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Abstract

This paper models two key roles of subjective performance evaluations: their in-

centive role and their feedback role. The paper shows that the feedback role makes

subjective pay feasible even without repeated interaction, as long as there exists some

veri�able measure of performance. It also shows that while subjective pay is helpful,

it cannot achieve full e¢ ciency. However, fully e¢ cient incentives are achievable if the

�rm can commit to a forced distribution of evaluations and employs a continuum of

workers. With a small number of workers, a forced distribution is valuable only if the

veri�able measure is poor.
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1. Introduction

Most workers are regularly evaluated by their superiors. Such an evaluation typically in-

cludes the superior�s subjective judgement about the worker�s performance � for example,

Gibbs et al (2007) document the use of subjective performance evaluations in the compensa-

tion packages of auto dealership managers; Levin (2003) cites survey evidence of subjective

performance pay in law �rms; and Eccles and Crane (1988) describe how the compensation

of investment bankers depends on such subjective measures as the quality of their deals and

customer satisfaction. Even the pay of the CEOs often depends on subjective assessments

by the �rms�boards of directors (Bushman et al, 1996; Hayes and Schaefer, 1997).

Performance evaluations usually serve multiple goals, but two of the most important

ones are provision of incentives and performance feedback. For example, Cleveland et al

(1989) report that 69% of their survey respondents considered salary administration and

53% considered performance feedback to be among the three main purposes of performance

appraisals. The incentive role of subjective evaluations has been studied extensively in

the economics literature (e.g. MacLeod and Malcomson, 1989; Baker et al, 1994; Levin,

2003), but their feedback role, although recognized (Milgrom and Roberts, 1992, p. 407;

Prendergast, 2002), has been largely missing from formal models.1

This paper spotlights the feedback role of evaluations by incorporating it into a principal-

agent model in which subjective evaluations both motivate workers and provide them with

information about their productive abilities. The paper shows how the feedback and the

incentive roles of evaluations interact with each other and that absent reputational concerns,

performance feedback is key to making the incentive part of the evaluations operational.

A well recognized problem with subjective pay, which seriously undermines its incentive

e¤ects, is that supervisors are tempted to underreport workers� performance in order to

save on labor costs. Gibbons (2005) argues that this reneging/commitment problem is at

least as important for understanding real world contracts as the more frequently studied

trade-o¤ between incentives and insurance. Accordingly, the previous research on the topic

has focused primarily on how �rms can make subjective pay functional despite this trust

problem. Most of this work follows Bull (1987) in emphasizing the supervisors�reputational

concerns in in�nitely repeated games and the received wisdom is that the reneging problems

make stationary contracts with subjective pay ine¤ective (Levin, 2003; Prendergast, 2002).

Using a two-period model, I show that the feedback role of performance assessments

1One exception is Suvorov and van de Ven (2009), discussed in greater detail below. The e¤ects of feedback
have also been studied in several tournament models; these models, however, are not about subjective
evaluations.
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mitigates the reneging problem and makes subjective incentive schemes feasible even without

in�nite interaction. Central to this conclusion are two ideas. The �rst is that ability and

e¤ort are complementary in production. Although in some jobs (say, janitorial jobs) ability

may have no bearing on the productivity of one�s e¤ort, most jobs are likely to exhibit

some degree of complementarity between e¤ort and ability. The second central idea is that

feedback from a supervisor allows a worker to update his belief about his productive ability.

Because under complementarity the worker�s subsequent performance depends on this belief,

the employer has an incentive to give the worker a good evaluation, in order to boost his

e¤ort. A properly designed reward scheme then balances the supervisor�s desire to in�ate the

worker�s self-assessment against her temptation to save on labor costs by under-reporting.

This makes honest evaluations feasible without resorting to in�nite interaction arguments.

The model�s contracting framework builds on the observation that a worker�s contri-

bution to �rm value is frequently complex and hard to capture by an objective measure.

Consequently, when objective measures are imperfect and could lead to dysfunctional be-

havior, �rms complement them with subjective schemes in which a worker�s salary, bonus,

or promotion depend upon his superior�s perception of his performance. This point has been

recognized by many writers (e.g., Baker et al., 1994; Prendergast, 1999) and can be traced

at least to Alchian and Demsetz�s (1972) classic theory of the �rm.2 It is also consistent

with the evidence on incentive systems in auto dealerships provided by Gibbs et al (2007).

In line with the above, I assume that an objective (veri�able) performance measure is

available, but imperfect. The exact source of contracting imperfections is not important for

the paper�s main conclusions, but for concreteness, I assume that they are due to multitasking

problems similar to those studied in Feltham and Xie (1994), Datar et al (2001), and Baker

(2002). Speci�cally, the objective measure distorts an agent�s allocation of e¤ort across tasks

because it aggregates his individual e¤orts in a manner that di¤ers from his contribution to

the �rm value. In this setting, subjective evaluations are useful because they are based on

an undistorted measure; in fact, the principal would ideally like all of the agent�s incentives

to derive from subjective pay. I show that this is in general not possible, as the principal�s

freedom to design the contract is constrained by the need to ensure that the evaluations

are truthful. Nevertheless, at least some incentives derived from subjective pay are always

feasible, as long as the objective measure is not completely worthless.

An optimal contract in this environment arises from a mechanism design problem in which

2Alchian and Demsetz argue that the lack of good objective measures for workers�individual contributions
is the very reason �rms exist. The �rm, in their view, is a device that allows some individuals to specialize
in observing workers�performance and in rewarding them according to their marginal contribution to joint
output.
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the principal faces her own, rather than the agent�s, truthtelling constraint. Consequently,

the contract is not shaped by the standard trade-o¤ between rent extraction and allocation

e¢ ciency. Rather, the trade-o¤ is between the e¢ ciency of the incentives provided by the

objective measure in the second period and the e¢ ciency of the subjective pay in the �rst

period. In particular, for the subjective evaluations to provide any incentives, the second

period objective contract must necessarily be distorted away from the optimal form it would

have in the absence of subjective pay. This trade-o¤ limits the usefulness of subjective pay,

preventing the optimal contract from achieving full e¢ ciency in the �rst period.

The situation is di¤erent when �rms can pre-commit to a speci�c distribution of evalua-

tions. Such �forced distributions�are common in real world �rms (one well known example

is GE�s �vitality curve�), but their purpose is not well understood. I show that, similar

to the bene�t of tournaments pointed out by Malcomson (1984), the advantage of a forced

distribution is that it relaxes the principal�s truthtelling constraint by making the size of

the wage bill independent of individual evaluations. This eliminates the above tradeo¤ and

allows the principal to achieve full e¢ ciency in the �rst period by completely replacing the

objective measure with subjective pay.

The truthtelling bene�t of forced distributions does not come for free, however. A forced

distribution limits the amount of information that the evaluations convey about the workers�

productive capacities, which impedes the workers�ability to properly tailor their second pe-

riod e¤orts. Crucially, this constraint gets more sti�ing the smaller is the number of workers.

The number of workers is therefore of central importance in the choice between subjective

evaluations with and without a forced distribution: When the workforce is large, a forced

distribution can closely approximate the true distribution of the workers�productivities and

is therefore very informative. In this case, the e¢ ciency gain from improved �rst period

incentives outweighs the loss from the misallocation of the second period e¤ort.

In contrast, when the number of workers is small, the choice between the two subjective

schemes depends on the quality of the objective measure. If the objective measure is good,

the main bene�t of subjective evaluations is to inform the workers about their productive

abilities, which favors subjective evaluations without a forced distribution. If the objective

measure is poor, then it provides very ine¢ cient incentives even if the workers are fully

informed about their abilities. In this case, the main goal is to strengthen the workers�

incentives, which is best achieved via evaluations with a forced distribution.

Related literature. In its focus on the interaction between the incentive e¤ects of
objective and subjective measures, this paper is related to Baker et al (1994), who were

the �rst to formally model such an interaction. In Baker et al, however, subjective pay is

sustained through in�nite interaction in a repeated game, whereas I present a �nite horizon
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model. Furthermore, the feedback function of subjective evaluations, so prominent in the

current model, plays no role in their analysis.

Another seminal contribution to the theory of subjective evaluations under repeated

interaction is Levin (2003). Levin shows that in his model it is optimal for the principal

and the agent to govern their relationship through a termination contract, in which a poor

performance evaluation is followed by the two parties dissolving the relationship.

MacLeod (2003) has generalized the logic of repeated game models by demonstrating that

subjective pay schemes can be feasible even without in�nite interaction if workers can punish

a deviation from the implicit contract by imposing on the employer some type of socially

wasteful cost, say, through quitting or sabotage at the �rm. The optimal contract then trades

o¤ ex post socially wasteful con�ict against ex ante performance incentives. This model was

further developed by Fuchs (2007), who extended it to a more dynamic environment, and

by Rajan and Reichelstein (2009), who introduced in it objective measures of performance.

The present paper complements the MacLeod/Fuchs/Rajan/Reichelstein theory by ex-

amining an alternative mechanism for sustaining subjective evaluations that does not require

ex post destruction of surplus. Further, it points to the availability of an objective measure

as a crucial determinant of feasibility of subjective pay and to the number of workers as a

determinant of whether the subjective pay scheme will include a forced distribution. Also,

where Fuchs concludes that in his setting it is optimal for incentive purposes not to give

the agent interim feedback about his performance, the current paper provides a framework

in which interim feedback is vital. This accords well with the evidence that companies cite

feedback to workers as one of the main reasons for using subjective evaluations.

Rajan and Reichelstein also examine a setting with two agents. The optimal scheme

in this part of their analysis does not require surplus destruction and resembles a forced

distribution of evaluations studied in the second part of this paper. However, unlike in the

present model, a forced distribution is necessary for Rajan and Reichelstein�s scheme to work

(in the absence of surplus destruction) and hence the question whether or not the �rm will

�nd it optimal to use a forced distribution cannot be answered within their framework.

The e¤ects of a principal�s feedback on an agent�s e¤ort have recently been studied by

Aoyagi (2007), Goltsman and Mukherjee (2011), and Ederer (2010) in the context of multi-

stage tournaments, and by Suvorov and van de Ven (2009) in the context of subjective

evaluations. Suvorov and van de Ven�s analysis is closely related to the �rst part of the

present paper. They, too, show that informative subjective evaluations are feasible if the

principal has private information about the agent�s ability. They, however, do not allow for

objective measures of performance and instead assume that the agent has intrinsic motivation

to provide e¤ort. Consequently, their model is not suitable for studying the interaction be-
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tween subjective and objective measures of performance central to this paper. Furthermore,

they con�ne their attention to a single agent setting and do not study forced distributions.

In the multi-stage tournament models of Aoyagi (2007) and others, feedback does not

always a¤ect e¤ort in a desirable way and the main question is whether the agents provide

more e¤ort with or without information revelation.3 In the present paper, feedback is always

useful. More to the point, this tournament literature is not about subjective evaluations, as

it assumes that the feedback is contractible, which eliminates the problem of inducing the

principal to reveal her information truthfully.

Finally, the model of this paper is also formally related to Hermalin (1998) and Benabou

and Tirole (2003). These two papers share with the present model the feature that a principal

uses her private information about the production process to in�uence agents� incentives.

More speci�cally, Hermalin shows how a leader of a team can use a contract with side

payments to credibly communicate her superior information to other team members and

Benabou and Tirole study how a principal can adjust employment policy, such as contingent

pay, to manage an agent�s self-con�dence. Despite these common features, the present paper

focuses on issues that do not arise in the above two papers, such as the incentive e¤ects of

subjective pay, the interplay between subjective and objective measures of performance, and

the usefulness of forced distributions of messages.

The plan for the rest of the paper is as follows. Section 2 describes the model and the

main assumptions. Section 3 contains an analysis of the case without a forced distribution of

evaluations. It provides conditions under which subjective pay is feasible, a result regarding

the e¢ ciency of subjective pay schemes, and a characterization of the optimal contract. This

section also discusses the role of commitment for the feasibility of subjective pay. Section 4

allows for evaluations with a forced distribution and compares the bene�ts and disadvantages

of the two types of subjective schemes. Section 5 concludes.

2. The Model

Production technology. A principal (she) supervises an agent/worker (he) over two peri-
ods, t = 1; 2. The worker�s output in period t is yt 2 f0; 1g. The probability of high output
yt = 1 is given by qt = aet�f , where a 2 R+ is the worker�s innate time-invariant ability,
et = (e1t; e2t; :::; eKt) 2 RK+ is his K-dimensional, K � 2, vector of e¤orts provided in period
t, and f = (f1; f2; :::; fK) 2 RK+ is the vector of marginal contributions of the worker�s e¤orts
to �rm value. As noted in the Introduction, a key feature of this speci�cation is that ability

3An early paper that addresses this question in a single-agent setting is Lizzeri et al (2003).

5



and e¤ort are complements in the production function.

The worker�s ability is initially unknown. Both the worker and the principal only know

that the ability is drawn from an interval [0; �a] according to a distribution function H(a)

with density h(a), which is positive and twice di¤erentiable at each a.4

Performance measures. Neither the worker�s expected contribution to �rm value,

qt, nor its realization, yt, are contractible. Instead, the worker�s incentives come from two

alternative sources:

Objective measures. First, there are contractible but imperfect measures of the worker�s

performance, zt 2 f0; 1g, t = 1; 2. The probability that zt = 1 is pt = aet�g, where
g = (g1; g2; :::; gK) 2 RK+ captures the marginal impact of the worker�s e¤orts on z1 and z2.
The measures zt are imperfect in the sense that g 6= �f for any constant �. This makes

it impossible for a contract based solely on zt to induce the e¤orts that maximize the �rm�s

value. The degree of distortion of the objective measure will be captured by the angle

between g and f denoted by � and de�ned by cos � = f �g
kfkkgk , where kfk and kgk are the

lengths of the vectors f and g respectively, that is, kfk =
qPK

k=1 f
2
k and kgk =

qPK
k=1 g

2
k.

To ensure that pt and qt can be interpreted as probabilities, assume maxfkfk ; kgkg � 1=�a.
Without loss of generality, the focus will be on performance measures such that cos � � 0

� an undistorted measure would have cos � = 1 and the smaller is cos �, the more distorted

is the measure.

Subjective measures. At the end of period t, the principal privately observes the worker�s

expected contribution to the �rm�s period-t value, qt = aet�f .5 This speci�cation captures the
idea, long present in the economics literature, that by the nature of her job, a supervisor has

superior information about the worker�s contribution to �rm value: �The employer, by virtue

of monitoring many inputs, acquires special superior information about their productive

talents� (Alchian and Demsetz, 1972, p. 793). Alternatively, one could think of a as the

quality of the principal�s project and qt as her private signal about this quality.

To ease the exposition, it will be assumed that z1, z2, y1, and y2 only become observable

at the end of period 2. If z1 and/or y1 were observable at the end of period 1, the worker

would use them to update his belief about his ability, but this would not allow him to fully

infer a. Since the analysis will not depend on the exact functional form of the worker�s prior

belief H(a), such an updating plays no substantive role and can be ignored.

4It would be straightforward to adapt the model so that a represents human capital that the worker
develops during the �rst period.

5This stark informational structure is adopted for its simplicity. At the cost of complicating the analysis,
both the principal and the worker could receive imperfect signals about the worker�s ability as long as the
worker�s signal is not a su¢ cient statistic for the principal�s signal with respect to a.
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Subjective evaluations and contracting. After privately observing the worker�s �rst
period performance, the supervisor provides him with a subjective evaluation, which consists

of a message m 2 [0; �a] about the worker�s ability a.6 This message is contractible, so that
the worker�s wage, w, can be written as w = w(z1; z2;m). It will be convenient to write the

general contract in terms of a base salary s(m) and bonuses b1(m), b2(m), and b3(m); all of

which can depend on m. The worker receives b1(m) if z1 = 1, b2(m) if z2 = 1, and b3(m) if

z1 = z2 = 1, while the salary s(m) is independent of z1 and z2.

In the �rst part of the paper, m will be the only contractible part of the subjective

evaluation scheme. The second part of the paper will consider subjective evaluations with a

forced distribution, where not only m but also the resulting distribution of m is contractible.

The possibility that m is not contractible will be discussed in Subsection 3.5.

Preferences. Both the principal and the worker are risk neutral and do not discount fu-
ture income. The principal�s goal is to maximize the �rm�s expected pro�t. The worker�s per

period reservation utility from not working is normalized to zero and his lifetime utility from

being employed by the �rm is w�	(e1)�	(e2), where 	(et) =
PK

k=1  (ekt) =
PK

k=1 e
2
kt=2

is his disutility from e¤ort in period t = 1; 2. The worker�s participation constraint only

needs to be satis�ed at the beginning of the relationship, when the contract is signed.

Timing. At the beginning of the �rst period, the principal and the worker sign a contract
that speci�es the wage function w(z1; z2;m). Subsequently, the worker chooses his �rst period

e¤ort levels, e1. At the end of the �rst period, the principal observes the worker�s input q1
and provides the performance evaluation m. At the beginning of the second period, the

worker updates his belief about his own ability and exerts second period e¤orts e2. At the

end of the second period, z1 and z2 are observed and the worker is paid w(z1; z2;m).

3. The Analysis

3.1. Two benchmarks

To understand the nature of the optimization problem faced by the principal, it is helpful to

start with a brief analysis of two benchmark cases.

Symmetric information. In the �rst benchmark, the agent receives the same information

about his performance as the principal. In this case subjective evaluations do not play any

meaningful role and the agent�s incentives depend solely on the objective measures z1 and

6Alternatively, the message could be about the agent�s �rst period contribution q1. The current formula-
tion simpli�es the exposition.
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z2. The principal�s problem is then to choose a message independent contract (s; b1; b2; b3)

so as to maximize the expected total surplus7

Ea[q1 �	(e1) + q2 �	(e2)];

subject to the agent�s incentive compatibility constraints for the two periods

e2 = argmax
e02

(b2 + b3p1) p
0
2 �	(e02);

e1 = argmax
e01

Ea [s+ b1p
0
1 + (b2 + b3p

0
1) p2 �	(e2)�	(e01)] ;

where p01 = ae01�g and p02 = ae02�g.
Since conditional on the worker�s ability a the realizations of z1 and z2 are independent

of each other, one can without loss of generality set b3 = 0 and treat the incentive problems

in the two periods as two separate problems. Replacing the agent�s IC constraints with their

respective �rst order conditions, the principal�s �rst period problem is then to choose b1 so as

to maximize Ea[ae1�f�	(e1)] subject to E(a)b1gk =  0(ek1), and her second period problem

is to maximize ae2�f � 	(e2) subject to ab2gk =  0(ek2), k = 1; 2; :::; K: The only di¤erence

between these two problems is that in period 2 a is publicly known, whereas in period 1 only

the distribution of a is known. In either case, though, the optimal bonus is the same:

b1 = b2 = bSB =
kfk
kgk cos �,

where the superscript SB indicates that the solution represents a second-best contract.

As discussed in Baker (2002), cos � in bSB captures the degree of congruence between the

performance measure and the �rm value (the closer is cos � to 1, the better is the objective

measure), while the term kfk
kgk re�ects scaling (i.e., it accounts for the fact that f and g can

have di¤erent lengths). The benchmark bonus bSB will prove useful later, in characterizing

the optimal contract. For future reference, note that bSB does not depend on a.

To summarize, without an informational asymmetry, the problem collapses into a stan-

dard problem familiar from the literature on multitasking.

Perfect objective measures. In the second benchmark of interest, instead of assuming

that the agent observes the principal�s information, assume that the measure zt is perfectly

7As usual, the problem reduces to surplus maximization after the agent�s individual rationality constraint
is substituted into the principal�s expected pro�t function.

8



aligned with yt, so that cos � = 1. In this case the optimal contract does entail subjective

evaluation m, but s, b1, b2, and b3 are again set to be independent of m. Under such a

contract, the principal is willing to reveal her private information truthfully. The evalua-

tions then do not have any incentive e¤ect, but in this ideal case incentives from subjective

pay are not needed, because a perfect objective measure can ensure the �rst-best outcome.

In particular, the agent�s incentive problems in the two periods can again be viewed as in-

dependent of each other and solved separately. Analogous to the solution obtained in the

previous benchmark, the optimal contract is obtained as b1 = b2 = bFB = kfk
kgk . To see that

this achieves the �rst best, note that when the vectors f and g are of the same length, this

solution reduces to the standard �rst-best contract for risk-neutral agents, bFB = 1.

In what follows, the objective measure is imperfect and cannot provide the �rst-best in-

centives. Additional incentives from subjective evaluations, in which the agent�s pay depends

on e1 through m, are therefore valuable. But such a subjective scheme cannot be arbitrary

� it has to be incentive compatible for the principal. As we will see, this will be made

possible by the fact that the evaluations also a¤ect the agent�s second period e¤ort, e2.

Thus, when the objective measure is distorted, the agent�s incentive problems in the two

periods are no longer independent of each other. Rather, they are connected through the

principal�s truthtelling constraint and have to be solved simultaneously. I will now turn to

the analysis of this problem.

3.2. Feasibility of subjective evaluations with incentive e¤ects

It is clear that truthful evaluations always a¤ect the agent�s second period e¤ort (as long

as it is positive), by a¤ecting his belief about his ability. But is it possible for subjective

evaluations to also have �rst-period incentive e¤ects? The analysis will start by addressing

this question.

3.2.1. The worker�s problem

Working backwards from the second period, let x(m) be the worker�s posterior belief about

his expected ability based on his subjective evaluation m. The worker�s second period

problem is then to choose e2 so as to maximize �(m)x(m)e2�g � 	(e2), where �(m) �
b2(m)+ b3(m)p1. One can think of �(m) as a "composite bonus," but it is important to bear

in mind that it depends on p1 and hence on e1. The worker�s second period e¤orts ek2(�; x)

are then determined by the �rst order conditions

�(m)x(m)gk =  0(ek2), k = 1; 2; :::; K:
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The principal does not observe the worker�s �rst period e¤orts, but she makes a conjecture

about them, ~e1. She then uses her observation of q1 = ae1�f to infer the worker�s ability as
a = q1

~e1�f . Focusing on truth-telling and fully separating contracts, the principal�s equilibrium

message will be m = q1
~e1�f , which will allow the worker to infer his ability via x(m) = m~e1�f

e1�f .
8,9

In equilibrium, the principal�s conjecture will be correct, ~e1 = e1. The �rst set of incentive

compatibility constraints for the principal�s optimization problem is thus obtained as

�(m)mgk =  0(ek2), k = 1; 2; :::; K: (ICW2)

The thing to notice here is that, holding �(m) �xed, each component of the worker�s vector

of e¤orts increases in his belief x(m) and hence in the principal�s evaluation m.

In period 1, the worker chooses his e¤orts so as to maximize his expected lifetime utility

Ea[s+ b1(m)ae1�g + �(m)ae2�g �	(e2)]�	(e1);

taking into account the e¤ect of e1 on the principal�s report m: In particular, for any �rst

period e¤ort vector ê1, the worker expects the evaluation m(ê1) = aê1�f
~e1�f . This yields the

worker�s �rst-period incentive compatibility constraint

e1 2 argmax
ê1

Ea

�
s(
aê1�f
~e1�f

) + b1(
aê1�f
~e1�f

)aê1�g + �(
aê1�f
~e1�f

)ae2�g �	(e2)
�
�	(ê1) (ICW1)

3.2.2. The principal�s problem

The principal�s message m maximizes her expected second period pro�t subject to the

worker�s incentive compatibility constraint (ICW2). Combined with the requirement of

truthtelling, this yields the following incentive compatibility constraint for the principal:

a 2 argmax
m

ae2�f � �(m)ae2�g � s(m)� b1(m)ae1�g: (ICP)

8The possibility of pooling will be discussed in Section 3.4.2.
9Although for an arbitrarym the belief x(m) depends on e1, I do not indicate this dependence in notation,

as under truthful reporting, x(m) is independent of e1: That is, the agent cannot fool himself by providing
more (or less) e¤ort.
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The principal�s general problem is then to maximize the total surplus from the employment

relationship according to the following program:

(P) max
s(m);b1(m);b2(m);b3(m)

Ea[ae1�f�	(e1)+ae2�f�	(e2)]

subject to (ICW1), (ICW2), and (ICP).

I will say that subjective evaluations provide incentives when the marginal e¤ect of the

agent�s �rst-period e¤ort on his expected pay is weakly (and at least for some e¤ort levels

strictly) higher when his pay depends on m than when it does not. Recalling that � de-

notes the angle between f and g, the �rst result provides conditions under which subjective

evaluations with incentive e¤ects are feasible.

Proposition 1.

(i) If cos � = 0, no subjective evaluation scheme with incentive e¤ects is feasible.

(ii) If cos � > 0, then a subjective scheme that is both truthful and provides incentives for

�rst period e¤ort is feasible.

Proof: All proofs are in Appendix A.

In most of the existing literature, subjective evaluations with incentive e¤ects are feasi-

ble only if the principal and the agent interact repeatedly (e.g., Baker et al, 1994; Levin,

2003) or if agents can take ex post ine¢ cient actions that destroy surplus (MacLeod, 2003).

Proposition 1 shows that neither repeated interaction nor surplus destruction are needed for

subjective evaluations to have incentive e¤ects.

The logic behind the result is related to the idea of countervailing incentives in Lewis

and Sappington (1989). Speci�cally, in contrast to most of the earlier models of subjective

pay, the subjective measure of the worker�s performance depends not only on the worker�s

actions, but also on his underlying type (ability). This presents the principal with two

opposing temptations. On the one hand, she wants to give the worker a bad evaluation in

order to save on the wage bill. This is the standard consideration, extensively studied in the

previous literature. On the other hand, the principal knows that the worker�s second period

e¤ort increases in m and this tempts her to boost the worker�s self-assessment through a

good evaluation. A truthtelling wage scheme then balances these two temptations in such a

way that they o¤set each other.

Critically, the second e¤ect is only present if the worker�s output in period 2 depends

on m. For a subjective scheme to work, it is therefore important that the principal has
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access to some objective measure, no matter how poor. Otherwise, the worker provides no

valuable e¤ort in period 2 and there is no point trying to in�uence his belief. In such a case,

evaluations can be truthful only if they do not a¤ect the worker�s pay, which means they

cannot have any incentive e¤ect. This is why the result in Proposition 1 depends on cos �.

As mentioned earlier, the larger is cos �, the less distorted is the objective measure. At

one extreme, cos � = 1 and the measure zt is perfectly aligned with yt. As discussed in the

analysis of this benchmark case, the �rst-best outcome is feasible in this ideal situation and

is achieved by a contract in which the agent�s pay does not dependent on the evaluation he

receives. At the other extreme, cos � = 0 and the performance measure elicits no valuable

e¤ort. Consequently, (ICP) can hold only if the worker�s wage is independent of m, which

leads to part (i) in the proposition.

3.3. Limits on e¢ ciency

Constraint (ICW2) makes it clear that full e¢ ciency cannot be achieved in the second period.

This is because e2 is induced only through the objective measure z2, which provides distorted

incentives: actual e¤orts are proportional to g, whereas e¢ cient e¤orts are proportional to

f . The best the principal can do in period 2 is to set � equal to the benchmark second best

bonus bSB = kfk
kgk cos �.

What about the �rst period e¤orts? The bene�t of subjective evaluations is that in

period 1 incentives from the distorted measure z1 are at least partly replaced by incentives

from the undistorted measure m. Does this imply that the optimal contract will elicit the

�rst best vector of e¤orts eFB1 ?10 As the next result shows, the answer is No.

Proposition 2. The optimal contract elicits vectors of e¤orts e�1 and e
�
2 such that e

�
1 6= eFB1

and e�2 6= eFB2 .

Even though a subjective scheme that elicits the e¢ cient e¤orts in period 1 might be

feasible, Proposition 2 says that the principal will not �nd such a scheme optimal. This

result may seem surprising because at the time of contracting there is no informational

asymmetry and the principal can hold the worker down to his reservation utility. But the

reasoning is simple: Because eFB1 does not depend on g, any scheme that elicits eFB1 requires

that the contract is independent of z1. The principal is thus left with two measures, m and

z1, which do not give her enough degrees of freedom to solve the three agency problems

she faces: the worker�s two moral hazard problems and her own truth-telling problem. Put

10Because a is not known when e1 is chosen, vector eFB1 is de�ned by  0(eFBk1 ) = E(a)fk. At the end of
period 1, the evaluations reveal a to the worker, so eFB2 is de�ned by  0(eFBk2 (a)) = afk.
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di¤erently, the principal has two functions she can control, s(m) and �(m), tied down by

two constraints, (ICP) and e1 = eFB1 . The functions that satisfy these two constraints

do not in general optimize the worker�s second period incentives. Consequently, starting

from e1 = e
FB
1 , a small change in the contract that moves �(m) towards bSB increases the

principal�s overall payo¤, as it generates a �rst order improvement in period 2 incentives,

but only a second order loss due to period 1 deviation from eFB1 .

Proposition 2 will prove useful in Section 4, where the current setting is compared with

a setting in which the principal commits to a speci�c distribution of subjective evaluations.

3.4. Optimal contract

In general, the worker�s �rst period e¤orts depend on b1 and b3 directly and on all of s, b1, b2,

and b3 indirectly, through the e¤ects of e1 on the evaluation m. Furthermore, e2 can depend

on e1 through �. A wage scheme that allows for all of s, b1, b2, and b3 to depend on m

therefore has complicated e¤ects on both e1 and e2. Fortunately, Lemma 1 below simpli�es

the problem signi�cantly. It shows that if the optimal contract is piecewise di¤erentiable

(assumed throughout the rest of this section11) the only parts of the contract that need to be

allowed to depend on m are s(m) and b2(m). Speci�cally, consider the following augmented

version of problem (P):

(P�) max
b1;b2(m);e1

Ea

�
ae1�f �	(e1) + kgk2 a2b2(a)

�
bSB � b2(a)

2

��

subject to

e1k = Ea

"
ab1gk +

kgk2 fk
e1�f

a2
�
bSB � b2(a)

�
[b2(a) + ab02(a)]

#
: (ICW1�)

Problem (P�) was obtained from problem (P) by (i) setting b3(m) = 0 and b1(m) = b1, where

b1 is a constant, (ii) substituting (ICW2) into the objective function and into the remaining

constraints, and (iii) substituting s0(m) from the �rst order condition for (ICP) into the �rst

order condition for (ICW1) (see the proof of Lemma 1 for details). Steps (ii) and (iii) are self-

explanatory. The logic behind setting b3(m) = 0 is that the agent�s incentive problems in the

two periods are tied only through the principal�s truthtelling constraint (ICP) � otherwise,

11Piecewise di¤erentiability is a common assumption in optimal control problems. Although in many
mechanism design problems the optimal contract can be shown to be monotonic, which ensures that it
is di¤erentiable almost everywhere, in the current setting monotonicity of the optimal contract cannot be
ascertained ex ante.
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they are independent of each other, as discussed in the analysis of the benchmarks. This

independence means that conditioning the agent�s bonus on the joint realizations of the

objective measures across the two periods is of no help in improving his incentives. Finally,

b1 can be set constant without loss of generality because s(m) is enough to capture any

incentive e¤ects m can have on the agent�s �rst period e¤orts.

Lemma 1. Suppose b�1; b
�
2(:); e

�
1; and e

�
2 solve the amended problem (P�). Suppose also

ab�2(a)
�
bSB � b�2(a)

�
is non-decreasing in a. Then b�1; b

�
2(:); e

�
1; and e

�
2 solve the original

problem (P).

The following assumption will be su¢ cient to guarantee that the condition in the lemma

is satis�ed, so that the solution to the simpli�ed problem (P�) also solves (P). Let "(a) � ah0(a)
h(a)

be the elasticity of the density function h(:) at a.

Assumption 1. j"(a)j �M and j"0(a)j �M for each a, where M is positive but small.

Assumption 1 requires that the density function h(a) does not vary �too much.�This

assumption is satis�ed, for example, by the uniform distribution.

The optimal control program (P�) is formally analyzed in Appendix B. The analysis yields

the following characterization of the optimal bonuses b�1 and b
�
2(m).

Proposition 3. Under Assumption 1, the optimal contract sets (i) b�1 > 0 and (ii) 0 <

b�2(m) � bSB for all m. Speci�cally, b�2(m) = bSB for m = �a and

b�2(m) = bSB
�
1� �

1� �� �"(m)

�
< bSB for m < �a; (1)

where � 2 (0; 1
2
) is a constant.

Proposition 3 reveals that in the presence of subjective evaluations the principal optimally

weakens the agent�s formal second period incentives: b�2 < bSB almost everywhere. This is

not because subjective pay has second period incentive e¤ects that substitute for formal

contracts. Rather, the purpose of weakening the second period formal contract is to ensure

that the evaluations induce �rst period e¤ort. To see this, recall that bSB maximizes the

second period surplus; hence, there is no further bene�t to strengthening the second period

incentives when b2 = bSB. If b2 were equal to bSB, the principal would therefore have no

desire to induce a higher e2 through a good evaluation and the only way to ensure truthful

evaluation would be to make s(m) independent ofm. But then the evaluations would provide

no incentives. Thus, to ensure that the evaluations have incentive e¤ects, the principal scales
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back the second period formal contract. This makes it desirable for her to boost e2 by

providing good evaluations, which in turn allows s(m) to depend on m and thus provide

�rst period incentives. However, since incentives in period 2 come solely from b2, it is not

optimal to scale b2 all the way back to zero. Consequently, b�2 > 0.

Observe that the optimal contract retains some formal incentives also in the �rst period,

b�1 > 0, even though subjective evaluations, being undistorted, provide more e¢ cient incen-

tives. The logic is similar to that behind Proposition 2: The �rst period incentive e¤ects of

subjective evaluations come at the cost of further muting second period e¤ort. Because this

is costly, �rst period incentives are supplemented by incentives from the objective measure.

Finally, note that, under Assumption 1, e�k2(m) = mb�2(m)gk increases inm. A potentially

testable implication is that good evaluations are followed by good performance and bad

evaluations are followed by poor performance.

3.4.1. Optimal contract under uniform distribution

To gain further insights into the economic forces that govern the relationship between for-

mal contracts and subjective evaluations, it is instructive to consider the case where the

distribution of abilities is uniform. When H(:) is uniform, "(a) = 0 and the optimal bonus

in (1) becomes b�2 = bSB 1�2�
1�� : Thus, b

�
2 is independent of m in this case (except at m = �a)

and the optimal contract is e¤ectively separated into a subjective part, consisting of s(m),

and an objective part, consisting of the �xed bonuses b1 and b2. This makes it possible to

characterize the optimal subjective scheme s(:).

With b1 and b2 constant, the principal�s truthtelling problem reduces to

q1 2 argmax
m

Ea[ae2�f � b2ae2�gjq1]� s(m); (ICP)

subject to  0(e�k2) = e�k2 = b2mgk ; k = 1; 2; :::; K; (ICW2)

for which the �rst order condition yields

s0(m) = ab2
�
g � f � b2 kgk2

�
: (2)

The proof of Proposition 4 below veri�es that (2) describes the principal�s optimum. Im-

posing truthtelling then yields the di¤erential equation that implicitly de�nes the optimal

subjective scheme s�(m) :

s�0(m) = mb2
�
g � f � b2 kgk2

�
:
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This leads to the following result.

Proposition 4. When H(:) is uniform, it is optimal to set

b�2 = bSB
1� 2�
1� �

for m < �a, b�2 = bSB for m = �a, and (3a)

s�(m) =
m2

2
kgk2 b�2

�
bSB � b�2

�
+D, (3b)

where � and D are constants. Moreover, bSB=2 < b�2 < bSB for m < �a.

Proposition 4 provides several insights into the economics of the model. First, (3b) reveals

that to be truthful, the wage scheme s(m)must be not only increasing but also strictly convex

in the subjective evaluation m. This skewness of the subjective pay re�ects the production

complementarities between ability and e¤ort. Intuitively, the more productive is the worker,

the bigger is the principal�s potential gain from misleading him about his ability through a

good evaluation. To balance this temptation, the �price�for increasing the evaluation must

be higher for higher ability workers, which leads to convexity of the pay scheme.

Second, Proposition 4 con�rms more directly the result of Proposition 1, which says that

subjective evaluations can have incentive e¤ects only if the objective measure is not useless.

In the absence of an objective measure (b2 = 0), telling the worker that he is a high type

entails no bene�t to the principal. In this case, evaluations can be truthful only if they do

not a¤ect the worker�s pay, as can be seen from (3b), which reduces to s�(m) = D. Such

a scheme, however, has no incentive value. More generally, (3b) shows that the �rst period

incentives from subjective pay are directly proportional to the term b�2
�
bSB � b�2

�
, whose

maximum is attained when b2 = bSB=2 and is equal to
�
bSB
�2
=4. The maximum possible

subjective incentives therefore increase in the quality of the objective measure as captured by

cos �. Thus, when the objective measure is poor and provides weak incentives, the subjective

part of the scheme also provides weak incentives.

Finally, the expression for s�(m) further illustrates the point that the second period

formal contract must be weakened compared to its constrained e¢ cient level if subjective

evaluations are to induce e¤ort. In particular, if it were b2 = bSB, then s�(m) would again

be constant and hence without incentive e¤ects.

3.4.2. Optimality of separation

The above analysis was conducted under the assumption that the contract entails no pooling,

i.e., the agent always learns his ability precisely. It can be readily seen that from the point

of view of second period e¢ ciency, pooling is never desirable, as it prevents the agent from
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tailoring his e¤ort to his ability. In principle, though, it might be that pooling improves the

�rst period incentive e¤ects of the subjective part of the contract. If this were the case, the

overall desirability of full separation would depend on the tradeo¤between the incentive gain

from pooling and the second period loss due to ine¢ cient allocation of e¤ort. A complete

characterization of the optimal pooling contract and its comparison with a fully separating

contract is a daunting task, not undertaken here. However, relatively simple logic shows

that if the objective measure is su¢ ciently good, then even if an optimal contract were to

require some pooling, the measure of types that are pooled would approach zero.

Proposition 5. For any � > 0, there exists a �c < 1 such that for cos � � �c, the measure
of agents whose evaluations are pooled under the optimal contract is less than �.

The logic behind Proposition 5 is that when cos � is close to one, the separating contract

provides incentives that are already quite e¢ cient, so that even if there were additional

e¢ ciency gains from pooling, they would have to be small. By the same token, the e¤ort

level in the second period is large and therefore the cost of misallocating e¤ort through

pooling is also large. Taken together, these two arguments imply that extensive pooling

cannot be optimal when the objective measure is su¢ ciently good.

3.5. No commitment

The assumption that the �rm can make the worker�s pay contractually contingent on the

evaluations is not unrealistic. Subjective evaluation schemes are often well de�ned in advance

and adherence to such schemes might be veri�able. But even if commitment of this sort were

not possible, the subjective evaluation scheme characterized above could still work. Without

commitment, the setting is formally a signaling game and as such can have multiple equilibria.

For the purposes of this analysis, the most interesting among them is a separating Perfect

Bayesian Equilibrium (PBE), in which the principal reveals her information truthfully.

To see that such a separating PBE exists, suppose that at the end of period one, the

principal can pay the worker a wage s (to which she cannot commit) in addition to giving

him an evaluation m. Assume also that s � 0, i.e., at this stage the agent cannot be forced
to transfer money to the principal.12 Then even without committing to it ex ante, the

principal may have an incentive to convey her information by paying more to higher ability

workers, as long as the workers interpret this signal correctly. Consider for simplicity the

uniform distribution case (so that b2 is optimally constant) and suppose that upon being

12In the previous section, it was assumed that all of the wages are paid at the end of the second period,
but it would be without loss of generality to allow a part of the wage that only depends on m to be paid at
the end of the �rst period.
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paid a wage s, the agent�s belief x is given by x = m if s = s��1(m) for some m 2 [0; �a]
and by x = 0 otherwise, where s�(m) is as in (3b). Then Proposition 4 tells us that if faced

with a worker of ability a, the principal prefers the evaluation m = a and wage s�(a) to any

other evaluation m = a0 2 [0; �a] and wage s�(a0). The only deviation one therefore needs to
worry about is where the principal decides to pay a wage that is not in the range of s�(:).

This, however, can be prevented by setting D = s�(0) = 0 � any deviation from s�(a) then

necessarily involves paying the agent more than s�(�a).13 Given the speci�ed beliefs, this is

dominated by paying s�(�a). Thus, the above beliefs, together with the wage scheme (3b)

and D = 0, support a separating PBE of this signalling game.

4. Forced distributions

Some companies, for example GE, Intel, Ford, Goodyear, EDS, and others (Lawler, 2003),

adopt forced distributions of subjective evaluations (FDSE), where they commit to a pre-

speci�ed distribution of evaluations. This section provides justi�cation for such practice. It

also shows that whether an FDSE improves upon the subjective evaluation scheme studied

in the previous section depends critically on the quality of the objective measures z1 and z2
and on the number of workers the �rm employs. Accordingly, I proceed by exploring two

alternative settings: In the �rst one, the �rm employs a continuum of workers; in the second,

the �rm employs a �nite number of workers.

4.1. Continuum of workers

Under a forced distribution, the �rm�s total wage bill associated with the evaluations is

always constant, whether the evaluations are truthful or not. Misreporting therefore a¤ects

the �rm�s pro�t only through the e¤ects it has on the workers�actions.14

4.1.1. Truthtelling

The main bene�t of an FDSE is that it allows the principal to eliminate the truthtelling

constraint (ICP). To see this, suppose the �rm employs a measure one of agents whose

13Setting D = 0 is always feasible: While in the previous analysis D was lumped together with the
agent�s base salary and hence determined by his participation constraint, conceptually, these two wage
components can be separated. The base salary is then speci�ed in the initial contract so as to meet the
agent�s participation constraint when D = 0.
14In this respect, an FDSE game is similar to a cheap talk game, and, as is common in cheap talk games,

has multiple equilibria, including a babbling equilibrium in which evaluations are completely uninformative.
Note, however, that an FDSE is formally not a cheap talk game because the individual workers�payo¤s
depend directly on the messages.
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abilities are drawn independently from [0; �a] according to the cumulative distribution H(a)

with density h(a). Suppose also that the �rm pre-commits to an FDSE under which a

fraction h(m) of the workers get evaluation m. Then the principal has no incentive to

misreport because misreporting does not a¤ect the wage bill, but hurts her second period

expected pro�t by preventing the workers from tailoring their e¤orts to their abilities.

To make this argument formally, suppose the principal�s evaluation strategy upon infer-

ring that a worker has ability a is to report m 2 [0; �a] according to the probability density
function �(mja). An agent with evaluation m then forms a posterior belief h(ajm) about
the distribution of his true ability according to

h(ajm) = �(mja)h(a)R �a
0
�(mj�)h(�)d�

=
�(mja)h(a)

h(m)
; (4)

where the second equality exploited that the evaluations must adhere to the forced distrib-

ution. The worker�s expected ability conditional on evaluation m, x(m), is then

x(m) =

Z �a

0

ah(ajm)da; (5)

and his optimal second period e¤orts e2(m) are given by the �rst order condition

e2k(m) = �(m)x(m)gk ; k = 1; 2; :::; K:

Ignoring s(m), the �rm�s second period expected pro�t from a worker of ability a is

therefore

E��2(a) =

Z �a

0

[ae2�f � �(m)ae2�g]�(mja)dm

=

Z �a

0

a kgk2 x(m)�(m)
�
bSB � �(m)

�
�(mja)dm;

so that its total expected second period pro�t is

E�2 � EaE��2(a) =

Z �a

0

Z �a

0

a kgk2 x(m)�(m)
�
bSB � �(m)

�
�(mja)h(a)dmda: (6)

As will become apparent shortly, �(m) can be set constant here w.l.o.g. Thus, let �(m) =
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b2, where b2 � bSB is a constant. Using (4) and (5), E�2 can then be written as

E�2 = kgk2 b2
�
bSB � b2

� Z �a

0

�Z �a

0

ah(ajm)da
�
x(m)h(m)dm

= kgk2 b2
�
bSB � b2

�
Em [x(m)]

2 :

Now, any improvement in the informativeness of the principal�s reporting strategy �, in

particular a switch to truthful reporting, induces a mean-preserving spread of the agents�

posteriors x (Marschak and Miyasawa, 1968). This increases the principal�s expected second

period pro�t, because E�2 is an expectation of a convex function of the posteriors. The

principal�s pro�t is therefore maximized under truthful evaluations. That an equilibrium

with truthful evaluations indeed exists is shown in the proof to Proposition 6 below.

4.1.2. First period incentives

Observe that the principal�s incentives to provide truthful evaluations under the FDSE de-

pend neither on b1(m) nor on the exact shape of s(m); the only constraint on the contract

is that b2 � bSB. The principal can therefore choose s(:); b1; and b2 � bSB so as to optimize

the workers�incentives. In the second period, the best she can do is to set b2 = bSB. I will

now show that in the �rst period, it is possible to achieve the e¢ cient vector of e¤orts eFB1 .

Because eFB1 does not depend on g, set b1(m) = 0 for all m. Given that b2 is constant,

e1 then depends solely on s(m): Now, recall that when evaluations are truthful, a worker

who provides e¤ort ê1 expects his evaluation to be m = aê1�f
~e1�f , where ~e1 is the principal�s

conjecture about e1. The �rst best outcome in period 1 is therefore obtained by setting

s(m) = meFB1 �f . The worker�s �rst period expected utility is thus Ea
h
aê1�f e

FB
1 �f
~e1�f �	(e1)

i
,

so that his optimal e¤orts are given by the �rst order condition

 0(e1k) = E(a)fk
eFB1 �f
~e1�f

; k = 1; 2; :::; K:

The equilibrium requirement ~e1 = e1 then yields e1 = eFB1 as an equilibrium outcome.

Proposition 6. Suppose the �rm employs a continuum of workers. There always exists

a forced distribution of subjective evaluations (FDSE) that induces a Perfect Bayesian

Equilibrium in which the evaluations are truthful. The optimal contract sets b1 = b3 =

0, b2 = bSB, and s(m) = meFB1 �f and achieves the �rst best outcome in t = 1 and

the second best outcome in t = 2. This contract strictly dominates the optimal contract

without FDSE.
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Proposition 6 shows that when the �rm employs a large number of workers, a forced

distribution improves e¢ ciency by ensuring that the subjective pay scheme is incentive com-

patible. The subjective scheme can then be used solely to shape the workers��rst period

incentives. This has two e¤ects on the optimal contract. First, it allows the �rm to provide

fully e¢ cient incentives in period 1 by completely removing from the contract the distortive

objective measure z1 and replacing it with the undistorted incentives from subjective eval-

uations. Second, it eliminates the dependence of s(:) on �(:), thus freeing �(:) to be used

solely for the purpose of second period incentives, which improves e¢ ciency in period 2.

4.2. Finite number of workers

Now suppose the �rm employs n � 2 workers, where n <1. In this case, it is not possible
for a forced distribution to replicate the true distribution of abilities H(:). Nevertheless,

an FDSE again relaxes the principal�s truthtelling constraint and, as will be shown shortly,

allows for the �rst best to be achieved in period 1. Hence, �(m) will again be optimally set

equal to bSB. Also as before, e1 = eFB1 requires b1(m) = 0.

An FDSE then entails (i) n possible evaluations, m1 � m2 � ::: � mn, (ii) the corre-

sponding salaries sj � s(mj), j = 1; 2; :::; n, and (iii) a commitment by the �rm to assign

each evaluation to exactly one worker.15 Clearly, for n �nite, this scheme cannot fully re-

veal the workers�true abilities. However, arguments similar to those behind Proposition 6

imply that the principal will assess the workers truthfully in the sense that she will assign

evaluation mn to the highest ability worker, mn�1 to the second highest, and so on.16

To see that one can �nd a salary scheme fsjgnj=1 that elicits eFB1 , suppose the FDSE

entails only two possible salaries, sH and sL < sH , and de�ne 4s � sH � sL. Let salary sL

be attached to the �rst r lowest evaluations m1;m2; :::;mr, and salary sH to the evaluations

mr+1; :::;mn. Consider a worker i of ability a and denote byH(r)(a) the c.d.f. of the event that

at least r workers other than i have abilities less than a and let h(r)(a) be the corresponding

density function.17 Then if worker i provides e¤ort ei1 and anticipates that all the other

15This allows for the possibility that multiple workers get the same evaluation. For example, if m1 = m2 =
::: = mn, then all workers e¤ectively receive the same evaluation. In this particular case, the evaluations do
not convey any information.
16Two or more workers having the same ability is a zero probability event and will be ignored.
17In other words, H(r)(a) is the cdf of the rth order statistic: H(r)(a) =

Pn�1
i=r

�
n�1
i

�
Hi(a)[1�H(a)]n�1�i.
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workers provide the e¤orts eFB1 , he expects the high salary sH with probability

Prfmi � mrg =
�R �a ei1�f

eFB1 �f
0

h
1�H

�
aeFB1 �f
ei1�f

�i
h(r)da for ei1�f � eFB1 �fR �a

0

h
1�H

�
aeFB1 �f
ei1�f

�i
h(r)da for ei1�f � eFB1 �f :

Worker i�s problem is then to maximize sL +4sPrfmi � mrg�	(ei1), which yields the
�rst order condition

 0(ei1k) =

�4s R �a ei1�f
eFB1 �f

0 a
fke

FB
1 �f

(ei1�f)
2 h
�
aeFB1 �f
ei1�f

�
h(a)da for ei1�f � eFB1 �f

4s
R �a
0
a
fke

FB
1 �f

(ei1�f)
2 h
�
aeFB1 �f
ei1�f

�
h(a)da for ei1�f � eFB1 �f .

Setting ei1 = e
FB
1 , we see that ei1k = eFB1k if

4s fk
eFB1 �f

Z �a

0

ah(a)h(r)(a)da = E(a)fk;

which is achieved by 4s = E(a)eFB1 �fR �a
0 ah(a)h(r)(a)da

.

Proposition 7 below summarizes the analysis of the case with a �nite number of workers.

Proposition 7. Suppose the �rm employs n � 2 workers. There exists an FDSE scheme
that induces a Perfect Bayesian Equilibrium in which the evaluations are truthful in

the sense that the highest ability worker receives the highest evaluation, the second

highest ability worker receives the second highest evaluation, and so on. An optimal

contract sets b1 = b3 = 0, b2 = bSB, and entails two salary levels, sL and sH =

sL +
E(a)eFB1 �fR �a

0 ah(a)h(r)(a)da
. This contract achieves full e¢ ciency in t = 1 and provides the

second-best level of incentives in t = 2.

The above analysis suggests that the main di¤erence between the cases with n workers

and a continuum of workers (and, similarly, between the cases with n workers and n0 > n

workers) is in how precise is the information the workers have about their abilities in the

second period. When there is a continuum of workers, each worker learns his exact ability.

When the number of workers is �nite, the workers�information remains coarse in the second

period, because they only learn their rank out of n workers. This coarseness of beliefs is a

source of a second period ine¢ ciency, as it prevents the workers from fully tailoring their

e¤orts to their abilities. However, the information content of the evaluations increases with
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the number of workers, since it is more informative to know how one ranks among n + 1

workers than to know how one ranks among n workers. In particular, as n ! 1, each
worker�s estimate of his ability converges to his true ability a. These observations, combined

with the last claim in Proposition 6, lead to the following result.

Proposition 8. The (per worker) e¢ ciency of FDSE increases with the number of workers.
Furthermore, for any given H(:) and cos �, there exists an n� � 2 such that for all

n � n�, FDSE dominates subjective evaluations without a forced distribution.

One implication of the above proposition that is worth noting is that if formal perfor-

mance appraisal systems are costly to administer, then, all else equal, larger companies

should have an advantage in adopting them. This is consistent with the evidence that larger

organizations are more likely to use performance appraisal than smaller organizations (Mur-

phy and Cleveland, 1995, p. 4).

4.3. The role of the contractible measures

As shown above, FDSE is always optimal if the �rm employs su¢ ciently many workers, but

this leaves open the question whether subjective evaluations without a forced distribution

can be optimal when the number of workers is small. Proposition 8 implies that to answer

this question, it is enough to consider n = 2. Thus, for the remainder of this section, I will

concentrate on a setting with two workers.

The advantage of FDSE is that it allows the �rm to achieve full e¢ ciency in t = 1

and to set �(m) = bSB in t = 2. The downside is that the agents� information about

their abilities remains coarse in the second period, which distorts almost every agent�s e¤ort

choice from the level appropriate for his ability. When the number of workers is small, this

trade-o¤ determines whether the �rm prefers subjective evaluations with or without a forced

distribution.

Proposition 9. When n = 2, FDSE is optimal if cos � � c�, whereas subjective evaluations

without a forced distribution are optimal if cos � � c��, where 0 < c� � c�� < 1.

Proposition 9 says that the relative bene�ts of FDSE depend on the quality of the ob-

jective measure z. This result is intuitive. When the objective measure is poor (cos � � c�),

a contract based solely on this measure provides poor incentives. The additional incen-

tives from subjective evaluations are therefore highly valuable. This favors FDSE, as FDSE

induces fully e¢ cient e¤ort in the �rst period and hence improves e¢ ciency substantially.
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Moreover, because the second period incentives are severely distorted (as cos � is small), giv-

ing the workers more precise information about their abilities would not do much to improve

e¢ ciency in this period. This limits the e¢ ciency loss from adopting FDSE.

In contrast, when the objective measure is good (cos � � c��), the contract provides

relatively e¢ cient incentives in both periods even without subjective pay. The main bene�t

of subjective evaluations is then in informing the workers about their abilities, which is better

achieved through evaluations without a forced distribution. Thus, when the contractible

measure is good, subjective evaluations without a forced distribution are optimal.

5. Conclusion

Firms that use subjective performance evaluations typically use them with multiple goals in

mind. Economists have traditionally focused on the incentive e¤ects of subjective evalua-

tions, mostly overlooking their other functions. This paper brings to forefront the feedback

role of evaluations, which appears to be of equal, if not greater, importance to real world

�rms as their incentive role. In the model, the feedback and the incentive roles of subjective

evaluations are complementary in the optimal contract: when both are present, subjective

evaluations are feasible where they could not be sustained otherwise.

The feedback from the evaluations improves e¢ ciency by informing workers about their

abilities, which allows them to better choose their optimal actions. Because higher ability

workers optimally provide more e¤ort, the principal has a motivation to give good evalua-

tions, which makes truthful evaluations possible. The paper shows that truthful subjective

evaluations are always feasible if there exists some, albeit imperfect, veri�able measure of

performance. However, the need to ensure that the evaluations are truthful means that

the optimal contract never fully replaces the imperfect objective measure with subjective

pay. Instead, subjective and objective pay are intertwined in the optimal contract, and the

contract�s exact shape depends upon the quality of the objective measure. In particular,

the strength of the incentives from subjective pay is limited by the quality of the objective

measure � when the objective measure is poor, subjective evaluations can only have weak

incentive e¤ects.

The paper also explains the bene�ts and the costs of a forced distribution of evaluations,

that is, of the ability to commit to a speci�c distribution to which the evaluations must ad-

here. It shows that a forced distribution of subjective evaluations is better than a subjective

scheme without a forced distribution when the number of employees is su¢ ciently large or

when the objective performance measure is poor.

Although it expands the view of subjective evaluations beyond that in traditional eco-
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nomic models, the model of this paper is far from capturing the variety of purposes for which

subjective appraisals are used in practice. Building a more comprehensive economic model

of performance evaluations that would incorporate additional reasons real world �rms �nd

performance evaluations useful (such as improved job matching or ensuring the employees�

ongoing development) could be a fruitful topic for future research.

A. Appendix A: Proofs

Proof of Proposition 1. (i) The principal�s period 2 expected revenue from a worker of

ability a isETR2 = ae2�f . Using ek2 = �(m)mgk from (ICW2) yieldsETR2 = am�(m)g � f =
am�(m) kgk kfk cos �. If cos � = 0, then ETR2 = 0, so that truthtelling requires

[b2(q1) + b3(q1)ae1�g] ae2�g+ s(q1) + b1(q1)p1 � [b2(q01) + b3(q
0
1)ae1�g] ae02�g+ s(q01) + b1(q01)p1

(A1)

for all a and a0, where q1 = ae1�f and q01 = a0e1�f .
Now, for subjective pay to provide incentives, the marginal e¤ect of the agent�s e¤ort on

his expected pay must be (at least for some e¤ort levels) higher when his pay depends on m

than when it does not. Formally, consider two �rst period e¤ort vectors e1 and e001 � e1, i.e.
e001k � e1k for all k, with e001k < e1k for at least some k. Let w(m) = (s(m); b1(m); b2(m); b3(m))

be a contract that depends on subjective evaluations and let w00 = (�s00;�b001;�b
00
2;
�b003) be a contract

where �s00;�b001;�b
00
2; and �b

00
3 are all constant, with q

00
1 = ae001�f , �s00 = s(q001), �b

00
1 = b1(q

00
1), �b

00
2 = b2(q

00
1);

and �b003 = b3(q
00
1). The evaluations can have a positive incentive e¤ect only if there exists some

e001 � e1 such that the increase in e¤ort from e001 to e1 induces a larger increase in expected

pay for the worker under contract w(m) than under w00 :

Ea [[b2(q1) + b3(q1)ae1�g] ae2�g + s(q1) + b1(q1)p1]

�Ea [[b2(q001) + b3(q
00
1)ae

00
1�g] ae002�g + s(q001) + b1(q

00
1)p

00
1]

> Ea
��
�b2 +�b3ae1�g

�
ae2�g + �s+�b1p1

�
� Ea

��
�b2 +�b3ae

00
1�g
�
ae2�g + �s+�b1p001

�
;

where p001 = ae001�g and e00k2 = [b2(q001) + b3(q
00
1)ae

00
1�g] agk. Rearranging, this condition yields

Ea [[b2(q1) + b3(q1)ae1�g] ae2�g + s(q1) + b1(q1)p1] > Ea [[b2(q
00
1) + b3(q

00
1)ae1�g] ae002�g + s(q001) + b1(q

00
1)p1] ;

which contradicts (A1). Hence, when cos � = 0, subjective pay cannot induce e¤ort.

(ii) This part will be proven by constructing a contract with subjective evaluations

that are truthful and improve incentives whenever cos � > 0. In particular, let b1 � 0
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and b2 2 (0; bSB) be independent of m, let b3 = 0 (so that � = b2), and let s(m) =
1
2
m2 kgk2 b2

�
bSB � b2

�
+D, where D is a constant. Now, plug the expression for s(m) into

the principal�s second period pro�t �2 = ae2�f � �ae2�g � s(m) and use ek2 = �mgk to get

�2 = am kgk2 b2
�
bSB � b2

�
� 1
2
m2 kgk2 b2

�
bSB � b2

�
�D:

The �rst order condition for maximization with respect to m yields

a kgk2 b2
�
bSB � b2

�
= m kgk2 b2

�
bSB � b2

�
;

which demonstrates that this contract induces truthful evaluations.18 To see that it improves

incentives, observe that for any �rst period e¤ort vector ê1, the worker expects evaluation

m(ê1) =
aê1�f
e1�f . Hence, Ea

@s(m)
@e1k

= Ea[a
fk
e1�f s

0(m)] = b2
�
bSB � b2

�
fk
e1�f kgk

2Ea[am(ê1)] > 0. �

Proof of Proposition 2. From (ICW2), the second period e¤orts are e2k = a�(m)gk,

whereas the e¢ cient e¤orts are eFB2k = afk. Thus, e�2 = e
FB
2 is possible only if �(m)gk = fk

for all k and m. This is precluded by the assumption that f and g are linearly independent.

Next consider e1. Because cos � < 1, e1 = eFB1 requires that b1(m) = 0 almost every-

where. Suppose that a �(m) and s(m) that elicit eFB1 exist (if not, then we are done) and de-

note them as �̂(m) and ŝ(m). Assume �rst that �̂(m) maximizes the expected second period

surplus ETS2 = Ea[ae
�
2�f�	(e�2)] subject to (ICW2), so that �̂(m) = bSB = g�f

kgk2 =
kfk
kgk cos �.

The principal�s truthtelling constraint (ICP) then becomes

a 2 argmax
m

ae2�f � �̂(m)ae2�g � b1(m)ae1�g � ŝ(m)

= argmax
m

a kgk2m�̂(m)
h
bSB � �̂(m)

i
� b1(m)ae1�g � ŝ(m)

= argmax
m
�ŝ(m):

This can only hold if ŝ(m) = ŝ, where ŝ is a constant. Hence, the whole contract is indepen-

dent of m in this case, so that (ICW1) reduces to

e�1 2 argmax
e1

Ea[ŝ+ bSBae2�g �	(e�2)]�	(e1):

This yields e�1k = 0 for all k, contrary to the assumption that e1 = e
FB
1 .

18The second order condition is satis�ed because @2�2
@m2 = � kgk2

(e1�f)2
b2

�
�SB � b2

�
< 0.
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Thus, if e1 = eFB1 then �̂(m) 6= bSB, which means that the �rst period surplus, ETS1, is

maximized with respect to �, but ETS2 is not. The standard variational argument therefore

implies that a small change in � can increase the total surplus, because its positive e¤ect

on ETS2 is of �rst order magnitude, whereas its negative e¤ect on ETS1 is of second order

magnitude. Consequently, �̂(m) cannot be optimal. Thus, it must be e1 6= eFB1 . �

Proof of Lemma 1. Plugging ek2 = �(m)mgk into the objective function and into (ICW1)

and (ICP), and using g � f = kgk kfk cos � = kgk2 bSB, problem (P) can be written as

max
s(m);b1(m);�(m);b3(m)

Ea

�
ae�1�f �	(e�1) + �(a)a2 kgk2

�
bSB � �(a)

2

��
(A3)

subject to m̂ = aê1�f
~e1�f , �(m) = b2(m) + b3(m)ae1�g, and

e1 2 argmax
ê1

Ea

�
s(m̂) + b1(m̂)aê1�g +

1

2
�2(m̂)a2 kgk2

�
�	(ê1); (A4)

a = argmax
m

a kgk2m�(m)
�
bSB � �(m)

�
� b1(m)ae1�g � s(m): (A5)

Given piecewise di¤erentiability in m, the �rst order condition for (A5) is

s0(m) + b01(m)ae1�g = a kgk2
�
�(m)

�
bSB � �(m)

�
+m�0(m)

�
bSB � 2�(m)

��
; (A6)

except for the points of non-di¤erentiability. Imposing truthtelling, m = a, and substituting

(A6) into the �rst order condition for (A4) reduces the problem to

max
s(m);b1(m);b2(m);b3(m)

Ea

�
ae�1�f �	(e�1) + �(m)a2 kgk2

�
bSB � �(m)

2

��
(A7)

subject to �(m) = b2(m) + b3(m)ae1�g, �0(m) = b02(m) + b03(m)ae1�g, and

e�1k = Ea

"
[b1(a)a+ �(a)b3(a)a

3]gk +
kgk2 fk
e1�f

a2
�
bSB � �(a)

�
[�(a) + a�0(a)]

#
. (A8)

Note that because neither (A7) nor (A8) depend on b01(a), one can without loss of gener-

ality set b1(m) = b1, where b1 is a constant such that b1E(a) = E(b1(a)a). Next observe that

b3(m) enters only through the term �(a)b3(a)a
3gk in (A8). It is therefore again w.l.o.g. to re-

place b3(a) with b̂3 = 0, while replacing b1 with b̂1 � b1+
Ea[�(a)b3(a)a3]

E(a)
and replacing b2(m) with

b̂2(m) such that Ea
h
a
h
bSB � b̂2(a)

i h
b̂2(a) + ab̂02(a)

ii
= Ea

�
a
�
bSB � �(a)

�
[�(a) + a�0(a)]

�
:
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This converts the problem (A7)-(A8) into problem (P�) in the text.

Now, by construction, any solution to problem (A7)-(A8) also solves (A3)-(A5) if it

induces truthtelling. One thus only needs to �nd a salary function s(m) such that the

truthtelling constraint (A5) holds. Let �(m) � @[m�(m)[bSB��(m)]]
@m

and let s(m) be given by

s0(m) = m kgk2�(m): Then for b1 = const and b3 = 0, the �rst order condition for (A5) is

a kgk2�(m)� s0(m) = kgk2�(m)(a�m) = 0;

which yields m = a. Moreover, m = a is the maximum if �(m) � 0 for all m, because then
kgk2�(m)(a�m) � 0 for all m < a and kgk2�(m)(a�m) � 0 for all m > a. On the other

hand, if �(m0) < 0 for some m0, then @[�(m)(a�m)]
@m

ja=m0 = ��(m0) > 0, which means that the

local second order condition does not hold at m0. To sum up, one can �nd a salary function

s(m) such that (A5) holds if and only if ab2(a)
�
bSB � b2(a)

�
is non-decreasing in a. �

Proof of Proposition 3. Part (i) is established in the analysis of Problem (2), and part

(ii) in the analysis of Problem (1), in Appendix B. �

Proof of Proposition 4. For H(:) uniform, "(a) = 0. Expression (3a) then follows imme-
diately from (1). Now, to see that s�(m) = 1

2
m2 kgk2 b�2

�
bSB � b�2

�
+D induces truthtelling,

rewrite the (ICP) constraint as in the proof of Lemma 1 to get

a 2 argmax
m

a kgk2mb�2
�
bSB � b�2

�
� b�1ae1�g � s�(m): (A9)

Plugging s�(m) into (A9), the objective function in (A9) becomes

kgk2 b�2
�
bSB � b�2

��
am� m2

2

�
�D � b�1ae1�g: (A10)

Because (by Proposition 3) b�2 < bSB for all a < �a, (A10) is strictly maximized at m = a

when a < �a. When a = �a, then b�2 = bSB, so that m = �a is weakly optimal.

Next, using s�(m) and that b�2 is constant, the optimization problem can be written as

max
b1;b2

"
E(a)e1�f �

1

2

KX
k=1

e21k + E(a2) kgk2 b2
�
bSB � b2

2

�#

subject to
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e1k = E(a)b1gk + E(a2)
kgk2 fk
e1�f

b2
�
bSB � b2

�
; k = 1; 2; :::; K; (A11)

e1�f = E(a)b1g � f + E(a2)
kgk2 kfk2

e1�f
b2
�
bSB � b2

�
; (A12)

where (A12) was obtained by multiply (A11) by fk and summing up. The FOC are then

b2 : E(a)
@ (e1�f)
@b2

�
KX
k=1

@e1k
@b2

e1k + E(a2) kgk2
�
bSB � b2

�
= 0 (A13)

b1 : E(a)
@ (e1�f)
@b1

�
KX
k=1

@e1k
@b1

e1k = 0: (A14)

Substituting @e1k
@b2
, @e1k
@b1
,@(e1�f)
@b2

, @(e1�f)
@b1

from (A11)-(A12), conditions (A13)-(A14) become

kfk2
�
bSB � 2b2

�
R+b2 = 0 and (g � f) (e1�f)R�e1�g = 0, where R �

E(a)+E(a2)
kgk2
e1�f

b2(bSB�b2)
2e1�f�E(a)b1g�f :

Solving for b2 and using g � f = kgk kfk cos � then yields

b�2 =
bSB

2� kgk
kfk

e1�f
e1�g cos �

>
bSB

2
: �

Proof of Proposition 5. Suppose there is an interval [a1; a2] � [0; �a] in which the principal
sends the same message to all agents from [a1; a2]: (A proof for multiple pooling regions

would follow similar steps.) The possible bene�t of such a pooling contract is that it might

improve the strength of the agent�s incentives; the cost is that in the second period the agent

cannot tailor his e¤ort to his exact ability. Start with the second period cost. The total

second period surplus from employing the agents in the interval [a1; a2] is given by

TS2(a1; a2) =

Z a2

a1

(ae2:f �	(e2)) dH(a);

where e�k2 = �(m)x(m)gk, k = 1; 2; :::; K. Under full separation, x(m) = m~e1�f
ê1�f and �(m) =

b�2(m) as given by 1. Under pooling, for the evaluation m̂ that indicates that goes with

a 2 [a1; a2], the worker�s belief is â � E(aja1 ~e1�fê1�f � a � a2
~e1�f
ê1�f ) and �(m̂) = �̂, where �̂ is a

constant. The second period cost from pooling the agents in [a1; a2] is therefore

4TS2(a1; a2) =
Z a2

a1

�
a2b�2(m)g:f �

1

2
(b�2(m))

2 a2 kgk2
�
dH(a)�

Z a2

a1

�
aâ�̂g:f�1

2
�̂
2
â2 kgk2

�
dH(a):
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Let � be the measure of pooled agents under the optimal pooling contract, i.e., � �R a2
a1
dH(a). Using limcos �!1 b

�
2(m) = bFB = kfk

kgk and â =
1
�

R a2
a1
adH(a) yields

lim
cos �!1

4TS2(a1; a2) =
1

2
kfk2

Z a2

a1

a2dH(a)�
�
â�̂ kgk kfk

Z a2

a1

adH(a)� 1
2
�̂
2
â2 kgk2 �

�
=

1

2
kfk2

Z a2

a1

a2dH(a)� â2� kgk2 �̂
 
bFB � �̂

2

!

� 1

2
� kfk2

�
1

�

Z a2

a1

a2dH(a)� â2
�
=
1

2
� kfk2 V ar(aja1 � a � a2),

where the inequality follows from �̂
�
bFB� �̂

2

�
� 1

2

�
bFB
�2
:

Now, limcos �!1 b
�
2 = bFB implies that the total surplus from the separating contract con-

verges to the �rst best surplus as cos � ! 1, which means that the bene�t from improving the

agents�incentives through pooling converges to zero. Consequently, limcos �!14TS2(a1; a2)
must also be zero. This in turn requires limcos �!1 � = 0, which proves the claim. �

Proof of Proposition 6. The only two claims that do not immediately follow from the

analysis in the text are (i) that there exists a PBE with truthful evaluations and (ii) that

the optimal contract with FDSE strictly dominates the optimal contract without FDSE.

Claim (ii) follows from the fact, established in Proposition 2, that the optimal contract in

the absence of FDSE entails e�1 6= eFB1 and e�2 6= eFB2 .

To see that (i) holds, suppose the worker believes that the evaluations are truthful. Then

x(m) = m and, from (6), the �rm�s expected second period pro�t (again ignoring s(m)) is

E�2 = kgk2 b2
�
bSB � b2

� R �a
0
amh(a)da: Truthtelling is a PBE if m = a for all a maximizes

E�2 subject to the following constraint implied by the forced distribution:Z �a

0

(m2 � a2)h(a)da = 0: (A15)

This is an isoperimetric optimal control problem with Hamiltonian H = amh+!(m2�a2)h,
where ! is the multiplier (a constant) for the state variable m. By Pontryiagin�s maximum

principle, the optimum is given byHm = ah+2!mh = 0 and by (A15). Restricting attention

to m 2 [0; �a], this yields ! = �1
2
and m = a. �

Proof of Proposition 9. Denote the two workers as A and B and consider �rst FDSE. With
two workers, there are two possible evaluations, mL and mH > mL. The expected ability of

the worker who got the evaluation mH (say, worker A) is xH � x(mH) = E(aAjaA > aB) =

2
R �a
0
aH(a)h(a)da. Similarly, the expected ability of the worker with evaluation mL (worker
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B) is xL � x(mL) = E(aBjaA > aB) = 2
R �a
0
a[1 � H(a)]h(a)da. Worker i�s second period

e¤ort is then ei2k = bSBxigk; i = L;H; k = 1; 2; :::; K. In t = 1, both workers provide e¤orts

eFB1k = E(a)fk. The total surplus under FDSE, TSFDSE, is then

TSFDSE = 2Ea[ae
FB
1 �f �	(eFB1 )] + xHe

H
2 �f + xLe

L
2 �f �	(eH2 )�	(eL2 )

= 2Ea

�
aE(a)f � f � 1

2
[E(a)]2 f � f

�
+ bSB

�
x2H + x2L

�
g � f �

�
bSB
�2 x2H + x2L

2
g � g

= [E(a)]2 kfk2 + bSB
�
x2H + x2L

�
kfk kgk cos � �

�
bSB
�2 x2H + x2L

2
kgk2

= [E(a)]2 kfk2 +
�
bSB
�2 x2H + x2L

2
kgk2 ;

so that lim�!0 TS
FDSE = [E(a)]2 kfk2 (because lim�!0 b

SB = lim�!0
kfk
kgk cos � = 0).

Without FDSE, e�2k = abSBgk, and the total surplus, TS0, is

TS0 = 2Ea[ae
�
1�f �	(e�1) + ae�2�f �	(e�2)]

= 2Ea[ae
�
1�f �	(e�1) + bSBa2g � f � 1

2

�
bSB
�2
a2g � g]

= 2Ea[ae
�
1�f �	(e�1)] +

�
bSB
�2
a2 kgk2 : (A16)

Now, refer to the analysis in Appendix B: First, lim�!0 b
SB = 0 implies that both ��(a)

and ��0(a) converge to zero as � ! 0. Consequently, the L.H.S. of (B3) also converges to zero,

and so does Cmax in constraint (B20). This in turn implies lim�!0C
� = 0, where C� solves

Problem (2) in Appendix B. (B22) and (B24) then yield lim�!0 b
�
1 = lim�!0 b

SB = 0. Hence,

from (B19), it must be lim�!0 e
�
1k = E(a)gk lim�!0 b

�
1 + kgk

2 fk lim�!0
C�

e�1�f
= 0 for each k,

so that lim�!0 e
�
1�f = lim�!0 e

�
1�e�1 = 0: This shows that lim�!0 TS

0 = 0 < lim�!0 TS
FDSE.

Therefore, there exists a �� > 0 such that TS0 < TSFDSE for all � � ��. Setting c� � cos ��

concludes the proof of the �rst claim in the proposition.

To obtain the second claim, let � ! 1. Then lim�!1 b
SB = kfk

kgk , so that lim�!1 TS
FDSE =

[E(a)]2 kfk2 + x2H+x
2
L

2
kfk2. As for TS0, set C = 0 and optimize over b1 and e1: Denote

the solution as b01 and e
0
1 and observe that, by de�nition, b

0
1 = bSB, so that lim�!1 e

0
1 =

eFB1 . Because e�1 maximizes TS
0, (A16) then implies lim�!1 TS

0 � lim�!1 2Ea[ae
0
1�f �

	(e01)] +
�
bSB
�2
a2 kgk2 = [E(a)]2 kfk2 + E(a2) kfk2 : Now, the true distribution of a is a

mean-preserving spread of the beliefs x(mH) and x(mL); it therefore must be E(a2) >
x2H+x

2
L

2
,

which yields lim�!1 TS
0 > lim�!1 TS

FDSE. Consequently, there exists a ��� < 1 such that

TS0 � TSFDSE for all � � ���. Setting c�� � cos ��� concludes the proof. �
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B. Appendix B: Analysis of problem (P�)

It will prove useful to restate the problem in terms of �(a) � ab2(a):

(P�) max
b1;�(m);e1

Z �a

0

�
ae1�f �	(e1) + kgk2 �(a)

�
abSB � �(a)

2

��
h(a)da

subject to �(a) � 0, �(0) = 0, and

e1k =

Z �a

0

"
ab1gk +

kgk2 fk
e1�f

a
�
abSB � �(a)

�
�0(a)

#
h(a)da; k = 1; 2; :::; K: (B1)

Constraint (B1) can be rearranged as follows:

Z �a

0

a
�
abSB � �(a)

�
�0(a)h(a)da =

e1�f
kgk2

[e1k � E(a)b1gk]

fk
; k = 1; 2; :::; K: (B2)

Recalling that b3(m) = 0, so that �(a) = ab2(a) is independent of e1, (B2) shows that (P�)

is separable into two self-contained problems: (1) Optimization over �(m), taking b1 and e1
as given, and (2) optimization over b1 and e1, taking into account the e¤ect on �(m).

B.1. Problem (1): Optimization with respect to �(m):

Step 1. Problem setup. Note that with respect to Problem (1), (B2) is just a single constraint:

Because the L.H.S. of (B2) does not depend on k, the R.H.S. cannot depend on k either, i.e.

it must be e1�f
kgk2

[e1k�E(a)b1gk]
fk

= C for all k, where C is a constant. The choice of C is analyzed

in Problem (2) below; here, C is treated as exogenous. Thus, (ignoring the constant kgk2)
the problem of optimizing with respect to �(m) can be stated as

(P1) max
�(a)

Z �a

0

�(a)

�
abSB � �(a)

2

�
h(a)da

subject to Z �a

0

a
�
abSB � �(a)

�
�0(a)h(a)da = C: (B3)

It will be proven in Problem (2) and taken here as given that C > 0.

Program (P1) is an isoperimetric optimal control problem, i.e., an optimal control prob-

lem with an integral constraint. To formulate it as a proper optimal control problem, de�ne a

new control variable u(a) = �0(a) and a new state variable y(a) =
R a
0
t
�
tbSB � �(t)

�
u(t)h(t)dt.
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This transforms (P1) to a problem with a control variable u and state variables y and �:

(P1�) max
�;y;u

Z �a

0

�(a)

�
abSB � �(a)

2

�
h(a)da

subject to y0(a) = a
�
abSB � �(a)

�
u(a)h(a); (B4)

�0(a) = u(a); (B5)

y(0) = 0; y(�a) = C; (B6)

�(a) � 0; �(0) = 0: (B7)

Step 2. Necessary conditions. Let �(a) and �(a) be the multiplier functions that go with

y and � respectively and �(a) the multiplier that goes with the inequality in (B7). The

Hamiltonian for this problem is then

H(a; y; �; u; �; �) = �

�
abSB � �

2

�
h+ �a

�
abSB � �

�
uh+ �u+ ��:

Pontryiagin�s maximum principle says that any solution to (P1�), denoted by ��(a); y�(a);

u�(a); ��(a); ��(a), must satisfy (B4)-B(7), plus

u = argmaxH = argmax �

�
abSB � �

2

�
h+ �a

�
abSB � �

�
uh+ �u+ �� (B8)

�0 = �Hy = 0 (B9)

�0 = �H� = �
�
abSB � �

�
h+ �auh� � (B10)

�� = 0; (B11)

and the transversality condition �(�a) = 0: (B12)

Given that H is a¢ ne in u, the above is a singular control problem with an unbounded

control. This suggests that the solution entails a singular arc on some interval I � [0; �a].

Along this arc, the solution must lie on the singular surface de�ned by Hu = 0;
d
da
Hu = 0;

..., and dr

dar
Hu = 0, where r is the order of the singular arc, i.e., the smallest positive integer

r such that @
@u

�
dr

dar
Hu

�
6= 0 (see, e.g. Chachuat, 2007, pp. 145-6). Noting that (B9) implies

that � is a constant, we have

Hu = �a
�
abSB � �

�
h+ � = 0: (B13)
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Using (B5) and (B10), this yields

d

da
(Hu) = �

�
2abSB � � � a�0

�
h+ �a

�
abSB � �

�
h0 + �0

= �
�
2abSB � � � au

�
h+ �a

�
abSB � �

�
h0 �

�
abSB � �

�
h+ �auh� �

= �
�
2abSB � �

�
h+ �a

�
abSB � �

�
h0 �

�
abSB � �

�
h� � = 0; (B14)

which does not depend on u. Next,

d2

da2
(Hu) = �

�
2bSB � u

�
h+ �

�
4abSB � 2� � au

�
h0 + �a

�
abSB � �

�
h00

�
�
bSB � u

�
h�

�
abSB � �

�
h0; (B15)

so that @
@u

�
d2

da2
Hu

�
= (1� �)(h+ ah0) 6= 0 as long as � 6= 1 (which will be veri�ed shortly).

Thus, the singular arc is given by (B13)-(B15).

If 1� �(1 + ") 6= 0 (again veri�ed shortly), solving for � from (B14) yields

��(a) = abSB
�
1� �

1� �(1 + ")

�
+

�

h(a) [1� �(1 + ")]
;

where "(a) � ah0(a)
h(a)

is the elasticity of the distribution function h(:) at a. Combined with

constraint (B11), this means that

��(a) = max

�
0; abSB

�
1� �

1� �(1 + ")

��
: (B16)

The optimal �� is then determined by plugging (B16) into constraint (B3) and solving

for �. Appendix C shows that a solution to (B3) exists if and only if C 2 [0; Cmax], where
Cmax > 0, and that �� 2

�
0; 1

3
+ �2(M)

�
, where M is as in Assumption 1 and �2(M) > 0,

with limM!0 �2(M) = 0. Note that �
� < 1

3
+ �2(M) implies 1� �(1 + ") > 0 for all " when

M is small, verifying that the denominator in (B16) is non-zero.

Step 3. End points. Equation (B16) satis�es the requirement that �(0) = 0, but not

the transversality condition (B12): Substituting (B12) to (B13) and using the fact that u

is unbounded implies that �(�a) = �abSB. This, however, is generically not compatible with

(B16). Consequently, the optimal solution has an impulse at a = �a : The optimal � is given

by (B16) for a 2 I = [0; �a) and is then transported via an impulse to �(�a) = �abSB at a = �a.19

19On impulses in singular optimal control problems see e.g. Bryson and Ho (1975).
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Step 4. Su¢ ciency. It is straightforward to check that the Hessian of H is inde�nite.

Consequently, the Mangasarian su¢ ciency conditions for global maximum are not satis�ed

and an alternative way of proving that (B16) solves the problem is needed. This will be

done by showing that (B16) cannot be a minimum. Since any solution must satisfy (B16),

the above must be a maximum. Thus, suppose, as a way of contradiction, that the above

singular arc is a global minimum. Then it is also a local minimum, which requires that the

generalized Legendre-Clebsch condition for minimum holds, i.e., � @
@u

�
d2

da2
Hu

�
> 0, or

�(1� �)(1 + ") > 0: (B17)

Given that 1 + " > 0 for M small, (B17) holds only if � > 1, which for M small contradicts

�� < 1
3
+ �2(M) established in Appendix C. Therefore, the above arc must be a maximum.

(Observe that the generalized Legendre-Clebsch condition for local maximum is the reverse

of (B17), which holds for M small.)

Step 5. The condition imposed by Lemma 1. Lemma 1 says that for the solution to

problem (P1) to be a part of the solution to the original problem (P), ab2(a)
�
bSB � b2(a)

�
must be non-decreasing in a: Using (B16) and �(a) = ab2(a); we have

ab2(a)
�
bSB � b2(a)

�
= abSB

� [1� � (2 + ")]

[1� � (1 + ")]2
;

which is non-decreasing in a if and only if

bSB [1� � (2 + ")] + �"0
�
2�(a)� abSB

�
� 0: (B18)

Given that �� < 1
3
+ �2(M) and limM!0 �2(M) = limM!0 "(a) = limM!0 "

0(a) = 0, it must

be that limM!0 LHS(B18)> 0. Thus, (B18) holds for M small.

B.2. Problem (2): Optimization with respect to e1, b1, and C.

Step 1. Problem setup. Let V (��; ��; C) be the principal�s optimal value function from

problem (P1), i.e., V (��; ��; C) �
R �a
0
��(a)

h
abSB � ��(a)

2

i
h(a)da, and denote by � her total

35



expected pro�t over the two periods. Problem (2) can then be written as

(P2) max
b1;e1;C

� = max
b1;e1;C

E(a)e1�f �	(e1) + kgk2 V (��; ��; C)

subject to e1k = E(a)b1gk +
C kgk2

e1�f
fk; k = 1; 2; :::; K; (B19)

C � 0;

subject to �(a) being determined by (B3) and B(6); and subject to C being feasible (i.e., such

that the set of �(a) that satisfy (B3) is non-empty). Appendix C shows that the feasibility

constraint for C can be expressed, for some Cmax > 0, as

C � Cmax: (B20)

Step 2. First order conditions. The dynamic Envelope Theorem for the �xed endpoint

class of optimal control problems (e.g., Theorem 9.1 in Caputo, 2005, p. 232) implies that
@V (��;��;C)

@C
= ���. Let �C be the Lagrange multiplier associated with constraint (B20). The

�rst order conditions for problem (P2) are then

@�

@C
=

KX
k=1

@e1k
@C

[E(a)fk � e1k]� �� kgk2 + �C = 0; (B21)

@�

@b1
=

KX
k=1

@e1k
@b1

[E(a)fk � e1k] = 0; and (B22)

(Cmax � C)�C = 0; �C � 0; (B23)

where, from (B19),

@e1k
@C

=
kgk2 fk

e1�f + kgk2 Cf
2
k

e1�f

> 0 and
@e1k
@b1

=
E(a)gke1�f

e1�f + kgk2 Cf
2
k

e1�f

> 0: (B24)

Step 3. C� > 0: To see this, suppose C = 0. Then @e1k
@C

= kgk2fk
e1�f ,

@e1k
@b1

= E(a)gk,

e1k = E(a)b1gk, and (from (B3) and (B16)) �
� = 0, so that (B22) yields b1 = bSB = kfk

kgk cos �
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and @�
@C
becomes

@�

@C
jC=0 = E(a)

kgk2

e1�f

KX
k=1

�
f 2k � bSBfkgk

�
+ �C

= E(a)
kgk2

e1�f
�
kfk2 � bSB kfk kgk cos �

�
+ �C

= E(a)
kgk2 kfk2

e1�f
�
1� cos2 �

�
+ �C > 0.

Hence, it must be C� > 0.

Step 4. C� < E(a)e1�f
kgk2 . Suppose C � E(a)e1�f

kgk2 . Then (B19) implies e1k � E(a)b1gk +

E(a)fk; k = 1; 2; :::; K: Plugging this to @�
@C
in (21) yields

@�

@C
� �

KX
k=1

@e1k
@C

E(a)b1gk � �� kgk2 + �C :

Now suppose for the moment that (P2) is not constrained by (B20). Then �C = 0 and the

above implies @�
@C

< 0 for all C � E(a)e1�f
kgk2 , where the inequality follows from �� > 0 for C > 0,

established in Appendix C. Therefore, it must be C� < E(a)e1�f
kgk2 if C is unconstrained and

hence also if C is constrained by (B20).

Step 5. b�1 > 0: Suppose b1 = 0. Because C < E(a)e1�f
kgk2 , (B19) then implies e1k <

E(a)fk; k = 1; 2; :::; K; so that, from (B22), @�
@b1
jb1=0 > 0. Hence, it must be b�1 > 0.

C. Appendix C: Technical details regarding �� and constraint (B20)

De�ne

V (�) �
Z �a

0

��(a)

�
abSB � ��(a)

2

�
h(a)da; and (C1)

Z(�) �
Z �a

0

a
�
abSB � ��(a)

�
��0(a)h(a)da; (C2)

where ��(a) is given by (B16). That is, V (�) is the principal�s optimal value function from

problem (P1) in Appendix B as a function of �, and Z(�) is the L.H.S. of constraint (B3)
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evaluated at ��(a). Also, note that for M small,

��(a) = 0 if � 2 [ 1

2 + "
;
1

1 + "
) (C3a)

��(a) > 0 otherwise. (C3b)

Step 1. Shape of V (�): Let V̂ (�; ") � ��(a)
h
abSB � ��(a)

2

i
: By (C3), V̂ (�; ") = 0 for

� 2 [ 1
2+"

; 1
1+"
): Let "max � maxaf"(a)g and "min � minaf"(a)g: Then V̂ (�; ") = 0 for all

� 2 [ 1
2+"min

; 1
1+"max

), so that V (�) = 0 for � 2 [ 1
2+"min

; 1
1+"max

):

Next, suppose � =2 [ 1
2+"

; 1
1+"
]. Then substituting (C3) into (C1) yields

V̂ (�; ") =
1

2

�
bSB
�2
a2
�
1� �2

[1� �(1 + ")]2

�
=
1

2

�
bSB
�2
a2

"
1� 1�

1
�
� (1 + ")

�2
#
;

so that @V̂ (�;")
@�

< 0 if 0 < � < 1
2+"

and @V̂ (�;")
@�

> 0 if � < 0 or if � > 1
1+"
. Furthermore, we have

V̂ (�; ") = 0 i¤ �2 = [1� �(1 + ")]2, i.e., i¤ either � = �1(") =
1
2+"

or � = �2(") =
1
"
: Finally,

note that V̂ (�; ") is continuous in � except for �̂(") = 1
1+"

; and that lim�"�̂(") V̂ (�; ") =

lim�#�̂(") V̂ (�; ") = �1 and V̂ (0; ") = 1
2

�
bSB
�2
a2 > 0 for all ".20 Hence,

V 0(�) > 0 for � < 0 (C4a)

V 0(�) < 0 for 0 < � <
1

2 + "max
(C4b)

V 0(�) � 0 for
1

2 + "max
� � � 1

2 + "min
(C4c)

V 0(�) = 0 for
1

2 + "min
� � <

1

1 + "max
(C4d)

V 0(�) � 0 for � � 1

1 + "max
; (C4e)

20� " �̂(") indicates convergence of � to �̂(") from below; similarly, # indicates convergence of from above.
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and

V (�) > 0 for �0 � � � 1

2 + "max
where �0 < 0 (C5a)

V (�) � 0 for
1

2 + "max
� � � 1

2 + "min
(C5b)

V (�) = 0 for
1

2 + "min
� � <

1

1 + "max
(C5c)

V (�) < 0 for
1

1 + "min
< � <

1

"max
(C5d)

V (�) > 0 for � >
1

"min
: (C5e)

Step 2. Shape of Z(�): Let Ẑ(�; ") �
�
abSB � ��(a)

�
��0(a): Then (C3a) implies Ẑ(�; ") =

0 for � 2 [ 1
2+"min

; 1
1+"max

), so that Z(�) = 0 for all � 2 [ 1
2+"min

; 1
1+"max

).

Next, suppose � =2 [ 1
2+"

; 1
1+"
]. Then substituting (C3) into (C2) yields

Ẑ(�; ") =
� [1� �(2 + ")]

[1� �(1 + ")]2
+

a�3"0

[1� �(1 + ")]3
; (C6)

so that @Ẑ(�;")
@�

= [1��(1+")][1��(3+")]+3a�2"0
[1��(1+")]4 : For M small, we thus have

Z 0(�) > 0 if � <
1

3
� �1(M) (C7a)

Z 0(�) � 0 if
1

3
+ �2(M) < � <

1

2 + "min
(C7b)

Z 0(�) = 0 if
1

2 + "min
� � <

1

1 + "max
(C7c)

Z 0(�) ? 0 if
1

1 + "max
� � <

1

1 + "min
+ �3(M) (C7d)

Z 0(�) > 0 if � >
1

1 + "min
+ �3(M); (C7e)

where �i(M) > 0 and limM!0 �i(M) = 0, i = 1; 2; 3:

Now, from (C6), there exists a �+ 2 (0;1) such that Z(�) < 0 for all � � �+. Further,

Z(0) = 0, limM!0 Z(
1
3
) = 1

4
E(a) > 0, and limM!0 Z(

1
2
) = 0: This, together with (C7),
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implies that, for M small,

Z(�) < 0 for � < 0 (C8a)

Z(�) > 0 for 0 < � <
1

2 + "max
(C8b)

Z(�) � 0 for
1

2 + "min
� � <

1

1 + "max
(C8c)

Z(�) ? 0 for
1

1 + "max
� � <

1

1 + "min
+ �3(M) (C8d)

Z(�) < 0 for � >
1

1 + "min
+ �3(M): (C8e)

Step 3. Solution to (B3) and the form of constraint (B20). Conditions (C8) imply that for

C > 0, (C2) can hold only if either � 2
�
0; 1

2+"min

�
; or, possibly, � 2

�
1

1+"max
; 1
1+"min

+ �3(M)
�
:

But limM!0 V (� =
1

1+"min
) = limM!0 V (� =

1
1+"max

) = �1 implies that � 2
�

1
1+"max

; 1
1+"min

+ �3(M)
�

cannot be an optimum. Therefore, it must be �� 2
�
0; 1

2+"min

�
: Furthermore, Z(�) is con-

tinuous on
�
0; 1

2+"min

�
, with Z(0) = 0 � Z( 1

2+"min
) and with Z(1

3
) > 0. Hence, maxZ(�) on�

0; 1
2+"min

�
exists and is positive. Denote this maximum as Cmax. Then by continuity, for

every C 2 [0; Cmax] there exists a � 2
�
0; 1

2+"min

�
such that (C2) holds, whereas if there is

a � such that (C2) holds for C > Cmax, this � cannot be a part of the solution to (P1).

Consequently, the feasibility constraint on C can be expressed as 0 � C � Cmax.

Finally, (C4) says that V 0(�) � 0 on
�
0; 1

2+"min

�
. Hence, if multiple � solve (B3), then �� is

the smallest of them. But, from (C7), Z(0) = 0 and Z 0(�) � 0 for all � 2
�
1
3
+ �2(M);

1
2+"min

�
.

The smallest � that solves (B3) therefore cannot exceed 1
3
+�2(M): That is, �

� � 1
3
+�2(M).
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