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ABSTRACT

This paper shows that oil price changes, measured as short-term futures returns, are a strong predictor

of excess stock returns at short horizons. Ours is a leading variable for the business cycle and exhibits

low persistence which avoids the fictitious long-horizon predictability associated to other predictors used

in the literature. We compare our variable with the most popular predictors in a sample period that

includes the recent financial crisis. Our results suggest that oil price changes are the only variable with

forecasting power for stock returns. This significant predictive ability is robust against the inclusion of

other variables and out-of-sample tests. We also study the cross-section of expected stock returns in a

conditional CAPM framework based on oil price shocks. Our model displays high statistical significance

and a better fit than all the conditional and unconditional models considered including the Fama-French

three-factor model. From a practical perspective, ours is a high-frequency, observable variable that has

the advantage of being readily available to market-timing investors.

Keywords: Return predictability, business cycle, crude oil, futures prices, asset pricing, conditional

CAPM.

JEL Classification: G17, E44, Q43, E32, G12, G14.



I. Introduction

The predictability of stock returns is a controversial topic. Until recently, the prevailing view was

that returns could be predicted at long horizons by the business cycle (Cochrane, 2005), although

the evidence was largely concentrated on the use of financial variables as predictors. The evidence

for long-horizon predictability was significantly stronger than for short horizons. But in recent

years, several studies have questioned the existence of such stock return predictability. Boudoukh,

Richardson, and Whitelaw (2008) show that the dominant findings in this literature are solely the

consequence of the high persistence of the predictors. Also, Welch and Goyal (2008), who compare

the out-of-sample predictive performance of a large number of popular predictors with the prevailing

average excess stock return, find that none of these variables predicts equity premium at short

horizons better than the historical average return.1

Despite this, defenders of predictability have continued working. Ang and Bekaert (2007) report

evidence of predictability, at horizons of up to one year, using both the dividend-price ratio and

the interest rate. Campbell and Thompson (2008), using a much longer sample, find that the out-

of-sample forecasting power of several variables improves significantly when certain restrictions are

imposed, and that trading on these predictors can lead to significant welfare benefits when compared

to trading on the historical average return. Cochrane (2008) criticizes the existing tests for the

dividend-price ratio and states that the null hypothesis of non-predictability of stock returns must

be proposed along with its implication for the future growth of dividends. In other words, given that

dividend-price ratio is stationary, the inexistence of predictability in the dividend growth guarantees

that returns are predicted by that ratio.2 More recently, Cooper and Priestley (2009) propose the

output gap as a new forecasting variable for stock market returns. This variable is robust against

the tests of Boudoukh, Richardson, and Whitelaw (2008) and Welch and Goyal (2008). Given that a

persistent predictive variable, under the null hypothesis of non-predictability, will fictitiously exhibit

forecasting power at long horizons, the current challenge is to propose a variable that predicts equity

returns at short horizons and is robust against the new tests suggested in the literature.

This paper shows that unexpected changes in oil prices are a significant predictor excess stock

market returns at short horizons and show a significantly better performance when compared to the

standard predictors used in the literature. Moreover, our predictive variable has deep macroeconomic
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roots and allows us to connect the short-horizon predictability of equity returns with the business

cycle.

This proposal is motivated by two lines of research: the relationship between GDP and oil prices

and the response of equity returns to oil price shocks. Because stock return predictability has been

detected at business-cycle frequencies, the first strand of literature justifies the relationship between

oil prices and the macroeconomy. The second line of research, although less voluminous than the

first, provides empirical evidence that past oil shocks have an impact on future equity returns.

Intuitively, there are sound reasons for believing that oil price leads the economic cycle, as nine

of ten recessions in the United States since World War II have been preceded by an increase in oil

prices (Hamilton, 2008). The relationship between GDP and oil prices begins with Hamilton (1983)

and has evolved in several directions. These include the study of several transmission channels of

oil shocks to the economy (Bernanke, 1983; Hamilton, 1988; Ferderer, 1996; Finn, 2000; Davis and

Haltiwanger, 2001; Balke, Brown, and Yucel, 2002; Hamilton and Herrera, 2004; Huntington, 2007),

analysis of the persistence of this relationship and non-linear shock measurements (Lee, Ni, and

Ratti, 1995; Hooker, 1996; Hamilton, 1996; Hamilton, 2003), distinction between real and nominal

impacts of oil prices (Cologni and Manera, 2008; Gronwald, 2008), and decomposition of supply and

demand oil shocks (Kilian, 2008; Kilian, 2009).

Among studies that examine the impact of oil shocks on stock returns are Jones and Kaul (1996),

who conclude that returns react rationally to oil price changes in the U.S. and Canada, but that

there is an overreaction in the United Kingdom and Japan. Sadorsky (1999), Ciner (2001) and

Park and Ratti (2008), using vector autoregression analysis, detect a significant impact of oil price

shocks on equity returns. Driesprong, Jacobsen, and Maat (2008), in an industry-level study, find

evidence of stock return predictability of monthly oil price changes in certain industries, consistent

with an underreaction to oil shocks by investors. Kilian and Park (2009) study the different impacts

of demand and supply shocks on equity returns. Their findings indicate that, overall, oil price shocks

explain one-fifth of the long-term variation in equity returns. Nevertheless, and contrary to what

is typically believed, the relative importance of demand shocks is much greater than that of supply

shocks. Following a similar approach, Apergis and Miller (2009), using a sample of the G-7 countries

and Australia, conclude that the effects of oil shocks, while statistically significant, generate a smaller

economic impact on equity returns.
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Oil price shocks are measured by short-term futures returns on crude oil contracts. Based on

the macroeconomic literature (Hamilton and Herrera, 2004) and in-sample tests, four lags of this

variable are used. The existence of negative Granger-causality of oil price shocks on both equity

returns and production growth in a trivariate VAR confirms that oil shocks are a leading variable

and are countercyclical. Therefore, increases in oil prices precede recessions and declines in excess

stock returns.

To obtain a reliable inference from the predictive regressions, the tests consider covariance ma-

trices of coefficients corrected for heteroscedasticity and autocorrelation that arise from the use of

distributed lags and overlap of returns (Newey and West, 1987). Following Welch and Goyal (2008),

we use bootstrap in order to address size distortions in the t-test for long horizons (Ang and

Bekaert, 2007) and to make the correct inference from nested out-of-sample predictability tests

(Clark and McCracken, 2005). At horizons of one to three quarters, the results of the in-sample

regressions verify that oil price shocks exhibit predictive performance which is both statistically and

economically significant. Moreover, it superior to the performance of all other variables considered

(consumption-wealth ratio, price-dividend ratio, product gap and risk-free rate) with an R̄2 of 6%.

This meaningful in-sample result was also detected in out-of-sample tests. Our variable exhibited the

best R2 out of sample, which was close to 1.2% at one quarter. For longer time horizons, however,

no variable showed a significant predictive performance. To our knowledge, these results position oil

price shocks as the best short-term forecasting variable today.

Our sample period is 1983Q2-2009Q4 and is restricted by the existence of crude oil futures

prices. However, obtaining significant results in a sample period after the oil crisis in the 1970s

is not an easy task since most variables lose their forecasting power within this period (see Welch

and Goyal, 2008). Our variable also dominates recent predictors, like the output gap proposed by

Cooper and Priestley (2009). Furthermore, oil price shocks have other virtues such as low persistence

(they do not produce the pattern reported in Boudoukh, Richardson, and Whitelaw, 2008), they are

directly observable (unlike variables such as consumption-wealth ratio and product gap, which must

be estimated), they have no correlation with the predictive regression’s disturbances (do not generate

the bias analyzed in Stambaugh, 1999), they are a high frequency variable and are available at no

cost. All of these characteristics are valued in the practice of portfolio management.

The rest of this paper is structured as follows. The next section presents our variable and
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its relationship to the business cycle and excess market returns. Section III contains the results

from in-sample predictability at a quarterly horizon. Section IV reports the out-of-sample tests.

Section V discusses the evidence of predictability at longer horizons. Section VI analyzes the impact

of predictability in the cross-section of expected returns. Section VII concludes.

II. Oil price, the business cycle and excess market returns

This section presents our variable and establishes its relationship to the business cycle and excess

stock market returns.

A. Oil price and the macroeconomy

As shown by Hamilton (2008), nine out of the last 10 recessions in the United States since World

War II have been preceded by a rise in oil prices. This has not gone unnoticed by economists and has

generated a substantial amount of research, particularly given the fact that oil consumption represents

only 4% of GDP.3 The study of the relationship between oil and the macroeconomy strengthens with

the seminal work of Hamilton (1983). He uses Sims’s (1980) bivariate VARs and six-variable VARs

with quarterly data for the 1948-1980 period to show that oil prices strongly Granger-caused the GDP

growth rate and the U.S. unemployment rate. According to his calculations, an increase in the oil

price is followed by four successive quarters of lower GDP growth rates. Gisser and Goodwin (1986)

confirm these findings and reject the existence of a structural break in this relationship as a result

of the OPEC embargo in 1973. As shown by Ferderer (1996), the common transmission channels of

oil price shocks to the real economy are: inflation, terms of trade (Huntington, 2007) and the capital

utilization rate (Finn, 2000).4

Subsequent studies (Mork, 1989; Lee, Ni, and Ratti, 1995; Hooker, 1996; Hamilton, 2008), note

a weakening of this relationship when data from 1980 onwards are included (which coincides with

OPEC’s loss of control of the oil market).5 This turned attention towards non-linear relationships

between the variables (Mork, 1989; Ferderer, 1996; Lee, Ni, and Ratti, 1995; Hamilton, 1996; Hamil-

ton, 2003). This evidence required for new explanations to understand the asymmetric impact of

oil on the economy. The common mechanisms are: monetary policy (Ferderer, 1996; Bernanke,
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Gertler, and Watson, 1997; Hamilton and Herrera, 2004; Balke, Brown, and Yucel, 2002; Leduc and

Sill, 2004), imperfect intersectoral mobility of factors (Lee and Ni, 2002; Lilien, 1982; Hamilton, 1988;

Davis and Haltiwanger, 2001), investment irreversibility (Bernanke, 1983; Dhawan and Jeske, 2008),

wage rigidities (Lee, Ni, and Ratti, 1995), and interest rates (Balke, Brown, and Yucel, 2002).6

Meanwhile, Hooker (1996) shows that none of the asymmetric specifications to date establishes a

Granger-causal relationship in post-1973 data. Nevertheless, Carruth, Hooker, and Oswald (1998)

document a strong and significant linear relationship between the U.S. rate of unemployent and oil

prices.7

Jimenez-Rodriguez and Sanchez (2005) find significant empirical evidence of the effects of oil for

the G-7 countries, Norway and the Eurozone overall. Jimenez-Rodriguez (2008) also reports similar

findings, but for manufacturing production of six OECD member countries. Kliesen (2008) adds to

the standard regression the variable CFNAI (Chicago Fed National Activity Index), which is the

first principal component of 85 monthly indicators of real economic activity, and finds that oil has a

significant impact on the U.S. macroeconomic performance. In addition, Cologni and Manera (2009)

find a negative influence of oil shocks on GDP growth, although they reject the hypothesis that real

GDP growth has no effect on oil prices. Kilian (2008) finds empirical evidence that exogenous oil

supply shocks on output have caused significant impacts on the GDP of G-7 countries.8 Cologni

and Manera (2008) observe that oil price shocks affect only the GDP in Italy and in the U.S., albeit

temporarily. For almost all of the countries in their sample, oil shocks affect inflation and nominal

exchange rates. Gronwald (2008) concludes that only oil shocks that exceed a certain threshold

affect the real sector of the economy, while “normal” positive shocks do generate significant nominal

impacts.

Clearly, the abovementioned empirical evidence, though not free of debate, largely supports the

existence of a significant relationship between oil price shocks and the business cycle in both economic

and statistical terms. At the same time, these findings motivates the main question we address in

this paper, which is: Given that oil price shocks precede changes in GDP, do they also have some

predictive power for stock market returns?
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B. Oil price and the financial market

Contrary to what has occurred with the relationship between oil shocks and the macroeconomy, the

linkage between these shocks and the financial markets has received little attention.9 For deeper

analysis, Table I presents detailed information on the empirical studies reviewed in this section.

In a cross-country study on market efficiency, Jones and Kaul (1996) find that oil price shocks

produce significant changes in stock returns and that in the U.S. and Canada this reaction is rational.

On the other hand, they find an overreaction in the United Kingdom and Japan. Using daily data,

Huang, Masulis, and Stoll (1996) find that oil futures returns have no correlation with stock returns,

with the exception of oil company returns. Ciner (2001) tests for non-linear Granger-causality of

futures returns on stock market returns, and unlike the evidence obtained by Huang, Masulis, and

Stoll (1996), his results show a significant, non-linear relationship across the returns of both series.

Using a VAR analysis with monthly data, Sadorsky (1999) finds that in the U.S. market the price

of oil affects the financial market, but that the effect in the other direction is insignificant. He also

finds that oil price shocks have an asymmetric effect on industrial production and real stock returns,

with positive shocks having a greater impact than negative ones.

On the theoretical side, Wei (2003) builds a general equilibrium model to estimate the impact

of an oil price shock on the value of a firm that faces investment irreversibility. His model predicts

that an oil shock will have only a small impact. Consequently, he is unable to explain the massive

decline in the stock market in 1974 after the oil shock of 1973.

Using data on stock indices and economic sectors of different countries, Driesprong, Jacobsen, and

Maat (2008) find that oil prices have significant predictive power in developed economies, however,

this is not valid for emerging countries. The underlying cause of this finding would be market

inefficiency. In particular, they suggest an initial underestimation by agents of the impacts of the

shock that is slowly corrected later. On the other hand, Park and Ratti (2008) find evidence that

oil price shocks have a significant negative impact on real returns of several net importing countries,

unlike what occurs in Norway, a net exporter, where the impact is positive. Moreover, in almost all

of the countries considered in their sample, positive oil price shocks are quickly followed by increases

in short-term interest rates. Evidence of asymmetric impact of oil shocks is only found for Norway

and the United States. Also, an increase in oil price volatility significantly reduces real equity returns
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in many European countries.

Following Kilian (2009), Kilian and Park (2009) break down oil shocks into three classes: supply,

aggregate demand and specific demand (or precautionary demand) shocks. According to their results,

these shocks explain 6%, 5% and 11% of the long-term variation of real stock returns, respectively.

They do not find a significant response of stock returns to oil supply shocks, a result that is consistent

with Wei’s (2003) model. However, they do find significant positive responses to global demand

shocks and significant negative responses to precautionary demand shocks. Likewise, sector-level

evidence suggests that the mechanism that transmits oil shocks to stock returns is through the

demand for industrial products, and not, as widely believed, through the production costs of the firms.

Apergis and Miller (2009) criticize the methodology used in Kilian (2009) and Kilian and Park (2009)

due to the use of both stationary and non-stationary variables in their VAR specification. They

differentiate the I(1) variables and carry out the same breakdown as Kilian (2009), but using only

I(0) variables. Instead of including the equity returns in a same VAR, as in Kilian and Park (2009),

Apergis and Miller (2009) use a second VAR with the three types of shocks and the stock market

returns of each country. Using a sample composed of the G-7 Group and Australia, they conclude

that the effects of oil shocks, although statistically significant, produce a minor impact on stock

returns.

Several conclusions can be obtained from this literature review. As Table I shows, the use of oil

spot prices has prevailed over the use of oil futures prices in the literature. Also, in contrast to most

macroeconomic studies, the use of logarithmic oil returns has been predominant in the financial area.

Finally, although this is clearly a highly relevant topic, the decomposition of oil price shocks is still

in a very early methodological stage.

C. Stock returns and the business cycle

To better capture the aggregate impact of oil shocks and make our results more compatible with

the macroeconomic evidence, here we use quarterly data. This also reduces the probability that

our findings are contaminated by market inefficiencies as in Driesprong, Jacobsen, and Maat (2008),

which are more particular to short horizons and should tend to disappear because agents have

more time to adjust their expectations. Moreover, this allows us to include in the analysis the
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consumption-wealth ratio, a variable which is only available at a quarterly frequency (Lettau and

Ludvigson, 2001a).

Our proxy for the stock market is the value-weighted CRSP index, from which we obtain the

quarterly returns on the market portfolio (Rm). When using sample periods that start after 1983, we

proxy the risk-free rate (Rf ) with the 3-month constant-maturity treasury yields from the Federal

Reserve Board of Governors. For longer sample periods we use the stock returns and the risk-free

rate available from Ken French’s web page, which contains data from September 1926. Stock returns

are from the value-weighted CRSP index and the risk-free rate is from the 3-month Treasury bills

from Ibbotson Associates.

Figure 1 shows the excess market returns from 1926Q3 to 2009Q4. The shaded areas represent

the NBER (National Bureau of Economic Research) recession periods. The stock returns tend to

be negative and grow during recessions, reaching peaks towards the end of each one. In fact, in our

sample period the maximum return was reached by the end of the Great Depression of the 1930s.

Nevertheless, this commonly cited contracyclical character of stock returns is evident only at the

end of recessions; at the beginning of and during recessions, these returns are highly procyclical.

For example, the minimum in the sample period was also reached during the Great Depression. In

addition, expansions are characterized on average by positive returns, although they are less volatile

than those generated during recessions.

NBER’s business cycle dates enable the sample to be divided into the four stages: expansion,

peak, recession and trough. Table II shows the first two conditional sample moments for the excess

stock returns. As can be seen in the table, the most frequent stage of the economy is expansion, and

during this phase of the cycle the average return is positive (2.9%) and greater than its historical

average (2.0%). On the contrary, during the recession stage the average excess return on the market

has a similar magnitude as it does during the expansion stage, but with the opposite sign (-3.0%)

and almost twice the volatility. Finally, during the peaks (troughs), expectations about the state of

the economy are negative (positive) and therefore, excess stock returns are highly negative (positive)

in these stages.

Stock market returns vary considerably with the business cycle, and therefore should be pre-

dictable through leading variables that anticipate the cycle. This is consistent with Welch and
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Goyal (2008), who instead of proposing the absence of predictability, conclude the following: “... our

article suggests only that the profession has yet to find some variable that has meaningful and robust

empirical equity premium forecasting power ...”.

D. Measuring oil price shocks

Considering the evidence mentioned above, it seems natural to propose oil price shocks as a leading

variable with the potential to forecast stock market returns. However, to maximize its predictive

power, it is essential to consider only unanticipated changes in the oil price. Although direct oil

spot returns have been a widely used variable in the literature (see Table I), they are excluded

as a measure of oil shocks, because they contain some components that are clearly anticipated

by market participants, such as the interest rate and the convenience yield.10 To address this

drawback it is possible to estimate unexpected oil changes with a model for spot price dynamics,

as in Bachmeier (2008) and Nandha and Faff (2008), among others; however, this procedure still

has disadvantages in that it depends on the model specification and the information set used by the

econometrician to estimate the conditional mean may not coincide with that of the market. Indeed,

unexpected oil price changes can only be captured with an objective and precise estimate of the

expected spot price in the future.

We measure unexpected oil price shocks by short-term futures returns on crude oil. Using Fama

and French’s (1987) methodology and cointegration tests, Switzer and El-Khoury (2007) show that

oil futures prices have significant predictive power for future spot prices. Moreover, Ma (1989) and

Kumar (1992) confirm that futures prices, in addition to being unbiased predictors of spot prices,

exceed the predictive capacity of a random walk and a wide variety of models. This evidence suggests

that unexpected changes in oil prices are correctly captured by our proposed variable.11 Therefore,

we assume that quarterly unexpected oil shocks are proxied by oil futures returns, i.e.,

∆f(t) ≡ f1(t)− f4(t− 3) ≈ s(t)− Et−3 [s(t)] (1)

where s(t) is the log oil spot price and f τ (t) is the log oil futures price of a contract that matures in

τ months.

Data on oil futures prices are from NYMEX, which began trading these contracts in March 1983.
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Therefore, our sample period is from 1983Q2 to 2009Q4. Figure 1 presents our variable and the other

predictors that are used for comparison purposes. The figure confirms that recessions are preceded

by positive oil shocks, while during recessions these shocks are rapidly reversed. The great variability

of the oil shocks is clear evidence of their predictive potential. Another visual characteristic is the low

persistence of the series, which prevents it from being subject to the critiques of existing predictive

variables. This also implies that the traditional asymptotic inference is not invalidated for our

variable. The optimal number of lags of our variable to be considered in this study was determined

using the Akaike Information Criterion (AIC) in Ordinary Least Squares (OLS) regressions of the

excess stock market return on lagged oil shocks. In this study we consider four lags of our variable,

because this number minimizes the AIC (see Table III). Interestingly, the number of lags coincides

with that obtained in the macroeconomic literature (see Hamilton, 2003 andHamilton, 2008).

E. Oil price, the business cycle and stock returns

To show evidence of the relationship among the oil price, the business cycle and excess stock returns,

we study the joint dynamics of these variables using a vector autoregression analysis with four lags.

Following Cooper and Priestley (2009), we use the total Industrial Production Index (IP) from the Fed

as a measure of output and a proxy for the business cycle. Table IV shows the maximum likelihood

estimates for the VAR(4) model. As is common in macroeconomic series, industrial production

growth rate (∆%IP ) is the easiest series to predict (its R2 is 51%) and its own lags have useful

information for forecasting its future values. On the other hand, the predictive power of the excess

stock return (Rm−Rf ) on ∆%IP is a clear signal that the financial market correctly anticipates future

economic growth. Moreover, in our sample the Granger-causality of oil shocks (∆f) on economic

growth is also verified, evidence that is in line with the macroeconomic studies mentioned before.

The table also shows that for the excess stock returns, the lack of significance of its own lags is a

clear sign of the efficiency of the equity market and that the findings of Driesprong, Jacobsen, and

Maat (2008) are not seen in quarterly horizons.12 There is also evidence of inverse causality with

the industrial production growth rate, which is probably the consequence of an adjustment process

of previous expectations about actual economic growth. Furthermore, and as expected, oil shocks

demonstrate a significant predictive power for excess stock returns, which will be explored in greater

depth in the following sections. Finally, the results reveal that oil shocks cannot be predicted with
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any of the lagged variables, which is evidence that our measure for oil shocks effectively captures

unanticipated changes in this variable.13

III. Short-horizon predictability of stock returns

This section and the following ones contain an analysis and testing of the predictive power of oil

price shocks for stock returns. In particular, this section focuses on the in-sample predictability of

stock returns at a quarterly horizon.

The predictive performance of our variable will be evaluated and compared to the performance

of the following variables: the risk-free rate (Campbell, 1987), the log dividend-price ratio (Fama

and French, 1988), the consumption-wealth ratio (Lettau and Ludvigson, 2001a), and the output

gap (Cooper and Priestley, 2009).

As described in Section C, the risk-free rate (Rf ) is proxied by the 3-month constant matu-

rity Treasury yields from the Fed. The log dividend-price ratio (d − p) was calculated from the

value-weighted CRSP index using the methodology described in Ang and Bekaert (2007). The

consumption-wealth ratio (cay) and its individual components are from Martin Lettau’s web page

and sampled at a quarterly frequency. The output gap (gap) is constructed using the total Industrial

Production Index. Although Cooper and Priestley (2009) define four methods for calculating the

output gap, the main one is the quadratic version of gap (based on its greater correlation with pro-

cyclical variables), which we also use here.14 The output gap is estimated with data from 1948Q1 to

replicate the series from Cooper and Priestley (2009). The variables cay(t) and gap(t) are assumed

to be known at the start of time t + 1, and therefore can be used to forecast excess stock returns.

We omit any complication due to the look-ahead bias in these variables and the normal delay in the

publication and subsequent revisions of these and other macroeconomic series.

Table V presents the main statistics of the predictive variables, while Figure 2 provides the

graphical evidence. As expected, the upper panel of Table V shows that the variables Rf , cay and

gap exhibit less volatility than excess return (Rm−Rf ), while the contrary is verified for our variable

(∆f) and d − p. Unlike the existing predictor variables, ∆f shows very low persistence; in fact, its

first-order serial correlation is similar to that of Rm−Rf . The lower panel of Table V shows that the
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intratemporal correlation of our variable with the excess stock return is very low, rejecting ∆f as a

possible pricing factor.15 Another important characteristic of our variable is its low correlation with

other predictive variables, which suggests that ∆f contains business cycle information not captured

by the existing predictors. On the contrary, the existing variables show high levels of correlation (in

absolute terms) among themselves, revealing the presence of redundant information.

Next we turn our attention to evaluating the predictive performance of our variable and the other

variables considered here. We begin with the evidence of in-sample predictability at a quarterly

horizon, for which we estimate the following regression:

Rm(t)−Rf (t) = α+ β′X(t− 1) + ε(t) (2)

where X(t − 1) is a vector of known predictors at t − 1 and β its associated coefficient vector. It

should be emphasized that X(t− 1) can include one variable, several variables or several lags of the

same variable.

Table VI shows the OLS results of equation (2). We report asymptotic t-stats and Wald tests that

correct for serial correlation and heteroscedasticity using Newey and West (1987).16 The columns

present the results for each predictor variable. The results indicate that our variable has the best

predictive performance with an R̄2 of 6%. The Wald test corresponds to the null hypothesis that

all the coefficients in equation (2) are zero, except the constant. This statistic is highly significant

(p-value of 2%). The annual cumulative impact of our variable, calculated from the sum of the

coefficients corresponding to the four lags of ∆f , is also economically significant. To see this, consider

a one-time increase in ∆f of one standard deviation (19.5% in our sample, see Table V). This change

leads to a 2.1% decrease in expected quarterly excess returns on the value-weighted CRSP index

(19.5%× (−0.106) = −2.1%), which is equivalent to 29.6% (2.1% / 7.0% = 29.6%) of the historical

average annual excess return.17

The dynamics of the distributed lags can be explained with aggregate demand shocks (see Kilian

and Park (2009)). A positive shock to the global demand for industrial commodities produces both

a direct positive impact and an indirect negative one in the financial market. The direct impact

is manifested in an increase in the oil price and an increase in economic growth with a consequent

positive stock return. Increased economic growth pushes the oil price even higher, and thus indirectly
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affects in a negative way the expected economic growth and expected stock returns in the future. The

final impact will depend on the relative magnitudes of both impacts.18 The direct impact is initially

stronger, which explains the positive significant effect of the first lag of ∆f . Later, the indirect impact

begins to gather strength and cause negative repercussions, although not of sufficient magnitude to

cancel out the initial positive impact (see the sign and low significance of the following two lags).

One year after the unexpected aggregate demand shock, the indirect effect becomes dominant; in

other words, the high price of oil causes a deceleration in the economy. This is manifested by the

negative and significant coefficient of ∆f(t− 4) which is also responsible for the cumulative negative

impact reported.

The third column in Table VI shows the results for the interest rate as a predictor. This variable

has the worst predictive performance in our sample, with R̄2 of -0.01. Contrary to the findings of

previous studies (Campbell, 1987), the coefficient that accompanies this variable is positive, although

not significant. This poor performance is associated with the low volatility of this variable in our

sample. Its standard deviation is 0.006 (see Table V), a value well below the 0.032 reported by

Ang and Bekaert (2007) for 1935Q2-2001Q4. The last three columns contain the results for the

d− p, cay and gap variables. All of these have intuitive signs, although their coefficients (in absolute

value) are lower than those reported in previous studies (see Ang and Bekaert, 2007; Lettau and

Ludvigson, 2001a and Cooper and Priestley, 2009; respectively).19 Moreover, the R2 statistic for

these variables (all about 2%) suggest that they have similarly poor predictive power, although cay’s

coefficient is significant while the other two are not.

The regressions in Table VI show that the oil shocks have significant in-sample forecasting power.

We now see whether our variable is robust to the inclusion of the other predictors considered here.

To evaluate this, we estimate the following extended predictive regression:

Rm(t)−Rf (t) = α+

4∑
j=1

βj∆f(t− j) + θ′Z(t− 1) + ε(t) (3)

where Z(t− 1) is a vector of predictor variables and θ its associated coefficients vector. Thus, with

the inclusion of Z(t− 1) in the regression, lack of robustness in the predictive power of our variable

should be reflected in changes in sign and/or loss of significance in the coefficients that accompany

the lags of oil shocks.
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The results of the estimation of equation (3) are presented in Table VII. The last row contains

the p-value of an asymptotic Wald test for the combined null hypothesis that all the coefficients

associated with the lags of our variable are zero. The columns show the results of including each of

the other variables in the predictive regression of ∆f , while the inclusion of all of them is considered

in the last column. First, given the low correlation of our variable with the others, the forecasting

power of our variable remains intact. According to the Wald test for the coefficients of ∆f , in

all of the estimates these coefficients maintain their combined, unaltered significance. In addition,

their signs and individual significance remain the same, and they are roughly the same size. Second,

consistent with previous results, the greatest increase in predictive power is reached when our variable

is used in combination with cay, obtaining an R̄2 of 8%. Third, contrary to what occurs with the oil

shock coefficients, the results of the last column provide evidence of great instability in the predictive

power of the other variables. None of these are significant. The coefficients of Rf and gap experience

changes in sign and those of d − p and cay vary dramatically in size. Of course, this evidence is

consistent with the high correlation between these variables reported in Table V.

In summary, this section demonstrated that our variable has significant and robust in-sample

forecasting power for stock returns. Out-of-sample predictability, also at a quarterly horizon, is

considered in the next section.

IV. Out-of-sample predictability of stock returns

In-sample predictive performance is essential for establishing the existence of predictability. However,

as noted by Welch and Goyal (2008), in order for a predictor variable to be used by an investor,

it must also demonstrate good out-of-sample predictive performance. That is, a predictive variable

must be able to forecast excess returns reasonably well with information available at the time of the

forecast, which is not guaranteed by the in-sample tests of equations (2) and (3), as the coefficients

are estimated using the full sample of available observations.

Welch and Goyal (2008) conclude that it is very difficult to find variables with short-horizon out-

of-sample forecasting power that outperforms the average excess return in a recent sample period.

In fact, when considering the sub-period from 1965 to 2005, they only find variables that outperform

the prevailing historical average return at a five-year horizon. Although the out-of-sample predictive

14



performance can be increased by imposing certain restrictions, as shown in Campbell and Thomp-

son (2008), here we choose to keep the simplicity and linearity of the predictive model. Despite the

poor in-sample predictive power of the other variables, we also test their out-of-sample performance.

In order to contribute to this discussion, we compare forecasts from nested linear models to

determine whether each variable has predictive content for stock returns. The prevailing historical

average of excess stock returns is used as a benchmark. Therefore, we define the following benchmark

and competing models:

benchmark: Rm(t+ 1)−Rf (t+ 1) = α1 + u1(t+ 1) (4)

competing: Rm(t+ 1)−Rf (t+ 1) = α2 + β′X(t) + u2(t+ 1) (5)

where the coefficients α1, α2 and β are estimated recursively. The sample of size T is divided into

in-sample and out-of-sample portions. R is defined as the minimum number of observations used

for estimating the coefficients and P ≡ T − R denotes the maximum number of one-step-ahead

predictions. Thus, forecasts of Rm(t + 1) − Rf (t + 1), t = R, . . . , T − 1, are generated recursively

using the two linear models in equations (4) and (5), where all coefficients are re-estimated with new

observations as forecasting moves forward through time.

The estimated forecast errors for the benchmark and competing models are denoted by:

benchmark: û1(t+ 1) = [Rm(t+ 1)−Rf (t+ 1)]− α̂1(t) (6)

competing: û2(t+ 1) = [Rm(t+ 1)−Rf (t+ 1)]− α̂2(t)− β̂(t)′X(t) (7)

for t = R, . . . , T −1 and the coefficients α̂1(t), α̂2(t) and β̂(t) are estimated with data through period

1, . . . , t. Then, one-step-ahead forecasts from the competing model can be compared to forecasts

from the benchmark model (that is, a restricted version of the competing model) by using statistics

based on the time series û1(t+ 1) and û2(t+ 1).

Our assessment of out-of-sample predictability involves three metrics. The first is the forecast

encompassing test of Clark and McCracken (2001). Based on a composite forecast from both models,

an encompassing test verifies whether the competing forecasts incorporate any useful information

absent in the benchmark forecasts. To clarify how the test works, we follow Harvey, Leybourne,
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and Newbold (1998) and specify a regression of the excess stock return on a weighted average of

forecasted values from the benchmark and competing models:

Rm(t+ 1)−Rf (t+ 1) = (1− λ) [α1] + λ
[
α2 + β′X(t)

]
+ ν(t+ 1) (8)

where 0 ≤ λ ≤ 1 and ν(t+ 1) is a error term. Substituting both forecasts from equations (4) and (5)

yields:

u1(t+ 1) = λ [u1(t+ 1)− u2(t+ 1)] + ν(t+ 1) (9)

Then, as λ is also the coefficient of the regression model in equation (9):

λ =
Cov [u1(t+ 1), u1(t+ 1)− u2(t+ 1)]

Var [u1(t+ 1)− u2(t+ 1)]
(10)

Thus, the combined forecast will have a smaller expected squared error than the benchmark

model forecast unless the covariance between u1(t+ 1) and u1(t+ 1)− u2(t+ 1) is zero (i.e., λ = 0).

This way, Clark and McCracken’s (2001) test contrasts the null hypothesis that λ ≤ 0 and is given

by:

ENC-NEW = P

∑T−1
t=R

(
û1(t+ 1)2 − û1(t+ 1)û2(t+ 1)

)∑T−1
t=R û2(t+ 1)2

(11)

Under the null hypothesis that the benchmark model encompasses the competing model, the

covariance between series u1(t + 1) and u1(t + 1) − u2(t + 1) will be less than or equal to zero.

Under the alternative that the competing model contains added information, the covariance should

be positive. Hence, the encompassing test presented above is one-sided. Clark and McCracken (2001)

demonstrate that the limiting distribution of ENC-NEW is not normal when the forecasts are nested

under the null and they provide asymptotic critical values for this statistic.

The second test used here is the one developed by McCracken (2007). This test, unlike the one

proposed by Diebold and Mariano (1995) in the context of non-nested models, allows for comparison

of predictive accuracy between nested models. In particular, we use it to test for equality of the

mean squared forecasting errors (MSE) from the benchmark and competing models, which is given
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by:

MSE-F = P

∑T−1
t=R

(
û1(t+ 1)2 − û2(t+ 1)2

)∑T−1
t=R û2(t+ 1)2

= P

[
MSE1 −MSE2

MSE2

]
(12)

where MSEj =
∑T−1

t=R ûj(t+ 1)2/P ; j = 1, 2. Based upon the value of this statistic the null of equal

MSE is either rejected or not rejected. McCracken (2007) shows that when the two models are nested

the alternative is one-sided, rather than two-sided. Moreover, since the asymptotic distribution of

MSE-F under the null is nonstandard, tables of asymptotically valid critical values are provided in

McCracken (2007).

Clark and McCracken (2001) use simulations to examine the small-sample properties of the ENC-

NEW and MSE-F tests. They report that although both tests have good sample size properties,

the ENC-NEW test is clearly the more powerful out-of-sample test of predictive ability. While

this evidence indicates that the inference from the ENC-NEW test is more reliable, Welch and

Goyal (2008) highlight an important problem of encompassing tests in general. The ENC-NEW

test uses the entire out-of-sample test to estimate the parameter λ, but an investor trying to use a

combined forecast to predict Rm(t + 1) − Rf (t + 1) will only have the information available up to

t to calculate the combination coefficient λ. Thus, although it does not have the best small-sample

properties, the MSE-F test is the only one which enables testing of out-of-sample predictive power

under the same conditions that an investor faces in reality.

Our final measure of out-of-sample forecasting performance is the out-of-sample R2, R2
OS . This

statistic is the analog to in-sample R2 and was proposed by Campbell and Thompson (2008). In

terms of our notation it is computed as:

R2
OS = 1−

∑T−1
t=R û2(t+ 1)2∑T−1
t=R û1(t+ 1)2

=
MSE1 −MSE2

MSE1
=

MSE-F

P

(
MSE2

MSE1

)
(13)

As can be seen from equation (13), if R2
OS is positive then the competing model has a lower MSE

than the benchmark model. Also, as shown in the last equality, the R2
OS is not a statistic that provides

new information with respect to the other tests, since it is merely a scaled-up version of the MSE-F

statistic.20 That is, predictor variables with greater MSE-F will also exhibit greater R2
OS . Then, this

could also be considered a test of equal MSE, assuming that it has an asymptotic distribution.21
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In general, when performing out-of-sample tests in a small sample, there is a trade-off with the

number of in-sample observations that is hard to resolve. On the one hand, the objective is to

use a relatively large in-sample proportion of the sample (R/T ), so that the out-of-sample forecasts

are done with estimates which are as similar as possible to those obtained with the full sample.

But at the same time, as suggested by the results of Inoue and Kilian (2005), the out-of-sample

proportion (P/T ) must be large enough to prevent significant differences in power between the in-

sample and out-of-sample tests. Thus, to achieve a reasonable level of power without producing

excessive forecasting errors at the beginning of the out-of-sample sub-period, the optimal choice

should be around π = P/R = 1. However, to make our test more rigorous, we choose 1997Q4, which

is when the Asian crisis hit the U.S. economy, as the starting point for the out-of-sample sub-period.

That is, given that our adjusted (for lags) sample encompasses the period 1984Q2-2009Q4, our choice

implies the following sample portions: R = 54, P = 49 and π = 0.91.

As mentioned above, in the context of one-step ahead forecasts, Clark and McCracken (2001)

and McCracken (2007) provide asymptotic critical values for the ENC-NEW and MSE-F statistics,

respectively. These critical values depend on two parameters: π = P/R and K2 − 1, the number

of variables included in X(t). Because the tables with the critical values for these nonstandard

tests do not contain the particular value of π chosen by us, we follow Clark and McCracken (2005)

and obtain these values with an inference technique based on bootstrapping. In addition, based on

the bootstrapped time series, we obtain the empirical distribution of the R2
OS statistic and critical

values for the tests in the next section. In particular, we use a parametric bootstrap (Berkowitz and

Kilian, 2000) and our algorithm has five steps, which we briefly describe below:22

1. We estimate a bivariate VAR for the excess stock return, Rm(t)−Rf (t), and the variables in

X(t) under the null hypothesis of nonpredictability. The model is estimated with OLS and

using the full sample. The excess return is modeled according to equation (4) and for the

variables in X(t) the optimal number of lags of Rm(t)−Rf (t) and X(t) were chosen with the

AIC criterion.

2. The coefficients of the VAR were adjusted for the small-sample bias using Kilian’s (1998)

procedure with 10,000 bootstrap draws.

3. We bootstrapped 999 time series for the excess stock return and the variables in X(t) by

drawing from the rescaled sample residuals with replacement (Berkowitz and Kilian, 2000)
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using the adjusted VAR coefficients and initial observations selected by sampling from actual

data (Stine, 1987).

4. Each artificial bivariate time series is used to estimate the benchmark and competing mod-

els (equations (4) and (5)) in a recursive way. Forecasting errors are calculated according

to equations (6) and (7) and using the sample portions described above. The ENC-NEW,

MSE-F and R2
OS statistics were calculated based on these estimated forecasting errors with

equations (11), (12) and (13).

5. For each statistic, critical values are simply computed as percentiles of the corresponding

empirical distribution. The p-values are calculated using the standard method.

The results of the out-of-sample tests are presented in Table VIII. All of the tests coincide in that

our variable is the only one with out-of-sample forecasting power for the excess stock returns at a 10%

significance level.23 Although the cay variable is marginally significant according to the ENC-NEW

test (its bootstrapped p-value is 10.3%), as explained above, the only test that measures forecasting

power under the effective conditions faced by a potential investor is the MSE-F test. Our variable

(∆f) has the highest and most significant R2
OS among all of the variables considered; however, the

size of this statistic is only 1.2%. The table also shows that given the wide differences between

the bootstrapped and asymptotic critical values, controlling for considerations of small sample and

differences in the relative out-of-sample portion (i.e., π) is essential for a reliable inference, especially

when highly persistent predictor variables are used. Also, as expected, as a consequence of the close

relationship between the MSE-F and the R2
OS statistics, the inference using the bootstrap method

produces the same results for both tests.

Finally, the low R2
OS for all the predictors is evidence that out-of-sample forecasting of stock

returns has become an increasingly difficult challenge in recent times (one of the main points empha-

sized by Welch and Goyal (2008)). The forecasting ability of a predictor variable depends exclusively

on its capacity to successfully summarize the conditioning information used by the market partic-

ipants, which has become increasingly complex. For example, unlike what was found in previous

studies, Ludvigson and Ng (2007) provide evidence that changing stock market volatility is not

confined only to high-frequency data. This implies that at a quarterly horizon, even in periods

of expansion or recession, it is possible to observe substantial changes in the volatility of equity

premium.
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V. Long-horizon predictability of stock returns

This section examines the in-sample predictability of stock returns at longer horizons. The evidence

presented below is based on the following long-horizon regression:

Rhm(t+ h)−Rhf (t+ h) = αh + β′hX(t) + εh(t+ h) (14)

where Rhi (t+ h) =
∏h
j=1

(
1 +R1

i (t+ j)
)
− 1 is the h-period return for asset i = m, f and R1

i (t+ j)

is the respective one-period return from time t+ j − 1 to t+ j.

The evidence of long-run predictability has been the subject of a great deal of criticism. Some

of the main problems with long-horizon regressions are the following:

1. Serial correlation in residuals induced by the overlap of observations.

2. Long-horizon regressions use the data inefficiently and provide spurious forecasts about the

dynamics of variables, especially for non-exogenous predictor variables (Campbell, 1991).

3. By aggregating returns, long-horizon regressions invalidate the inference from standard asymp-

totic methods (Valkanov, 2003).

4. For persistent predictor variables, OLS coefficient estimates and R2 are roughly proportional

to the horizon under the null hypothesis of nonpredictability (Boudoukh, Richardson, and

Whitelaw, 2008).

According to Boudoukh, Richardson, and Whitelaw (2008) long-horizon regressions are misleading

for persistent variables. That is, long-horizon regressions associated with the variables Rf , d − p,

cay and gap cannot show anything different to what was shown in Section III due to their high

persistence (see Table V); in other words, these variables do not have predictive power for stock

returns. If significant forecasting power appears on longer horizons, this is simply, according to

Valkanov (2003), because our methodology for the hypothesis testing is incorrect. On the other

hand, given the almost null persistence of our variable, the ∆f shocks are absolutely short-lived.

Therefore, by construction, at the most our variable could have forecasting power for stock returns

over a one-year horizon.

Hence, given the results obtained for the other variables and the expectations for ours, we prefer

to favor the simplicity of long-horizon regressions. Following Kilian (1999), we adapted the bootstrap
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algorithm described in the previous section to support the inference from the long-horizon regressions

presented here. In addition, to evaluate the impact of the findings in Boudoukh, Richardson, and

Whitelaw (2008) on the results for persistent predictor variables, we report both expected regression

coefficient and the R2 statistic at the hth horizon conditional on their one-period counterpart, under

the null of nonpredictability. These are given by the following equations:

E
[
β̂h|β̂1 = β̂∗1

]
=

(
1 +

ρ
(
1− ρh−1

)
1− ρ

)
β̂∗1 (15)

E
[
R2
h|R2

1 = R2∗
1

]
=

(
1 +

ρ(1−ρh−1)
1−ρ

)2

h
R2∗

1 (16)

where β̂∗1 is the actual estimate of the regression coefficient in equation (14) for h = 1, ρ is the

first-order serial correlation coefficient of the predictor variable and R2∗
1 is the actual estimate of the

R2 statistic for h = 1, also from equation (14).

Our analysis covers return horizons up to five years (h = 20). For each horizon we consider

the same number of observations and the same sample period 1984Q1-2004Q4 (i.e., 84 observations

for each horizon). Table IX presents the OLS estimates of equation (14) for h = 3, 4, 8, 12, 16, 20.

We report bootstrapped p-values for t-stats and Wald tests that correct for serial correlation and

heteroscedasticity using Newey and West (1987). Because of overlapping observations, we increase lag

length for the Newey-West estimator by h− 1.24 The results show that our variable has significant

forecasting power for stock returns up to a horizon of three quarters. For h = 3 the signs of

the coefficients associated with ∆f lags are the same as those for h = 1, the R̄2 is 7% and the

bootstrapped p-value for the test that all coefficients for oil lags are zero is 0.02. At longer horizons,

as expected, there is no evidence of predictability with our variable.

Regarding the other variables, Table IX shows that at the 10% significance level, none of the

variables demonstrates forecasting power for stock returns at long horizons. The cay variable is

marginally significant at a five-year horizon; however, given the absence of predictive ability at

other horizons, it is very likely that this result can be explained by the look-ahead bias. The

variable Rf has so little forecasting power that despite its high persistence, it does not exhibit the

pattern predicted by Boudoukh, Richardson, and Whitelaw (2008). Instead, its regression coefficient

changes sign through horizons and its R̄2 is always negative. Finally, the other persistent predictor

21



variables (d − p, cay and gap) effectively follow the pattern predicted by Boudoukh, Richardson,

and Whitelaw (2008). That is, both regression coefficients and R2 are always (in absolute value)

growing with the horizon. In fact, from horizons of one quarter to 20 quarters, the correlation

between the estimated regression coefficients and those calculated from equation (15) are 0.97, 0.94

and 0.97 for d − p, cay and gap, respectively, whereas the correlation between the estimated R2s

and those calculated from equation (16) are 0.94, 0.80 and 0.97 for d− p, cay and gap, respectively.

Hence, these results underscore the skepticism with which the evidence of predictability with highly

persistent variables should always be viewed.

VI. Implications for the cross-section of expected returns

In this section we study the cross-sectional implications of our variable. Unlike traditional or un-

conditional asset pricing models which assume that stock returns are independent and identically

distributed over time, conditional asset pricing models provide flexibility for pricing assets differ-

ently through time.25 According to the latter models, the price of stock i, Pi(t), is determined by

the following equilibrium condition:

Pi(t) = E [M(t+ 1) ·Xi(t+ 1)|I(t)] (17)

where M(t+ 1) is the stochastic discount factor or pricing kernel, Xi(t+ 1) = Pi(t+ 1) +Di(t+ 1)

is the payoff of stock i and I(t) is the agent’s information set at time t.

Given that I(t) is unknown to the econometrician, the model in equation (17) is implemented

using a narrower information set, Ω(t) ⊂ I(t). Thus, if the model in (17) holds conditioned on a

subset Ω(t) of the information set I(t), then it necessarily holds conditioned on I(t). This result

implies that evidence in favor of the asset pricing model conditioned on I(t) is obtained if the model

conditioned on Ω(t) is not rejected. Moreover, when working with stationary variables it is common

to divide by Pi(t) and express the model in equation (17) as:26

1 = E [M(t+ 1) · (1 +Ri(t+ 1)) |Ω(t)] (18)

According to Cochrane (1996), it is possible to include the effects of conditioning information
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by scaling the returns or the factors by instruments. Several authors have tested models with

linear pricing kernels and variable sensitivities to the risk factors. Thus, they propose conditioning

variables and employing them as instruments in scaled factor models, and subsequently analyzing

the unconditional implications of these models. The standard in this modeling is to use linear pricing

kernels of the following type:27

M(t+ 1) = b′
(
F̃ (t+ 1)⊗ z̃(t)

)
= b0(t) +

J∑
j=1

bj(t)F j(t+ 1) (19)

where F̃ (t+1) = [1 F (t+ 1)′]′, F (t+1) is a column vector of J risk factors, z̃(t) = [1 z(t)′]′, z(t) ∈ Ω(t)

is a column vector of L conditioning variables and b =
[
b0′ b1′ · · · bJ ′

]′
where bj =

[
bj0 b

j
1 · · · b

j
L

]′
is a

column vector of L+ 1 parameters and bj(t) = bj′z̃(t). This model has typically been calculated for

a vector of N returns, R(t + 1), with one factor (J = 1) and one conditioning variable (L = 1); in

other words:

1N = E
[(
b0(t) + b1(t)F (t+ 1)

)
· (1N +R(t+ 1))

]
(20)

where bi(t) = bi0 + bi1z(t); i = 0, 1 and 1N is a vector of ones with size N × 1. In general, studies

on conditional asset pricing comprise two empirical stages. The first stage is to show that the

proposed conditioning variable has forecasting power for excess market returns. Variables that could

potentially be part of Ω(t) are those with the ability to alert investors about future movement of

returns. Hence, variables with proven forecasting power for market returns are natural candidates.

The second stage is to estimate equation (20) and present evidence of adjustment in the cross-section

of expected stock returns.28 Thus, given the predictive ability of the conditioning variable and the

functional form of the pricing kernel, the cross-sectional adjustment is exclusively determined by

considerations of empirical design and the risk factors used. The most commonly used risk factors

are the aggregate market return, Rm(t+ 1), and real per-capita consumption growth rate, ∆c(t+ 1),

that corresponds to the conditional version of the CAPM (Sharpe, 1964) and CCAPM (Breeden and

Litzenberger, 1978), respectively.29

A wide range of conditioning variables have been used for the conditional models like the one

in equation (20). For example, Lettau and Ludvigson (2001b) propose CAPM and CCAPM models

conditioned on the cay variable. Lustig and Van Nieuwerburgh (2005) derive a conditional CCAPM

on the housing collateral ratio (ratio of housing wealth to human wealth). Santos and Veronesi (2006)
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present a conditional CAPM on the labor income to consumption ratio (fraction of consumption

funded by labor income). In these studies the evidence of predictability is only an intermediate step

that enables the authors to fulfill the first requisite needed for the existence of a conditional asset

pricing model, or in other words, that the equity risk premium is variable. Then, given that the

predictability condition is satisfied, there should be a conditional model that correctly values the

cross-section of returns using the proposed predictor. Therefore, papers on conditional asset pricing

have a broader purpose because they include time-series and cross-sectional tests.

However, despite the clear relationship between predictability, time-varying risk premium and

conditional asset pricing models, there is an important methodological asymmetry between studies

on predictability and those on conditional asset pricing. Except for Lettau and Ludvigson (2001a) and

Lettau and Ludvigson (2001b), papers on predictability have only sought to prove that the equity risk

premium is variable and do not consider cross-section tests. On the other hand, studies on conditional

asset pricing, such as Lustig and Van Nieuwerburgh (2005) and Santos and Veronesi (2006) only

present evidence of in-sample predictability and generally lack the empirical rigor of the predictability

studies.30

In our opinion, if a variable exhibits significant forecasting power for stock market returns, there

should be a conditioning asset pricing model on that variable with significant predictive power for the

cross-section of expected stock returns. For this reason and for greater robustness, we offer empirical

evidence of adjustment in the cross-section of expected returns through CAPM and CCAPM mod-

els conditioned on our variable. In addition, the empirical performance of our conditional models

is compared to the performance of the same models conditioned on the other predictor variables

considered in the previous sections, as well as the following unconditional models: CAPM, CCAPM

and the three-factor model of Fama and French (1993) (FF three-factor).31

The absence of arbitrage opportunities is clearly a consequence of a positive pricing kernel, i.e.,

M(t + 1) > 0. However, empirical evidence reported in Nagel and Singleton (2011) reveals that

the M(t + 1) implied by the estimates from equation (20) frequently takes large negative values.

To address this problem, here we impose a restriction of non-negativeness by using an exponential

pricing kernel of the following form:

M(t+ 1) = exp
(
b0(t) + b1(t)F (t+ 1)

)
(21)
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where bi(t) = bi0 + bi1z1(t) + . . . + biLzL(t); i = 0, 1 and F (t + 1) is the risk factor (i.e., F (t + 1)

is Rm(t + 1) for the conditional CAPM and ∆c(t + 1) for conditional CCAPM). In addition, it is

important to highlight that we allow for more than one conditioning variable, in particular, we use

L = 4 for our models whereas L = 1 for conditional models on other variables. We work with the

following pricing equation:

1N = E
[
exp

(
b0(t) + b1(t)F (t+ 1)

)
· (1N +R(t+ 1))

]
(22)

As noted by Lewellen, Nagel, and Shanken (2010), conditional asset pricing models present serious

problems in pricing a risk-free portfolio. Although they report high R2 in the cross-section, this is

typically achieved at the expense of estimated intercepts that are substantially greater than their

theoretical values (i.e., the risk free rate). To address this, we follow Nagel and Singleton (2011)

and include the risk-free portfolio as an extra asset in our study. We consider the orthogonality

relationship between a risk-free rate and the pricing kernel, M(t + 1), represented by the following

moment restriction:32

0 = E
[
M(t+ 1)− 1

1 +Rf (t+ 1)

]
(23)

In addition, we use the beta representation of equation (22) to produce the unconditional expres-

sions for the expected risk-free return and the expected return of asset i given by:

E [Rf (t+ 1)] =
1

E [M(t+ 1)]
− 1 (24)

E [Ri(t+ 1)] = E [Rf (t+ 1)]− E [1 +Rf (t+ 1)]Cov [M(t+ 1), Ri(t+ 1)] (25)

where in equation (24) we are assuming that the risk-free asset is unconditionally orthogonal to

M(t+ 1) (i.e., the risk-free asset is a zero-beta asset). Equations (24) and (25) can be used to assess

the fit of an estimated model to the cross-section of average returns.

For the cross-sectional tests we use the standard 25 portfolio of Fama and French (1993) ordered

by size and book-to-market, in addition to the risk-free portfolio, therefore N = 26. These series as

well as the SMB (small minus big) and HML (high minus low) factors from the FF three-factor model

are available from Ken French’s web page. The real per-capita consumption series was constructed

using data from the Bureau of Economic Analysis. Specifically, we construct our quarterly series from
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nominal consumption of nondurables and services, seasonally adjusted, per capita (NIPA Table 7.1).

Real consumption was calculated by deflating the nominal series by the PCE (personal consumption

expenditures) price index, 2005=100 (NIPA Table 2.3.4).

Tables X, XI and XII present the results of the estimation by the Generalized Method of Moments

(GMM) for the moment conditions in equations (22) and (23). We report the asymptotic t-stats, and

the Wald and JT tests based on the covariance matrices of pricing errors corrected for heteroscedas-

ticity and serial correlation using the Newey-West estimator. We use the identity weighting matrix

for all estimates, based on the following reasons. First, we do not have theoretical arguments for

giving more or less importance to a particular portfolio. Second, the number of moment conditions

(N = 26) is large relative to our sample size (T = 103), so this choice avoids dealing with estimates

that depend on unstable and near singular error covariance matrices. The root of mean square errors

(RMSE) is used to measure the fit of an estimated model to the cross-section of average returns.

In addition, Figures 3 to 15 plot the fitted expected returns for the 26 portfolios against their real-

ized average returns. The 25 portfolios, sorted by size and book-to-market ratio, are labeled with

two digits. The first digit refers to the size quintile (1 indicating the smallest firms, 5 the largest),

and the second digit refers to book-to-market quintile (1 indicating the portfolio with the lowest

book-to-market ratio, 5 with the highest).

Table X and Figures 3 to 5 show the results for the unconditional CAPM, CCAPM and FF three-

factor models. The JT tests do not reject any conditional or unconditional model, so our inference

is based solely on the t-stats and Wald tests. The latter tests the hypothesis that all coefficients

except the constant are zero. According to the Wald test, no model is significant at the 5% level;

nevertheless, the FF three-factor model presents the best cross-sectional adjustment (RMSE=0.55%).

Table XI and Figures 6 to 10 present the results for the conditional CAPM models. A Wald test

for the null hypothesis that conditional (C)CAPM model does not improve the adjustment relative to

the unconditional (C)CAPM model is included in the P-value Wald CAPM row (i.e., it tests whether

the additional coefficients in the conditional (C)CAPM model are zero). The table shows that the

CAPM conditional on ∆f exhibit by far the best forecasting power for the cross-section of expected

returns (RMSE=0.34%); moreover, in accordance with both Wald tests, it is the only significant

one at the 5% level. The risk factor Rm(t) is significant throughout the interaction term only with

∆f(t − 4). This implies that an oil shock accompanied by a subsequent decline in market return
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(∆f(t− 4) ·Rm(t) < 0) causes a drop in future portfolio returns. This effect strongly suggests that

our variable also has forecasting power for returns on more disaggregated stock portfolios. Finally,

CAPM models conditioned on d−p and gap slightly outperform the FF three-factor model, but none

of these models is statistically significant.

Table XII and Figures 11 to 15 display the outcomes for conditional CAPM models. Based on

these outcomes, we note that the CCAPM conditional on ∆f is the only one that outperforms the FF

three-factor model; however, it is not significant at the 5% level. Also, the CCAPM model conditioned

on Rf is statistically significant but is outperformed by several conditional and unconditional models

(RMSE=0.60%).

In summary, the conditional CAPM on our variable has significant predictive power for the cross-

section of expected stock returns and has a better fit than all unconditional and conditional models

considered here.

VII. Conclusions

Although the predictability of stock market returns has been associated with the business cycle, the

evidence that supports this relationship is far from being conclusive. Moreover, when the sample

is extended to include the period of the subprime crisis, none of the popular predictors exhibit

forecasting power for stock returns. In this paper, we show that such a relationship exists.

We find that unexpected oil price changes, a non-persistent variable with deep macroeconomic

roots, have significant forecasting power for stock returns at short horizons. Our variable, proxied

by futures returns on crude oil, shows statistically and economically significant predictive power

for stock returns at horizons from one to three quarters. Its predictive power outperforms those of

the risk-free rate, the dividend-price ratio, the consumption-wealth ratio and the output gap, with

quarterly R̄2 between 6% and 7%. This result is robust against the inclusion of other variables and

out-of-sample tests. However, at longer horizons, none of the variables displays significant forecasting

ability. Our results also validate the recent findings of Boudoukh, Richardson, and Whitelaw (2008)

that unstable results in previous studies in this literature are due to the high persistence of the

predictors used.
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Furthermore, the following evidence protects our results against potential data-snooping biases.

First, the relationship between the business cycle and oil price shocks has been studies since 1983 and

since then, a large quantity of macroeconomic theory and evidence has supported this relationship.

Second, several empirical studies in finance with different data and methodologies have found that

stock returns are affected by past oil shocks. Third, our variable also shows significant forecasting

power for the cross-section of expected returns. This was demonstrated using a conditional CAPM

model on oil price shocks, which shows high statistical significance and better adjustment to all

conditional and unconditional models considered, including the Fama and French (1993) three-factor

model.

Finally, from a practical perspective, unlike variables based on macroeconomic series, such as the

consumption-wealth ratio and the output gap, our variable can be directly observed and is available

on a daily basis at no cost. These characteristics make use of our variable by potential investors

highly feasible.
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Table I

Literature on financial markets and oil prices

The table provides information on studies on financial markets and oil prices. The variables used are: ∆f : log returns

on oil futures prices; ∆s: log returns on nominal spot prices; ∆sr: log returns on real spot prices; Sop: oil prices scaled

by volatility, unexpected changes in oil prices (Lee, Ni, and Ratti, 1995); Nopi: net oil price increases (Hamilton, 1996;

Hamilton, 2003); V ol: rolling volatility of oil price changes; x+ = max(0, x); x− = min(0, x).

Paper Subject Frequency

Data

Stock market
Oil

Series Variable

Huang, Masulis, and

Stoll (1996)

Joint dynamics Daily S&P 500, indus-

trial portfolios,

oil companies

Heating and

crude oil futures

∆f

Jones and Kaul (1996) Market efficiency Quarterly Real country in-

dexes

PPI oil and re-

lated products

∆s

Sadorsky (1999) Joint dynamics Monthly S&P 500/CPI PPI fuels/CPI ∆sr, ∆s+r , ∆s−r ,

Sop, Sop+, Sop−

Ciner (2001) Joint dynamics Daily S&P 500 Heating and

crude oil futures

∆f

Driesprong, Jacobsen,

and Maat (2008)

Predictability Monthly Country indexes,

sector indexes

Brent, WTI,

Dubai, Arab

Light, Brent

futures, Oil

futures

∆s, ∆f

Park and Ratti (2008) Joint dynamics Monthly Real country in-

dexes

Brent/PPI all

commodities

∆sr, Sop, Nopi,

∆s+r , ∆s−r , Sop+,

Sop−, V ol

Kilian and Park (2009) Oil demand and

supply shocks

Monthly Real CRSP value

weighted, indus-

try portfolios

EIA refiner acqui-

sition cost/CPI

∆sr

Apergis and Miller (2009) Oil demand and

supply shocks

Monthly Real country in-

dexes

EIA Refiner

Acquisition

Cost/CPI

∆sr
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Table II

Stock market returns and the business cycle

Conditional excess stock returns for the sample period 1926Q3 to 2009Q4. Classification of states based on NBER

Business Cycle Dates.

State Frequency Average excess Standard deviation

return of excess returns

Expansion 252 2.9 9.1

Peak 15 -5.5 8.1

Recession 52 -3.0 17.3

Trough 15 12.3 10.0

Total 334 2.0 11.3

Table III

Optimal lags of oil price shocks

OLS regressions of excess stock returns on lags of oil price shocks, 1983Q2-2009Q4. All estimations use full sample and

include a constant.

Lags of oil price shocks AIC

0 -4.884

1 -4.891

2 -4.867

3 -4.846

4 -4.893

5 -4.870

6 -4.844

7 -4.824

8 -4.803
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Table IV

VAR estimation results, 1983Q2-2009Q4

Maximum likelihood estimates of the VAR(4) model for the rate of growth of industrial production (∆%IP (t)), excess

stock market returns (Rm(t)− Rf (t)) and log returns on crude oil futures (∆f(t)). Asymptotic t-stat in parentheses.

Granger causality was tested using the asymptotic Wald test. The All row at the bottom of the table refers to all

coefficients except the constant.

∆%IP (t) Rm(t)−Rf (t) ∆f(t)

Constant 0.000 0.011 0.020

( 0.45 ) ( 1.20 ) ( 0.88 )

∆%IP (t− 1) 0.276 0.956 -0.205

( 3.04 ) ( 1.25 ) ( -0.11 )

∆%IP (t− 2) -0.027 -0.852 0.404

( -0.26 ) ( -0.99 ) ( 0.19 )

∆%IP (t− 3) -0.113 -1.215 0.460

( -1.10 ) ( -1.40 ) ( 0.22 )

∆%IP (t− 4) 0.347 2.327 -1.194

( 3.70 ) ( 2.93 ) ( -0.62 )

Rm(t− 1)−Rf (t− 1) 0.061 0.038 0.269

( 5.59 ) ( 0.41 ) ( 1.19 )

Rm(t− 2)−Rf (t− 2) 0.030 -0.069 0.191

( 2.52 ) ( -0.68 ) ( 0.77 )

Rm(t− 3)−Rf (t− 3) 0.005 -0.038 0.268

( 0.42 ) ( -0.37 ) ( 1.07 )

Rm(t− 4)−Rf (t− 4) 0.026 0.019 -0.087

( 2.12 ) ( 0.19 ) ( -0.35 )

∆f(t− 1) 0.010 0.065 0.035

( 2.09 ) ( 1.59 ) ( 0.35 )

∆f(t− 2) -0.006 -0.044 -0.183

( -1.22 ) ( -1.04 ) ( -1.79 )

∆f(t− 3) -0.012 -0.004 0.027

( -2.35 ) ( -0.10 ) ( 0.26 )

∆f(t− 4) -0.005 -0.119 -0.057

( -1.00 ) ( -2.74 ) ( -0.54 )

R2 0.51 0.18 0.06

R̄2 0.44 0.07 -0.06

P-value Granger causality test

All 0.00 0.03 0.85

∆%IP 0.00 0.04 0.98

Rm −Rf 0.00 0.94 0.53

∆f 0.01 0.04 0.49
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Table V

Statistics for 1983Q2-2009Q4

Statistics for the excess stock return and the main predicts used in this study. Autocorrelation is the first-order serial

correlation.

Rm −Rf ∆f Rf d− p cay gap

Average 0.016 0.021 0.012 -3.781 0.005 -0.014

Standard deviation 0.087 0.195 0.006 0.386 0.019 0.063

Autocorrelation 0.031 0.031 0.972 0.974 0.910 0.977

Correlation matrix

Rm −Rf ∆f Rf d− p cay gap

Rm −Rf 1.000

∆f -0.039 1.000

Rf 0.006 -0.035 1.000

d− p 0.139 -0.101 0.524 1.000

cay -0.108 -0.100 0.348 0.472 1.000

gap -0.121 0.111 -0.210 -0.847 -0.601 1.000
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Table VI

Predictive regressions for excess stock returns, 1983Q2-2009Q4

OLS regressions for excess stock returns on the predictor variables in the first row. All tests are based on covariance
matrices of coefficients corrected for heteroscedasticity and serial correlation using Newey and West (1987). Lag

length in the Newey-West estimator is floor
[
4 · (T/100)2/9

]
, where floor[x] denotes the integer part of x (Newey and

West, 1994). Asymptotic t-stat in parentheses. At the bottom of the table, the p-value is for asymptotic Wald test
and All refers to all coefficients except the constant.

∆f Rf d− p cay gap

Constant 0.019 0.013 0.154 0.014 0.015

( 2.59 ) ( 0.55 ) ( 2.04 ) ( 1.52 ) ( 1.66 )

∆f(t− 1) 0.068

( 1.95 )

∆f(t− 2) -0.035

( -0.53 )

∆f(t− 3) -0.024

( -0.48 )

∆f(t− 4) -0.115

( -2.68 )

Rf (t) 0.403

( 0.25 )

d(t− 1)− p(t− 1) 0.036

( 1.75 )

cay(t− 1) 0.729

( 2.09 )

gap(t− 1) -0.219

( -1.58 )

R2 0.10 0.00 0.02 0.02 0.02

R̄2 0.06 -0.01 0.01 0.01 0.02

P-value Wald All 0.02 0.80 0.08 0.04 0.11

37



Table VII

Predictive regressions: Additional controls, 1983Q2-2009Q4

OLS regressions for excess stock returns on the predictor variables in the first row. All tests are based on covariance

matrices of coefficients corrected for heteroscedasticity and serial correlation using Newey and West (1987). Lag

length in the Newey-West estimator is floor
[
4 · (T/100)2/9

]
, where floor[x] denotes the integer part of x (Newey and

West, 1994). Asymptotic t-stat in parentheses. At the bottom of the table, the p-value is for asymptotic Wald test,

All refers to all coefficients except the constant and ∆f refers to the coefficients associated with the four lags of that

variable.

∆f & Rf ∆f & d− p ∆f & cay ∆f & gap ∆f & All

Constant 0.012 0.140 0.015 0.017 0.269

( 0.57 ) ( 2.02 ) ( 1.81 ) ( 2.01 ) ( 1.03 )

∆f(t− 1) 0.067 0.075 0.075 0.076 0.078

( 1.96 ) ( 2.13 ) ( 2.07 ) ( 2.20 ) ( 1.87 )

∆f(t− 2) -0.036 -0.026 -0.029 -0.025 -0.028

( -0.53 ) ( -0.41 ) ( -0.47 ) ( -0.38 ) ( -0.47 )

∆f(t− 3) -0.026 -0.017 -0.023 -0.013 -0.026

( -0.49 ) ( -0.33 ) ( -0.45 ) ( -0.26 ) ( -0.53 )

∆f(t− 4) -0.116 -0.108 -0.114 -0.105 -0.117

( -2.72 ) ( -2.50 ) ( -2.67 ) ( -2.33 ) ( -2.54 )

Rf (t) 0.650 -1.708

( 0.45 ) ( -0.64 )

d(t− 1)− p(t− 1) 0.032 0.061

( 1.68 ) ( 1.01 )

cay(t− 1) 0.784 0.985

( 2.00 ) ( 1.78 )

gap(t− 1) -0.172 0.303

( -1.50 ) ( 0.93 )

R2 0.10 0.11 0.12 0.11 0.14

R̄2 0.05 0.07 0.08 0.06 0.06

P-value Wald All 0.02 0.00 0.00 0.00 0.00

P-value Wald ∆f 0.01 0.01 0.01 0.02 0.02
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Table VIII

Out-of-sample predictability tests, 1983Q2-2009Q4

Out-of-sample tests of stock return predictability. Each column reports the results using the predictor from the

first row. Out-of-sample period is from 1997Q4 to 2009Q4. ENC-NEW, MSE-F and R2
OS statistics are described

in equations (11), (12) and (13). Asymptotic critical values for ENC-NEW test are from Table 1 in Clark and Mc-

Cracken (2001) using π = 1.0. Asymptotic critical values for MSE-F test are from Table 4 in McCracken (2007) using

π = 1.0. Bootstrapped p-values and critical values are based on the methodology of Clark and McCracken (2005).

∆f Rf d− p cay gap

ENC-NEW

Sample value 2.218 -0.555 0.202 1.630 0.063

0.10 Asymptotic critical value 2.169 0.984 0.984 0.984 0.984

0.05 Asymptotic critical value 3.007 1.584 1.584 1.584 1.584

Bootstrapped p-value 0.077 0.791 0.278 0.103 0.505

0.10 Bootstrapped critical value 1.939 1.325 1.325 1.653 2.163

0.05 Bootstrapped critical value 2.970 2.033 2.276 2.559 3.294

MSE-F

Sample value 0.603 -1.287 -0.034 0.261 -0.750

0.10 Asymptotic critical value 0.545 0.751 0.751 0.751 0.751

0.05 Asymptotic critical value 1.809 1.548 1.548 1.548 1.548

Bootstrapped p-value 0.081 0.655 0.172 0.197 0.463

0.10 Bootstrapped critical value 0.443 0.789 0.431 1.335 1.816

0.05 Bootstrapped critical value 1.420 1.860 1.268 2.237 3.006

R2
OS

Sample value 0.012 -0.027 -0.001 0.005 -0.016

Bootstrapped p-value 0.081 0.655 0.172 0.197 0.463

0.10 Bootstrapped critical value 0.009 0.016 0.009 0.027 0.036

0.05 Bootstrapped critical value 0.028 0.037 0.025 0.044 0.058
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Table IX

Long-horizon predictability, 1983Q2-2009Q4

OLS regressions of Rh
m(t + h) − Rh

f (t + h) on the predictor variables using the same number of observations. All

tests are based on covariance matrices of coefficients corrected for heteroscedasticity and serial correlation (Newey and

West, 1987)). Lag length in the Newey-West estimator is floor
[
4 · (T/100)2/9

]
+ (h − 1), where floor[x] denotes the

integer part of x. Bootstrapped p-values for t-stats in parentheses. E[β̂h|β̂1 = β̂∗
1 ] and E[R2

h|R2
1 = R2∗

1 ] are described

in equations (15) and (16), respectively. P-value Wald All is the bootstrapped p-value for the asymptotic Wald test

that all coefficients except the constant are zero.

Forecast horizon in quarters (h)

h = 3 h = 4 h = 8 h = 12 h = 16 h = 20

∆f(t) 0.153 0.019 -0.019 0.105 0.112 -0.143

( 0.01 ) ( 0.44 ) ( 0.45 ) ( 0.33 ) ( 0.35 ) ( 0.28 )

∆f(t− 1) -0.051 -0.057 -0.057 0.029 -0.147 -0.323

( 0.27 ) ( 0.31 ) ( 0.39 ) ( 0.47 ) ( 0.30 ) ( 0.18 )

∆f(t− 2) -0.081 -0.142 -0.128 -0.105 -0.051 -0.380

( 0.24 ) ( 0.18 ) ( 0.28 ) ( 0.35 ) ( 0.42 ) ( 0.14 )

∆f(t− 3) -0.208 -0.146 -0.154 -0.119 -0.138 -0.432

( 0.05 ) ( 0.14 ) ( 0.21 ) ( 0.31 ) ( 0.30 ) ( 0.08 )

R2 0.12 0.05 0.02 0.01 0.01 0.04

R̄2 0.07 0.00 -0.03 -0.04 -0.04 0.00

P-value Wald All 0.02 0.58 0.82 0.75 0.71 0.45

Rf (t+ 1) 0.682 0.926 1.129 -0.084 -3.804 5.304

( 0.39 ) ( 0.38 ) ( 0.38 ) ( 0.57 ) ( 0.47 ) ( 0.34 )

E[β̂h|β̂1 = β̂∗
1 ] -0.125 -0.165 -0.317 -0.456 -0.585 -0.702

R2 0.00 0.00 0.00 0.00 0.00 0.00

E
[
R2

h|R2
1 = R2∗

1

]
0.00 0.00 0.00 0.00 0.00 0.00

R̄2 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

P-value Wald All 0.87 0.87 0.90 0.99 0.78 0.85

d(t)− p(t) 0.083 0.111 0.220 0.324 0.440 0.672

( 0.13 ) ( 0.14 ) ( 0.18 ) ( 0.18 ) ( 0.18 ) ( 0.14 )

E[β̂h|β̂1 = β̂∗
1 ] 0.078 0.102 0.190 0.266 0.331 0.388

R2 0.06 0.08 0.13 0.14 0.17 0.25

E
[
R2

h|R2
1 = R2∗

1

]
0.05 0.06 0.10 0.14 0.16 0.17

R̄2 0.04 0.06 0.12 0.13 0.16 0.24

P-value Wald All 0.28 0.29 0.36 0.36 0.36 0.28

cay(t) 2.501 3.436 7.493 12.588 18.904 25.065

( 0.26 ) ( 0.28 ) ( 0.30 ) ( 0.36 ) ( 0.25 ) ( 0.10 )

E[β̂h|β̂1 = β̂∗
1 ] 2.867 3.662 6.212 7.986 9.222 10.083

R2 0.07 0.10 0.21 0.30 0.44 0.49

E
[
R2

h|R2
1 = R2∗

1

]
0.09 0.11 0.16 0.17 0.17 0.17

R̄2 0.06 0.09 0.20 0.30 0.43 0.48

P-value Wald All 0.27 0.30 0.32 0.39 0.26 0.11

gap(t) -0.444 -0.578 -1.548 -2.635 -4.161 -5.938

( 0.60 ) ( 0.62 ) ( 0.54 ) ( 0.45 ) ( 0.33 ) ( 0.25 )

E[β̂h|β̂1 = β̂∗
1 ] -0.345 -0.454 -0.862 -1.229 -1.558 -1.853

R2 0.04 0.05 0.14 0.21 0.34 0.43

E
[
R2

h|R2
1 = R2∗

1

]
0.02 0.03 0.05 0.07 0.08 0.09

R̄2 0.02 0.03 0.13 0.20 0.33 0.43

P-value Wald All 0.64 0.66 0.57 0.47 0.34 0.26
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Table X

Unconditional asset pricing models, 1983Q2-2009Q4

GMM estimates of pricing kernel coefficients for the unconditional models. The models are estimated using returns on

the Fama and French’s (1993) portfolios and a risk-free portfolio (N = 26). The identity-weighting matrix is used in

all estimates. All tests are based on covariance matrices of errors corrected for heteroscedasticity and serial correlation

(Newey and West, 1987). Lag length in the Newey-West estimator is floor
[
4 · (T/100)2/9

]
, where floor[x] denotes the

integer part of x. Asymptotic t-stat in parentheses. At the bottom of the table, we report the p-value for JT test of the

null that all pricing errors are zero. P-value Wald All is the p-value for the asymptotic Wald test that all coefficients

except the constant are zero. RMSE is the root of mean square errors and measures the fit of the estimated model to

the cross-section of average returns.

CAPM CCAPM FF three-factor

Constant -0.027 0.506 0.022

( -0.66 ) ( 1.31 ) ( 0.60 )

Rm(t) -0.139

( -0.11 )

∆c(t) -121.603

( -1.21 )

Rm(t)−Rf (t) -2.058

( -1.25 )

SMB(t) 0.259

( 0.09 )

HML(t) -3.986

( -1.80 )

P-value JT 0.44 0.43 0.32

P-value Wald All 0.91 0.23 0.28

RMSE 0.78% 0.74% 0.55%
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Table XI

Conditional CAPM models, 1983Q2-2009Q4

GMM estimates of pricing kernel coefficients for the conditional CAPM models on variables are in the first row. The

models are estimated using returns on Fama and French’s (1993) 25 portfolios and the risk-free asset (N = 26).

The identity-weighting matrix is used in all estimates. All tests are based on covariance matrices of errors corrected

for heteroscedasticity and serial correlation. Lag length in the Newey-West estimator is floor
[
4 · (T/100)2/9

]
, where

floor[x] denotes the integer part of x. Asymptotic t-stat in parentheses. At the bottom of table, we report the p-value

for JT test of the null that all pricing errors are zero. P-values presented are for asymptotic Wald tests. All means all

coefficients except the constant. CAPM means the coefficients that are not in the unconditional CAPM model. RMSE

is the root of mean square errors and measures the adjustment of an estimated model to the cross-section of average

returns.

∆f Rf d− p cay gap

Constant -1.262 0.266 1.962 -0.413 0.007

( -2.61 ) ( 0.41 ) ( 0.38 ) ( -0.75 ) ( 0.09 )

∆f(t− 1) -2.744

( -2.18 )

∆f(t− 2) -3.239

( -2.68 )

∆f(t− 3) -1.387

( -0.46 )

∆f(t− 4) 6.932

( 3.07 )

Rf (t) -39.419

( -0.66 )

d(t− 1)− p(t− 1) 0.520

( 0.38 )

cay(t− 1) 42.908

( 1.13 )

gap(t− 1) 0.283

( 0.03 )

Rm(t) 1.157 -7.826 -59.513 1.602 -1.634

( 0.59 ) ( -1.42 ) ( -1.96 ) ( 0.44 ) ( -0.96 )

∆f(t− 1) ·Rm(t) -20.573

( -1.21 )

∆f(t− 2) ·Rm(t) -17.374

( -1.63 )

∆f(t− 3) ·Rm(t) 11.929

( 0.54 )

∆f(t− 4) ·Rm(t) -63.751

( -2.92 )

Rf (t) ·Rm(t) 785.090

( 1.42 )

(d(t− 1)− p(t− 1)) ·Rm(t) -15.186

( -1.90 )

cay(t− 1) ·Rm(t) -251.228

( -0.95 )

gap(t− 1) ·Rm(t) 89.443

( 1.79 )

P-value JT 0.07 0.32 0.33 0.33 0.35

P-value Wald All 0.00 0.46 0.19 0.45 0.25

P-value Wald CAPM 0.00 0.33 0.15 0.52 0.16

RMSE 0.34% 0.67% 0.53% 0.72% 0.53%
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Table XII

Conditional CCAPM models, 1983Q2-2009Q4

GMM estimates of pricing kernel coefficients for the conditional CCAPM models on variables are in the first row.

The models are estimated using returns on Fama and French’s (1993) 25 portfolios and the risk-free asset (N = 26).

The identity-weighting matrix is used in all estimates. All tests are based on covariance matrices of errors corrected

for heteroscedasticity and serial correlation. Lag length in the Newey-West estimator is floor
[
4 · (T/100)2/9

]
, where

floor[x] denotes the integer part of x. Asymptotic t-stat in parentheses. At the bottom of table, we report the p-value

for JT test of the null that all pricing errors are zero. P-values presented are for asymptotic Wald tests. All means

all coefficients except the constant. CCAPM means the coefficients that are not in the unconditional CCAPM model.

RMSE is the root of mean square errors and measures the adjustment of an estimated model to the cross-section of

average returns.

∆f Rf d− p cay gap

Constant 0.811 1.033 1.877 0.375 0.485

( 2.25 ) ( 1.48 ) ( 0.44 ) ( 0.86 ) ( 1.50 )

∆f(t− 1) -0.483

( -0.38 )

∆f(t− 2) -1.858

( -2.15 )

∆f(t− 3) 0.384

( 0.29 )

∆f(t− 4) -0.407

( -0.17 )

Rf (t) -186.224

( -2.18 )

d(t− 1)− p(t− 1) 0.364

( 0.32 )

cay(t− 1) 19.948

( 0.76 )

gap(t− 1) -0.253

( -0.04 )

∆c(t) -308.738 -320.549 -390.098 -160.464 -144.812

( -2.77 ) ( -1.83 ) ( -0.41 ) ( -1.57 ) ( -1.51 )

∆f(t− 1) ·∆c(t) 116.051

( 0.35 )

∆f(t− 2) ·∆c(t) -134.842

( -0.59 )

∆f(t− 3) ·∆c(t) 343.002

( 1.09 )

∆f(t− 4) ·∆c(t) 651.304

( 1.46 )

Rf (t) ·∆c(t) 34600.413

( 2.88 )

(d(t− 1)− p(t− 1)) ·∆c(t) -68.620

( -0.27 )

cay(t− 1) ·∆c(t) 1269.334

( 0.34 )

gap(t− 1) ·∆c(t) 1302.922

( 1.05 )

P-value JT 0.08 0.34 0.33 0.32 0.34

P-value Wald All 0.10 0.03 0.44 0.33 0.47

P-value Wald CCAPM 0.24 0.01 0.93 0.74 0.54

RMSE 0.48% 0.60% 0.73% 0.69% 0.68%
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Figure 1. Excess stock market returns, oil shocks and the business cycle, 1926Q3-2009Q4.
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Figure 2. Excess stock market returns and predictor variables, 1983Q2-2009Q4.
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Figure 3. Realized vs. expected returns by CAPM: 25 Fama-French portfolios and a risk-free
portfolio, 1983Q2-2009Q4.
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Figure 4. Realized vs. expected returns by CCAPM: 25 Fama-French portfolios and a risk-free
portfolio, 1983Q2-2009Q4.
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Figure 5. Realized vs. expected returns by FF three-factor: 25 Fama-French portfolios and a
risk-free portfolio, 1983Q2-2009Q4.

11 

12 

13 

14 15 

21 

22 

23 

24 

25 

31 

32 

33 

34 35 

41 

42 
43 

44 

45 

51 

52 

53 

54 

55 

Rf 

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5%

Es
ti

m
at

e
 o

f 
Ex

p
e

ct
e

d
 R

e
tu

rn
 

Average Return 

Figure 6. Realized vs. expected returns by CAPM conditioned on ∆f : 25 Fama-French portfolios
and a risk-free portfolio, 1983Q2-2009Q4.
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Figure 7. Realized vs. expected returns by CAPM conditioned on Rf : 25 Fama-French portfolios
and a risk-free portfolio, 1983Q2-2009Q4.
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Figure 8. Realized vs. expected returns by CAPM conditioned on d−p: 25 Fama-French portfolios
and a risk-free portfolio, 1983Q2-2009Q4.
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Figure 9. Realized vs. expected returns by CAPM conditioned on cay: 25 Fama-French portfolios
and a risk-free portfolio, 1983Q2-2009Q4.
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Figure 10. Realized vs. expected returns by CAPM conditioned on gap: 25 Fama-French portfolios
and a risk-free portfolio, 1983Q2-2009Q4.
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Figure 11. Realized vs. expected returns by CCAPM conditioned on ∆f : 25 Fama-French
portfolios and a risk-free portfolio, 1983Q2-2009Q4.
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Figure 12. Realized vs. expected returns by CCAPM conditioned on Rf : 25 Fama-French
portfolios and a risk-free portfolio, 1983Q2-2009Q4.
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Figure 13. Realized vs. expected returns by CCAPM conditioned on d − p: 25 Fama-French
portfolios and a risk-free portfolio, 1983Q2-2009Q4.
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Figure 14. Realized vs. expected returns by CCAPM conditioned on cay: 25 Fama-French
portfolios and a risk-free portfolio, 1983Q2-2009Q4.
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Figure 15. Realized vs. expected returns by CCAPM conditioned on gap: 25 Fama-French
portfolios and a risk-free portfolio, 1983Q2-2009Q4.
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