g., a good value for k1 can be a bad value for

k2; this depends on ρ1 and ρ2 in (9).) The thus adapted estimator becomes

Q̂n =






Û1

(
n

k1

) (
k1ν̂(S)

np

)γ̂1

xγ̂1 , Û2

(
n

k2

) (
k2ν̂(S)

np

)γ̂2

yγ̂2


 : (x, y) ∈ Ŝ



 .

If we also adapt the conditions of the theorem, in particular if (5) holds for k1, k2, kψ,

lim infn→∞ h
√

kψ > 0, and limn→∞(log np)/
√

kj = 0, j = 1, 2, then (10) remains true.

Remark 3 Note that the estimated quantile region Q̂n depends on p in a monotone way:

if p < p′ then Q̂n(p) ⊂ Q̂n(p′). It is also a continuous function of p. Hence, starting from

a very small Q̂n we can enlarge it until it first hits an observation. This observation can

then be considered the largest one and it has a “p-value” attached to it. This could be

helpful in deciding whether some two-dimensional observation is the most atypical (or: an

outlier); see Section 3. Also, by continuing this procedure we can introduce a ranking of

the larger observations.

Remark 4 Considering the related paper Einmahl, Li and Liu (2009), the main difference

is that in that paper the shape of the quantile region estimator is fixed beforehand to be

a quadrant, whereas here the data determine the shape of the quantile region estimator.

Also somewhat related are de Haan and Huang (1995) and Joe, Smith and Weissman

(1992).

3 Illustration

In this section we illustrate the method on two simulated data sets. We use the adapted

estimator of Remark 2.

Consider the bivariate Cauchy distribution on (0,∞)2 with density

f(x, y) =
2

π(1 + x2 + y2)3/2
.

This is a heavy-tailed density, symmetric in the coordinates x and y and a function of the

radius r. We have γ1 = γ2 = 1 and ψ(θ) = 1, for θ ∈ (0, π/2). We simulated a single

data set of size 5000 from this distribution and computed the true and estimated quantile

regions corresponding to p = 1/2000, 1/5000, and 1/10,000, respectively. Observe that for
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0
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4
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6
0
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0
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1
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0
0

Cauchy density, n=5000, p=1/2000, 1/5000, 1/10000

Q

Q
^

n

Figure 1: True and estimated quantile regions for p = 1/2000, 1/5000, 1/10,000 based on a

sample of size 5000 from the bivariate Cauchy distribution.

the latter p, np is as small as 0.5. It should be noted that for, e.g., p = 1/10,000 the

(constant) density f on the boundary of the quantile region is less than 10−12. Figure 1

shows excellent behavior of our procedure, in particular considering that the regions ar far

away from almost all the data points. We also calculated P (Q̂n) for the three p-s. These

values only deviate a few percent from p which is a very small error given that the p-s are

extremely small.

We will also consider the density on (0,∞)2 given by

(11) f(x, y) =
c

x3 + y4 + 1
,
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with c ≈ 0.581. This density is less heavy tailed: γ1 = 4/5 and γ2 = 3/5. We find

ψ(θ) =
12c

25

c1c2(
c3
1 cos12/5 θ + c4

2 sin12/5 θ
)
cos1/5 θ sin2/5 θ

, θ ∈ (0, π/2),

with c1 ≈ 0.589 and c2 ≈ 0.593. One can generate data from the density f by noting that

0 500 1000 1500 2000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

asymmetric density, n=5000, p=1/2000, 1/5000, 1/10000

Q

Q
^

n

Figure 2: True and estimated quantile regions for p = 1/2000, 1/5000, 1/10,000 based on a

sample of size 5000 from the density f in (11). Note that different scales are used on the two

axes.

a corresponding random vector (X,Y ) can be represented by two independent random

variables S and Ξ as follows:

(X, Y ) =

((
S

Ξ + 1

)1/3

,

(
S Ξ

Ξ + 1

)1/4
)

.
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We simulated a sample of size 5000 from this distribution and computed true and estimated

quantile regions corresponding to p = 1/2000, 1/5000, and 1/10,000, see Figure 2. For

these data the procedure shows the same excellent behavior. The three values of P (Q̂n)

are now 10–15% too low, a small error given the statistical difficulty of the estimation

problem.

4 Proofs

For the proof of the theorem we need several lemmas and propositions. We throughout

assume that the conditions of the theorem are in force. We will need the following simple

auxiliary result.

Lemma 1 For all Borel sets A ⊂ [0,∞]2 that are bounded away from the origin and

satisfy ν(∂A) = 0, we have

ν(S)

p
P

(
Tn/k

(
kν(S)

np
A

))
→ ν(A), n →∞.(12)

Proof It suffices to prove (12) for sets A of the form ([0, x]×[0, y])c, with x, y ≥ 0, x+y > 0.

Then the left-hand side of (12) is equal to

ν(S)

p
P

(
X > U1

(n

k

) (
kν(S)

np
x

)γ1

or Y > U2

(n

k

) (
kν(S)

np
y

)γ2
)

=
ν(S)

p
P


X > U1

(
ν(S)

p

)




 U1

(
n
k

)

U1

(
ν(S)

p

)



1/γ1

kν(S)

np
x




γ1

or Y > U2

(
ν(S)

p

)




 U2

(
n
k

)

U2

(
ν(S)

p

)



1/γ2

kν(S)

np
y




γ2

 .

Using kν(S)/(np) →∞, it follows from the second order conditions (9) and Remark B.3.15

in de Haan and Ferreira (2006, p. 397), that

Uj

(
n
k

kν(S)
np

)

Uj

(
n
k

) (
kν(S)

np

)γj
→ 1, j = 1, 2.

11



Hence by the local uniformity in the limit relation

ν(S)

p
P

(
Tν(S)/p([0, x]× [0, y])c

) → ν (([0, x]× [0, y])c) ,

the result follows. ¤

Our first task is to prove that Qn and Q̃n are close (Proposition 1). Recall Tν(S)/p(z) =

U(ν(S)/p)zγ and

qν(S)/p(z) =
ν(S)

p
U1

(
ν(S)

p

)
U2

(
ν(S)

p

)
f(Tν(S)/p(z)).

Lemma 2 Let ε > 0. Then for large n

Q̄n ⊂ Tν(S)/p

{
z : qν(S)/p(z) ≤ 1 + ε

}

and

Q̄n ⊃ Tν(S)/p

{
z : qν(S)/p(z) ≤ 1− ε

}
.

Proof It follows from (9) as in the proof of Lemma 1, that

n

k
U1

(n

k

)
U2

(n

k

) (
np

kν(S)

)−γ1−γ2−1

∼ ν(S)

p
U1

(
ν(S)

p

)
U2

(
ν(S)

p

)
.

Hence for large n

Q̄n ⊂
{

u :
ν(S)

p
U1

(
ν(S)

p

)
U2

(
ν(S)

p

)
f(u) ≤ 1 + ε

}
.

The other inclusion follows in the same way. ¤
Since the probability density f can be unbounded near the coordinate axes, we want

to consider the part of Q̄n near the axes separately from the part in the middle. Define

for δ ∈ (0, π/4)

Rδ =

{
(x, y) :

y

x
∧ x

y
≥ tan δ

}

Lemma 3 Let ε > 0 and c > 0. Then for large n

{
(x, y) : qν(S)/p(x, y) ≤ c

} ∩Rδ ⊂ {(x, y) : q(x, y) ≤ c/(1− ε)} ∩Rδ

and {
(x, y) : qν(S)/p(x, y) ≤ c

} ∩Rδ ⊃ {(x, y) : q(x, y) ≤ c/(1 + ε)} ∩Rδ.
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Proof From the monotonicity of q it follows that there exists a c′ > 0 such that{
(x, y) : q(x, y) ≤ c

1− ε

}
∩Rδ ⊂

{
(x, y) : x2 + y2 > c′

} ∩Rδ.

Using again the monotonicity properties of qν(S)/p and q we obtain from (3) that qν(S)/p → q

uniformly on the latter set. Hence for large n, on that set, (1− ε)q(x, y) ≤ qν(S)/p(x, y) ≤
(1 + ε)q(x, y). So on that set, if qν(S)/p(x, y) ≤ c, then q(x, y) ≤ c/(1 − ε) and if

qν(S)/p(x, y) > c, then q(x, y) > c/(1 + ε). The result follows. ¤

The next lemma can be shown in a similar way as Lemma 2.

Lemma 4 Let ε > 0. Then for large n

Tν(S)/p {(x, y) : q(x, y) ≤ 1− ε} ⊂ Q̃n

and

Tν(S)/p {(x, y) : q(x, y) ≤ 1 + ε, } ⊃ Q̃n.

Write

Wδ =





(u, v) :


 v

U2

(
ν(S)

p

)



1/γ2

U1

(
ν(S)

p

)

u




1/γ1

∧

 u

U1

(
ν(S)

p

)



1/γ1

U2

(
ν(S)

p

)

v




1/γ2

≥ tan δ





and observe that Tν(S)/pRδ = Wδ.

Lemma 5 We have

lim
δ↓0

lim sup
n→∞

P (Q̄n \Wδ)

p
= 0 and lim

δ↓0
lim sup

n→∞

P
(
Tn/k

[
kν(S)

np
(S \Rδ)

])

p
= 0.

Proof Let (x0, y0) be the solution of the equations q(x, y) = 1+3ε and y = x tan δ. From

the proof of Lemma 3 we have for large n

1 + 3ε

1 + ε
qν(S)/p(x0, y0) > q(x0, y0) = 1 + 3ε,

i.e. qν(S)/p(x0, y0) > 1 + ε. Because of symmetry we only consider the region near the

horizontal axis. From Lemma 2 we see that for large n

ν(S)

p
P (Q̄n ∩ {(u, v) : (v/U2(ν(S)/p))1/γ2 < (U1(ν(S)/p)/u)1/γ1 tan δ})

≤ ν(S)

p
P

(
Tν(S)/p

{
(x, y) : qν(S)/p(z) ≤ 1 + ε, y < x tan δ

})

≤ ν(S)

p
P

(
Tν(S)/p

{
(x, y) : x2 + y2 > x2

0, y < x tan δ
})

,

13



which tends to ν({(x, y) : x2 + y2 > x2
0, y < x tan δ}) = 1

x0
Ψ(δ) as n →∞, which in turn

tends to 0 when δ ↓ 0. Using Lemma 4, the second statement follows similarly. ¤

Proposition 1 We have

lim
n→∞

P (Qn4Q̃n)

p
= 0.

Proof Write Q̄n,δ = Q̄n ∩Wδ and similarly

Q̃n,δ = Tn/k

(
kν(S)

np
(S ∩Rδ)

)
= Tn/k

(
kν(S)

np

{
(x, y) : q(x, y) ≤ 1,

y

x
∧ x

y
≥ tan δ

})
.

Observe that Qn ⊂ Q̄n or Q̄n ⊂ Qn. Hence we have

P (Qn4Q̃n) ≤ P (Qn4Q̄n) + P (Q̄n4Q̃n)

≤ |p− PQ̄n|+ P (Q̄n,δ4Q̃n,δ) + P (Q̄n \Wδ) + P

(
Q̃n \ Tn/k

(
kν(S)

np
(S ∩Rδ)

))

≤ |p− PQ̄n,δ|+ P (Q̄n,δ4Q̃n,δ) + 2P (Q̄n \Wδ) + P

(
Q̃n \ Tn/k

(
kν(S)

np
(S ∩Rδ)

))
.

Let ε > 0. From Lemmas 2-4 and (2) it follows that as n →∞
ν(S)

p
P (Q̄n,δ4Q̃n,δ) ≤ ν(S)

p
P

(
Tν(S)/p

{
(x, y) : 1− ε ≤ q(x, y) ≤ 1 + ε,

y

x
∧ x

y
≥ tan

δ

2

})

→ ν

({
(x, y) : 1− ε ≤ q(x, y) ≤ 1 + ε,

y

x
∧ x

y
≥ tan

δ

2

})
.

The latter expression is less than
(
(1 + ε)1/(γ1+γ2+1) − (1− ε)1/(γ1+γ2+1)

)
ν(S), which in

turn tends to 0 when ε ↓ 0. Hence for all δ ∈ (0, π/4)

(13) lim
n→∞

P (Q̄n,δ4Q̃n,δ)

p
= 0.

Similarly it follows that

(14) lim
n→∞

PQ̄n,δ

p
=

ν(S ∩Rδ)

ν(S)
.

Now the statement follows from Lemma 5, (13) and letting δ ↓ 0 in (14). ¤

Our next task is to prove that Q̃n and Q̂n are close (Proposition 3). First we need two

results for ψ̂.

14



Proposition 2 Let η ∈ (0, π/4). Then as n →∞

sup
θ∈[η,π/2−η]

|ψ̂(θ)− ψ(θ)| P→ 0.

Proof Define

ψn(θ) =

∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
dΨ(t).

We have, writing I = [η, π/2− η],

sup
θ∈I

|ψn(θ)− ψ(θ)| ≤ sup
θ∈I

∫ h

−h

|ψ(θ + t)− ψ(t)|1
h
K

(
t

h

)
dt

≤ sup
θ∈I

sup
−h≤t≤h

|ψ(θ + t)− ψ(t)| → 0,(15)

by the uniform continuity of ψ on [η/2, π/2− η/2].

So it remains to show that

sup
θ∈I

|ψ̂(θ)− ψn(θ)| P→ 0.

Observe that

ψ̂(θ)− ψn(θ) =

∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
d(Ψ̂(t)−Ψ(t))

= −1

h

1√
k

∫ 1

−1

(αn(θ + ht)− αn(θ))dK(t),

where αn :=
√

k(Ψ̂−Ψ). Hence we have

sup
θ∈I

|ψ̂(θ)− ψn(θ)| ≤
∫ 1

−1
|dK(t)|
h
√

k
sup
θ∈I

sup
−1≤t≤1

|αn(θ + ht)− αn(θ)|.(16)

Denote the continuous limiting process of αn with α. Invoking a Skorohod construction

(but keeping the same notation) we see that the right-hand side of (16) is equal to

∫ 1

−1
|dK(t)|
h
√

k

{[
sup
θ∈I

sup
−1≤t≤1

|α(θ + ht)− α(θ)|
]

+ op(1)

}
= op(1),

by the uniform continuity of α on [η/2, π/2− η/2]. ¤

Lemma 6 There exists a c > 0 such that with probability tending to one, as n →∞,

inf
θ∈(0,π/2)

ψ̂(θ) cos1−γ̂1(θ ∧ (π/2− h)) sin1−γ̂2(θ ∨ h) > c.

15



Proof By a symmetry argument it suffices to show

(17) inf
θ∈(0,π/4]

ψ̂(θ) sin1−γ̂2(θ ∨ h) > c.

As in the proof of Proposition 2, we obtain (with the obvious extension of αn)

sup
θ∈(0,π/4]

|ψ̂(θ)− ψn(θ)| ≤
∫ 1

−1
|dK(t)|
h
√

k
sup

θ∈(0,π/4]

sup
−1≤t≤1

|αn(θ + ht)− αn(θ)| P→ 0.(18)

Also for θ ∈ (0, π/4]

ψn(θ) =

∫ 1

−1

ψ(θ + ht)K(t)dt ≥
∫ 1

0

K(t)dt inf
θ∈(0,π/4]

ψ(θ) =
1

2
inf

θ∈(0,π/4]
ψ(θ).

Hence with probability tending to one infθ∈(0,π/4] ψ̂(θ) > c. This completes the proof

of (17) when γ2 > 1. In fact we also have (17) when γ2 = 1, since sin1−γ̂2(θ ∨ h) =

sinOp(1/
√

k)(θ ∨ h)
P→ 1 uniformly for θ ∈ (0, π/4].

So in the sequel we assume 0 < γ2 < 1. We obtain from (18)

sup
θ∈(0,π/4]

|ψ̂(θ)− ψn(θ)| sin1−γ̂2(θ ∨ h)
P→ 0.

When h ≤ θ ≤ π/4, with probability tending to one

sin1−γ̂2(θ ∨ h)ψn(θ) = sin1−γ̂2(θ ∨ h)

∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
ψ(t)dt

= sinγ2−γ̂2(θ ∨ h)

∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
ψ(t)(sin t)1−γ2

(
sin(θ ∨ h)

sin t

)1−γ2

dt

≥ sinγ2−γ̂2(θ ∨ h)

∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
ψ(t)(sin t)1−γ2(cos t)2+γ2

(
sin θ

sin(θ + h)

)1−γ2

dt

≥ sinγ2−γ̂2(θ ∨ h)

∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
dt

· ψ
(π

4
+ h

)(
sin

(π

4
+ h

))1−γ2
(
cos

(π

4
+ h

))2+γ2
(

sin h

sin 2h

)1−γ2

> c,

where we have used for the second inequality that sin1−γ2 t cos2+γ2 tψ(t) is decreasing,

which holds since q(1, tan t) is decreasing.

Finally consider 0 < θ < h. We again use that sin1−γ2 t cos2+γ2 tψ(t) is decreasing

and that hence cos2+γ2 tψ(t) is also decreasing (0 ≤ t ≤ π/4). We have with probability

16



tending to one

sin1−γ̂2(θ ∨ h)ψn(θ) ≥ sin1−γ̂2 h

∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
ψ(t)(cos t)2+γ2dt

≥
∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
dt ψ(2h)(cos 2h)2+γ2(sin h)1−γ̂2

= ψ(2h)(cos 2h)2+γ2(sin 2h)1−γ2(sin h)γ2−γ̂2

(
sin h

sin 2h

)1−γ2

≥ ψ
(π

4

)(
cos

π

4

)2+γ2
(
sin

π

4

)1−γ2

(sin h)γ2−γ̂2

(
sin h

sin 2h

)1−γ2

> c. ¤

Lemma 7 As n →∞
ν̂(S)

P→ ν(S).

Proof Recall that

ν(S) =

∫ π/2

0

(
1

γ1γ2

ψ(θ) cos1−γ1 θ sin1−γ2 θ

)− 1
γ1+γ2+1

ψ(θ)dθ.

From Proposition 2 it readily follows that for fixed η ∈ (0, π/4)

∫ π/2−η

η

(
1

γ̂1γ̂2

ψ̂(θ) cos1−γ̂1(θ ∧ (π/2− h)) sin1−γ̂2(θ ∨ h)

)− 1
γ̂1+γ̂2+1

ψ̂(θ)dθ

P→
∫ π/2−η

η

(
1

γ1γ2

ψ(θ) cos1−γ1 θ sin1−γ2 θ

)− 1
γ1+γ2+1

ψ(θ)dθ,

which (since ν(S) < ∞) in turn tends to ν(S) when η ↓ 0.

It remains to consider

∫ η

0

(
1

γ̂1γ̂2

ψ̂(θ) cos1−γ̂1(θ ∧ (π/2− h)) sin1−γ̂2(θ ∨ h)

)− 1
γ̂1+γ̂2+1

ψ̂(θ)dθ;

the integral on [π/2 − η, π/2] can be dealt with in the same way. From Lemma 6 we

see, with probability tending to one, that this expression is bounded from above by some

constant times
∫ η

0
ψ̂(θ)dθ. The latter expression is in turn bounded by

∫ η

0

∫ θ+h

θ−h

1

h
K

(
t− θ

h

)
dΨ̂(t)dθ ≤

∫ η+h

−h

∫ t+h

t−h

1

h
K

(
t− θ

h

)
dθdΨ̂(t) = Ψ̂(η + h),

which converges in probability to Ψ(η) when n → ∞. The fact that limη↓0 Ψ(η) = 0

completes the proof. ¤
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For δ ∈ (0, π/4), define Sδ = S∩Rδ = S∩{(x, y) : δ ≤ θ ≤ π/2−δ} and Ŝδ = Ŝ∩Rδ =

Ŝ ∩ {(x, y) : δ ≤ θ ≤ π/2− δ}. The following lemma follows easily, using Proposition 2.

Lemma 8 Let ε > 0. Then with probability tending to one, as n →∞,

(1 + ε)Sδ ⊂ Ŝδ ⊂ (1− ε)Sδ.

Recall the definition of Q̃n,δ in the proof of Proposition 1 and write

Q̂n,δ = T̂n/k

(
kν̂(S)

np

{
(x, y) : x1−γ̂1y1−γ̂2 ĝ(x, y) ≤ γ̂1γ̂2,

y

x
∧ x

y
≥ tan δ

})
;

here for z = (x, y), T̂n/k(z) = Û(n/k)zγ̂ = (Û1(n/k)xγ̂1 , Û2(n/k)yγ̂2) and for (x, y) =

(r cos θ, r sin θ), ĝ(x, y) = ψ̂(θ)/r3.

Lemma 9 Let δ ∈ (0, π/4). Then as n →∞

P (Q̃n,δ4Q̂n,δ)

p

P→ 0.

Proof We have

P (Q̃n,δ4Q̂n,δ)

≤ P

(
Tn/k

(
kν(S)

np
Sδ

)
4T̂n/k

(
kν(S)

np
Sδ

))

+P

(
T̂n/k

(
kν(S)

np
Sδ

)
4T̂n/k

(
kν̂(S)

np
Ŝδ

))
=: V1 + V2.(19)

We consider

V1 = P

(
Tn/k

[(
kν(S)

np
Sδ

)
4

(
kν(S)

np

(
np

kν(S)
T−1

n/kT̂n/k
kν(S)

np

)
Sδ

)])
.

Now for (x, y) ∈ (0,∞)2,

np

kν(S)
T−1

n/kT̂n/k
kν(S)

np
(x, y)

=




(
Û1

(
n
k

)

U1

(
n
k

)
(

kν(S)

np

)γ̂1−γ1
)1/γ1

xγ̂1/γ1 ,

(
Û2

(
n
k

)

U2

(
n
k

)
(

kν(S)

np

)γ̂2−γ2
)1/γ2

yγ̂2/γ2


 .
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Applying a Skorohod construction (but keeping the same notation) we have, using (log np)/
√

k →
0, that with probability 1




(
Û1

(
n
k

)

U1

(
n
k

)
(

kν(S)

np

)γ̂1−γ1
)1/γ1

,
γ̂1

γ1

,

(
Û2

(
n
k

)

U2

(
n
k

)
(

kν(S)

np

)γ̂2−γ2
)1/γ2

,
γ̂2

γ2


 → (1, 1, 1, 1).

Writing

S∗n,δ =
np

kν(S)
T−1

n/kT̂n/k
kν(S)

np
Sδ ,

we obtain that for ε ∈ (0, 1) and n ≥ 1/ε,

V1

p
=

1

p
P

(
Tn/k

kν(S)

np

(
Sδ4S∗n,δ

)) ≤ 1

p
P


Tn/k

kν(S)

np

⋃

m≥1/ε

(
Sδ4S∗m,δ

)

 .

Letting n → ∞, the latter expression tends to ν
(∪m≥1/ε

(
Sδ4S∗m,δ

))
/ν(S) by Lemma 1,

which in turn tends to 0 with probability 1, when ε ↓ 0.

Next consider
V2

p
=

1

p
P

(
T̂n/k

k

np

(
ν(S)Sδ4ν̂(S)Ŝδ

))
.

Lemmas 7 and 8 imply that with probability tending to one this expression is bounded

from above by

1

p
P

(
T̂n/k

k

np

(
(1− ε)2ν(S)Sδ

) \ (
(1 + ε)2ν(S)Sδ

))

=
1

p
P

(
T̂n/k

kν(S)

np

(
(1− ε)2Sδ

) \ (
(1 + ε)2Sδ

))

=
1

p
P

(
Tn/k

kν(S)

np

(
np

kν(S)
T−1

n/kT̂n/k
kν(S)

np

) (
(1− ε)2Sδ

) \ (
(1 + ε)2Sδ

))

Now we are in a similar position as when dealing with V1/p : letting n → ∞ and next

ε ↓ 0, the latter expression converges to 0 with probability 1.

Combining the results for V1/p and V2/p with (19) completes the proof. ¤

Lemma 10 For every ε > 0 there exists a δ > 0 and an nε,δ such that for n ≥ nε,δ

P


P

(
Q̂n \ Q̂n,δ

)

p
≥ ε


 ≤ ε.
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Proof From Lemma 6 we obtain the existence of a c̃ such that with probability tending

to one, as n →∞,

Ŝ \ Ŝδ ⊂ {(x, y) : r ≥ c̃, θ /∈ [δ, π/2− δ] } =: Zc̃,δ.

This implies that with probability tending to one

P
(
Q̂n \ Q̂n,δ

)
≤ P

(
T̂n/k

kν̂(S)

np
Zc̃,δ

)
.

Hence it suffices to show that there exists a δ > 0 and an nε,δ such that for n ≥ nε,δ

P




P
(
T̂n/k

kν̂(S)
np

Zc̃,δ

)

p
≥ ε


 ≤ ε.

This can be proved using similar arguments as in the proof of the previous lemma. ¤

Proposition 3 We have, as n →∞,

P (Q̃n4Q̂n)

p

P→ 0.

Proof The statement follows from Lemmas 9, 5 (second statement) and 10. ¤

Proof of the Theorem The result follows from combining Propositions 1 and 3. ¤
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