
Discussion paper

SAM 23 2011
ISSN: 0804-6824
November 2011

INSTITUTT FOR SAMFUNNSØKONOMI

DEPARTMENT OF ECONOMICS

Geocomputation and open
source software:
components and software stacks
BY
Roger S. Bivand

This series consists of papers with limited circulation, intended to stimulate discussion.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6633163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Geocomputation and open source software:
components and software stacks

Roger S. Bivand∗

November 26, 2011

Abstract

Geocomputation, with its necessary focus on software development and
methods innovation, has enjoyed a close relationship with free and open source
software communities. These extend from communities providing the numer-
ical infrastructure for computation, such as BLAS (Basic Linear Algebra Sub-
programs), through language communities around Python, Java and others, to
communities supporting spatial data handling, especiallythe projects of the
Open Source Geospatial Foundation. This chapter surveys the stack of soft-
ware components available for geocomputation from these sources, looking in
most detail at theR language and environment, and how OSGeo projects have
been interfaced with it. In addition, attention will be paidto open development
models and community participation in software development. Since free and
open source geospatial software has also achieved a successively greater pres-
ence in proprietary software as computational platforms evolve, the chapter
will close with some indications of future trends in software component stacks,
using Terralib as an example.

1 Introduction

In much the same way that Bivand and Lucas (2000) — a chapter inthe first edi-
tion of this collection on the integration of models and geographical information
systems — was a review of literature, this chapter will consider relationships be-
tween geocomputation and open source software. Some of the insights from our
earlier work in fact fed directly into the development of interfaces between the open
source GRASS GIS and theR statistical language and environment, as initially

∗Email: Roger.Bivand@nhh.no, Department of Economics, NHHNorwegian School of Eco-
nomics, Helleveien 30, N-5045 Bergen, Norway

1

described by Bivand and Neteler (2000). The structuring of relationships between
software components — with ensuing workflow challenges and opportunities —
has matured over time, informing geocomputation communities using either open
source or proprietary software, or both together.

An aspect of the progress made in software development communities has been
the ratio of signal to noise in information diffusion. Bookssuch as Mitchell (2005),
Erle et al. (2005) and Gibson and Erle (2006) gave rich insight into myriad pos-
sibilities for committed customisers and consultants, butat a distance from what
might be termed “mainstream” GIScience; perhaps “hacking”and GIScience are
more comfortable at a distance? Applied research often, however, lives between
these two places, and needs to find practical solutions to real problems within the
constraints of available hardware, software, and programming and scripting compe-
tence. It is perhaps a paradox that very little software usedto tackle real scientific
problems is written by programmers with a background in computer science nowa-
days; much is written by domain scientists with deadlines tomeet.

As many, including recently Rey (2009), have pointed out, the involvement of
domain scientists in coding has effectively “included” thecode in their research out-
put, making its openness for scrutiny important for the verification of project results
and methodologies. Different disciplines approach this question in different ways,
with some journals still unwilling to allow software to be cited in references, and
unhappy about fully documented software footnotes; othersrequire the submission
of supplementary materials including code for the convenience of referees and read-
ers. Access to code to permit research to be reproduced is becoming important in
many disciplines, as Leisch and Rossini (2003) show with respect to statistics.

Voices of free and open source software insiders like Ramsey(2007) are impor-
tant, because they suggest the apparent level of reflection available to those devel-
opers closest to the bug-trackers. More reflection is perhaps shown in contributions
such as Câmara et al. (2010), but in Ramsey (2007), we are reading a narrative
written by a developer with commit rights to major open source geospatial software
projects. His distinction between the ‘C’, the ‘Java’, and the ‘.Net’ tribes seems well
taken, fairly reflecting the ways in which developer communities have evolved; we
will return to these communities later in the chapter.

The field of geospatial open source software projects was surveyed in detail by
its participants in Hall and Leahy (2008b), and their descriptions constitute a clear
picture of the ways in which they see their contributions. Some of the chapters have
no references, and are obviously statements by developers with practical rather than
academic goals. Other chapters are more similar in character to two other books
published in the same year, Neteler and Mitasova (2008) and Bivand et al. (2008),
both of which aim to provide applied researchers with guidesto the software tools
they may find useful in carrying out their work.

2

This practical approach to the conduct of research is noted by Sui and DeLyser
(2011) in the context of academic geography, which one mighthope will make help-
ful contributions in the future after a period of discriminating against quantitative
methods even where they were appropriate. Recent years haveseen surveys of the
potential of open source geospatial software in areas as diverse as health geograph-
ics and spatial epidemiology (Fisher and Myers, 2011; Vanmeulebrouk et al., 2008;
Yi et al., 2008), landscape ecology (Steiniger and Hay, 2009), water resources man-
agement (Chen et al., 2010), and courseware for GIS education (Schweik et al.,
2009). Roberts et al. (2010) provide much insight into the ways in which open
source and proprietary software solutions intermesh in ecological geoprocessing.
Finally, a further general survey is provided by Steiniger and Bocher (2009), in
which the categories of the different software varieties, and the range of open source
licence conditions are discussed in detail. Here we will accept their broad defini-
tion of free and open source software, termed open source forbrevity, without fur-
ther discussion, as the distinctions seem clear; they are also largely shared by Rey
(2009), and so do not require repeating at length.

Our task here is rather to review central issues and projectsof importance for
geocomputation related to open source software, and the enriching of workflows
that may be achieved by adding open source components to otherwise proprietary
approaches. The open source components are distinguished by the availability of
source code under free and/or open source software licences, by access to infras-
tructures such as version control systems for source code, bug trackers, mailing lists
and at least partly organised communities, and by the documentation of external de-
pendencies in the build and install system. As will be shown below, these qualities
may vary a good deal across projects, with consequences for the ease of software
stacking (or otherwise) experienced in practice.

We will proceed by examining software component stacks for geocomputation
first, looking at language environments, component stacks,and crucially at depen-
dency challenges. Next we describe selected open source geospatial projects within
the narrow defintion of projects associated with the Open Source Geospatial Foun-
dation (OSGeo), which provides key shared infrastructure for projects, as well as
major annual international conferences. Drawing on my own experience, we go on
to see how OSGeo projects have been interfaced with theR statistical language and
environment, providing examples of how geocomputation maybe advanced by us-
ing R for programming, scripting and analysis. Alternatively, the Python language
and environment, or other candidates, could have been chosen, but my subjective
preference is forR. We round off by discussing future prospects.

3

2 Software component stacks for geocomputation

Before discussing software component stacks for geocomputation, we should ac-
knowledge the importance of open standards for geospatial data interchange. Unless
data formats and protocols are agreed, it is very difficult togenerate the synergies
required for constructive collaboration. Kralidis (2008)points out the importance
of concepts such as that of spatial data infrastructure, whether established within
national jurisdictions, within supranational jurisdictions, or by international stan-
dards organisations. The work of the Open Geospatial Consortium (OGC), with
members drawn from software companies, research institutes and the broader user
community, has been central in this respect. The availability of publically adopted
OGC standards has made it possible for software developers of all varieties to share
key specifications that enable data to be passed from component to component in
controlled ways.

Kralidis (2008) also helpfully distinguishes between formal, de facto, and ad
hoc standards, which provide the flexibility needed to move ahead somewhat faster
than standards committees are usually able to do. The adoption of Keyhole Markup
Language (KML) as an OGC standard, based as is Geography Markup Language
(GML) on XML, was a wise step, in that it permitted the incorporation of a widely
adopted lightweight data representation within a family ofstandards. Software
development benefits from disciplined standards and from rapid but occasionally
chaotic progress; we very often need both approaches, and benefit from drawing
them together where feasible.

While OGC pays considerable attention to interchange standards, other open
standards specifications are of relevance for geocomputation. Dunfey et al. (2006)
present an open architecture vector GIS using scalable vector graphics (SVG), eas-
ing visualization because of the adoption of this standard by the WWW Consor-
tium. SVG viewers of various kinds have been developed, someclosed, some open
source, but all capable of rendering the same input data because the specification
itself is an open standard. Open source software componentsmay be used in con-
nection with development, but often to “glue” together datain known, sometimes
standard, specifications; prototyping using interpreted languages is often a chosen
solution. Batcheller and Reitsma (2010) show how open source components may
be integrated to permit spatial data discovery through feature level semantics in this
context.

While the availability of open standards, and of open sourcesoftware compo-
nents, provides us with a great deal of flexibility in application implementation,
Schweik et al. (2009) point to advantages in course design and training. The use
of open source software for training allows the trainer to tailor the software to the
needs of the course, and removes the burden of acquiring and administering soft-
ware licences. When using proprietary software, in addition to practical costs, the

4

structure of the course is “tailored” by the chosen software, perhaps diverting atten-
tion from the core focus.

However, much open source software, in particular desktop GIS, appears to im-
itate popular proprietary software, for example Quantum GIS (QGIS) and the for-
mer ArcView desktop GIS may well perform very similarly in training. In addition,
courses are often obliged to take into account the needs of participants to acquire
familiarity with established proprietary systems before starting work where these
systems are deployed as standard. The tension between generic GIS and geospatial
training giving graduates general skills, and software specific training is very real,
especially where the software presupposes the dominance ofa graphical user inter-
face. Where generic skills are taught in relation to scripting, interpreted languages,
and command line interfaces, the needs of participants to acquire abilities that can
be applied at work from day one may be readily met using any suitable mixture of
open source and proprietary software.

Steiniger and Bocher (2009) and Chen et al. (2010) give recent overviews of
open source GIS software, but with constraints on what they see as general suit-
abilities and functionalities. It seems that their preference for applications rather
than component stacks has affected the ways in which software is perceived. Pref-
erences for graphical user interfaces (GUI) has in particular obscured the fact that
developing GUIs absorbs a great deal of developer effort, and that most open source
projects face their hardest constraints in mobilising and precisely deploying devel-
oper effort. Typically, open source projects face choices between GUI toolboxes,
with some developers prefering one cross-platform toolbox, others prefering alter-
natives. All such projects hit road bumps when the chosen toolbox “upgrades” in
a way that is not backwards-compatible, meaning that much GUI work has to be
repeated, and possibly supported for both the older and the newer toolbox versions.

In the remainder of this section, we will consider the importance of program-
ming language environments, of component stacks and mechanisms for joining
components together, and finally the challenges that arise from trees of dependen-
cies engendered between components.

2.1 Language environments

Câmara et al. (2010) following Ramsey (2007) distinguish between the language
environments characterising open source geospatial software. Many projects use the
compiled C and/or C++ languages; in the latter case, use varies between projects us-
ing modern C++ with templates, and others using C++ more as C.Historically, the
adoption of compiled languages by projects has been influenced by the availability
of suitable compilers and linkers across the target operating systems and hardware
platforms. The emergence of the GNU compiler collection (GCC), and especially
the gcc C and the g++ C++ compilers across multiple platformsand operating sys-

5

tems, has made it much easier to ensure that computations made using the same
source code do not give platform-dependent output on the same data. This is still
not guaranteed, as for example time and time zone handling may differ between
operating systems.

The contribution of individuals here is often crucial; theR Windows FAQ 3.1.10
reflects this: “The assistance of Yu Gong at a crucial step in porting R to MinGW-
w64 is gratefully acknowledged, as well as help from Kai Tietz, the lead developer
of the MinGW-w64 project”.1 Without their important interventions, it would not
have been possible to progress with a GCC-based 64-bitR for 64-bit Windows plat-
forms. Not infrequently, such interventions occur unexpectedly, suddenly opening
up apparently blocked avenues. Platform-specific open source projects may use
compilers supplied with operating systems, some of which are available without
charge.

Beyond the compilers and linkers provided with GCC, many projects using C
also use the legacy Unix make command to manage the build process, and GNU
autoconf to configure the build process by auto-detecting the presence and versions
of software dependencies. In addition, many also use GNU libtool to assist in writ-
ing input files for make processes on the fly. Others choose a more modern open
source build system, CMake; it is however rarely the case that experienced open
source developers feel comforable in both build environments. It is much easier for
developers to use the same compiler and build train across platforms, so that test
suites can be deployed and used in the most convenient way.

Other open source geospatial projects use Java, which handles cross-platform
portability by running byte-compiled programs on platform-specific virtual ma-
chines. Java was often adopted by projects initiated when the portability of C
compilers was in doubt, and where developers felt that a moremodern interpreted
language was an advantage. JavaScript used as a mechanism for embedding compu-
tation in information delivered to web browsers and similarfront-end software has
become extremely powerful. The initial Google Maps applications programming
interface (API) was written as a JavaScript API, but has subsequently been enlarged
to include other components.

Before returning briefly to web and mobile geospatial applications, we must
note the significance of other major language environments.Ramsey (2007) men-
tions those based on .Net, with their use of the wrapping of C/C++ and Java com-
ponents. The Simplified Wrapper and Interface Generator (SWIG) has been de-
veloped to permit compiled components to be used in scripting languages such as
Perl, Python, PHP, Tcl, and Ruby, among others. Some applications have designed
customised interfaces like GRASS with Python; others use calls to the operating
system to execute external programs. Shell scripts, known as batch programs on

1http://cran.r-project.org/doc/manuals/R-admin.html# g_t64_002dbit-Windows-builds .

6

http://cran.r-project.org/doc/manuals/R-admin.html#g_t64_002dbit-Windows-builds

Windows platforms, have long been a staple form of application integration that
have been easy to write and maintain. These are likely to remain of major impor-
tance on all platforms; despite appearances, shell scriptsare just as convenient on
OSX platforms as on other versions of Unix.

2.2 Component stacks

The software component stack has been a core concept of programming at least
since the publication of Kernighan and Plauger (1976), systematising the experi-
ence of Bell Labs’ computer scientists. They point out that modularization and
simplicity in coding lead to greater robustness, because small functions and applica-
tions can be tested more thoroughly than large ones. Some of the lessons are made
clear in programming itself (Kernighan and Pike, 1999), while others affect how
one may “glue” small utility functions together in an interactive and/or scripting
language (Kernighan and Pike, 1984). In Bentley et al. (1986), McIlroy shows how
Bentley’s programming challenge — to tabulate word frequency in a given text —
was solved elegantly in a monolithic program by Knuth, but can also be answered
using a very short shell script using well-tried small utility programs available in
any Unix distribution.

Consequently, a software component stack can be taken as sequence of compo-
nent programs that are used together to achieve a common goal. The most widely
used example is LAMP: Linux, Apache, MySQL and Perl/PHP/Python, comprising
a sufficient and capable stack for running a web server with server-side page pro-
cessing. The languages used here vary, with applications written in C, some C++,
and bound together with shell scripts for administration, SQL for data handling, and
a scripting language to process web pages dynamically.

As in a jigsaw puzzle, the interfaces between software applications in a stack
need to be clear and well-defined. In the LAMP case and similarcases, the in-
terface definitions were both clear and stable, leading to the creation of a critical
mass of system administrators, and thus a sufficiently largeuser base to generate a
helpful flow of bug reports. Interfacing applications typically reveals implementa-
tion assumptions that are neutral in nature in themselves, but when confronted with
unspecified assumptions in interfaced components, may become problematic.

Using stacks of components becomes attractive when task objectives can more
easily be met by using components developed by others than bydeveloping them in-
dependently. When the costs of keeping a stack working exceed those of rewriting,
the stack may fai. This is seldom the case, as reimplementation is fraught with diffi-
culties, especially of ensuring a sufficiently large user base to generate bug reports,
and to encourage other developers to join in.

Open source software developers often advertise application programming in-
terfaces (API), with an implicit promise that other downstream developers using

7

the API will be less subject to incompatible changes. This permits them to make
the improvements deemed desirable, or necessary bug-fixes,without downstream
software being affected. Naturally, software closer to theuser interface, or to the
web server, will often depend on underlying libraries and services, for example for
parsing XML. It is then vital that changes in these underlying components do not
change the way that dependent components function, unless their earlier behaviour
had been in error.

Open source software is characterised not only by frequent releases of compo-
nents, and by rapid bug-fixing leading to patched releases, but also by the availabil-
ity of checkout from version control systems. This permits developers of “down-
stream” software to build and test against the current trunkrevisions of “upstream”
components where necessary, or at least before release, to attempt to future-proof
the “downstream” component. Build support systems, such asGNU autoconf, will
then set compile flags to indicate the versions of “upstream”components, and/or
use will be made of self-declaring version functions to branch on version internally.

Many of these issues have been influenced over recent years bythe commission-
ing of specialist support and customization from open source geospatial developers
by customers, or by the opening of existing software codebases. Because large com-
panies often need to integrate multiple software components within specific quality
assurance support systems, they contribute code, bug fixes,and contracted develop-
ment which benefit all users of the components in question. The range of interaction
is large, especially because of the rapid growth seen in the use of geographical data.

Web, navigation and mobile geospatial applications have burgeoned in recent
years, effectively obscuring most of what the geocomputation community has been
concerned with over the past half century. The vast majorityof map applications do
not include any analysis, and most users of the applications, and associated hard-
ware and software are scarcely aware that their searches, GPS-registered move-
ments, or uses of smart transit passes, constitute data. Mobile devices may be
tracked from base stations, but as they also acquire GPS, they can themselves record
user positions. Android developers of course can benefit from open source soft-
ware, and application build trains, but these uses are not strongly connected with
most geocomputation. Exceptions include the use of sensor networks and animal
tracking, to which we will return below.

Another is the application programming interface in OpenStreetMap (OSM),
which supports data input from volunteer contributors, rather than the elaborate
visualization and search interfaces provided by leading web, navigation and mobile
geospatial applications. Figure 1 shows the OSM component overview, which is not
untypical in its complexity. Without the availability of the components developed
outside the OSM community, it would have been extremely hardto have achieved
the progress we can all see and benefit from in the rapid updating of street maps,

8

Figure 1: OpenStreetMap component overview, downloaded from
http://wiki.openstreetmap.org/wiki/Component_overvi ew

especially in places without adequate mapping agencies. Itis not coincidental that
the 2011 State of the Map conference, focused on OSM, and the 2011 FOSS4G
OSGeo conference have been held consecutively in Denver, Colorado.

2.3 Dependency challenges

As already noted, developers wishing to integrate softwarecomponents in stacks
must pay careful attention to the versioning of the components, and to the impacts
of upstream changes on downstream components. If the changes are forced by real
bugs being fixed, or security holes being blocked, downstream components must
react in appropriate ways. However, some changes occur for other reasons, such
as code cleaning, reimplementation, or the resolution of licence issues in other-
wise functioning code. In most cases, upstream developers then attempt to reduce
changes in their interfaces with downstream components to an unavoidable mini-
mum.

Open source projects are typically most constrained with respect to developer
time for maintenance, including the revision of functioning code to accommodate
upstream changes that may not improve downstream performance. This has been
seen often enough when GUI toolkits are chosen — if the toolkit APIs change

9

http://wiki.openstreetmap.org/wiki/Component_overview

often, they will be seen as unattractive. The same applies tolanguage and compiler
versions; the new versions may be better engineered, but maynot be as prevalent on
user systems than their predecessors. Python seems to be a case in point, with most
Windows geospatial software bundling their own copies, which may complicate
updating and maintenance on user systems.

A particularly troublesome issue for dynamically linked software components
in relatively long-running applications is that of thread safety. If the upstream com-
ponent has a global error handler, it may be that multiple downstream components
will compete in resetting it to hand off errors to their own error handlers. The same
may occur with the setting of global variables. Even if components may be written,
or often adapted from earlier code, to be thread safe in themselves, it may be that
thread handling in downstream components makes different assumptions. Modern
language environments, such as Haskell, attempt to attack this problem at its root,
but total reimplementation of complex component stacks is most often not a feasible
option.

Defensive use of static linking is a possibility, but placesthe responsibility for
critical updating on the downstream developers in return for control over the depen-
dency in distributed binaries. Alternatively, the downstream component may simply
bundle the source code of the upstream components; this is taken to considerable
lengths by Boost2 and its community — Boost provides free peer-reviewed portable
C++ source libraries written as collections of header files.

It is often convenient for users to install and maintain binary components rather
than to install from source. This then transfers the responsibility for trying to keep
component stacks working together to those who package and distribute binary
components, such as theOSGeo4Wproject3 to provide Windows installers and com-
ponents, or the provision of OSX frameworks4 for open source geospatial software.
There are a number of similar Linux repositories, providingcomponent binary pack-
ages, such as DebianGIS5 and UbuntuGIS,6 among others. The packagers may also
get overenthusiastic and release binaries of early development versions of software,
perhaps solving one problem, but leaving others open.

Dependency issues may degenerate into dependency “hell” when downstream
necessary components in a stack change so as to have conflicting version dependen-
cies on the same upstream component. If the packaging metadata is not carefully
crafted, updating may lead to a component stack failing, or losing stability. Since
users often see proposed updates as offering greater security and/or functionality,
their presumption will be to update, and trust the metadata to protect them against

2http://www.boost.org .
3http://osgeo4w.osgeo.org/ .
4http://www.kyngchaos.com/software/frameworks .
5http://wiki.debian.org/DebianGis .
6https://wiki.ubuntu.com/UbuntuGIS .

10

http://www.boost.org
http://osgeo4w.osgeo.org/
http://www.kyngchaos.com/software/frameworks
http://wiki.debian.org/DebianGis
https://wiki.ubuntu.com/UbuntuGIS

unanticipated consequences. Writing packaging metadata and binary build systems
is another area in which open source projects typically lackdeveloper capacity, be-
cause it is both hard and unrewarding. Users take the providers for granted until
something gets broken, at which point they complain, understandably reducing de-
veloper motivation to offer time to such services.

3 Open source geospatial projects

The Open Source Geospatial Foundation (OSGeo) was brought into being in 2006
as a successor to the Mapserver Foundation, itself created the year before.7 In ad-
dition to providing a shared infrastructure and proceduralframework for web map-
ping, desktop application and geospatial library projects, OSGeo aims to promote
open source geospatial software use and development, including use integrated with
proprietary software. Its incubation procedure for projects includes legal verifica-
tion steps to check that code is properly copyrighted and licensed, and that the
conditions of use are clear. Many of the geospatial library projects offer code un-
der X/MIT, LGPL, or other licences permitting the distribution of linked builds of
closed source downstream components containing modified upstream components.

McIhagga (2008) discusses some of the ways in which communities of practice
have developed, with particular reference to web mapping, in his description, the
open source web mapping “ecology”. Chen and Xie (2008) show how open source
SQL data bases with spatial extensions fit into the bigger picture; this is very evident
also from Figure 1. There is also a good deal of excitement around the use of
non-relational databases with spatial data, such as GeoCouch8 extending CouchDB;
others are also being presented at the OSGeo meeting in 2011.

The PostGIS spatial extensions to PostgreSQL are widely used; PostGIS is li-
censed under the Gnu General Public License (GPL), while PostgreSQL itself is
licensed under its own licence, which is similar to the MIT licence. Software li-
censed under the GPL is termed Free Software, because licensees are required to
make available modified source code if they also publish binary versions of the soft-
ware for sale or otherwise. Software with more “liberal” licences does not oblige
licencees to contribute back to the community if they publish binary software, al-
though many do anyway. The term Open Source software includes Free Software
as a strict subset, that is all Free Software is Open Source, but not all Open Source
is Free in the understanding of the GPL.

The following review does not attempt to be exhaustive, but rather to establish
a basis for the next section, in which links withR will be presented.

7http://www.osgeo.org/content/foundation/about.html .
8https://github.com/couchbase/geocouch/ .

11

http://www.osgeo.org/content/foundation/about.html
https://github.com/couchbase/geocouch/

3.1 Geospatial libraries

One of the central geospatial libraies closely associated with geocomputation in its
development motivation is GeoTools.9. Turton (2008) describes its progress from
beginnings in a doctoral research project in Leeds up to about four years ago, and
its position as a major upstream component for both desktop applications and web
mapping applications written in Java is, if anything, even stronger now. It builds
on other components, such as the Java Topology Suite,10 but implements its own
code for spatial reference systems in Java based on the OGP ESPG11 database.
The R cshapespackage (Weidmann et al., 2011) bundles JTS run throughrJava
for polygon boundary line generalization and distance calculation, but is proba-
bly the onlyR geospatial package using open source geospatial Java components
(Weidmann and Gleditsch, 2010).

The Geospatial Data Abstraction Library (GDAL, pronouncedGooDAL, with
stress on the oo, because it was intended to be object-oriented)12 is a crucial part
of the upstream geospatial library infrastructure. Downstream components need-
ing to read raster data can instead read from the abstracted object representation,
rather than being obliged to implement interfaces to each format separately. As
Walter et al. (2002) describe its beginnings in relation to the OpenEV desktop ap-
plication, it simplified reading and writing raster data.

Warmerdam (2008) provides a rounded description of the library, including its
OGR vector extensions and design goals. Use is made both of OGC Simple Fea-
tures specifications, and of the PROJ.4 cartographic projections library. GDAL util-
ities are provided to give command line access to library functionality; Luis (2007)
shows how GDAL and GMT can be combined for exploring grid data. GDAL is
also available in interpreted languages like Python and Perl. Its C API is stable, but,
as Warmerdam (2008, pp. 99–100) points out, the C++ application binary interface
is very dependent on the version of the compiler in particular, termed ABI fragility.

It is not hard to contribute new drivers if the file or web service formats are
fully specified, and/or supported by external libraries; I have collaborated in writing
a driver for SAGA raster files, and the C++ coding involved wasnot demanding
once the format was documented. GDAL aims to open and read files simply based
on regular file characteristics, so that the format used may in fact be transparent
for the user. Writing files may be harder, and fewer drivers support file creation
and copying than reading. Only a very few XML based vector formats in default
builds, such as KML, can be written but not read. Many driversrequire the use
of external libraries, especially where the external dependency encodes proprietary

9http://www.geotools.org .
10http://www.vividsolutions.com/jts .
11http://www.epsg.org/ .
12http://www.gdal.org .

12

http://www.geotools.org
http://www.vividsolutions.com/jts
http://www.epsg.org/
http://www.gdal.org

formats in a closed-source binary shared object, or where itseems wiser not to
internalise complete driver code in GDAL itself, only providing stubs linked to
library functions.

In conclusion, Warmerdam (2008) mentions the difficult questions of thread
safety and internationalization, neither of which have been resolved. The latter
issue affects the OGR vector part of the library, as feature attributes are much more
likely to use multi-byte characters and/or different codepages. The choice of UTF-8
support is typical of many open source projects, as it falls back to ASCII when only
7 bits convey meaning. Error messages and documentation should also be available
in other languages.

The Java Topology Suite has been ported from Java to C++ as GEOS13 (Geome-
try Engine — Open Source), including all the OGC Simple Features for SQL spatial
predicate functions and spatial operators; like JTS, GEOS assumes planar geome-
tries. GEOS and JTS also share precision models that can be set and retrieved by
applications — not infrequently, changing the precision model can affect the re-
sults of computation. Because GEOS uses OGC SFS specifications for geometries,
it does not “build” topologies in the classical GIS arc-nodeunderstanding. The
operations are conducted on topologies built on-the-fly anddiscarded; prepared ge-
ometries may be made, speeding operations, and Sort-Tile-Recursive (STR) trees
can also be built for querying geometries. It is required that geometries meet SFS
specifications. The library is used by PostGIS to provide predicate functions and
topology operations, and can be compiled into GDAL to make these operations
available for OGR layers. GEOS has been modified to achieve thread safely by the
provision of a handle in the C API that is specific to the thread; before long, the
thread safe versions will be the only supported functions inthe API.

One of the most important components required by geospatialapplications is
the provision of robust and clear representations of coordinate reference systems. A
text representation was introduced in the PROJ.4 library,14 and pre-dates the OGC
well known text (WKT) spatial reference system (SRS). It supports datum transfor-
mation in addition to projection, and is part of the OSGeo MetaCRS project encom-
passing several projection and coordinate system related technologies.15 Extensive
use is made of the OGP EPSG16 database to encode distinct coordinate reference
systems. Extensions to this SRS database, for example used in the ESRI ArcSDE
interface, appear to have an uncertain legal status, and do not seem to be available
to open source applications in the same way as described in the EPSG Geodetic
Parameter Registry terms of use.

13http://geos.osgeo.org .
14http://trac.osgeo.org/proj .
15http://trac.osgeo.org/metacrs/ .
16http://www.epsg.org/ .

13

http://geos.osgeo.org
http://trac.osgeo.org/proj
http://trac.osgeo.org/metacrs/
http://www.epsg.org/

Chen and Xie (2008) describe the rationale underlying PostGIS17 as a library of
spatial extensions for the PostgreSQL object-relational database system. Because
PostGIS uses the OGC Simple Features Specification for SQL, and incorporates the
GEOS geometry engine, it makes the underlying database intoa powerful spatial
data engine and repository, particularly when carefully indexed. PostGIS 2.0 will
offer support for raster data, on which development is continuing actively.

TerraLib18 is positioned as middleware between a chosen object-relational database
system and a front-end application. It can store and retrieve spatial data, including
raster data since its inception, and apply functions and operations to the data, stor-
ing output in the database and passing it to the front-end application for display
(Câmara et al., 2008). Its next version, TerraLib 5, will be more tightly integrated
with central OSGeo libraries, will support non-DBMS data sources such as web
services, and will permit spatio-temporal data to be represented and queried.

3.2 Desktop applications

The best documented open source geospatial desktop application appears to be
GRASS GIS (GRASS Development Team, 2011). GRASS (Geographic Resources
Analysis Support System) was already twenty years old when the GRASS devel-
opers collaborated in founding OSGeo, and they have been playing an important
role in the broader OSGeo movement (Neteler et al., 2008).19 The GRASS book
(Neteler and Mitasova, 2008) is already in its third edition, covering the current
GRASS 6 release, which is now at 6.4.1, and has advanced far beyond the book.
From its original shell-scripted command line interface form, GRASS now has a
legacy open source Tcl/Tk GUI, and a modern wxPython GUI using Python as its
scripting language and the wxWidgets open source cross-platform GUI toolkit. In
GRASS 7, Python will replace shell scripts for scripting, removing the need to em-
ulate Unix in workflows.

Because of its flexibility, GRASS has been customised for very many different
platforms; Sorokine (2007) shows how parallel high-performance visualization may
be made available for tiled wall displays. Rocchini et al. (2011) customise GRASS
to rectify aerial photographs as a basis for constructing landscape composition in-
dices for tracking climate change. GRASS is used in compute-intensive research
in ecological and environmental studies, such as the simulation of the management
of alien plants by Roura-Pascual et al. (2009) and Krug et al.(2010). Roiz et al. (6)
analyse the factors potentially driving the invasion of tiger mosquitoes in northern
Italy under climate change scenarios. Finally, GRASS now has a convenient exten-

17http://www.postgis.org .
18http://www.terralib.org .
19http://grass.osgeo.org/ .

14

http://www.postgis.org
http://www.terralib.org
http://grass.osgeo.org/

sion mechanism, so that additional toolsets can be combinedwith those distributed
with the base system; Jasiewicz and Metz (2011) provide a toolkit for Hortonian
analysis of drainage networks. The extension mechanism does not yet support
forward-compatibility control checking, so extension authors need to remember to
keep their contributions updated.

The Quantum GIS (QGIS)20 desktop application, like open source Java-based
desktop GIS such as gvSIG,21 uDig22 and OpenJUMP23 may appear to the user to
resemble proprietary desktop GIS. The GUI structure designs, and in many cases
the names given to menu items, seem aimed to ease the path of the novice user
moving between open source and proprietary applications. This is also evident in
the style chosen by Sherman (2008) in his book on QGIS, fittinga user guide or
manual template rather than an academic one. Of course, goodacademic work is
done with these systems, such as Robertson et al. (2009) and Robertson and Farmer
(2008), who report on mountain pine beetle infestation in British Columbia, and
Cagnacci and Urbano (2008), showcasing a system for handling GPS collar data.
QGIS both benefits and suffers from a plugin system, because the plugins add func-
tionality, but may cease working as new versions are released, especially if the
plugins rely on external software.

It is worth noting that GRASS and QGIS are OSGeo projects, andboth rely
on the maintenance and development of the underlying geospatial libraries, such as
GDAL and PROJ.4. These dependencies are shared with an important non-OSGeo
desktop GIS, SAGA GIS.24 SAGA has been freshly written in a modular form in
C++, and has a command line interface from the shell as well asa GUI. The GUI dif-
fers in its use from proprietary GIS, but once differences are noted, is very flexible;
it is good at displaying large data sets, and has many analysis modules. Goetz et al.
(2011) show how SAGA can be integrated with other tools for modelling landslide
susceptibility.

The Integrated Land and Water Information System (ILWIS)25 is another desk-
top GIS application, and was released as open source after its commercial existence
was terminated in 2005. Other desktop applications includeGeoVISTA Studio, de-
scribed by Gahegan et al. (2008), a problem solving environment; like some others,
this application seems mainly intended to support researchinto GIS and GIS use,
especially for visualization and knowledge discovery.

20http://www.qgis.org .
21http://www.osgeo.org/gvsig .
22http://udig.refractions.net/ .
23http://www.openjump.org/ .
24http://www.saga-gis.org .
25http://52north.org/communities/ilwis .

15

http://www.qgis.org
http://www.osgeo.org/gvsig
http://udig.refractions.net/
http://www.openjump.org/
http://www.saga-gis.org
http://52north.org/communities/ilwis

3.3 Web mapping and services

Lime (2008) describes the evolution of MapServer26 in some detail. It is an OS-
Geo project of considerable importance, and its foundationwas the entity that was
transformed into OSGeo in 2006. It is based on simple principles, but has also been
extended with the MapScript scripting language, which may be compiled with the
GEOS library to provide considerable server-side analytical power. The MapChat27

web application (Hall and Leahy, 2008a; Hall et al., 2010) builds on Mapserver; it
is an open source tool for integrating maps with real-time and asynchronous discus-
sions between multiple users, who can annotate maps to communicate information.
It uses PostGIS as a spatial database backend, and OpenLayers28 for client-side map
display — OpenLayers is a JavaScript library that is also an OSGeo project.

Web mapping services include several other application areas. In addition to
web map services (WMS) to serve rasterised data, web featureservices (WFS) to
serve features (vector data), OGC has defined web processingservices (WPS), in
which a server accepts geospatial input data, processes it,and transmits the results
to the client or another addressee. INTAMAP29 shows how such a WPS may be
configured, here for providing an interoperable framework for real time automatic
mapping of critical environmental variables (Pebesma et al., 2011b). Another ex-
ample of an OGC web standard is for an OGC Sensor Observation Service Client,
described by Nüst et al. (2011), and written as anR packagesos4R.30

MapGuide Open Source31 is another OSGeo project, and like ILWIS, it has its
background in a proprietary application. Bray (2008) describes its development as
a modern web-based geospatial platform. It uses an OSGeo library not discussed
above, Feature Data Objects (FDO), which is an API for manipulating, defining
and analyzing geospatial information that is completely data store agnostic. This
permits web service providers to be used as a data source, forexample WMS and
WFS. GeoServer32 is a Java-based server that permits geospatial data to be viewed
and edited. It is also an OSGeo project, and uses OpenLayers and GeoTools. It
offers WMS and WFS interfaces, allowing clients to access data.

The WPS and SOS examples both useR as part of their workflow, providing a
convienient introduction to the next section, in which we will show how geospatial
software components may be used with theR language and environment.

26http://www.mapserver.org/ .
27http://mapchat.ca/ .
28http://openlayers.org/ .
29http://www.intamap.org .
30http://www.nordholmen.net/sos4r/ .
31http://mapguide.osgeo.org/ .
32http://geoserver.org/ .

16

http://www.mapserver.org/
http://mapchat.ca/
http://openlayers.org/
http://www.intamap.org
http://www.nordholmen.net/sos4r/
http://mapguide.osgeo.org/
http://geoserver.org/

4 OSGeo and R-spatial

TheR open source programming language and environment (R Development Core Team,
2011) is understandably associated with data analysis and statistical programming.
As a general interpreted programming language, it is not limited to these tasks, and
can be applied to computational tasks of many kinds. As an example, R can be
embedded within the PostgreSQL database as the procedural language PL/R33; it
can also be interfaced with Python and other languages. In the other direction, C,
Fortran, and C++ libraries may be interfaced withR functions through simple mech-
anisms, which also permit access toR objects in compiled languages, and call-back
to R from compiled functions.

The class and method definitions used inR are covered in detail by Chambers
(2008), and permit data objects to be represented and handled. These definitions
advance in waves, with many fitted model objects using old-style classes, and many
data objects using new-style classes. Old-style and new-style generic methods have
also recently been brought closer together. A further innovation of some note is
the Rcpp package, providing a more modern interface betweenR code and com-
piled C++ code, described by Eddelbuettel and Francois (2011), and in a Google
TechTalk.34

Fox (2009) reports on the development of theR project from a sociological
viewpoint, based on semi-structured interviews carried out in 2006 and 2007. He
points to salient features of the social organisation of theproject that have enabled it
to provide both a stable platform with strong continuity in functionality, and a rich
community encouraged to contribute software packages extending the base func-
tionality.

Prospects and challenges inR package development are discussed by Theußl et al.
(2011); they address some of the issues raised above with regard to the conse-
quences of version and platform drift for community contributed add-ons. Con-
tributed packages distributed through the comprehensiveR archive network are now
very numerous, and have complex dependency structures. Cross-platform checks
run on CRAN packages using multiple versions ofR from released to develop-
ment need careful planning to capture inter-package dependencies correctly, and
to minimise the need for administrator intervention when things break, which they
inevitably do when changes are made.

17

2004 2006 2008 2010

0
10

0
20

0
30

0
40

0

N
um

be
r

of
 e

m
ai

ls

Figure 2: Monthly numbers of emails on the R-sig-geo mailinglist, 2003–2011

4.1 R-spatial — sp

In Bivand et al. (2008), we discuss the background for providing spatial data anal-
ysis functionality in theR environment, and how the need emerged for classes for
spatial data. From 2003, we attempted to make available mechanisms permitting a
user and developer community to grow. The R-sig-geo mailinglist now has over
2200 subscribers, and Figure 2 shows the steady growth in thenumbers of messages
exchanged since its inception. It is now the specialisedR list with most traffic (ex-
cluding the main R-help and R-devel lists). Mailing lists remain a vital part of open
source communities, connecting users with each other and developers, encouraging
users to become developers, and providing a searchable archives of messages (over
13,000 messages in the case of R-sig-geo).

Themaptoolspackage (Lewin-Koh et al., 2011) predates thesppackage, which
was released in April 2005, and provided definitions of classes for spatial data
(Pebesma et al., 2011a).maptoolshas been adapted to usesp classes; it also pro-
vides coercion methods betweensp classes and other spatial data representations
in other packages. The intuition underlying the design ofsp classes has been that

33http://www.joeconway.com/plr/doc/index.html .
34http://www.youtube.com/watch?v=UZkaZhsOfT4 .

18

http://www.joeconway.com/plr/doc/index.html
http://www.youtube.com/watch?v=UZkaZhsOfT4

Table 1: The family ofspclasses.

data type class attributes extends
points SpatialPoints none Spatial
points SpatialPointsDataFrame data.frame SpatialPoints
pixels SpatialPixels none SpatialPoints
pixels SpatialPixelsDataFrame data.frame SpatialPixels

SpatialPointsDataFrame
full grid SpatialGrid none SpatialPixels
full grid SpatialGridDataFrame data.frame SpatialGrid
line Line none
lines Lines none Line list
lines SpatialLines none Spatial , Lines list
lines SpatialLinesDataFrame data.frame SpatialLines
polygon Polygon none Line
polygons Polygons none Polygon list
polygons SpatialPolygons none Spatial , Polygons list
polygons SpatialPolygonsDataFrame data.frame SpatialPolygons

applied statisticians tend to “see” data as represented in rectangular tables, inR
data.frame objects. Spatial analysts “see” data as rasters or “shapefiles”. If these
researchers are to work together productively, their perceptions of their data should
not be changed but rather accommodated. Thespclasses behave likedata.frame

objects (when attribute data is present), but can also be handled and visualized as
raster or vector data in a “spatial” way. Table 1 shows the range of data objects
supported, including points, lines and polygons for vectordata, and regular grids
for raster data; theSpatialPixels representation is a regular grid representation
recording cell centre coordinates, but dropping observations with no observed at-
tribute data.

Table 2 lists some of the methods provided in thesp package; the most impor-
tant are undoubtedly the access and assignment functions$, $<- , [[, [[<- , which
permit theSpatial * DataFrame objects to behave asdata.frame objects. This
means that visualising relationships between raster or vector attributes, or fitting a
regression model to such attributes, involves no extra steps. One important compo-
nent ofsp class objects is the coordinate reference system slot, represented in the
form of a PROJ.4 string; it may be set as missing, but is used inboth visualization
and analysis when specified.

In the figure in Bivand et al. (2008, p. 5) and reproduced on thebook website,35

23 packages depended onsp, of which 8 were written and/or maintained by the
book authors. Figure 3 shows that there were 97 CRAN dependencies onsp in

35http://www.asdar-book.org/code.php?chapter=0&figure =0.

19

http://www.asdar-book.org/code.php?chapter=0&figure=0

Table 2: Methods forspclasses.

method what it does
[select spatial items (points, lines, polygons, or

rows/cols from a grid) and/or attributes vari-
ables

$, $<- , [[, [[<- retrieve, set or add attribute table columns
spsample sample points from a set of polygons, on a set

of lines or from a gridded area
bbox get the bounding box
proj4string get or set the projection (coordinate reference

system)
coordinates set or retrieve coordinates
coerce convert from one class to another
over combine two different spatial objects

September 2011, and a further 247 suggestedsp but did not depend on, or import
from it. This may be taken as an indication that the provisionof classes for spatial
data has achieved its goals, to make it easier for researchers to get their own work
done without having to reinvent data representations.

In the short time since its publication on CRAN in March 2010 following 16
months in R-Forge,36 the raster package (Hijmans and van Etten, 2011) has been
adopted by many users. van Etten and Hijmans (2010) have already published us-
ing the package, and undoubtedly many papers will follow. For many purposes,
the abstractions introduced in the package simplify theSpatialGridDataFrame

representation fromsp, and because only tiles of the raster, raster stack, or raster
brick are held in memory, much larger data sets may be handled. The package also
provides ways of undertaking map algebra on rasters, including focal operations.
It uses thergdal package, among other data feeds, for reading from and writing to
files; we turn to this package next.

4.2 Geospatial Data Abstraction Library (GDAL/OGR) and PROJ.4
— rgdal

The first raster versions of thergdal package by Tim Keitt were made available in
early 2003, and entered CRAN in late 2003 (Keitt et al., 2011). It provided bind-
ings to the GDAL geospatial library for reading, writing, and handling raster data.
Since then, it has been merged with work on coordinate reference system projec-
tion and OGR vector reading by Barry Rowlingson, extended towrite OGR vector
files, and supplied with wrapper functions usingsp classes to contain the data be-

36https://r-forge.r-project.org/ .

20

https://r-forge.r-project.org/

Figure 3: Dependencies onsp from CRAN packages, September 2011.

ing imported and exported. Coordinate reference system projection was handled by
building against the PROJ.4 library, not least because GDALitself requires the same
library. Becausergdal loads GDAL into a long-running application,R, the GDAL
error handler is now set to theR error handler immediately before each call to a
GDAL function, and restored immediately on function exit totry to ensure thread
safety, because of a report of error handler confusion whenR andrgdal were loaded
into QGIS as a Python plugin. When component stacking reaches these levels of
complexity, caution is required.

SinceR 2.2, a Windows 32-bit binary ofrgdal has been available from CRAN,
thanks to help from Brian Ripley and Uwe Ligges, and sinceR 2.12 a Windows 64-
bit binary version is also available. These are statically linked to GDAL, PROJ.4 and
Expat,37 an open source XML library used for reading KML and GPX files. Brian
Ripley has also made an OSX Intel 32+64-bit binary package available on CRAN
Extras sinceR 2.12; OSX binary packages are also available from Kyngchaos38

thanks to William Kyngesburye. The drivers available in thebinary packages are
limited to those for which external dependencies were satisfied when the installed
images were made, but meet most users’ needs for file import and export.

37http://expat.sourceforge.net/ .
38http://www.kyngchaos.com/software/frameworks .

21

http://expat.sourceforge.net/
http://www.kyngchaos.com/software/frameworks

The use of the package is covered in Bivand et al. (2008, pp. 89–97), and ex-
emplified throughout the code examples from the book. Using the 8 county New
York State leukemia data set from Waller and Gotway (2004), we can download and
unzip it to a temporary directory, before reading withreadOGR:
> td <- tempdir()
> download.file("http://www.asdar-book.org/datasets/NY_data.zip", destfile=paste(td, "NY_data.zip", sep="/"))
> unzip(paste(td, "NY_data.zip", sep="/"), exdir=td)

> library(rgdal)
> NY <- readOGR(dsn=td, layer="NY8_utm18")

OGR data source with driver: ESRI Shapefile
Source: "/tmp/RtmpQiUQR0", layer: "NY8_utm18"
with 281 features and 17 fields
Feature type: wkbPolygon with 2 dimensions

> class(NY)

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"

> proj4string(NY)

[1] " +proj=utm +zone=18 +ellps=WGS84 +units=m +no_defs"

> NY_ll <- spTransform(NY, CRS("+init=epsg:4326"))
> proj4string(NY_ll)

[1] " +init=epsg:4326 +proj=longlat +ellps=WGS84 +datum= WGS84 +no_defs +towgs84=0,0,0"

> writeOGR(NY_ll, dsn=paste(td, "NY.kml", sep="/"), layer="NY", driver="KML")

To write the tract boundaries as a KML file, we need to transform it to geograph-
ical coordinates using the appropriatespTransform method forSpatialPolygons

objects, and employing lookup in the EPSG table to define the target coordinate ref-
erence system. We usewriteOGR to write to a file, specifying the required driver.
Naturally, without the linked open source GDAL, PROJ.4 and Expat libraries, the
programming involved would be much more demanding, probably prohibitively so,
should one wish to access many different data formats. For example, GDAL in-
cludes an OGR WFS driver:
> ogrInfo("WFS:http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap", "popplace")

Source: "WFS:http://www2.dmsolutions.ca/cgi-bin/mswf s_gmap", layer: "popplace"
Driver: WFS number of rows 497
Feature type: wkbPoint with 2 dimensions
+proj=lcc +lat_1=49 +lat_2=77 +lat_0=49 +lon_0=-95 +x_0= 0 +y_0=0 +datum=NAD83 +units=m +no_defs
Number of fields: 1

name type length typeName
1 gml_id 4 0 String

The raster package (Hijmans and van Etten, 2011) usesrgdal extensively to
manage access to tiles of raster data. It is also used by the new landsat package
documented by Goslee (2011), which is intended to support research into atmo-
spheric and topographic correction methods for multispectral satellite data. An-
other interesting package usingrgdal is aqp providing algorithms related to mod-
elling of soil resources, soil classification, soil profile aggregation, and visualization
(Beaudette and Roudier, 2011).

22

4.3 Geometry Engine, Open Source — rgeos

Development of the GEOS library interface toR began in late 2009, and made
much progress in the 2010 Google Summer of Code, with Colin Rundel making
a large contribution. Thergeos package was released on CRAN in March 2011
(Bivand and Rundel, 2011), and is beginning to be used in other packages. A Win-
dows binary package for both architectures is available on CRAN, and for OSX
on CRAN Extras, thanks to Brian Ripley and Uwe Ligges. The interface is pro-
grammed using the GEOS C API, and uses the thread-safe handleoffered by GEOS.
One issue uncovered by Colin Rundel in his work on the interface was the impor-
tance of the coordinate precision model, which can now be manipulated fromR
usingsetScale .

So far, many of the predicates and operators are applied to all member geome-
tries, but work is progressing, spurred by clear needs demonstrated by Altman and McDonald
(2011) in theBARD — Better Automated ReDistricting — package (Altman, 2011)
for finding reduced sets of candidate pairs of contiguous geometries. Using the
GEOS Sort-Tile-Recursive (STR) tree, we build a tree of geometry envelopes (bound-
ing boxes), and then query with the same envelopes withgUnarySTRtreeQuery ,
passing the output candidate neighbours to thepoly2nb function in thespdep
package:

> la_blks <- readOGR(".", "tgr06037blk00")
> library(spdep)
> library(rgeos)
> system.time(nb <- poly2nb(la_blks, foundInBox=gUnarySTRtreeQuery(la_blks)))

user system elapsed
14.723 0.111 15.167

> nb

Neighbour list object:
Number of regions: 89614
Number of nonzero links: 623984
Percentage nonzero weights: 0.007770013
Average number of links: 6.963019

Finding the neighbours is very much faster than using the internal brute-force
approach for finding overlapping bounding boxes inpoly2nb , and working with
all the census blocks in Los Angeles becomes feasible. The new pycno package by
Brunsdon (2011) also usesrgeos internally for pycnophylactic interpolation; here
we smooth the leukemia rate from the 8 county NY data set. In addition, for display,
we usegBuffer from rgeos to add a 10km buffer around supposed point source
pollution sites shown in Figure 4:

> library(pycno)

> NY$eZ <- (1000*(NY$TRACTCAS+1))/NY$POP8

> NYp <- pycno(NY, pops=NY$eZ, celldim=500)

23

Leukemia rate Pycnophylactic interpolation

Figure 4: Choropleth and pycnophylactic interpolation maps of the leukemia rate
1978–1982, NY state 8 county data set (note that figure class intervals are not
aligned with each other)

> TCE <- readOGR(dsn=td, layer="TCE")
> TCE10k <- gBuffer(TCE, width=10000)

Work on rgeos is continuing actively, and improvements in stability and speed
can be expected as more users report their experiences. A specific issue raised in
interfacing GEOS (and OGR) is that use is made of the OGC SFS geometry spec-
ification, but theSpatialPolygons class insp is more like a shapefile, without
clear assignation of interior rings to exterior rings. Had the SpatialPolygons

class insp been designed a little later, it might well have followed theOGC SFS
geometry specification, but this in turn would have led to additional difficulties for
users without conformant data.

4.4 Geographic Resources Analysis Support System — spgrass6

The original interface package between GRASS 5 andR, GRASS, written and re-
leased on CRAN in 2000, was tight-coupled, including a localcopy of the core
GRASS library, so that GRASS database files could be read intoand written from
R (Bivand, 2000; Bivand and Neteler, 2000). Figure 5 shows howtheR session was

24

started from the command prompt in a running GRASS session and location, giv-
ing ready access to GRASS and other commands throughsystem , and to GRASS
itself through calls to compiled C functions. This had the advantage of speed, but
the weakness of containing a modified fork of the core GRASS library, modified to
use theR error handler and to remove all calls toexit in GRASS C code. Merg-
ing in revisions from the GRASS trunk was demanding, but the interface served for
five years, supporting among others Grohmann (2004) in work on morphometric
analysis, and Garzón et al. (2006) on predicting habitat suitability.

Underlying operating system

System shell and environment (csh, ksh, bash)

GRASS environment and location

R interactive session
system("g.region −p")

system("psql midwest")
.Call("gmeta")

dy
na

m
ic

al
ly

 lo
ad

ed
m

od
ul

es

Figure 5: Design of software layering in the GRASS 5 interface toR, using com-
piled C code.

Figure 6, showing the relative positions of software components, has two read-
ings: the continuous line bounded box represents a setting similar to that of the
GRASSpackage, withR facing the users. The second reading is the larger dashed
box, whereR is a computational software component in a larger system, with a GIS
or other (web) application facing the users, probably through a GUI. The applica-
tion then usesR, thought of as running within a GIS session and location, to handle
data from storage for visualization and/or storage.

GRASS 6 was released in March 2005, and has now reached 6.4.1,with 6.4.2
imminent (GRASS Development Team, 2011). Bivand et al. (2008, pp. 99–106)
and Neteler and Mitasova (2008, pp. 353–364) describe the use of the re-implemented
interface packagespgrass6, which works with GRASS 6 and the development ver-
sion GRASS 7. The interface was released from a Sourceforge project at the same
time as GRASS 6, and was accepted on CRAN in August 2006, to be ready for a
workshop at the first FOSS4G OSGeo conference in Lausanne, Switzerland. sp-
grass6is loose-coupled, using GDAL on both sides of the interface to exchange

25

external
databases

external

external
files

R/GIS
interfaces GUI

GIS/application
GIS functionality

Figure 6: Positioning of software components involvingR and GIS.

vector and raster data by writing to and reading from a temporary directory. If a
GRASS-GDAL plugin is present, data can be read directly fromGRASS intoR
using GDAL, but using temporary files is robust and not very wasteful of time or
disk space.

From April 2009,spgrass6was revised to support a second mode of opera-
tion (Bivand, 2011). The earlier way of usingR within a GRASS session was
supplemented by the ability to initiate a GRASS session fromR, setting up the
environment variables used by GRASS, and if necessary creating a throw-away lo-
cation for use until the termination of theR session. This was complemented by
interfacing most GRASS commands directly in a cross-platform fashion, using the
-interface-description flag that GRASS commands use to return their flags,
parameters, and other attributes in an XML file. Using theXML package inR to
parse the interface decsriptions made it possible to write the functions:parseGRASS

to parse the interface once for each GRASS command used, caching the results;
doGRASSto collate a string comprising the GRASS command and user-supplied
flags and parameters, all checked against the interface description; andexecGRASS

to run the command throughsystem in a portable way. The arguments to the two
latter functions have recently been simplified thanks to suggestions from Rainer
Krug.

In the first example, we initiate a GRASS session fromR, using theSpatialGridDataFrame

object frompycno as a location template. Next we export aSpatialPolygonsDataFrame

26

object to GRASS withwriteVECT6 and apply a helper functionvect2neigh writ-
ten by Markus Neteler, exploiting the topological vector representation in GRASS
to return rook neighbours (with non-zero length shared boundaries) with shared
boundary length in metres and total boundary length per feature, with features iden-
tified by their GRASS category numbers in this case:

> library(spgrass6)
> set.ignore.stderrOption(TRUE)
> initGRASS("/home/rsb/topics/grass/g642/grass-6.4.2svn", home=tempdir(), SG=NYp)
> writeVECT6(NY, vname="NY", v.in.ogr_flags="o")
> bl <- vect2neigh("NY", ID="cat", units="me")

> str(bl)

Classes ‘GRASSneigh’, ‘spatial.neighbour’ and 'data.fra me': 1536 obs. of 3 variables:
$ left : int 1 1 1 1 1 1 1 2 2 2 ...
$ right : int 2 13 14 15 48 49 50 1 3 13 ...
$ length: num 732 902 458 1804 145 ...
- attr(* , "external")= num 0 0 0 0 0 0 0 0 0 0 ...
- attr(* , "total")= Named num 1329 5178 5620 13156 5139 ...

..- attr(* , "names")= chr "-1" "1" "2" "3" ...
- attr(* , "region.id")= chr "1" "2" "3" "4" ...
- attr(* , "n")= int 281

The second example replicates thergeosgBuffer above, by exporting aSpatialPointsDataFrame

object to GRASS withwriteVECT6 , and usingexecGRASS to run the GRASS
commandv.buffer on the input vector object, returning the results toR with
readVECT6 . The use of the “6” tag inspgrass6function names is now misleading,
as the functions work for GRASS versions 6 and 7, but was originally introduced to
signal the difference from GRASS version 5. Generic wrappers will be put in place
before GRASS 7 is released, and the package name will be modified to suit.

> writeVECT6(TCE, vname="TCE", v.in.ogr_flags="o")
> execGRASS("v.buffer", input="TCE", output="TCE10k", distance=10000)
> TCE10kG <- readVECT6("TCE10k", with_c=TRUE)

The output buffers from GRASSv.buffer andrgeosgBuffer are not exactly
identical, because they do not use the same numbers of boundary coordinates in the
same positions to represent the buffers. Overplotting does, however, show that the
buffers are the same given those representational differences.

The interface between GRASS 6 andR has been used in research in a number of
fields, for example by Carrera-Hernández and Gaskin (2008) in implementing the
Basin of Mexico hydrogeological database, and by Grohmann and Steiner (2008) in
SRTM resampling using short distance kriging. The work by Haywood and Stone
(2011) is interesting in that it uses the interface to apply the Weka machine learn-
ing software suite, itself interfaced toR through theRWeka package, to GIS data
in GRASS;R then becomes a convenient bridge between applications, with the
GRASS–R interface opening up other possibilities beyondR. Finally, Jasiewicz
(2011) reports the transfer of fuzzy inference system technology to a GRASS add-
on after prototyping using anR implementation in thesetspackage (Meyer and Hornik,
2009), which was not intended for large data sets.

27

4.5 SAGA — RSAGA, Geoprocessing — RPyGeo, MGET —
Marine Geospatial Ecology Tools and others

The open source SAGA GIS has been interfaced withR using the SAGA com-
mand line interface in theRSAGA package first released to CRAN in early 2008
(Brenning, 2011). The package provides extensive facilities for scripting SAGA
throughR, asspgrass6also now does, since usingR to script repetitive tasks in
a GIS turned out to be of value to researchers. The author ofRSAGA, Alexander
Brenning, has also contributed theRPyGeopackage, based onRSAGA, to auto-
generate and run ArcGIS Python Geoprocessor commands fromR. Further exam-
ples of the use ofR with ArcGIS are given by Krivoruchko (2011) to supplement
methods implemented in ArcGIS, and by Roberts et al. (2010),who have devel-
oped Marine Geospatial Ecology Tools (MGET, also known as the GeoEco Python
package).39

TheR interface with SAGA has been used by Brenning (2009) for integrating
terrain analysis and multispectral remote sensing in automatic rock glacier detec-
tion, using modern regression techniques — the availability of many varied tech-
niques inR permitted them to be evaluated rapidly. Goetz et al. (2011) follow this
up in integrating physical and empirical landslide models.In a paper on geosta-
tistical modelling of topography, Hengl et al. (2008) uses the interface betweenR
and SAGA to benefit from the strengths of both software components. Hengl et al.
(2010) addresses the associated problem of stream network uncertainty, when the
stream networks are derived from interpolated elevation data, again using the inter-
face between SAGA andR; R is also used extensively for scripting SAGA. Tomislav
Hengl is also very active in organising courses for field scientists using open source
geospatial software, especially the GEOSTAT series,40 run in the open source spirit,
and now with a useful collection of video recordings.

Finally, it is worth noting that TerraLib is linked toR usingsp classes in the
aRT package, which usesR as the computational front-end and TerraLib as a data
store and middleware component.41

5 Future prospects

We have seen above that TerraLib, presented by Câmara et al. (2008) and Câmara et al.
(2010), has offered broad functionality, and excellent support for research, exem-
plified by de Espindola et al. (2011). The current version, 4.1.0, is well supported,

39http://code.env.duke.edu/projects/mget .
40http://geostat-course.org/ .
41http://www.leg.ufpr.br/aRT .

28

http://code.env.duke.edu/projects/mget
http://geostat-course.org/
http://www.leg.ufpr.br/aRT

but the TerraLib developers are moving to embrace much more of the OSGeo com-
munity than in the past.

Figure 7: Envisioned developments in TerraLib 5: (1) Support to different kinds
of data sources; (2) Extensive use of existing libraries; (3) More modular, simpler
and more easily extensible architecture; (4) OGC compliant(SFS-SQL, OGC Web
Service, ...); (5) Represent and query spatio-temporal data

Figure 7 is taken from a presentation42 by Karine Reis Ferreira and Pedro Ribeiro
Andrade, and reflects some of the prospects being consideredby the development
team for release by 2013. These design choices engage many more existing projects,
leveraging the user and developer communities of these projects, and increasing op-
portunities for shared technology exploration and development. The push towards
representing, querying, and analysing spatio-temporal data is of particular impor-
tance, given the publication of Cressie and Wikle (2011). Itwill be of great interest
to see how the broader TerraLib community develops in comingyears, also in its
interactions with other open source geospatial communities, and how theaRT in-
terface withR progresses.

Experience fromR spatial has shown that the nurturing of communities of in-
terest and intention is of fundamental importance. One unresolved issue concerns
channels for information exchange, in which the aging mailing list technology is
straining to keep afloat as newer users prefer hosted fora to search for answers to
what they understand to be their questions. I believe that mailing lists have a hidden
bonus, that is that readers, if they are willing to do so, can read threads that are
not relevant to their current concerns, but which may offer insight that will increase

42http://giv-wikis.uni-muenster.de/agp/pub/Main/Spati oTemporalDataInRWorkshop2011/S

29

http://giv-wikis.uni-muenster.de/agp/pub/Main/SpatioTemporalDataInRWorkshop2011/ST-Data-in-R-2011_Reis-Ferreira_RAndGIS_2011.pdf

productivity later on.43

Naturally, other forms of communication, such as IRC chats in OSGeo, or blogs
by Barry Rowlingson44 and Daniel Nüst45 are interesting, and less serious — more
encouraging — in tone; being able to include graphics in wikipages, web fora and
blogs is often very helpful. Being able to search these resources and mailing list
archives remains important, and may not be easy to achieve. So one challenge is
to attempt to sustain community memory, to try to avoid too many repeat solutions
being offered to questions that have been resolved.

Whether memory of past achievements and insights is a futureprospect or not
is, of course, a rather paradoxical issue. I would argue thatvery much of what
geocomputation has been doing over the past decades has beento compute on, and
develop computational techniques for handling, problems that were proposed in
earlier years, when analysis of even small data sets was exhausting (Bivand, 2009).
In that sense, memory is not unimportant, because we may makeprogress when we
confront the insights and propositions of the past with regard to research problems,
algorithms, or tools with fresh opportunities offered by advances in data gathering
and computational technologies, both in hardware and in software. In this context,
the growing importance of open source software is also a return to one of the ways
in which research was done when spatial analysis and spatialstatistics were first
established.

References

Altman, M. (2011). Bard: Better automated redistricting. Rpackage version 1.24,
http://CRAN.R-project.org/package=BARD .

Altman, M. and McDonald, M. P. (2011). BARD: Better automated redistricting. Journal
of Statistical Software, 42(4):1–28.

Batcheller, J. and Reitsma, F. (2010). Implementing feature level semantics for spatial
data discovery: Supporting the reuse of legacy data using open source components.
Computers, Environment and Urban Systems, 34(4):333–344.

Beaudette, D. and Roudier, P. (2011). aqp: Algorithms for quantitative pedology. R package
version 0.99-5,http://CRAN.R-project.org/package=aqp .

Bentley, J., Knuth, D. E., and McIlroy, M. D. (1986). Programming pearls: a literate pro-
gram.Communications of the ACM, 29(6):471–483.

43I read the development lists ofR, GRASS, GDAL, GEOS and PROJ.4, among others, and many
of the insights presented in this chapter have matured from exchanges on these lists; administering
theR-sig-geo list has been a most valuable source of information.

44http://geospaced.blogspot.com/ .
45http://www.nordholmen.net/sos4r/ .

30

http://CRAN.R-project.org/package=BARD
http://CRAN.R-project.org/package=aqp
http://geospaced.blogspot.com/
http://www.nordholmen.net/sos4r/

Bivand, R. (2000). Using the r statistical data analysis language on grass 5.0 gis database
files. Computers & Geosciences, 26(9–10):1043–1052.

Bivand, R. (2009). Applying Measures of Spatial Autocorrelation: Computation and Sim-
ulation. Geographical Analysis, 41(4):375–384.

Bivand, R. (2011). spgrass6: Interface between grass 6 and r. R package version 0.7-4,
http://CRAN.R-project.org/package=spgrass6 .

Bivand, R. and Lucas, A. E. (2000). Integrating models and geographical information sys-
tems. In Openshaw, S. and Abrahart, R., editors,GeoComputation, pages 331–363.
Taylor & Francis, London.

Bivand, R. and Neteler, M. (2000). Open source geocomputation: Using the R data anal-
ysis language integrated with GRASS GIS and PostgreSQL database systems. In
GeoComputation 2000. Proceedings of the 5th International Conference on GeoCom-
putation.http://spatial.nhh.no/gc00/geocomp2000.pdf .

Bivand, R., Pebesma, E. J., and Gómez-Rubio, V. (2008).Applied Spatial Data Analysis
with R. Springer, New York.

Bivand, R. and Rundel, C. (2011). rgeos: Interface to geometry engine - open source (geos).
R package version 0.1-9,http://CRAN.R-project.org/package=rgeos .

Bray, R. (2008). MapGuide open source. In Hall, G. B. and Leahy, M., editors,Open Source
Approaches in Spatial Data Handling, pages 131–152. Springer-Verlag, Berlin.

Brenning, A. (2009). Benchmarking classifiers to optimallyintegrate terrain analysis and
multispectral remote sensing in automatic rock glacier detection. Remote Sensing of
Environment, 113(1):239–247.

Brenning, A. (2011). Rsaga: Saga geoprocessing and terrainanalysis in r. R package
version 0.92-1,http://CRAN.R-project.org/package=RSAGA .

Brunsdon, C. (2011). pycno: Pycnophylactic interpolation. R package version 1.1,
http://CRAN.R-project.org/package=pycno .

Cagnacci, F. and Urbano, F. (2008). Managing wildlife: A spatial information system for
gps collars data.Environmental Modelling & Software, 23(7):957–959.

Carrera-Hernández, J. and Gaskin, S. (2008). The basin of mexico hydrogeological database
(BMHDB): Implementation, queries and interaction with open source software.Envi-
ronmental Modelling & Software, 23(10–11):1271–1279.

Chambers, J. M. (2008).Software for Data Analysis: Programming with R. Springer, New
York.

31

http://CRAN.R-project.org/package=spgrass6
http://spatial.nhh.no/gc00/geocomp2000.pdf
http://CRAN.R-project.org/package=rgeos
http://CRAN.R-project.org/package=RSAGA
http://CRAN.R-project.org/package=pycno

Chen, D., Shams, S., Carmona-Moreno, C., and Leone, A. (2010). Assessment of open
source gis software for water resources management in developing countries.Journal
of Hydro-environment Research, 4(3):253–264.

Chen, R. and Xie, J. (2008). Open source databases and their spatial extensions. In Hall,
G. B. and Leahy, M., editors,Open Source Approaches in Spatial Data Handling,
pages 105–129. Springer-Verlag, Berlin.

Cressie, N. and Wikle, C. K. (2011).Statistics for spatio-temporal data. John Wiley,
Hoboken, NJ.

Câmara, G., Vinhas, L., and de Souza, R. C. M. (2010). Free andopen source GIS: Will
there ever be a geo-linux? In Bocher, E., editor,Proceedings of Open Source Geospa-
tial Research Conference (OGRS 2009), Lecture Notes in Geoinformation and Car-
tography. Springer, Berlin Heidelberg.

Câmara, G., Vinhas, L., Ferreira, K. R., de Queiroz, G. R., deSouza, R. C. M., Monteiro,
A. M. V., de Carvalho, M. T., Casanova, M. A., and de Freitas, U. M. (2008). Terralib:
An open source GIS library for large-scale environmental and socio-economic appli-
cations. In Hall, G. B. and Leahy, M., editors,Open Source Approaches in Spatial
Data Handling, pages 247–270. Springer-Verlag, Berlin.

de Espindola, G. M., de Aguiar, A. P. D., Pebesma, E., Câmara,G., and Fonseca, L. (2011).
Agricultural land use dynamics in the brazilian amazon based on remote sensing and
census data.Applied Geography, 32(2):240–252.

Dunfey, R., Gittings, B., and Batcheller, J. (2006). Towards an open architecture for vector
gis. Computers & Geosciences, 32(10):1720–1732.

Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless r and c++ integration.Journal
of Statistical Software, 40(8):1–18.

Erle, S., Gibson, R., and Walsh, J. (2005).Mapping Hacks: Tips & Tools for Electronic
Cartography. O’Reilly, Sebastopol, CA.

Fisher, R. and Myers, B. (2011). Free and simple gis as appropriate for health mapping
in a low resource setting: a case study in eastern indonesia.International Journal of
Health Geographics, 10(15):1–11.

Fox, J. (2009). Aspects of the Social Organization and Trajectory of the R Project.The R
Journal, 1(2):5–13.

Gahegan, M., Hardisty, F., Demšar, U., and Takatsuka, M. (2008). GeoVISTA Studio:
Reusability by design. In Hall, G. B. and Leahy, M., editors,Open Source Approaches
in Spatial Data Handling, pages 201–220. Springer-Verlag, Berlin.

32

Garzón, M. B., Blazek, R., Neteler, M., de Diosa, R. S., Olleroa, H. S., and Furlanello, C.
(2006). Predicting habitat suitability with machine learning models: The potential area
of Pinus sylvestris l. in the iberian peninsula.Ecological Modelling, 197(3–4):383–
393.

Gibson, R. and Erle, S. (2006).Google Maps Hacks. O’Reilly, Sebastopol, CA.

Goetz, J., Guthrie, R., and Brenning, A. (2011). Integrating physical and empirical landslide
susceptibility models using generalized additive models.Geomorphology, 129(3–
4):376–386.

Goslee, S. (2011). Analyzing remote sensing data in r: The landsat package.Journal of
Statistical Software, 43(4):1–25.

GRASS Development Team (2011). GRASS 6.4 Users Manual.
http://grass.osgeo.org/grass64/manuals/html64_user/ .

Grohmann, C. (2004). Morphometric analysis in geographic information systems: appli-
cations of free software GRASS and R.Computers & Geosciences, 30(9–10):1055–
1067.

Grohmann, C. and Steiner, S. (2008). Srtm resample with short distance-low nugget kriging.
International Journal of Geographical Information Science, 22(8):895–906.

Hall, G. B., Chipeniuk, R., Feick, R. D., Leahy, M. G., and Deparday, V. (2010).
Community-based production of geographic information using open source software
and web 2.0.International Journal of Geographical Information Science, 24(5):761–
781.

Hall, G. B. and Leahy, M. (2008a). Design and implementationof a map-centred syn-
chronous collaboration tool using open source components:The MapChat project. In
Hall, G. B. and Leahy, M., editors,Open Source Approaches in Spatial Data Handling,
pages 221–245. Springer-Verlag, Berlin.

Hall, G. B. and Leahy, M., editors (2008b).Open Source Approaches in Spatial Data
Handling. Springer-Verlag, Berlin.

Haywood, A. and Stone, C. (2011). Mapping eucalypt forest susceptible to dieback as-
sociated with bell miners(Manorina melanophys) using laser scanning, spot 5 and
ancillary topographical data.Ecological Modelling, 222(5):1174–1184.

Hengl, T., Bajat, B., Blagojević, D., and Reuter, H. (2008). Geostatistical modeling of
topography using auxiliary maps.Computers & Geosciences, 34(12):1886–1899.

Hengl, T., Heuvelink, G., and van Loon, E. (2010). On the uncertainty of stream networks
derived from elevation data: the error propagation approach. Hydrology and Earth
System Sciences, 14(7):1153–1165.

33

http://grass.osgeo.org/grass64/manuals/html64_user/

Hijmans, R. J. and van Etten, J. (2011). raster: Geographic anal-
ysis and modeling with raster data. R package version 1.9-11,
http://CRAN.R-project.org/package=raster .

Jasiewicz, J. (2011). A new GRASS GIS fuzzy inference systemfor massive data analysis.
Computers & Geosciences, 37(9):1525–1531.

Jasiewicz, J. and Metz, M. (2011). A new GRASS GIS toolkit forHortonian analysis of
drainage networks.Computers & Geosciences, 37(8):1162–1173.

Keitt, T. H., Bivand, R., Pebesma, E., and Rowlingson, B. (2011). rgdal: Bind-
ings for the geospatial data abstraction library. R packageversion 0.7-2,
http://CRAN.R-project.org/package=rgdal .

Kernighan, B. W. and Pike, R. (1984).The UNIX programming environment. Prentice-Hall,
Englewood Cliffs, N. J.

Kernighan, B. W. and Pike, R. (1999).The practice of programming. Addison-Wesley,
Reading, Mass.

Kernighan, B. W. and Plauger, P. J. (1976).Software tools. Addison-Wesley, Reading,
Mass.

Kralidis, A. T. (2008). Geospatial open source and open standards convergences. In Hall,
G. B. and Leahy, M., editors,Open Source Approaches in Spatial Data Handling,
pages 1–20. Springer-Verlag, Berlin.

Krivoruchko, K. (2011). Spatial Statistical Data Analysis for GIS Users. ESRI Press,
Redlands, CA. DVD.

Krug, R. M., Roura-Pascual, N., and Richardson, D. M. (2010). Clearing of invasive alien
plants under different budget scenarios: using a simulation model to test efficiency.
Biological Invasions, 12(12):4099–4112.

Leisch, F. and Rossini, A. J. (2003). Reproducible statistical research.Chance, 16(2):46–50.

Lewin-Koh, N. J., Bivand, R., and others (2011). maptools: Tools for
reading and handling spatial objects. R package version 0.8-10,
http://CRAN.R-project.org/package=maptools .

Lime, S. (2008). MapServer. In Hall, G. B. and Leahy, M., editors,Open Source Approaches
in Spatial Data Handling, pages 65–85. Springer-Verlag, Berlin.

Luis, J. F. (2007). Mirone: A multi-purpose tool for exploring grid data. Computers &
Geosciences, 33(1):31–41.

34

http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=rgdal
http://CRAN.R-project.org/package=maptools

McIhagga, D. (2008). Communities of practice and the business of open sourceweb map-
ping. In Hall, G. B. and Leahy, M., editors,Open Source Approaches in Spatial Data
Handling, pages 49–64. Springer-Verlag, Berlin.

Meyer, D. and Hornik, K. (2009). Generalized and customizable sets in r. Journal of
Statistical Software, 31(2):1–27.

Mitchell, T. (2005).Web Mapping Illustrated. O’Reilly, Sebastopol, CA.

Neteler, M., Beaudette, D., Cavallini, P., Lami, L., and Cepicky, J. (2008). GRASS GIS. In
Hall, G. B. and Leahy, M., editors,Open Source Approaches in Spatial Data Handling,
pages 171–199. Springer-Verlag, Berlin.

Neteler, M. and Mitasova, H. (2008).Open Source GIS: A GRASS GIS Approach, Third
Edition. Springer, New York.

Nüst, D., Stasch, C., and Pebesma, E. (2011). Connecting r tothe sensor web. In Geertman,
S., Reinhardt, W., and Toppen, F., editors,Advancing Geoinformation Science for
a Changing World, volume 1 ofLecture Notes in Geoinformation and Cartography,
pages 227–246. Springer, Berlin Heidelberg.

Pebesma, E., Bivand, R., and others (2011a). sp: classes andmethods for spatial data. R
package version 0.9-88,http://CRAN.R-project.org/package=sp .

Pebesma, E., Cornford, D., Dubois, G., Heuvelink, G. B. M., Hristopulos, D., Pilz, J.,
Stoehlker, U., Morin, G., and Skoien, J. O. (2011b). INTAMAP: The design and
implementation of an interoperable automated interpolation web service.Computers
& Geosciences, 37(3):343–352.

R Development Core Team (2011). R: A language and environment for statistical comput-
ing. ISBN 3-900051-07-0,http://www.R-project.org/ .

Ramsey, P. (2007). The state of open source GIS. Technical report, Refractions Research
Inc.

Rey, S. J. (2009). Show me the code: spatial analysis and opensource. Journal of Geo-
graphical Systems, 11(2):191–207.

Roberts, J. J., Best, B. D., Dunn, D. C., Treml, E. A., and Halpin, P. N. (2010). Ma-
rine geospatial ecology tools: An integrated framework forecological geoprocess-
ing with arcgis, python, r, matlab, and c++.Environmental Modelling & Software,
25(10):1197–1207.

Robertson, C. and Farmer, C. J. Q. (2008). Developing an open-source framework for
surveillance and analysis of emerging zoonotic diseases. In Proceedings of the Fifth
National Symposium on Geo-Informatics, pages 123–134, Colombo, Sri Lanka. Geo-
Informatics Society of Sri Lanka.

35

http://CRAN.R-project.org/package=sp
http://www.R-project.org/

Robertson, C., Farmer, C. J. Q., Nelson, T. A., Mackenzie, I.K., Wulder, M. A., and White,
J. C. (2009). Determination of the compositional change (1999–2006) in the pine
forests of british columbia due to mountain pine beetle infestation. Environmental
Monitoring and Assessment, 158(1–4):593–608.

Rocchini, D., Metz, M., Frigeri, A., Delucchi, L., Marcantonio, M., and Neteler, M. (2011).
Robust rectification of aerial photographs in an open sourceenvironment.Computers
& Geosciences.

Roiz, D., Neteler, M., Castellani, C., Arnoldi, D., and Rizzoli, A. (6). Climatic factors
driving invasion of the tiger mosquito(Aedes albopictus) into new areas of Trentino,
northern Italy.PLoS ONE, 4:e14800.

Roura-Pascual, N., Richardson, D. M., Krug, R. M., Brown, A., Chapman, R. A., Forsyth,
G. G., Maitre, D. C. L., Robertson, M. P., Stafford, L., Wilgen, B. W. V., Wannen-
burgh, A., and Wessels, N. (2009). Ecology and management ofalien plant invasions
in South African fynbos: Accommodating key complexities inobjective decision mak-
ing. Biological Conservation, 142(8):1595–1604.

Schweik, C. M., Fernandez, M. T., Hamel, M. P., Kashwan, P., Lewis, Q., and Stepanov,
A. (2009). Reflections of an online geographic information systems course based on
open source software.Social Science Computer Review, 27(1):118–129.

Sherman, G. E. (2008).Desktop GIS: Mapping the Planet with Open Source Tools. Prag-
matic Bookshelf, http://pragprog.com/.

Sorokine, A. (2007). Implementation of a parallel high-performance visualization technique
in GRASS GIS.Computers & Geosciences, 33(5):685–695.

Steiniger, S. and Bocher, E. (2009). An overview on current free and open source desk-
top gis developments.International Journal of Geographical Information Science,
23(10):1345–1370.

Steiniger, S. and Hay, G. J. (2009). Free and open source geographic information tools for
landscape ecology.Ecological Informatics, 4(4):183–195.

Sui, D. and DeLyser, D. (2011). Crossing the qualitative-quantitative chasm i: Hybrid
geographies, the spatial turn, and volunteered geographicinformation (vgi). Progress
in Human Geography.

Theußl, S., Ligges, U., and Hornik, K. (2011). Prospects andchallenges in r package
development.Computational Statistics, 26(3):395–404.

Turton, I. (2008). GeoTools. In Hall, G. B. and Leahy, M., editors,Open Source Approaches
in Spatial Data Handling, pages 153–169. Springer-Verlag, Berlin.

36

van Etten, J. and Hijmans, R. J. (2010). A geospatial modelling approach integrating ar-
chaeobotany and genetics to trace the origin and dispersal of domesticated plants.
PLoS ONE, 5(8):e12060.

Vanmeulebrouk, B., Rivett, U., Ricketts, A., and Loudon, M.(2008). Open source gis for
hiv/aids management.International Journal of Health Geographics, 7(53):1–16.

Waller, L. A. and Gotway, C. A. (2004).Applied Spatial Statistics for Public Health Data.
John Wiley & Sons, Hoboken, NJ.

Walter, G., Warmerdam, F., and Farris-Manning, P. (2002). An open source tool for geospa-
tial image exploitation. InIGARSS 2002: Integrating our view of the planet, IEEE
International Symposium on Geoscience and Remote Sensing (IGARSS), pages 3522–
3524. IEEE.

Warmerdam, F. (2008). The geospatial data abstraction library. In Hall, G. B. and Leahy, M.,
editors,Open Source Approaches in Spatial Data Handling, pages 87–104. Springer-
Verlag, Berlin.

Weidmann, N. B. and Gleditsch, K. S. (2010). Mapping and Measuring Country Shapes.
The R Journal, 2(1):18–24.

Weidmann, N. B., Kuse, D., and Gleditsch, K. S. (2011). cshapes:
Cshapes dataset and utilities. R package version 0.3-1,
http://CRAN.R-project.org/package=cshapes .

Yi, Q., Hoskins, R. E., Hillringhouse, E. A., Sorensen, S. S., Oberle, M. W., Fuller, S. S.,
and Wallace, J. C. (2008). Integrating open-source technologies to build low-cost
information systems for improved access to public health data. International Journal
of Health Geographics, 7(29):1–13.

37

http://CRAN.R-project.org/package=cshapes

 Issued in the series Discussion Papers 2010

2010

01/10 January, Øystein Foros, Hans Jarle Kind, and Greg Shaffer, “Mergers and

Partial Ownership”

02/10 January, Astrid Kunze and Kenneth R. Troske, “Life-cycle patterns in

male/female differences in job search”.

03/10 January, Øystein Daljord and Lars Sørgard, “Single-Product versus Uniform

SSNIPs”.

04/10 January, Alexander W. Cappelen, James Konow, Erik Ø. Sørensen, and Bertil

Tungodden, ”Just luck: an experimental study of risk taking and fairness”.

05/10 February, Laurence Jacquet, “Optimal labor income taxation under maximin:

an upper bound”.

06/10 February, Ingvild Almås, Tarjei Havnes, and Magne Mogstad, “Baby

booming inequality? Demographic change and inequality in Norway, 1967-
2004”.

07/10 February, Laurence Jacquet, Etienne Lehmann, and Bruno van der Linden,

“Optimal redistributive taxation with both extensive and intensive responses”.

08/10 February, Fred Schroyen, “Income risk aversion with quantity constraints”.

09/10 March, Ingvild Almås and Magne Mogstad, “Older or Wealthier? The impact

of age adjustment on cross-sectional inequality measures”.

10/10 March, Ari Hyytinen, Frode Steen, and Otto Toivanen, “Cartels Uncovered”.

11/10 April, Karl Ove Aarbu, “Demand patterns for treatment insurance in

Norway”.

12/10 May, Sandra E. Black, Paul J. Devereux, and Kjell G. Salvanes, “Under

pressure? The effect of peers on outcomes of young adults”.

13/10 May, Ola Honningdal Grytten and Arngrim Hunnes, “A chronology of

financial crises for Norway”.

14/10 May, Anders Bjørklund and Kjell G. Salvanes, “Education and family
background: Mechanisms and policies”.

15/10 July, Eva Benedicte D. Norman and Victor D. Norman, “Agglomeration, tax

competition and local public goods supply”.

16/10 July, Eva Benedicte D. Norman, “The price of decentralization”.

17/10 July, Eva Benedicte D. Norman, “Public goods production and private sector

productivity”.

18/10 July, Kurt Richard Brekke, Tor Helge Holmås, and Odd Rune Straume,

“Margins and Market Shares: Pharmacy Incentives for Generic Substitution”.

19/10 August, Karl Ove Aarbu, “Asymmetric information – evidence from the home

insurance market”.

20/10 August. Roger Bivand, “Computing the Jacobian in spatial models: an applied

survey”.

21/10 August, Sturla Furunes Kvamsdal, “An overview of Empirical Analysis of

behavior of fishermen facing new regulations.

22/10 September, Torbjørn Hægeland, Lars Johannessen Kirkebøen, Odbjørn

Raaum, and Kjell G. Salvanes, ” Why children of college graduates
outperform their schoolmates: A study of cousins and adoptees”.

23/10 September, Agnar Sandmo, “Atmospheric Externalities and Environmental

Taxation”.

24/10 October, Kjell G. Salvanes, Katrine Løken, and Pedro Carneiro, “A flying

start? Long term consequences of maternal time investments in children
during their first year of life”.

25/10 September, Roger Bivand, “Exploiting Parallelization in Spatial Statistics: an

Applied Survey using R”.

26/10 September, Roger Bivand, “Comparing estimation methods for spatial

econometrics techniques using R”.

27/10 October. Lars Mathiesen, Øivind Anti Nilsen, and Lars Sørgard, “Merger

simulations with observed diversion ratios.”

28/10 November, Alexander W. Cappelen, Knut Nygaard, Erik Ø. Sørensen, and

Bertil Tungodden, “Efficiency, equality and reciprocity in social preferences:
A comparison of students and a representative population”.

29/10 December, Magne Krogstad Asphjell, Wilko Letterie, Øivind A. Nilsen, and
Gerard A. Pfann, ”Sequentiality versus Simultaneity: Interrelated Factor
Demand”.

2011

01/11 January, Lars Ivar Oppedal Berge, Kjetil Bjorvatn, and Bertil Tungodden,
“Human and financial capital for microenterprise development: Evidence
from a field and lab experiment.”

02/11 February, Kurt R. Brekke, Luigi Siciliani, and Odd Rune Straume, “Quality

competition with profit constraints: do non-profit firms provide higher quality
than for-profit firms?”

03/11 February, Gernot Doppelhofer and Melvyn Weeks, “Robust Growth

Determinants”.

04/11 February, Manudeep Bhuller, Magne Mogstad, and Kjell G. Salvanes, “Life-

Cycle Bias and the Returns to Schooling in Current and Lifetime Earnings”.

05/11 March, Knut Nygaard, "Forced board changes: Evidence from Norway".

06/11 March, Sigbjørn Birkeland d.y., “Negotiation under possible third party

settlement”.

07/11 April, Fred Schroyen, “Attitudes towards income risk in the presence of

quantity constraints”.

08/11 April, Craig Brett and Laurence Jacquet, “Workforce or Workfare?”

09/11 May, Bjørn Basberg, “A Crisis that Never Came. The Decline of the European

Antarctic Whaling Industry in the 1950s and -60s”.

10/11 June, Joseph A. Clougherty, Klaus Gugler, and Lars Sørgard, “Cross-Border

Mergers and Domestic Wages: Integrating Positive ‘Spillover’ Effects and
Negative ‘Bargaining’ Effects”.

11/11 July, Øivind A. Nilsen, Arvid Raknerud, and Terje Skjerpen, “Using the

Helmert-transformation to reduce dimensionality in a mixed model:
Application to a wage equation with worker and …rm heterogeneity”.

12/11 July, Karin Monstad, Carol Propper, and Kjell G. Salvanes, “Is teenage

motherhood contagious? Evidence from a Natural Experiment”.

13/11 August, Kurt R. Brekke, Rosella Levaggi, Luigi Siciliani, and Odd Rune

Straume, “Patient Mobility, Health Care Quality and Welfare”.

14/11 July, Sigbjørn Birkeland d.y., “Fairness motivation in bargaining”.

15/11 September, Sigbjørn Birkeland d.y, Alexander Cappelen, Erik Ø. Sørensen,
and Bertil Tungodden, “Immoral criminals? An experimental study of social
preferences among prisoners”.

16/11 September, Hans Jarle Kind, Guttorm Schjelderup, and Frank Stähler,

“Newspaper Differentiation and Investments in Journalism: The Role of Tax
Policy”.

17/11 Gregory Corcos, Massimo Del Gatto, Giordano Mion, and Gianmarco I.P.

Ottaviano, “Productivity and Firm Selection: Quantifying the "New" Gains
from Trade”.

18/11 Grant R. McDermott and Øivind Anti Nilsen, “Electricity Prices, River

Temperatures and Cooling Water Scarcity”.

19/11 Pau Olivella and Fred Schroyen, “Multidimensional screening in a

monopolistic insurance market”.

20/11 Liam Brunt, “Property rights and economic growth: evidence from a natural

experiment”.

21/11 Pau Olivella and Fred Schroyen, “Multidimensional screening in a

monopolistic insurance market: proofs”.

22/11 Roger Bivand, “After “Raising the Bar”: applied maximum likelihood

estimation of families of models in spatial econometrics”.

23/11 Roger Bivand, “Geocomputation and open source software:components and

software stacks”.

Norges
Handelshøyskole

Norwegian School of Economics

NHH
Helleveien 30
NO-5045 Bergen
Norway

Tlf/Tel: +47 55 95 90 00
Faks/Fax: +47 55 95 91 00
nhh.postmottak@nhh.no
www.nhh.no

	23.pdf
	Introduction
	Software component stacks for geocomputation
	Language environments
	Component stacks
	Dependency challenges

	Open source geospatial projects
	Geospatial libraries
	Desktop applications
	Web mapping and services

	OSGeo and R-spatial
	R-spatial --- sp
	Geospatial Data Abstraction Library (GDAL/OGR) and PROJ.4 --- rgdal
	Geometry Engine, Open Source --- rgeos
	Geographic Resources Analysis Support System --- spgrass6
	SAGA --- RSAGA, Geoprocessing --- RPyGeo, MGET --- Marine Geospatial Ecology Tools and others

	Future prospects

