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Abstract. This paper considers social choice correspondences assigning a choice set to

each non-empty subset of social alternatives. We impose three requirements on these corre-

spondences: unanimity, independence of preferences over infeasible alternatives and choice

consistency with respect to choices out of all possible alternatives. With more than three

social alternatives and the universal preference domain, any social choice correspondence

that satisfies our requirements is serially dictatorial. A number of known impossibility the-

orems — including Arrow’s Impossibility Theorem, the Muller-Satterthwaite Theorem and

the impossibility theorem under strategic candidacy — follow as corollaries. Our new proof

highlights the common logical underpinnings behind these theorems.

1. Introduction

This paper considers social choice correspondences defined on all subsets of social alter-

natives. Three axioms are imposed:

Strong Unanimity: Only the unique weakly Pareto dominant alternative within the

subset is chosen whenever there is one.

Independence of Infeasible Alternatives: Choices from subsets depend only on

the preferences over the subsets.

Independence of Losing Alternatives: An alternative is chosen from a subset if

and only if it is chosen out of the set of all social alternatives whenever such a choice

remains available.

With more than three social alternatives and the universal preference domain, any social

choice correspondence that satisfies our three axioms is serially dictatorial. Since our axioms
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imply Arrow’s Choice Axiom (an alternative is chosen out of a subset if and only if it is

chosen out of a superset whenever choices from the superset are available), our theorem can

be viewed as a choice-theoretic version of Arrow’s theorem with the Pareto and rationality

axioms weakened as much as possible.

Weakening Arrow’s axioms is more than an aesthetic exercise. It clarifies the basic axioms

on social choice that imply dictatorship. Arrow’s Choice Axiom has been interpreted as a

rationality axiom (Arrow, 1959; Hansson, 1968). Our result indicates, however, that this ra-

tionality condition follows from three fundamental requirements: unanimity, independence of

preferences over infeasible alternatives and choice consistency with respect to choices out of

all possible alternatives. Our formulation also provides the logical link between Arrow’s In-

dependence of Irrelevant Alternatives and Arrow’s Choice Axiom — two related but different

concepts that have caused some confusions1.

More importantly, it is easy to check that axioms in many impossibility theorems imply our

three weakened axioms (with an appropriate extension to our unrestricted domain). Thus

a number of impossibility theorems — including Arrow’s Impossibility Theorem (Arrow,

1963), the Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975), the Muller-

Satterthwaite Theorem (Muller and Satterthwaite, 1977), the Jackson-Srivastava character-

ization of game theoretic solutions that implement only dictatorial social choice functions

(Jackson and Srivastava, 1996), the Grether-Plott Theorem (Grether and Plott, 1982) and

the Dutta-Jackson-Le Breton impossibility theorem under strategic candidacy (Dutta, Jack-

son, and Le Breton, 2001) — are corollaries of our main theorem. While it is known that one

can convert the questions in many of these theorems into a social welfare function problem

and apply Arrow’s Theorem, our unified proof indicates that there are common and intuitive

principles — unanimity and two independence axioms — behind these theorems.

The weakened axioms also point us to a new line of proof. Example 2.5 shows that

our three axioms do not immediately imply Monotonicity (a chosen alternative remains

chosen whenever its relative ranking has improved), which is a key property in proofs of

impossibility theorems (e.g.: Barberà (1980, 1983); Benôıt (2000); Sen (2001); Geanakoplos

(2005)). Rather than following the usual practice of moving an alternative up a chain of

preference profiles to find the pivotal individual, our proof exploits a fact about social choice

when the union of individuals’ set of favorite alternatives has only two elements (Lemma 3.2).

This technique employs fewer preference profiles and shed light on the set of preference

profiles necessary for proving an impossibility theorem.

1The original definition of Independence of Irrelevant Alternatives (Arrow, 1963, p. 27) corresponds to our
Independence of Infeasible Alternatives. However, Arrow’s motivating examples — death of a candidate
(p. 26) and rank-order voting (p. 27) — are violations of our Independence of Losing Alternatives, hence
Arrow’s Choice Axiom. See Denicolò (2000) for a discussion.

2



Needless to say, this is not the first paper to provide an alternative proof of (a version

of) Arrow’s Theorem2, nor is it the first attempt to offer a unified proof of several impos-

sibility theorems. Reny (2001) provides parallel proofs of Arrow’s Impossibility Theorem

and the Gibbard-Satterthwaite Theorem, upon which Eliaz (2004) builds a single proof

of the two theorems. Using a social preference framework, Barberà (2003) highlights the

common properties shared by the social aggregation rules underlying several impossibility

theorems. All these proofs require some version of Monotonicity, which is not directly im-

plied by our axioms. Recently, Vohra (2011) proves Arrow’s Impossibility Theorem, the

Gibbard-Satterthwaite Theorem and the strategic candidacy impossibility theorem using in-

teger programming techniques. Unlike us, he uses Arrow’s Theorem to prove the other two

theorems.

2. Model

Let X be the set of all possible social alternatives, |X| ≥ 3 and finite3. Let R be the set

of all complete, transitive binary relations on X, that is, the set of all weak preferences over

X. Let P ⊂ R be the set of all strict preferences over X. We abuse notation to use N as

both the set of all individuals and its cardinality, which is finite.

A (weak) preference of individual i ∈ N is denoted by %i∈ R. The symbols �i and ∼i
will have their usual derived meanings. Let %= (%1, . . . ,%N) ∈ RN be a preference profile.

Similarly, a strict preference of an individual i ∈ N and a strict preference profile are denoted

as �i∈ P and �∈ PN respectively.

Two preference profiles %,%′∈ RN agree on Y if they induce the same preference ordering

on the subset of alternatives Y ⊆ X. Given a subset of alternatives Y ⊆ X and a preference

profile %∈ RN , we say %Y∈ RN takes Y to the top from % if % and %Y agree on Y and

y �Yi z for all i whenever y ∈ Y and z /∈ Y .

A social choice correspondence is a mapping f : (2X \ ∅) × RN → 2X \ ∅ such that

f (Y,%) ⊆ Y for all Y ⊆ X and all %∈ RN . We impose the following axioms on a social

choice correspondence:

Definitions 2.1 (Main Axioms). A social choice correspondence f is

Strongly Unanimous (SU) if f (Y,%) = {y} whenever y is uniquely weakly Pareto dom-

inant in Y ⊆ X (i.e., for all y′ ∈ Y \ {y}, y %i y′ for all i ∈ N with at least one

individual having a strict preference);

2See Campbell and Kelly (2002) for an overview.
3Finiteness of X ensures the existence of best alternatives on any feasible set according to any preferences.
This assumption can be relaxed at the cost of distracting technical qualifications, which we would like to
avoid.
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Independent of Infeasible Alternatives (IIF)4 if f (Y,%) = f
(
Y,%′

)
whenever % and %′

agree on Y ⊆ X;

Independent of Losing Alternatives (ILA) if f (Y,%) = f (X,%) ∩ Y whenever the inter-

section is non-empty.

Strong Unanimity by itself is weaker than Strong Pareto Optimality (any weakly Pareto

dominated alternative cannot be chosen). Together with ILA, though, it does imply that

weakly Pareto dominated alternatives cannot be chosen out of the set of all alternatives:

Claim 2.2. If a social choice correspondence f satisfies SU and ILA, then x /∈ f(X,%)

whenever x is weakly Pareto dominated at % (i.e., there exists a y ∈ X such that y %i x for

all i ∈ N with at least one strict preference).

Proof. Suppose y weakly Pareto dominates x at %. SU implies f({x, y},%) = {y}. Thus

x /∈ f(X,%) or else ILA will be violated. �

Of more interests is the relationship between our axioms and two other axioms commonly

employed in social choice theory, defined as follows:

Definitions 2.3. A social choice correspondence f satisfies

Arrow’s Choice Axiom (ACA)5 if f (Z,%) = f (Y,%) ∩ Z for any Y ⊇ Z whenever the

intersection is non-empty;

Monotonicity if Y ⊆ f(X,%′) ⊆ f(X,%) whenever Y ⊆ f(X,%) and y %i x implies

y %′i x (with y �i x implies y �′i x) for all y ∈ Y , all x ∈ X and all i ∈ N .6

Claim 2.4. A social choice correspondence satisfies ACA if it satisfies SU, IIF and ILA.

Proof. Let Z ⊆ Y ⊆ X and suppose f(Y,%) ∩ Z 6= ∅. Obtain %Y by taking Y to the top of

%. Claim 2.2, ILA and IIF imply f(X,%Y ) = f(Y,%Y ) = f(Y,%), which has a non-empty

intersection with Z. ILA requires f(Z,%Y ) = f(X,%Y )∩Z. Using f(X,%Y ) = f(Y,%) and

f(Z,%) = f(Z,%Y ) (IIF, since Z ⊆ Y ), we get f(Z,%) = f (Y,%) ∩ Z. �

Denicolò (2000) shows that a Pareto optimal social choice function satisfies both IIF and

ACA if and only if it satisfies Hansson’s Independence (Hansson, 1969). Claim 2.4 improves

upon his statement by giving the conditions that bridge the gap between IIF and ACA.

4This condition is best known as “Independence of Irrelevant Alternatives” (Arrow, 1963). “Independence
of Infeasible Alternatvies” (Ehlers and Weymark, 2003; Le Breton and Weymark, 2011) is more precise on
the “irrelevance” of alternatives outside Y . To avoid confusion, we follow Le Breton and Weymark (2011)
in using the acronym IIF and reserve IIA for Independence of Irrelevant Alternatives. Another option is
“Independence of Nonfeasible Alternatives” (Karni and Schmeidler, 1976).
5Arrow’s Choice Axiom has also been known as Independence of Nonoptimal Alternatives (Karni and Schmei-
dler, 1976) and Strong Stability (Campbell, 1979).
6This definition coincides with Strong Positive Association (Muller and Satterthwaite, 1977) when f is a
function.
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y z y y z x
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(a) Preference Profiles

Y f(Y,�) f(Y,�′)
X x y
{x, y} x y
{x, z} x x
{y, z} y y

(b) Social Choices

Figure 1. Preferences and Social Choices for Example 2.5

One can stop here and prove a choice-theoretic version of Arrow’s theorem (c.f.: Le Breton

and Weymark, 2011, Theorem 19) in the usual manner — convert the problem into a social

preference problem and apply Arrow’s Impossibility Theorem. This route calls for a proof

of Arrow’s Impossibility Theorem, which typically invokes Monotonicity. Intriguingly, SU,

IIF and ILA do not immediately imply Monotonicity7, as the next example shows.

Example 2.5. There are 3 alternatives, X = {x, y, z} and 3 individuals, N = {1, 2, 3}.
The preference domain admits only two strict preference profiles, � and �′, as depicted in

Figure 1(a).8 Note that �′ differs from � only by moving x above y for individual 3. The

social choice function given by Figure 1(b) satisfies SU, IIF and ILA9 but not monotonicity.

To see this, first note that SU has no bite in this example. The two profiles � and �′ agree

only on {x, z} and {y, z}. IIF is satisfied since choices from these subsets are equal across

preference profiles. ILA is satisfied since f(X,�) = {x} and f (Y,�) = {x} for all subsets Y

containing x; and similarly f(X,�′) = {y} and f (Y,�′) = {y} for all subsets Y containing

y. Yet Monotonicity is violated as f (X,�) = {x} and the ranking of x improves from � to

�′ but f (X,�′) = {y}.

Thus, as a direct proof (i.e., one that does not appeal to Arrow’s Impossibility Theorem),

our proof in Section 3 offers a new approach for proving impossibility theorems. Before doing

so, we need to define dictatorship.

For any subset of alternatives Y ⊆ X and any individual preference %i∈ R, let

T (Y,%i) = {y ∈ Y : y %i y
′ for all y′ ∈ Y }

be the “top set” — the set of favorite alternatives — within Y according to %i. Let

π = (π1, . . . , πN) be a permutation of the set of all individuals. Write also πk = (π1, . . . , πk)

7As a trivial corollary of our main theorem, any social choice correspondence that is SU, IIF and ILA is
Monotonic. This example indicates such an implication is hard to establish without first proving dictatorship.
8Since the relative ranking between x and y changes across the profiles, introducing �{x,y} by bringing {x, y}
to the top does not help.
9Since there are only three alternatives, ILA is equivalent to ACA. Thus this example remains even if we
assume ACA.
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for any k ≤ N . Given a preference profile % and πk, write %π
k

=
(
%π1 , . . . ,%πk

)
as the pref-

erences of individuals in πk. For all subsets Y , all preference profiles % and all permutations

of individuals π, define the kth iteration of the top set operator such that

T 0(Y,%π
0

, π0) = Y

T k(Y,%π
k

, πk) = T (T k−1(Y,%π
k−1

, πk−1),%πk).

Definitions 2.6 (Dictatorship). A social choice correspondence f is

Dictatorial if there exists an individual i ∈ N such that f(Y,%) ⊆ T (Y,%i) for all Y ⊆ X

and all %∈ RN ;

Serially Dictatorial if there exists a permutation of individuals π and a tie-breaking pref-

erence ρ ∈ R such that

f(Y,%) = T (TN(Y,%, π), ρ) for all Y ⊆ X, all %∈ RN .

Two features of our definition of serial dictatorship should be noted. First, the permutation

of individuals π and the tie-breaking preference ρ are fixed for all preference profiles. This

rules out serial dictatorship in which the order of later dictators depends on the preferences

of earlier dictators. Second, a tie-breaking preference ρ is applied at the end. If f is required

to be a function, we can choose some ρ ∈ P .10 On the other extreme, we can set ρ as the

preference that is indifferent between all alternatives if no ties are to be broken.

3. Main Theorem

Theorem 3.1. Any social choice correspondence that is Strongly Unanimous, Independent

of Infeasible Alternatives and Independent of Losing Alternatives is Serially Dictatorial.

The rest of this section contains the proof. We will first give a useful lemma. It will then

be used in Section 3.1 and 3.2, which construct the permutation π and the tie-breaking pref-

erence ρ, respectively. Our argument also indicates that if the preference domain is restricted

to PN , any social choice correspondence that satisfies SU, IIF and ILA is dictatorial.

Lemma 3.2. Let f be a SU, IIF and ILA social choice correspondence and % be a preference

profile. Let S ⊆ N be the set of individuals who are not indifferent between all alternatives

at %. Then

f(X,%) ⊆
⋃
i∈S

T (X,%i)

whenever
∣∣⋃

i∈S T (X,%i)
∣∣ ≤ 2.

10This will not violate Strong Unanimity since SU applies only when there is a unique weakly Pareto dominant
alternative.
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Type x Type y Type xy

x y x y
· · ·
y · ·
· x ·
· · ·

(a) Profile %

Type x Type y Type xy

x y x y
· x ·
y · ·
· · ·
· · ·

(b) Profile %′

Type x Type y Type xy

x y x y
y · ·
· · ·
· x ·
· · ·

(c) Profile %′′

Figure 2. Preference Profiles for Proof of Lemma 3.2

Proof. The case of
∣∣⋃

i∈S T (X,%i)
∣∣ = 1 follows from SU. So let

⋃
i∈S T (X,%i) = {x, y} and

suppose by contradiction that z ∈ f (X,%) for some z 6= x, y.

Since
⋃
i∈S T (X,%i) = {x, y}, there are three types of individuals in S: those whose

favorite is x (Type x), y (Type y) and those whose favorites are x and y (Type xy) (Fig-

ure 2(a)). Construct a new preference profile %′ by moving, for all Type y individuals, the

ranking of x up to just below y, keeping all else unchanged (Figure 2(b)). Similarly, construct

%′′ by moving y to just below x for all Type x individuals (Figure 2(c)). Observe that

(1) %, %′ and %′′ agree on {x, y};
(2) % and %′ agree on {y, z}; and

(3) % and %′′ agree on {x, z}.

Since z ∈ f (X,%), ILA requires z ∈ f ({y, z},%). By observation (2) and IIF, z ∈
f
(
{y, z},%′

)
. Meanwhile, all alternatives other than x and y are weakly Pareto domi-

nated by x at %′. Claim 2.2 says none of them can be chosen out of X at %′. Thus

y /∈ f(X,%′), otherwise z ∈ f
(
{y, z},%′

)
6= {y} = f

(
X,%′

)
∩ {y, z}, which violates ILA.

Therefore f
(
X,%′

)
= {x}. By a similar argument using the subset {x, z} and observa-

tion (3), f
(
X,%′′

)
= {y}.

Now ILA requires f
(
{x, y},%′

)
= {x} and f

(
{x, y},%′′

)
= {y}. This contradicts IIF in

light of observation (1). �

3.1. Serial Dictators. Given a SU, IIF and ILA social choice correspondence f , we con-

struct in this subsection the permutation of individuals π such that for all k ≥ 0,

f(Y,%) ⊆ T k(Y,%π
k

, πk) for all Y ⊆ X, all %∈ RN . (1)

The case for k = 0 follows by definition. Now suppose πk−1 is defined and Equation (1)

holds for k− 1. We construct πk that satisfies Equation (1) for k in 3 steps: Step 1 identifies

a group of individuals containing the desired πk. Step 2 shows that whenever this group of

individuals have the same preferences over Y ⊆ X, the social choice out of Y is always a

subset of their favorites in T k−1(Y,%π
k−1

, πk−1). Step 3 shrinks this group to a singleton,
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Type x Type y Type z

x y z
y z x
z x y
...

...
...

Figure 3. Condorcet Cycle

Group S Not S

x z
y ·
z ·
...

...

(a) Profile %1

Group S Not S

y z
x ·
z ·
...

...

(b) Profile %2

Figure 4. Preference Profiles for Step 2.1

giving us πk. Step 4 is given when the above 3-step proof is infeasible (this happens if N < 3

or k > N − 2).

Step 1. If N < 3 or k > N − 2 proceed directly to Step 4. Otherwise, construct a

preference profile %∗ where (1) π1, . . . πk−1 are indifferent between all alternatives; (2) the

remaining individuals have one of the Condorcet preferences in Figure 3; and (3) all individual

preferences in the Condorcet cycle are assigned to at least one individual.

Since all alternatives other than x, y and z are weakly Pareto dominated, by Claim 2.2,

f(X,%∗) ⊆ {x, y, z}. Without loss assume x ∈ f(X,%∗). Let S ⊆ N \ {π1, . . . , πk−1} be the

set of individuals who have the Type x preference in the Condorcet cycle.

Step 2. We show whenever individuals in S have the same preference over Y ⊆ X, the

social choice from Y is a subset of their favorites in Yk−1 ≡ T k−1(Y,%π
k−1

, πk−1). This is

done by three smaller steps: Step 2.1 proves this for Y = {x, y} (the top 2 alternatives in

the Type x Condorcet preference); Step 2.2 for any two-element subset Y ; and Step 2.3 for

any subset Y ⊆ X.

Step 2.1. We show whenever individuals in S have the same preferences over {x, y}, the

social choice from {x, y} is a subset of their favorites in {x, y}k−1 ≡ T k−1({x, y},%π
k−1

, πk−1).

This is trivial if {x, y}k−1 is a singleton or if x ∼i y for all i ∈ S.

Construct a preference profile %1 where (1) π1, . . . , πk−1 are indifferent between all alter-

natives; (2) all individuals in S have the Type x Condorcet preference; and (3) all other

individuals’ unique favorite is z (Figure 4(a)). Notice that %1 and %∗ agree on {x, z}. Since
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Group S Not S

w y
z ·
x ·
y ·
...

...

Figure 5. Preference Profile %3 for Step 2.2

x is chosen out of X at %∗, IIF and ILA imply x ∈ f({x, z},%1) = f({x, z},%∗). Mean-

while, Lemma 3.2 requires f(X,%1) ⊆ {x, z}. By ILA x ∈ f(X,%1). Since y /∈ f(X,%1)

(Lemma 3.2), applying ILA once more gives f({x, y},%1) = {x}. Notice that %1 puts no re-

striction on the relative ranking between x and y for individuals not in {π1, . . . , πk−1}∪S. IIF

therefore implies f({x, y},%) = {x} for all % such that π1, . . . , πk−1 are indifferent between

x and y and all individuals in S strictly prefer x to y.

Next construct a preference profile %2 from %1 by switching the positions of x and y in

%1
S and keeping everything else unchanged (Figure 4(b)). Since %1 and %2 agree on {x, z},

IIF requires x ∈ f({x, z},%2). Yet Lemma 3.2 requires f(X,%2) ⊆ {y, z}, so z /∈ f(X,%2)

or else ILA would be violated. Hence f(X,%2) = {y}. Applying ILA once more gives

f({x, y},%2) = {y}. Since %2 puts no restriction on the relative ranking between x and y

for individuals not in {π1, . . . , πk−1} ∪ S, IIF implies f({x, y},%) = {y} for all % such that

π1, . . . , πk−1 are indifferent between x and y and all individuals in S strictly prefer y to x.

Step 2.2. We show whenever all individuals in S have the same preferences over a two-

element subset {w, z} ⊆ X, the social choice from {w, z} is a subset of their favorites in

{w, z}k−1 ≡ T k−1({w, z},%π
k−1

, πk−1). The statement is trivial if {w, z}k−1 is a singleton or

if w ∼i z for all i ∈ S. There is also nothing to prove if {w, z} = {x, y}. So without loss

assume y /∈ {w, z}.
Create a preference profile %3 where (1) π1, . . . , πk−1 are indifferent between all alterna-

tives; (2) all individuals in S have w as their unique favorite and strictly prefer x to y; and

(3) all other individuals’ unique favorite is y (Figure 5). By Lemma 3.2, f(X,%3) ⊆ {w, y}.
However, all individuals in S strictly prefer x to y. Step 2.1 implies f({x, y},%3) = {x}.
ILA then requires f(X,%3) = {w}. Applying ILA once more gives f({w, z},%3) = {w}.
Since %3 puts no restriction on the relative ranking between w and z for individuals not

in {π1, . . . , πk−1} ∪ S, IIF implies f({w, z},%) = {w} for all % such that π1, . . . , πk−1 are

indifferent between w and z and all individuals in S strictly prefer w to z.

Switching the names of w and z gives f({w, z},%) = {z} for all % such that π1, . . . , πk−1

are indifferent between w and z and all individuals in S strictly prefer z to w.
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Step 2.3. We show whenever all individuals in S have the same preferences over Y ⊆ X,

the social choice from Y is a subset of their favorites in Yk−1 ≡ T k−1(Y,%π
k−1

, πk−1).

Given a preference profile % at which all individuals in S have the same preferences over

Y , obtain %Y by taking Y to the top from % (see Section 2). If k > 1, the induction

hypothesis (Equation (1)) ensures f(X,%Y ) ⊆ Yk−1. Otherwise, f(X,%Y ) ⊆ Y = Y0 since

all alternatives not in Y are Pareto dominated (Claim 2.2). Moreover, π1, . . . , πk−1 are

indifferent between all alternatives in Yk−1.

If y is a favorite for group S in Yk−1 and y′ ∈ Yk−1 is not, Step 2.2 requires f({y, y′},%Y ) =

{y}. ILA implies y′ /∈ f(X,%Y ). Thus f(X,%Y ) is a subset of group S’s favorites in Yk−1.

Applying ILA once more gives f(Y,%Y ) ⊆ T (Yk−1,%
Y
S ). Since f(Y,%) = f(Y,%Y ) (IIF) and

T (Yk−1,%
Y
S ) = T (Yk−1,%S), f(Y,%) ⊆ T (Yk−1,%S).

Remark on Step 2 Step 2 implies that the choice out of X at any Condorcet profile is

a singleton. For if not there will be at least two disjoint subsets of individuals that can

get their favorites out of Yk−1 whenever preferences over Y within each group are the same.

Contradiction arises when the preferences of these groups conflict with each other.

Step 3 If S is a singleton, letting πk = S completes our induction step. Otherwise, construct

a preference profile %∗∗ where (1) π1, . . . , πk−1 are indifferent between all alternatives; (2)

all individuals in S have either the Type x or Type y Condorcet preference (with both

types assigned to at least one individual); and (3) all remaining individuals get the Type z

Condorcet preference.

Notice that only Type z individuals rank z above y in the Condorcet cycle (see Figure 3).

Since y �∗∗i z for all i ∈ S, Step 2 implies z /∈ f({y, z},%∗∗). By ILA and Claim 2.2,

f(X,%∗∗) ⊆ {x, y}. Also, by the Remark on Step 2, f(X,%∗∗) must be a singleton.

So let S2 ⊂ S be the set of individuals whose favorite at %∗∗ is chosen out of X. Repeat

Step 2 applied to S2. Proceeding this way gives us a strictly decreasing sequence of subsets

of individuals Sn ⊂ · · · ⊂ S2 ⊂ S such that each Sn group gets their favorites out of Yk−1

whenever they have the same preference over Y . Since N is finite, Sn must be a singleton

at some finite n. Setting πk = Sn completes our induction proof.

Step 4. Step 1 is infeasible when there are two or fewer individuals not assigned to the

permutation π (this happens when N < 3 or k > N − 2). This step takes care of such cases.

When there are only two individuals left, construct the Condorcet profile %∗ as in Step 1

without using the Type z preference. Lemma 3.2 requires f(X,%∗) ⊆ {x, y}. Proceed with

the same argument as above.

When there is only one individual left, construct π by appending the last individual to

πN−1. Given Y ⊆ X and %∈ RN , construct %Y by taking Y to the top from %. The

induction hypothesis ensures f(X,%Y ) ⊆ YN−1. Now if y is a favorite for πN in YN−1

and y′ is not, y weakly Pareto dominates y′ (since π1, . . . , πN−1 are indifferent between all
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alternatives in YN−1). By Claim 2.2, f(X,%Y ) ⊆ T (YN−1,%
Y
πN

). Applying ILA once more

we get f(Y,%Y ) ⊆ T (YN−1,%
Y
πN

). Since f(Y,%) = f(Y,%Y ) (IIF) and T (YN−1,%
Y
πN

) =

T (YN−1,%πN ), f(Y,%) ⊆ T (YN−1,%πN ).

Remark. The argument in the k = 1 step is unaffected if the preference domain is restricted

to PN . Since the existence of π1 implies dictatorship, we have the following theorem:

Theorem 3.3. Any social choice correspondence f : (2X \∅)×PN → (2X \∅) that is Strongly

Unanimous, Independent of Infeasible Alternatives and Independent of Losing Alternatives

is Dictatorial.

3.2. Tie-Breaking Preference. It remains to find the tie-breaking preference ρ ∈ R such

that

f(Y,%) = T (TN(Y,%, π), ρ) for all Y ⊆ X, all %∈ RN .

So let ∼ denote the preference profile in which all individuals are indifferent between all

alternatives. Given a social choice correspondence f , define a binary relation ρ on X such

that for all x, y ∈ X,

x ρ y if and only if x ∈ f({x, y},∼).

Claim 3.4. The binary relation ρ is complete and transitive. That is, ρ ∈ R.

Proof. Completeness: For any x, y ∈ X, f({x, y},∼) 6= ∅.11 Thus either x ρ y or y ρ x.

Transitivity: Take x, y, z ∈ X and suppose x ρ y and y ρ z. Construct %◦ by taking

{x, y, z} to the top from ∼. IIF implies x and y are chosen out of {x, y} and {y, z} at

%◦ respectively. We claim x ∈ f(X,%◦). Suppose not, then since x ∈ f({x, y},%◦), ILA

requires y /∈ f(X,%◦). Applying ILA once more implies z /∈ f(X,%◦). But this contradicts

Claim 2.2 since all alternatives other than x, y and z are strictly Pareto dominated at %◦.

Now by ILA and IIF we have x ∈ f({x, z},%◦) = f({x, z},∼). Therefore x ρ z. �

Fix Y ⊆ X and %∈ RN . Construct %Y by taking Y to the top from %. Our argument in

Section 3.1 ensures f(X,%Y ) ⊆ YN = TN(Y,%, π). Notice that %Y and ∼ agree on YN since

all individuals are indifferent between all alternatives in YN .

The proof of f(Y,%Y ) ⊆ T (YN , ρ) is essentially the same as the proof in Step 2.3 in

Section 3.1 and will therefore be omitted. We show that f(Y,%Y ) ⊇ T (YN , ρ). Let y ∈
T (YN , ρ) and y′ ∈ f(X,%Y ) ⊆ YN . By the definition of ρ, y ∈ f({y, y′},∼). Since both y

and y′ are in YN , ∼ and %Y agree on {y, y′}. IIF requires y ∈ f({y, y′},%Y ) = f({y, y′},∼).

Meanwhile, as y′ ∈ f(X,%Y )∩{y, y′}, ILA requires y ∈ f(X,%Y ). Applying ILA once more

gives y ∈ f(Y,%Y ). Hence T (YN , ρ) ⊆ f(Y,%Y ).

Combining the results we get f(Y,%Y ) = T (YN , ρ). By IIF, f(Y,%) = f(Y,%Y ). Hence

f(Y,%) = T (YN , ρ) = T (TN(Y,%), ρ). This completes the proof of Theorem 3.1.

11f({x, x},∼) = f({x},∼) = {x} for all x ∈ X.
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4. Arrow’s Impossibility Theorem

In Arrow (1963), a social welfare function is a mapping F : RN → R. Given a preference

profile %∈ RN , a permutation of individuals π = (π1, . . . , πN) and a tie-breaking preference

ρ ∈ R, write %πN+1
= ρ and define the lexicographic ordering L(%, π, ρ) ∈ R such that

x L(%, π, ρ) y if and only if whenever y �πk x, there exists an l < k such that x �πl y.

Definitions 4.1. A social welfare function F : RN → R is

Strongly Pareto if x is strictly preferred to y according to F (%) whenever x weakly Pareto

dominates y under %;

Independent of Irrelevant Alternatives if F (%) and F (%′) agree on {x, y} whenever % and

%′ agree on the same set;

Serially Dictatorial if there exists a permutation of individuals π and a tie-breaking pref-

erence ρ ∈ R such that F (%) = L(%, π, ρ) for all %∈ RN .

We now translate Arrow’s setting into ours. Given a social welfare function F , define an

induced social choice correspondence as follows: For all subsets of alternatives Y ⊆ X and

all preference profiles %∈ RN ,

f(Y,%) = T (Y, F (%)). (2)

The following proposition relates properties of the social welfare function and those of the

induced social choice correspondence.

Proposition 4.2. If the social welfare function F is Strongly Pareto and Independent of

Irrelevant Alternatives, then the social choice correspondence f defined in Equation (2) sat-

isfies SU, IIF and ILA.

Proof. SU: Let y be uniquely weakly Pareto dominant in Y ⊆ X at %∈ RN . Since F

is strongly Pareto, y is strictly preferred to all other y′ ∈ Y according to F (%). Hence

T (Y, F (%)) = {y}. By Equation (2), f(Y,%) = {y}.
IIF: Suppose % and %′ agree on Y ⊆ X. Independence of Irrelevant Alternatives requires

F (%) and F (%′) to agree on all pairs y, y′ ∈ Y . Hence T (Y, F (%)) = T (Y, F (%′)). By

Equation (2), f(Y,%) = f(Y,%′).

ILA: Suppose f(X,%) ∩ Y 6= ∅. If x ∈ f(X,%) ∩ Y and y ∈ Y is not, then x is strictly

preferred to y according to F (%). Thus x ∈ T (Y, F (%)) and y is not. By Equation (2),

f(Y,%) = f(X,%) ∩ Y . �

By Theorem 3.1, f is serially dictatorial. Thus there exists a permutation of individuals π

and a tie-breaking preference ρ such that f({x, y},%) = T (TN({x, y},%, π), ρ) for all pairs

of x, y ∈ X. By Equation (2), x ∈ f({x, y},%) is equivalent to x F (%) y. Meanwhile,
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x ∈ T (TN({x, y},%, π), ρ) is equivalent to x L(%, π, ρ) y. Arrow’s Impossibility Theorem12

follows immediately:

Corollary 4.3 (Arrow’s Impossibility Theorem). Any social welfare function F : RN → R

that is Strongly Pareto and Independent of Irrelevant Alternatives is Serially Dictatorial.

5. Social Choice and Implementation

To avoid confusion with our social choice correspondence on the unrestricted domain, we

call a social choice correspondence defined only on the set of all social alternatives an overall

social choice correspondence, which is a mapping f ∗ : RN → 2X \ ∅.

Definitions 5.1. An overall social choice correspondence f ∗ : RN → 2X \ ∅ is

Strongly Pareto if f ∗(%) = {x} whenever x is uniquely weakly Pareto dominant at %;

Monotonic if Y ⊆ f ∗(%′) ⊆ f ∗(%) whenever Y ⊆ f ∗(%) and y %i x implies y %′i x (with

y �i x implies y �′i x) for all y ∈ Y , all x ∈ X and all i ∈ N ;

Dictatorial if there exists an individual i ∈ N such that f ∗(%) ⊆ T (X,%i) for all %∈ RN ;

Serially Dictatorial if there exists a permutation of individuals π and a tie-breaking pref-

erence ρ ∈ R such that f ∗(%) = T (TN(X,%, π), ρ) for all %∈ RN .

In this section, we first show that the Muller-Satterthwaite Theorem (Muller and Sat-

terthwaite, 1977) can be derived from Theorem 3.1. Next we turn to implementation and

discuss the Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975) and the

Jackson-Srivastava Characterization (Jackson and Srivastava, 1996).

5.1. The Muller-Satterthwatie Theorem. Given an overall social choice correspondence

f ∗ : RN → 2X \ ∅, extend it to our unrestricted domain by defining: for all Y ⊆ X and all

%∈ RN

f(Y,%) = f ∗(%Y ), (3)

where %Y is a preference profile taking Y to the top from %.13 If f ∗ is a function, so is f .

We need to show that f defined by Equation (3) is a valid social choice correspondence,

that is, f(Y,%) ⊆ Y for all Y and all %. This is accomplished by the following lemma.

Lemma 5.2. If an overall social choice correspondence f ∗ is Strongly Pareto and Monotonic,

then x /∈ f ∗(%) whenever x is weakly Pareto dominated at %.

12This is a serial dictatorship version. See Luce and Raiffa (1957, Section 14.5) and Gevers (1979, Theorem 3).
13There are multiple %Y that take Y to the top from %. One can pick any one of them for each pair of %
and Y to define an extension. All our results are unaffected by the choice of %Y , hence the choice of the
particular extension used. The same remark applies to Equation (5) in Section 6.
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Proof. Suppose by contradiction that y weakly Pareto dominates x at % but x ∈ f ∗(%).

Construct %′ by taking {x, y} to the top from %. Monotonicity requires x ∈ f ∗(%′) but

Strong Pareto optimality requires f ∗(%′) = {y}. �

The next proposition relates axioms on f ∗ with those on f .

Proposition 5.3. If an overall social choice correspondence f ∗ is Strongly Pareto and Mono-

tonic, then the social choice correspondence f defined in Equation (3) is SU, IIF and ILA.

Proof. SU: Follows from Lemma 5.2.

IIF: Suppose % and %′ agree on Y ⊆ X. Then %Y and %′
Y

differ only by the ranking

among alternatives not in Y , which are all ranked below f ∗(%Y ) ⊆ Y in both %Y and %′
Y

.

Monotonicity requires f ∗(%Y ) = f ∗(%′
Y

). By Equation (3), f(Y,%) = f(Y,%′).

ILA: Suppose Z = f ∗(%) ∩ Y = f(X,%) ∩ Y is non-empty. Notice that all individuals

(strictly) prefer each z ∈ Z to each x ∈ X at %Y if they (strictly) prefer z to x at %. By

Monotonicity Z ⊆ f ∗(%Y ) ⊆ f ∗(%). Meanwhile, Lemma 5.2 dictates f ∗(%Y ) ⊆ Y . Since

f ∗(%Y ) ⊆ f ∗(%) (above, by Monotonicity), f ∗(%Y ) ⊆ f ∗(%) ∩ Y = Z. Hence f ∗(%Y ) = Z.

By Equation (3) and the definition of Z, f(Y,%) = f(X,%) ∩ Y . �

None of the arguments in Lemma 5.2 and Proposition 5.3 is affected if the preference

domain is restricted to PN . Hence two generalized versions of the Muller-Satterthwaite

Theorem follow immediately from Theorems 3.1 and 3.3:

Corollary 5.4 (Muller-Satterthwaite Theorem). Any overall social choice correspondence

f ∗ : RN → 2X \ ∅ (respectively, f ∗ : PN → 2X \ ∅) that is Strongly Pareto and Monotonic is

Serially Dictatorial (Dictatorial).

5.2. The Gibbard-Satterthwaite Theorem. We restrict our attention to overall social

choice functions for the Gibbard-Satterthwaite Theorem since introducing strategy-proofness

for set-valued mappings requires an extension of preferences on X to preferences on 2X , which

is too far a digression14. We also restrict the preference domain to PN , that is, only strict

preferences are admitted. The discussion on the latter restriction is deferred to the end of

this subsection.

Definitions 5.5. An overall social choice function f ∗ : PN → X is

onto if for every x ∈ X there is a �∈ PN such that f ∗(�) = x;

Strategy-proof if f ∗(�) %i f
∗(�′i,�−i) for all �, all i and all �′i.

Define also Strong Pareto optimality and Monotonicity for overall social choice functions

defined on PN in the same manner as in Definitions 5.1.

14See Gärdenfors (1979) for a survey on early work on this topic. Examples on different approaches to this
problem include Duggan and Schwartz (2000); Barberà, Dutta, and Sen (2001); Ching and Zhou (2002).
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Figure 6. Preference Profiles for Example 5.8

Lemma 5.6.

(1) Any Strategy-proof overall social choice function f ∗ : PN → X is Monotonic.

(2) Any onto and Monotonic overall social choice function f ∗ : PN → X is Strongly

Pareto.

Proof. See Muller and Satterthwaite (1977); Reny (2001, pp. 104-105). �

The Gibbard-Satterthwaite Theorem now follows from Corollary 5.4:

Corollary 5.7 (Gibbard-Satterthwaite Theorem). Any onto15 and Strategy-proof overall

social choice function f ∗ : PN → X is dictatorial.

The restriction to strict preferences in this subsection is not innocuous, as illustrated by

the next example16:

Example 5.8. There are 3 alternatives, X = {x, y, z}, and 3 individuals, N = {1, 2, 3}.
The overall social choice function f ∗ : RN → X takes the following form: Individual 1 is the

first dictator. If Individual 1 has multiple favorites and z is one of them, then Individual 2

will be the second dictator and any remaining tie will be broken by alphabetical order. If

instead z is not among Individual 1’s favorite, Individual 3 will be the second dictator and

any remaining tie will be broken by alphabetical order.

It can be easily verified that f ∗ is onto and Strategy-proof. However, it is not Strongly

Pareto: At profile % (Figure 6(a)), z is the uniquely weakly Pareto dominant alternative,

yet f ∗(%) = y. Moreover, if f : (2X \ ∅)×RN → X extends f ∗, f violates either IIF or ILA.

If it satisfies ILA, then f({x, y},%′) = x and f({x, y},%′′) = y, which violates IIF since %

and %′ agree on {x, y}.17

15One can replace the onto assumption with the assumption that the range of f∗ contains at least 3 elements
by redefining X to be the range of f∗ (see Barberà and Peleg, 1990). The same remark applies to the strict
preference version of Corollary 5.11 in the Section 5.3.
16We thank Salvador Barberà for this example.
17For similar reasons f∗ also violates Monotonicity.
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5.3. The Jackson-Srivastava Characterization. Again we restrict our attention to over-

all social choice functions as it is unclear what it means for a mechanism to implement a

set-valued social choice mapping.

A mechanism M = (A, g) consists of an action profile space A =
∏

i∈N Ai and an outcome

function g : A → X. Let M be the set of all mechanisms. An equilibrium concept is a

mapping E :M×RN → 2A. The equilibrium outcome correspondence associated with E is

given by

OE(M,%) = {x ∈ X : ∃ a ∈ E(M,%) s.t. g(a) = x} .

An overall social choice function f ∗ : RN → X is implemented via equilibrium concept E

and mechanism M if OE(M,%) = f ∗(%) for all %∈ RN .

Definitions 5.9 (Jackson-Srivastava). Let M = (A, g) be a mechanism. Take a ∈ A, %∈ RN

and two groups of individuals S, S ′ ⊆ N . The action profile a′ = (a′S, a−S) is an (S, S ′)-

improvement from a at % if g(a′) %i g(a) for all i ∈ S ′ with at least one strict preference. A

pair of groups (S, S ′) is responsive with respect to mechanism M under equilibrium concept

E if a /∈ E(M,%) whenever there exists an (S, S ′)-improvement from a at %.

An equilibrium concept E satisfies direct breaking with respect to M if, whenever

OE

(
M, (%′i,%−i)

)
6= OE(M,%), for each a ∈ E(M,%) there exists a responsive pair of

groups (S, S ′) under E and an (S, S ′)-improvement from a at (%′i,%−i).

When the preference domain is PN , iterative elimination of strictly dominated strategies,

Nash equilibrium and Strong equilibrium satisfy direct breaking with respect to all mech-

anisms, while undominated strategies satisfies direct breaking with respect to all bounded

mechanisms18 (Jackson and Srivastava, 1996). The proofs for the first three concepts (itera-

tive elimination of strictly dominated strategies, Nash equilibrium and Strong equilibrium)

extend easily when weak preferences are allowed.

The next lemma adapts Jackson and Srivastava’s result on Monotonicity and implemen-

tation to the weak preference domain.

Lemma 5.10. Suppose a mechanism M implements an overall social choice function f ∗ :

RN → X via equilibrium concept E. If E satisfies direct breaking with respect to M , then f ∗

is Monotonic.

Proof. Let f ∗(%) = x and consider %′ such that x %i y implies x %′i y (with x �i y implying

x �′i y) for all y ∈ X and all i ∈ N . Since M implies f ∗ via E, OE(M,%) = x. We

claim that OE(M, (%′i,%−i)) = x for any i ∈ N . Suppose not and let a ∈ E(M,%). Since

E satisfies direct breaking, there exists a responsive pair of groups (S, S ′) with respect to

18A mechanism is bounded if, at each preference profile, each dominated action is dominated by an undom-
inated action.
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M under E and an (S, S ′)-improvement a′ = (a′S, a−S) from a at (%′i,%−i). By definition,

g(a′) %j g(a) = x for all j ∈ S ′ with at least one strict preference. If i /∈ S ′, a′ is an (S, S ′)-

improvement from a at %. If i ∈ S ′, since g(a′) %′i x implies g(a′) %i x (with strict preference

implying strict preference)19, a′ is also an (S, S ′)-improvement from a at %. This contradicts

(S, S ′) being responsive. Repeat the same argument with another individual j 6= i starting

at (%′i,%−i). Proceeding this way we reach %′ and the social choice remains x. �

The following two versions of the Jackson-Srivastava characterization on equilibrium con-

cepts that lead to impossibility theorems20 are now straight-forward:

Corollary 5.11 (Jackson and Srivastava (1996)). Suppose a mechanism M implements a

Strongly Pareto (respectively, onto) social choice function f ∗ : RN → X (f ∗ : PN → X) via

equilibrium concept E. Then f ∗ is serially dictatorial (dictatorial) if and only if E satisfies

direct breaking with respect to M .

Proof. If: Follows from Lemma 5.10 (and Lemma 5.6 in the case of strict preferences) and

Corollary 5.4.

Only if: Let π = (1, . . . , N) be the sequence of serial dictators and ρ be the tie-breaking

preference. Add a dummy individual N+1 whose only preference is ρ. Suppose OE (M,%) =

x and OE(M, (%′i,%−i)) = y 6= x. Let k ≥ i be the individual who strictly prefers y to x at

the new preference profile. Now any a′ ∈ E(M, (%′i,%−i)) is an (N, πk)-improvement from

any a ∈ E(M,%) at (%′i,%−i). Serial dictatorship implies that (N, πk) is responsive with

respect to M under E. Therefore E satisfies direct breaking with respect to M . �

The strict preference version is the original theorem in Jackson and Srivastava (1996).

The weak preference version is a new extension of their theorem. It is essential to state

this extension using Strong Pareto optimality instead of onto, as onto and Monotonicity

guarantee only weak but not strong Pareto optimality when the preference domain is RN .

Due to the remarks after Definition 5.9, Corollary 5.11 implies that any Strongly Pareto

overall social choice function that is implementable via iterative elimination of strictly dom-

inated strategies, Nash equilibrium or Strong equilibrium is Serially Dictatorial. When only

strict preferences are admitted, any onto overall social choice function that is implementable

via undominated strategies in a bounded mechanism is Dictatorial.

6. Strategic Candidacy

Strategic candidacy concerns the effect of a unilateral withdrawal of candidacy on the

election outcome. Hence the social choice is defined on subsets of social alternatives with
19If g(a′) �i x, then x 6%′i g(a′). By the hypothesis on %′, x 6%i g(a′), which is equivalent to g(a′) �i x. If
g(a′) ∼i x, then x 6�′i g(a′). By the hypothesis on %′, x 6�i g(a′), which is equivalent to g(a′) %i x.
20We thank Matthew Jackson for pointing us to this theorem.
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at least |X| − 1 elements. More generally, one can consider social choices defined on some

X ⊆ 2X . Say X satisfies k-set feasibility if for all subsets Y ⊆ X, Y ∈ X whenever |Y | ≥ k.

A voting procedure is a correspondence f̂ : X × RN → 2X \ ∅ such that f̂(Y,%) ⊆ Y for all

Y ∈ X and all %∈ RN .21

Definitions 6.1. A voting procedure f̂ : X ×RN → 2X \ ∅ satisfies

k-set Feasibility if X is k-set feasible;

Strong Unanimity if f̂(Y,%) = {y} whenever y is uniquely weakly Pareto dominant in

Y ∈ X ;

Independence of Irrelevant Alternatives (IIA) if f̂(Y,%) = f̂(Y,%′) whenever % and %′

agree on Y ∈ X ;

Arrow’s Choice Axiom (ACA) if f̂(Y,%) = f̂(Z,%) ∩ Y whenever Y, Z ∈ X , Y ⊆ Z and

the intersection is non-empty;

Strong Candidate Stability (SCS) if f̂(Y,%) = f̂(X,%)∩Y whenever Y ∈ X , |Y | = |X|−1

and the intersection is non-empty;

Dictatorship if there exists an individual i such that f̂(Y,%) ⊆ T (Y,%i) for all Y ∈ X
and all %∈ RN ;

Serial Dictatorship if there exists a permutation of individuals π and a tie-breaking pref-

erence ρ ∈ R such that f̂(Y,%) = T (TN(Y,%, π), ρ) for all Y ∈ X and all %∈ RN .

Obviously, if f̂ is k-set feasible for some k < |X| and satisfies Arrow’s choice axiom, f̂ is

strongly candidate stable.

Lemma 6.2. If the voting procedure f̂ is (|X| − 1)-set feasible, strongly unanimous, IIA

and SCS, then f(X,%) ⊆ Y whenever each alternative y ∈ Y weakly Pareto dominates each

x /∈ Y at %.

Proof. See Eraslan and McLennan (2004, Lemma 1, pp. 41-42). �

Lemma 6.3. Let f̂ be a (|X| − 1)-set feasible, strongly unanimous, IIA and SCS voting

procedure. Then f̂(X,%Y ) = f̂(X,%) ∩ Y whenever %Y takes Y to the top from % and the

intersection is non-empty.

Proof. Fix Y , % and %Y such that f̂(X,%) ∩ Y 6= ∅. Let Z = X \ Y . Enumerate the

elements of Z as z1, . . . , zK . Define Z0 = ∅ and Zk = {z1, . . . , zk}. Construct %0=% and

for all k > 0 a preference profile %k such that: (1) %k and %k−1 agree on X \ {zk}; (2) %k

and %Y agree on Zk; and (3) all z ∈ Zk are strictly Pareto dominated by all x /∈ Zk. By

construction, %K=%Y .

21We do not allow for candidate voters (social alternatives which are also individuals).
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We claim that for all k ≥ 0,

f̂(X,%k) = f̂(X,%) \ Zk. (4)

The case of k = 0 is trivial. Suppose Equation (4) holds for k − 1. Since, by assumption,

f̂(X,%) ∩ Y 6= ∅, the induction hypothesis implies f̂(X,%k−1) 6= {zk}. Thus

f̂(X,%k) = f̂(X,%k) ∩ (X \ {zk}) (Lemma 6.2)

= f̂(X \ {zk},%k) (SCS)

= f̂(X \ {zk},%k−1) (IIA)

= f̂(X,%k−1) ∩ (X \ {zk}) (SCS)

=
(
f̂(X,%) \ Zk−1

)
\ {zk} (Induction hypothesis)

= f̂(X,%) \ Zk.

Therefore f̂(X,%Y ) = f̂(X,%) \ Z = f̂(X,%) ∩ Y . �

Given a voting procedure f̂ that satisfies k-set feasibility for some k < |X|, Strong Una-

nimity, IIA and ACA, extend it to our unrestricted domain by defining: for all Y ⊆ X and

all %∈ RN ,

f(Y,%) = f̂(X,%Y ), (5)

where %Y is a preference profile that takes Y to the top from %. Lemma 6.2 guarantees

f(Y,%) ⊆ Y so f is a valid social choice correspondence. Lemma 6.3 and ACA ensure

f̂(X,%Y ) = f̂(X,%) ∩ Y = f̂(Y,%) for all Y ∈ X , so f is indeed an extension of f̂ .

Proposition 6.4. If a voting procedure f̂ is (|X| − 1)-set feasible, strongly unanimous, IIA

and SCS, then the social choice correspondence f defined in Equation (5) satisfies SU, IIF

and ILA.

Proof. SU: If y is uniquely weakly Pareto dominant in Y ⊆ X at %, then y is uniquely

weakly Pareto dominant in X at any %Y taking Y to the top from %. Strong Unanimity of

f̂ and Equation (5) ensure f(Y,%) = f̂(X,%Y ) = {y}.
IIF: If % and %′ agree on Y ⊆ X, then %Y takes Y to the top from %′

Y
as well. Lemma 6.2

guarantees that both f̂(X,%Y ) and f̂(X,%′
Y

) are subsets of Y . Applying Lemma 6.3 we

obtain f̂(X,%Y ) = f̂(X,%′
Y

) ∩ Y = f̂(X,%′
Y

). By Equation (5), f(Y,%) = f(Y,%′).

ILA: Follows from Lemma 6.3. �

Since the above argument is unaffected by restricting the preference domain to PN , two

versions of the Grether-Plott Theorem22 are immediate from Theorems 3.1 and 3.3:

22We thank John Weymark for pointing us to this theorem.
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Corollary 6.5 (Grether and Plott (1982)). If a voting procedure f̂ : X × RN → 2X \ ∅
(respectively, f̂ : X × PN → 2X \ ∅) satisfies k-set feasibility for some k < |X|, Strong

Unanimity, Independence of Irrelevant Alternatives and Arrow’s Choice Axiom, it is Serially

Dictatorial (Dictatorial).

The impossibility theorem under strategic candidacy follows as a special case:

Corollary 6.6 (Dutta, Jackson, and Le Breton (2001)23). If a voting procedure f̂ : X×RN →
2X \ ∅ (respectively, f̂ : X ×PN → 2X \ ∅) is (|X| − 1)-set feasible, Strongly Unanimous, In-

dependent of Irrelevant Alternatives and Strongly Candidate Stable, it is Serially Dictatorial

(Dictatorial).

7. Conclusion

This paper proposes a unifying impossibility theorem. Unanimity and our two indepen-

dence conditions underlie the axioms of a number of classical impossibility theorems. Thus

even if one finds the axioms of these impossibility theorems disputable, our theorem indicates

that any alternative set of axioms that implies ours leads also to dictatorship.

Several extensions are possible. For instance, one can modify our definitions to prove

an impossibility theorem under the set of all continuous preferences over a compact metric

space of social alternatives (c.f.: Barberà and Peleg, 1990). Another possibility is to allow

randomized social choices (c.f.: Benôıt, 2002). Finally, one may use the ultrafilter method

of Kirman and Sondermann (1972) to obtain dictatorship when there are infinitely many

individuals.
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