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State dependence and heterogeneity in health using a bias

corrected �xed e¤ects estimator.�

Jesus M. Carroy Alejandra Traferriz

This Draft: May 2011

Abstract

This paper considers the estimation of a dynamic ordered probit of self-assessed

health status with two �xed e¤ects: one in the linear index equation and one in

the cut points. The two �xed e¤ects allow us to robustly control for heterogeneity

in unobserved health status and in reporting behaviour, even though we can not

separate both sources of heterogeneity. The contributions of this paper are twofold.

First it contributes to the literature that studies the determinants and dynamics

of Self-Assessed Health measures. Second, this paper contributes to the recent

literature on bias correction in nonlinear panel data models with �xed e¤ects by

applying and studying the �nite sample properties of two of the existing proposals

to our model. The most direct and easily applicable correction to our model is not

the best one, and has important biases in our sample sizes.
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1 Introduction

Self-assessed health (SAH) has been used as a proxy for true overall individual health

status in many socioeconomic studies. Moreover, it has been shown to be a good pre-

dictor of mortality and of demand for medical care (see, for example, van Doorslaer,

Jones, and Koolman, 2004). Motivated by this and by the high observed persistence in

health outcomes, Contoyannis, Jones and Rice (2004) study the dynamics and e¤ects of

socioeconomic variables on SAH in the British Household Panel Survey. Among other

aims, they investigate the relative contribution of state dependence and unobserved het-

erogeneity in explaining the observed persistence in SAH. State dependence may arise due

to structural reasons such as di¤ering abilities to deal with new health shocks depending

on previous health status, or willingness to investments in health that changes as health

status evolves. For example, people may be less prone to invest in their health after a

health shock that lowers their returns to that investment. In any case, as it happens in

labor force participation, regardless of the underlying explanations for state dependence,

knowing its magnitude is relevant for many health policy debates. This is because the

state dependence informs of the long-run implications of a policy a¤ecting health status

today.

Given that SAH is a categorical variable Contoyannis, Jones and Rice (2004) use

a dynamic ordered probit model, and they take a random e¤ects approach to control

for unobserved heterogeneity in the level equation. Halliday (2008) studies the relative

contribution of state dependence and unobserved heterogeneity in SAH using a di¤erent

data set and another random e¤ects approach. Halliday(2008) only includes age as a

covariate as the study focuses on the evolution over the life-cycle.

We account for heterogeneity in reporting behavior (cut-point shifts) in addition to

heterogeneous unobserved factors that a¤ect health status (index shifts). An example of

index shifts is genetic traits. Cut-point shifts occur if individuals use di¤erent thresholds

to assess their health and report di¤erent values of SAH even though they have the

same level of true health.1 Since we can only identify di¤erences up to scale in discrete

choice models, we cannot separately identify the two sources of heterogeneity. We can,

nonetheless, correctly control for both sources of heterogeneity by including individual

e¤ects in the levels and the cut points of the ordered probit. A model with only one

individual e¤ect (usually placed in the index equation) allows both sources of heterogeneity

too, but so restrictively that it almost always gives incorrect estimates and inferences if

both sources are present and relevant.

As with one individual e¤ect, we could take a �random e¤ects�approach. However, this

approach has the drawback of imposing either independence, or a speci�c and potentially

1See Lindeboom and van Doorslaer (2004) for a test that shows evidence of existence of these two
di¤erent kinds of shifts.
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too restrictive functional form on the relation between unobserved heterogeneity and other

explanatory variables. It also has the drawback of having to deal with the so-called initial

conditions problem. By taking a ��xed e¤ects� approach, we place no restrictions on

the joint distribution of the two individual e¤ects and their correlation with explanatory

variables. Moreover, there is no initial conditions problem. Despite these advantages,

there have been very few applications of nonlinear panel models with �xed e¤ects in

health economics, as noted in Jones� (2007) handbook�s chapter.2 This is due to the

known problems in estimating nonlinear panel data models with �xed e¤ects and the

panel data sets available. This estimation problem is usually called incidental parameters

problem, and it results in large �nite sample biases of the MLE when using panels where

T is not very large. It is more severe in a model like ours that is dynamic and contains

more than one �xed e¤ect.

An important part of the research in microeconometrics has been concerned with

�nding a solution to this problem by developing bias-adjusted methods. Some examples

are Hahn and Newey (2004), Hahn and Kuersteiner (2004), Arellano and Hahn (2006),

Carro (2007), Fernandez-Val (2009), and Bester and Hansen (2009).3 This fast growing

literature o¤ers several bias correction methods potentitaly useful to estimate our model.

Bester and Hansen (2009) include an application of their so-called HS estimator to a

dynamic ordered probit model with two �xed e¤ects. So, the HS is directly applicable

to our problem, whereas others require some transformation to adapt them to our model

with two �xed e¤ects. However, simulations of other models in the referred papers suggest

that HS is not the best one in terms of �nite sample performance. They show that for

sample sizes with T less than fourteen, the remaining bias when using HS could still be

signi�cant, especially for the ordered probit Bester and Hansen (2009) simulate. This

result is con�rmed in our simulations, which are more speci�c to the model we want to

estimate. Thus, we have to consider another of the proposed methods.

In this paper we derive explicit formulas of the Modi�ed MLE (MMLE) used in Carro

(2007) for the dynamic ordered probit model considered here. We evaluate its �nite

sample performance and compare it with the HS penalty estimator.4 The MMLE has

better �nite sample properties and negligible bias in our sample size. This exercise is a

main contribution of this paper since, as Arellano and Hahn (2007) point out in their

conclusions, more research is needed to know �how well each of the methods recently

proposed work for other speci�c models and data sets of interest in applied econometrics.�

2Jones and Schurer (2009) is a recent example of using the �xed e¤ects approach to study SAH;
however, they use the Conditional MLE of Chamberlain (1980) which does not provide information
about the distribution of the �xed e¤ects. This information is needed to calculate marginal e¤ects, the
usual parameters of interest in nonlinear models. Another important di¤erence is that Jones and Schurer
(2009) do not allow for dynamics.

3See Arellano and Hahn (2007) for a good review of this literature, detailed references and a general
framework in which the various approaches can be included.

4The MMLE comes from modifying the score of the MLE so that the order of the bias in T is reduced.
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Also, Greene and Henshen (2008) comment on the lack of studies about the applicability

of the recent proposals for bias reduction estimators in binary choice models to ordered

choice models.

The rest of the paper proceeds as follows. Section 2 presents our model of SAH, the

data we use, and explains the relation of this paper to other recent papers about SAH.

Section 3 presents the estimation problem and the method we propose. We also comment

on possible solutions from the nonlinear bias correction literature for nonlinear panel data

models with �xed e¤ects. We use simulations to evaluate the �nite sample performance

of di¤erent alternatives and to justify selection of MMLE as our estimator. Section 4

presents the estimation results. The estimates of our model and the comparison with

random e¤ects estimates show that there are important state dependence e¤ects, and

statistically signi�cant e¤ect of income and other socioeconomic variables. Results also

show that �exibly accounting for permanent unobserved heterogeneity matters. Section

5 concludes.

2 Model and Data

2.1 Empirical Model of self-assessed health

We consider the following dynamic panel data ordered probit with �xed e¤ects as a

reduced-form model of self-assessed health status (SAH):

h�it = �i + �11 (hi;t�1 = 1) + ��11 (hi;t�1 = �1) + x0it� + "it; i = 1; :::; N , t = 0; ::; T (1)

where xit is a set of exogenous variables that in�uence SAH, "it is a time and individual-

varying error term which is assumed to be "it �
iid
N(0; 1), and h�it is the latent health. The

reported SAH (hit), which is what we observe, is determined according to the following

thresholds:

hit =

8><>:
�1 if h�it < �ci
0 if �ci < h�it � 0
1 if h�it > 0

(2)

where hit = �1 corresponds to poor health, hit = 0 to fair health and hit = 1 to good

health. �i and ci are the model�s �xed e¤ects; these account for permanent unobserved

heterogeneity, both in unobserved factors a¤ecting health and in reporting behaviour, in

an unrestricted way, as explained at the introduction. Note that in addition to the usual

scale normalization in discrete choice models (i.e. restricting the variance of "it to equal

one), here we are also normalizing one of the two cut points to be zero. The somewhat

more conventional normalization of setting the intercept in the linear index equal to zero

is not available to us because the distribution of the intercept, including its mean, is

3



unrestricted in the �xed e¤ects approach. An alternative normalization would be to put

the two �xed e¤ects in the two cut points and leave the linear index equation without any

intercept.

As this discussion on normalization shows, it is clear that it is not possible to sepa-

rately identify individual e¤ects a¤ecting that impact only h�it from those that impact the

cut points. Therefore, though we controll for the two mentioned sources of unobserved

heterogeneity, we can not separate them. Additionally, having only the �xed e¤ect in the

linear index (�i) would also account for heterogeneity in the cut points, but in a very

restrictive way. In particular, by introducing only one individual e¤ect (�i), we would

be assuming that both sources of unobserved heterogeneity must have e¤ects of opposite

signs in Pr(hit = 1) and Pr(hit = �1); furthermore, we would be restricting how these two
e¤ects di¤er in magnitude for all individuals. We do not have evidence in favor of these

assumptions. Furthermore, given the di¤erent sources of the unobserved heterogeneity

and the potential relations among them and observable variables these assumption are

most likely too restrictive, leading to incorrect inference. In contrast with this, by having

two �xed e¤ects in (2) we are not imposing any restrictions on the cut-point shifts, nor

on the index shift. This constitutes an important di¤erence from previous studies like

Contoyannis, Jones and Rice (2004).

In addition to the parameters capturing the e¤ect of heterogeneity, � capture the e¤ect

of exogenous variables, and �1 and ��1 are the parameters that allow state dependence

in this model. Determining the relative importance of tate dependence versus permanent

unobserved heterogeneity as alternative sources of persistence is crucial since they have

very di¤erent implications. As explained in the introduction, there are several structural

reasons for state dependence. However, regardless of the reason, state dependence gives

the long-run e¤ect of a policy a¤ecting health status today. This is why it is so useful to

know its magnitude.

2.2 Data and x variables

We use the British Household Panel Survey (BHPS), a longitudinal survey of private

households in Great Britain. It was designed as an annual survey of each adult (16+)

member of a representative sample of more than 5,000 households, with approximately

10,000 individual interviews. The same individuals are re-interviewed in successive waves;

if they split o¤ from their original households are re-interviewed along with all adult mem-

bers of their new households. Similarly, new adult members joining sample households,

and children who have reached the age of 16 become eligible for interview. We use sixteen

waves of data (years 1991 - 2006), and include individuals who gave a full interview. An

unbalanced panel of individuals who were interviewed in at least 8 subsequent waves is

used. Our sample consists of 76128 observations from 6,375 individuals.
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SAH is de�ned for waves 1-8 and 10-16 as the response to the question �Compared

to people of your own age, would you say your health over the last 12 months on the

whole has been: excellent, good, fair, poor, very poor?�In wave 9 the SAH question and

categories were reworded. This makes comparison with other waves di¢ cult and wave 9

is not used in our empirical analysis.

The original �ve SAH categories is collapsed to a three-category variable, creating a

new SAH variable that is our dependent variable, with the following codes: poor (hit =

�1) for individuals who reported either �very poor�or �poor�health; fair (hit = 0) for
individuals who reported �fair�health; and Good (hit = 1) for individuals who reported

�good�or �excellent�health.

Main Model. The explanatory variables x that we use in the main model we es-

timate are: three dummy variables representing marital status (Married, Widowed, Di-

vorced/Separated) with Single as the reference category, size of the household (the number

of people living in the same household), number of kids in the household, household in-

come, year dummies (excluding the necessary number to avoid prefect colinearity), and a

quadratic function of age. The question about SAH that we use to construct our depen-

dent variable asks respondents to compare health with people their own age. However,

SAH becomes worse over time in the raw sample data, perhaps indicating that the age

e¤ect over health is not totally discounted by respondents.This can be seen in table 2.5

This is the reason for including age as an explanatory variable. The income variable is the

logarithm of equivalised real income, adjusted using the Retail Price Index and equivalised

by the McClement�s scale to adjust for household size and composition, and consists on

the sum of non-labour and labour income in the reference year.

Variables that are time-constant and speci�c for individuals, like the level of education

or gender, are not included in the set of explanatory variables because they can not be

separately identi�ed from permanent unobserved heterogeneity.6 Fixed e¤ects account

for these variables as well as for unobserved characteristics, and we can not separate their

e¤ects. Sometimes this is seen as a drawback of the �xed e¤ects approach. However, the

random e¤ects approach only separately identi�es the e¤ect of these variables because

of the unrealistic assumption that unobserved characteristics are independent from them

(for example that unobserved healthy life style is independent of education). Even with

a correlated random e¤ects approach, if correlation is allowed in a Mundlak (1978) and

Chamberlain (1984) style and initial conditions are controlled for following Wooldridge

(2005) proposal, it is not possible to separately identify the e¤ect of these time constant

variables from the e¤ect of the unobserved factors correlated with them without further

assumptions. For instance, Contoyannis, Jones and Rice (2004) follow Wooldridge (2005)

5See Contoyannis, Jones and Rice (2004) for further discussion on this.
6They are, however, included in the random e¤ects estimation we make for comparison.
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proposal, and they comment about this impossibility of separating the e¤ect of variables

like education from the e¤ect of the unobservables correlated with them.

Additional Model. In addition to the main model we estimate a model including

variables with information on objective health problems. These variables turn in observ-

able part of the unobserved underlying true health, especially persistent health situations.

This will help in identifying heterogeneity in reporting behaviour. With this additional

model we try to see whether the state dependence that we may �nd in the main model

is still signi�cantly di¤erent from zero even after introducing observations of persistent

determinants of health. These variables are not clean determinants of SAH and are a mix

of several components. Therefore they will induce a decrease in the e¤ect of hit�1 even if

we correctly capture and isolate all the state dependence e¤ect in the main model. How-

ever, if state dependence is still signi�cantly di¤erent from zero this will provide further

evidence of the robustness and importance of dynamics and state dependence in SAH.

The BHPS contains several questions about health problems and health care demand,

but many of them can be induced by a self valuation that might di¤er from true health

as much as SAH, and in an unobserved way. For example the number of visits to the

doctor can be determined by a perception of a health problem rather than a true health

problem. To avoid this endogeneity bias, we have selected only those questions that we

regard as measuring more objective health situations and, therefore, are not a¤ected by

personal health assessments. We introduce the following variables:

- Health problems: This is a dummy variable, which takes the value 1 if the individual

reports at least one of the following permanent health problems or disabilities: arthritis or

rheumatism, di¢ culty in hearing, allergies, asthma, bronchitis, blood pressure, diabetes,

migraine or frequent headaches, cancer and stroke, among others.

- Health limits daily activities: This is a dummy variable, which takes the value 1 if

the individual answers �yes�to the following question: does your health in any way limit

your daily activities, compared to most people of your age? Examples of daily activities

included are: doing the housework, climbing stairs, dressing yourself, walking for at least

10 minutes, etc.

- Health limits ability to work: Similar to previous question.

- Number of days in a hospital as an in-patient in the reference year.

- Finally, we include a dummy variable representing long term sick or disabled, and four

other variables for employment status (Self employed, In paid employment, Unemployed,

Retired). The category �Other�(that includes looking after family or home, on maternity

leave, on a government training scheme, full-time student/at school, and something else)

is left as the reference category.

6



Table 1: Number of individuals that reports each category of SAH by number of times it
is reported.

Number Excellent or good Fair Poor or very poor
of times Freq. % Freq. (N) % Freq. (N) %

0 273 4.28 2076 32.56 4380 68.71
1 170 2.67 1114 17.47 898 14.09
2 182 2.85 867 13.60 367 5.76
3 193 3.03 641 10.05 213 3.34
4 233 3.65 481 7.55 137 2.15
5 273 4.28 376 5.90 99 1.55
6 379 5.95 279 4.38 79 1.24
7 456 7.15 204 3.20 46 0.72
8 665 10.43 145 2.27 47 0.74
9 563 8.83 83 1.30 33 0.52
10 533 8.36 61 0.96 32 0.50
11 495 7.76 19 0.30 16 0.25
12 544 8.53 20 0.31 8 0.13
13 672 10.54 5 0.08 9 0.14
14 744 11.67 4 0.06 11 0.17

Total 6375 100.00 6375 100.00 6375 100.00

For example, 273 in the conlumn Freq. of category �Excellent or good�, is the number of
individuals that reported �Excellent or good�0 times in total over the sample period they
are observed.

Descriptive Statistics Tables 1, 2 and 3 contain some descriptive statistics of self-

assessed heath reported in our sample. The most frequent category is excellent or good

with more than 70% of the answers corresponding to this category. There is high persis-

tence in SAH reported as can be seen in table 3, which shows the transition probabilities.

In this table, the largest numbers are on the diagonal for all three values of SAHt�1. Table

2 presents the variation of SAH across di¤erent characteristics and health variables. For

example, married or single people respond in the excellent or good health category more

frequently than widows or divorced people. The three objective health measures in table

2 alter the SAH responses in the expected direction and in greater magnitude than the

socioeconomic variables also presented in the table.

2.3 Relation to recent papers studying heterogeneity and state

dependence in SAH

2.3.1 Relation to Contoyannis, Jones and Rice (2004)

There is a clear connection between this paper and Contoyannis, Jones and Rice (2004):

both papers use the British Household Panel Survey to study the dynamics of SAH. Nev-

7



Table 2: Proportion (in %) of each category of SAH by several characteristics

Characteristics and their SAH categories
Sample Proportions Excellent or good Fair Poor or very poor

All 73.19 19.39 7.42
By age group
40.17 < 40 78.31 16.50 5.19
43.92 40-64 72.92 18.91 8.17
15.91 65+ 61.02 28.02 10.96
By sex
46.84 Male 75.35 18.32 6.34
53.16 Female 71.29 20.34 8.37
By marital status
63.46 Married 74.00 18.86 7.14
8.92 Divorced 69.63 19.29 11.08
6.32 Widowed 58.84 28.92 12.25
21.3 Single 76.52 18.20 5.28
By household size
13.30 1 65.57 23.82 10.62
34.32 2 71.67 20.51 7.83
20.20 3 74.33 18.44 7.24
21.63 4 78.30 16.50 5.20
10.55 5+ 75.10 17.97 6.93
By kids number
64.12 0 70.91 20.84 8.25
15.52 1 76.70 17.05 6.25
14.73 2 78.45 16.19 5.36
5.63 3+ 75.75 17.74 6.51
Health problems
58.46 Yes 60.57 27.26 12.16
41.54 No 90.95 8.32 0.74
Health limits daily activities
13.36 Yes 22.49 39.13 38.38
86.64 No 81.01 16.35 2.64
Health limits work
16.43 Yes 29.85 38.29 31.86
83.57 No 81.71 15.68 2.61
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Table 3: Sample transition probabilities from SAH in t-1 to SAH in t

SAH in t
Excellent or good Fair Poor or very poor Total

SAH Excellent 85.91 11.84 2.25 100
in Fair 43.22 45.18 11.59 100
t� 1 Poor or very poor 17.66 31.60 50.74 100

Proportion 72.80 19.67 7.53 100

ertheless, there are several aspects considered in Contoyannis, Jones and Rice (2004) that

are not studied here. In particular, that paper contains a more detailed data description,

and a further discussion of the estimated model; it also address other issues, like sample

attrition, that are not considered here.7 However, our paper complements and adds to

Contoyannis, Jones and Rice (2004) in various ways:

(i) We use more periods from the BHPS than they do. They only use the �rst eight

waves because the ninth contains a di¤erent question about and categorization of

SAH. While we drop the 9th wave too, we incorporate the waves after the 9th in

our estimation. Since the model speci�ed includes only one lag of hit, we have all

the variables we need for the 11th to 16th waves. For the 10th wave we have all the

variables but hit�1 as it is the case for the �rst wave. We treat the 10th wave like

an initial observation and condition it out in our likelihood leaving the probability

of that observation totally unrestricted. Contoyannis, Jones and Rice (2004) can

not do this because of their way of solving the initial conditions problem and use of

random e¤ects.

(ii) In our model we have two individual speci�c e¤ects: one in the linear index and one in
the cut points. Lindeboom and van Doorslaer (2004) tested for and found clear evi-

dence of di¤erent reporting behavior (cut-point shifting) for gender and age. Given

that Contoyannis, Jones and Rice (2004) impose homogeneous cut points, they es-

timate di¤erent models by gender to allow for that di¤ering reporting behavior, but

they do not allow unrestricted di¤erent behavior by age. Although we can not sep-

arately identify both sources of unobserved heterogeneity, our approach is robust to

heterogeneous cut points freely correlated with any determinant of SAH.

(iii) We use �xed e¤ects instead of a random e¤ects approach. The advantages of this are
7An unbalanced panel (with random attrition) in a dynamic panel model does not pose any complica-

tions to a �xed e¤ect estimator (as opposed to a random e¤ects estimator), as long as it does not imply
many individuals with a very small number of periods; and in our sample all observations have at least
8 periods. However, the assumption of attrition at random seems unrealistic. Contoyannis, Jones and
Rice (2004) made a test and found evidence of non-random attrition, but they also found that the bias
this may be causing to the estimates is negligible. Given this result using the same data set as us, and
since this problem would take us too far from the main theme of this paper, we do not consider it here.
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that no arbitrary restriction is imposed on the correlation between permanent unob-

served heterogeneity and the observable variables, and there is no initial conditions

problem.

(iv) As an additional complement, our study includes some objective health measures,
so we can see how much is explained by socioeconomic variables and by state de-

pendence even after these measures are included.

Given the aspects not covered in this paper, and in order to make an assessment of

the contributions of this paper with respect to the previous literature we also estimate

our models using the same kind of speci�cation and estimation method as Contoyannis,

Jones and Rice (2004). Thus that we also estimate (2) using a correlated random e¤ects

speci�cation with only an individual e¤ect in the linear index equation (the �i parameter

in (1)), but with homogeneous cut points. Therefore, in this correlated random e¤ects

speci�cation:

hit =

8><>:
�1 if h�it < c1

0 if c1 < h
�
it � c2

1 if h�it > c2

(3)

where c1 and c2 are (homogenous) parameters to be estimated, h�it is de�ned in (1), and

�i in (1) is assumed to be:

�i = 
0 + 

0
1hi1 + 


0
2xi + ui (4)

where xi is the average over the sample period of the exogenous variables, and ui �
iid

N(0; �2u) independently of everything else. hi1 is in (4) to deal with the initial condition

problem following Wooldridge (2005).

2.3.2 Relation to Halliday (2008)

Halliday (2008) studies state dependence and heterogeneity in SAH using data from the

Panel Study of Income Dynamics. Since his focus is on the evolution of health over the

life-cycle, he only considers age as explanatory variable. No other socio-economic variable

is included. Another di¤erence with our study is that he further reduces health status

to two categories estimating a logit instead of an ordered probit with three categories.

With respect to heterogeneity, on the one hand Halliday (2008) is more �exible because

his analysis allows for heterogeneous parameters both in the intercept and in the slope

of the dynamic model. On the other hand the random e¤ects approach he adopts has

no incidental parameters problem but restricts the distribution of the heterogeneity and

su¤ers from the initial conditions problem. Nonetheless, Halliday (2008) uses a discrete

�nite mixture, which is potentially more �exible and less parametric in its treatment of

heterogeneity and the initial conditions than the distribution assumed in Contoyannis,

10



Jones and Rice (2004). This greater �exibility comes from the possibility of having many

points of support which should provide an approximation to a variety of distributions like

asymmetric distributions, or distributions with several modes.

The limitation of this approach is computational. This limitation leads Halliday (2008)

to consider no more than four points of support, even though more points of support might

be needed.8 Four is certainly more than the two points of support assumed in other

applications, but it may be not enough to provide a good approximation to a bivariate

distribution. In this paper we have two individual speci�c e¤ects potentially correlated

with each other. Such a bivariate joint distribution may be di¢ cult to approximate with

only four points of support. In contrast to these limitations, the �xed e¤ects approach we

follow here is non-parametric in the distribution of the heterogeneity, requires no special

treatment of the initial conditions, and does not have the same computational limitations

as estimating discrete �nite distributions.

Finally, Halliday (2008) �nds evidence of a great amount of heterogeneity in health,

which is the most important motivation for following the approach we propose here.

2.3.3 Relation to Jones and Schurer (2009)

Another recent paper dealing with self-assessed health measures is Jones and Schurer

(2009). They use the German Socio-Economic Panel and focus on the e¤ect of income

on health, conducting a detailed analysis on the shape of this e¤ect. But, it does not

consider dynamics in SAH. However, it does address the potential importance of unob-

served heterogeneity. They control for heterogeneity in both unobserved health status and

reporting behaviour by estimating a logit model with �xed e¤ects for each of the J � 1
threshold values into which SAH can be dichotomized. However, they estimate it using

the Conditional MLE of Chamberlain (1980) because the standard MLE estimation of

ordered-choice models with �xed e¤ects su¤er from a severe incidental parameters prob-

lem and there was no other solution from the panel data literature ready to be applied

to these models. Implementing a solution to this problem in the estimation of ordered-

choices model with �xed e¤ects is one of the main contributions of our paper. This allow

us to estimate marginal e¤ects that properly account for the distribution of unobserved

heterogeneity and, especially, for its correlation with observable variables. The Condi-

tional MLE conditions out the �xed e¤ects and, therefore, no information about them is

recovered. This means that when calculating marginal e¤ects they have to substitute the

�xed e¤ect for a value that may not be representative of the population and, in any case,

it ignores the correlation between the observables and the heterogeneity.

Jones and Schurer (2009) also estimate a random e¤ects model that assumed inde-

pendence of the heterogeneity. Comparing this with the �xed e¤ects estimates they �nd

8See section 5.1.2 in Halliday (2008).
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that the underlying assumptions of the statistical model matter for assessing the link be-

tween income and health. This �nding provides additional support in favor of estimating

a model that makes no assumptions about the distribution of the heterogeneity.

3 Estimation Method

3.1 Estimation problem and possible solutions

From (1), (2) and the normality assumption about "it, we have that

Pr(hit = �1jxit; hit�1; ci; �i) = 1� � (ci + �it) (5)

Pr(hit = 0jxit; hit�1; ci; �i) = � (ci + �it)� � (�it)
Pr(hit = 1jxit; hit�1; ci; �i) = 1� Pr(hit = �1j:)� Pr(hit = 0j:) = � (�it) (6)

where

�it = �i + �11 (hi;t�1 = 1) + ��11 (hi;t�1 = �1) + x0it� (7)

Conditioning on the �rst observation hi0, the log-likelihood is:

l(�1; ��1; �; �; c) =
NX
i=1

TX
t=1

f1 fhit = �1g log [1� � (ci + �it)]+

1 fhit = 0g log [� (ci + �it)� � (�it)] + 1 fyit = 1g log [� (�it)]g; (8)

Using standard MLE to estimate models like (2) is known to be biased, since we do not

have a large number of periods. The MLE is inconsistent when T does not go to in�nity

because the �xed e¤ects act as incidental parameters. Furthermore, existing Monte Carlo

experiments with dynamic nonlinear models show that the MLE has large bias. In fact,

simulations of a dynamic ordered probit in Bester and Hansen (2009) and simulations in

the following sections show that the bias is non-negligible even with T as large as 20. As

mentioned in the introduction, several recently developed bias-correction methods could

overcome this problem. Arellano and Hahn (2007) summarize the di¤erent approaches.

The methods can be grouped into three approaches based on the object that is cor-

rected. The �rst aproach is to construct an analytical or numerical bias correction of

a �xed e¤ect estimator. Fernandez-Val (2009), among others, takes this approach and

applies his analytical bias correction to dynamic binary choice models. The second ap-

proach is to correct the bias in moment equations. An example of this is Carro (2007)

that uses an estimator of this type to correct the bias in dynamic binary choice models.

The third group are those that correct the objective function. Arellano and Hahn (2006)

and Bester and Hansen (2009) take this approach, with the latter including an applica-

tion to a dynamic ordered probit model. The HS-penalty estimator studied in Bester and
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Hansen (2009) is the �rst option we consider because our model is also a dynamic ordered

probit, and because alternative approaches require transformations or derivations. This

estimator also has the advantage of being easier to compute than the Modi�ed MLE in

Carro (2007) and the Bias Correction in Fernandez-Val (2009) because the HS does not

require the calculation of expectations and the other two do. This advantage is more

relevant in our case, because it has two �xed e¤ects.

Arellano and Hahn (2007) show how the di¤erent approaches are related. Asymptoti-

cally, all the approaches always reduce the order of the bias of the MLE from the standard

O(T�1) to O(T�2) for the general classes of models they were developed. However there

may be di¤erences when they are applied to speci�c cases . The following very simple

example used in Carro (2007), Arellano and Hahn (2007), and Bester and Hansen (2009)

illustrates this point. Consider the model where yit �
iid
N(�i; �

2
0). The ML estimator of �

2
0

is b�2MLE =
1
NT

P
i

P
t (yit � b�i)2. It is well known that b�2MLE is not a consistent estimator

of �20 when N ! 1 with �xed T , since it converges to T�1
T
�20. In this case the whole

problem is very easy to �x. 1
N(T�1)

PN
i=1

PT
t=1 (yit � b�i)2 is the �xed T consistent estima-

tor of �20. The MMLE from Carro (2007) produces this very same estimator, correcting

not only the O(T�1) term of the bias, but all the asymptotic bias in this special example.

The HS removes the O(T�1) term of the bias, but it does not attain the �xed-T consistent

estimator. The one-step bias correction to the ML estimator from Fernandez-Val (2009)

does not produce a �xed-T consistent estimator either, but its iterated form does. Thus,

di¤erences may appear between the di¤erent approaches when applied to speci�c models.

On the other hand, the incidental parameters problem can be seen as a �nite sample

bias problem in panel data context. The problem is not important when T is large relative

to N. However, since our panel does not have a large number of periods it is reasonable to

wonder whether the excellent asymptotic properties of the MLE when T goes to in�nity

(su¢ ciently fast) are a good approximation to our �nite sample. Simulations show that

we would need panels with many more time periods than are usually found in practice.

The relevant implication is that we have to examine the �nite sample performance of the

estimators for our model and sample sizes. In the methods considered here this is done

through Monte Carlo experiments. Bester and Hansen (2009) do not compare the �nite

sample properties of the method they use with others for the ordered probit case because

many of the other methods require some derivation to get the speci�c correction for this

case. However, they make such a comparison using binary choice (probit and logit) models.

Also, Carro (2007) and Fernandez-Val (2009) conduct Monte Carlo experiments for logit

and probit models with di¤erent sample sizes (both in T and N), allowing us to compare

a wide range of methods for those models. From these comparisons we can conclude that

the HS penalty approach is not the best one and for sample sizes with T smaller than

13 the remaining bias can still be signi�cant. Given this result, we consider other of the

proposed methods to estimate our ordered probit and evaluate its �nite sample properties.
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Interesting candidates are the corrections discussed by Fernandez-Val (2009) and Carro

(2007) since they are equally superior to other alternatives in �nite sample performance

in the relevant existing comparisons. In the next subsections we derive explicit formulas

of the modi�ed MLE used in Carro (2007) for the model considered here, evaluate its

�nite sample performance, and compare it with the HS penalty estimator.

3.2 MMLE for a dynamic ordered probit with two �xed e¤ects

The model we want to estimate is de�ned in (1) and (2), and its log-likelihood is (8).

Let 
= (�; �1; ��1) and �i = (�i; ci). Partial derivatives are denoted by the letter d, so

the �rst order conditions are d�i(
; �i) � @li(
;�i)
@�i

and d
i(
; �i) � @li(
;�i)
@


. Bold letters

represent vectors.

The MLE of �i for given 
, �i(
), solves d�i(
; �i) = 0. The MLE of 
 is obtained by

maximizing the concentrated log-likelihood (
PN

i=1 li(
; �i(
))), i.e. by solving the following

�rst order condition:
1

T N

NX
i=1

d
i(
; �i(
)) = 0 (9)

where d
i(
; �i(
)) =
@li(
;�i)
@


���
�i=�i(
)

.

To reduce the bias of the estimation, we follow Carro (2007) in modifying the score of

the concentrated log-likelihood by adding a term that removes the �rst order term of the

asymptotic bias in T . By doing so, we get that the MMLE of the 
 parameters of model

(2) is the value that solves the following score equation:

d
Mi(
) = d
i(
; �i(
))�
1

2

1

d��idcci � d�ci2
�
d��i

�
d
cci + d�cci

@b�i
@


+ dccci
@ĉi
@


�
+dcci

�
d
��i + d���i

@b�i
@


+ d��ci
@ĉi
@


�
�2d�ci

�
d
�ci + d��ci

@b�i
@


+ d�cci
@ĉi
@


��
� @

@�i

�
E(d
ci)E(d�ci)� E(dcci)E(d
�i)
E(d��i)E(dcci)� [E(d�ci)]2

�����
�i=�i(
)

� @

@ci

�
E(d
�i)E(d�ci)� E(d��i)E(d
ci)
E(d��i)E(dcci)� [E(d�ci)]2

�����
�i=�i(
)

= 0 (10)

where d
i(
; �i(
)) is the standard �rst order condition from the concentrated log-likelihood,

as in (9). d
ci = @2li
@
@ci

, d��i = @2li
@�2i
, d
�ci = @3li

@
@ci@�i
, and so on. From the �rst order con-

ditions of �i and ci we obtain b�i(
) and bci(
), as it is done in order to concentrate the
log-likelihood. All expectations are conditional on the same set of information as the

likelihood. These expectations can be computed by conditioning recursively, like we do

to write the conditional likelihood. The parametric model (equations (1), (2) and the

assumption about "it) from which we write the likelihood also gives the parametric form
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of the expectations we need to calculate.9

We show in Appendix A how this modi�cation on the score of the concentrated log-

likelihood in (10) is a �rst order adjustment on the asymptotic bias of the ML score, so

the �rst order condition is more nearly unbiased and the order of the bias of the estimator

is reduced from O(T�1) to O(T�2). Furthermore, the bias is corrected without changing

the asymptotic variance of the MLE.

3.3 Simulations

3.3.1 First DGP: Performance for di¤erent T

We simulate the model in equations (1), and (2) with the following value of the parameters

and Data Generating Process (DGP): � = 1, �1 = 0:5, and ��1 = �0:5. The error follows
a normal distribution: "it � N(0; 1). The �xed e¤ects are constructed as follows:

�i =
1

2

4X
t=1

xit + ui; where ui � N(xi0; 1) (11)

ci = jzij; where zi � N(xi0; 1): (12)

so that they are correlated with the explanatory variables. This correlation of the un-

observed heterogeneity with the covariates makes the problem more severe than in the

independency case. We study the performance of estimators under this condition as we

consider it to be more realistic.10 xit follows a Gaussian AR(1) with autoregressive para-

meter equal to 0:5. Initial conditions are xi0 � N(0; 1) and h�i0 = �i + �0 xi0 + "i0. We

perform 1000 replications, with a population of N = 250 individuals. For each simulation

we estimate the MLE, the MMLE given by equation (10) and the HS estimator de�ned

in Bester and Hansen (2009). That is, the HS estimator is the value of the parameters

that maximize the following penalized objective function:

NX
i=1

lki (�; �1; ��1; �i; ci)�
NX
i=1

1

2
trace

�bI�1�ci bV�ci�� k2 (13)

where lki is the log likelihood of i, bI�ci is the sample information matrix for ei = (�i; ci)0,bV�ci is a HAC estimator of V ar � 1p
T

@li
@ei

�
, and k = dim(ei). This penalty term is easier to

calculate than the modi�cation of the score in (10) because the penalty does not involve

any expectation.

9Appendix B gives some indications about computing the MMLE.
10In the simulations of an ordered probit in Bester and Hansen (2009) the �xed e¤ects are independent

of the covariates. We have simulated and compared MMLE and HS in this case too. As said, the bias
is smaller for all T , but the conclusions from the comparison between MMLE and HS are the same as
in the dependency case. Since the latter is more relevant in practice we do not report the independency
case.
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Table 4: Monte Carlo Results. Dynamic Ordered Probit parameters

Parameter � �1 ��1
True value 1 0:5 �0:5
Estimator Mean Bias RMSE Mean Bias. RMSE Mean Bias RMSE

T = 4
MLE 0:816 0:828 �0:474 0:516 0:551 0:586
HS 0:796 0:809 �0:392 0:443 0:467 0:509
MMLE 0:172 0:182 �0:254 0:282 0:280 0:305

T = 8
MLE 0:335 0:341 �0:188 0:216 0:189 0:216
HS 0:247 0:254 �0:115 0:153 0:119 0:154
MMLE 0:073 0:086 �0:062 0:108 0:067 0:109

T = 10
MLE 0:257 0:263 �0:145 0:171 0:154 0:179
HS 0:170 0:178 �0:083 0:119 0:093 0:127
MMLE 0:052 0:067 �0:036 0:086 0:050 0:093

T = 12
MLE 0:210 0:215 �0:127 0:152 0:127 0:151
HS 0:127 0:134 �0:072 0:106 0:074 0:106
MMLE 0:040 0:054 �0:030 0:079 0:036 0:081

T = 16
MLE 0:154 0:159 �0:093 0:118 0:096 0:119
HS 0:081 0:088 �0:048 0:083 0:054 0:085
MMLE 0:026 0:041 �0:017 0:068 0:022 0:069

T = 20
MLE 0:122 0:127 �0:072 0:095 0:078 0:101
HS 0:058 0:065 �0:034 0:067 0:042 0:074
MMLE 0:019 0:034 �0:009 0:058 0:016 0:062

Note: See a detailed description of the model simulated and other characteristics of the
DGP in subsection 3.3.

Results from this experiment for di¤erent T are reported in Table 4, which shows the

mean bias and the Root Mean Squared Error (RMSE). We �nd that for all T , the MMLE

performs much better than the other two estimators. Comparing it with the HS, the

di¤erences are greater for T = 4 and T = 8, where the HS is closer to the MLE than to

the MMLE. When using the MMLE the bias is smaller than 10% of the true values with

T = 10 for all but for one of the � parameters. With T = 12 the bias when using the

MMLE is already negligible whereas the HS contain biases and RMSE larger than the

MMLE with T = 10. Even with T = 16 the HS exhibit mean biases greater than the

MMLE with T = 10. It is not until T = 20 that the HS has small biases and RMSE. So

HS needs more periods (at least more than 16) to have small �nite sample biases. Given

this and the fact that the sample sizes we have in our empirical analysis are smaller than

T = 14, we use MMLE.
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The reasons of this better performance of the MMLE is the use of the speci�c structure

of the model we want to estimate, which translates into the expectations in the modi�-

cation term. The likelihood includes the fact that we know the distribution of one of the

explanatory variables: the lag of the dependent variable. This distribution is, of course,

that of the dependent variable in the previous period. Therefore, we write the likelihood

recursively for each period (conditional on the previous period) up to the likelihood of

the initial condition. This is used in the modi�cation so it includes expectations, using

the known distribution of hit�1 conditional on hit�2. The HS is generally written so that

it does not make any intensive use of a speci�c likelihood and it does not include such

expectations. Therefore HS does not exploit all the information that our speci�cation

provides and it requires more periods to attain the same performance as the MMLE. This

con�rms the idea expressed in Bester and Hansen (2009) that the simplicity of the HS

(due to not having to calculate expectations) may not be free and could lead to a worse

performance than other approaches.

3.3.2 Quality of inference

We consider the quality of inference on �nite samples based on these estimators. Table 5

presents the coverage of 95% con�dence intervals and the estimated asymptotic standard

errors divided by the standard deviation. The latter is very close to 1 in all cases for the

MMLE and in most cases for the other estimators, which indicates that the variance is

estimated well and the problem is the bias. This corresponds with the fact that we are

correcting a bias without altering the asymptotic variance. With respect to inference,

the coverage of the con�dence intervals is extremely poor for the MLE, especially for �.

Even with T = 20, the coverage for � is smaller than 3%. The HS estimator improves

inference with respect to the MLE, but it is still too far from the theoretical coverage of

95%, being the coverage for � specially bad even with T = 20. As it happens with the

bias and RMSE criteria, the MMLE is clearly the best estimator of these three for doing

inference, for all periods and parameters.

3.3.3 Performance for di¤erent degrees of persistence

To check whether results are maintained under di¤erent state dependence scenarios, we

present simulations for di¤erent values of �1 and ��1, with T = 10 in Table 6. The

DGP is the same as that of Table 4 except for the values of �1 and ��1: Here the state

dependence changes from very negative to very positive, including the case with no state

dependence. In terms of bias and RMSE, we �nd that the MMLE performs better than

the other methods for all cases. In principle, having a more negative state dependence

may improve all the estimators since it induces higher variance in yit. This is the case for

the estimation of �, where the three estimation methods improve, but it is not the case
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Table 5: Monte Carlo Results. Inference over Dynamic Order Probit parameters: Con-
ference intervals coverage and estimation of the estandard error.

Parameter � �1 ��1
True value 1 0:5 �0:5

% Coverage % Coverage % Coverage
Estimator C.I. 95% SE/SD C.I. 95% SE/SD C.I. 95% SE/SD

T = 8
MLE 0% 0:85 47% 0:87 48% 0:90
HS 0% 0:86 74% 0:91 73% 0:94
MMLE 64% 1:02 87% 0:93 85% 0:96

T = 10
MLE 0% 0:81 54% 0:91 53% 0:91
HS 3:5% 0:83 82% 0:96 78% 0:95
MMLE 74% 0:94 90% 0:96 89% 0:96

T = 12
MLE 0% 0:89 58% 0:91 62% 0:93
HS 8:8% 0:92 85% 0:96 83% 0:98
MMLE 81% 1:00 92% 0:95 92% 0:97

T = 16
MLE 0% 0:92 69% 0:91 68% 0:94
HS 29% 0:95 88% 0:96 88% 0:99
MMLE 88% 1:00 93% 0:94 93% 0:96

T = 20
MLE 2% 0:90 77% 0:96 73% 0:94
HS 48% 0:93 91% 1 88% 0:98
MMLE 90% 0:97 95% 0:98 93% 0:95

Note: This is for the simulation experiment in Table 4. We have used the inverse of the
hessian as estimator of variance.

for the estimation of �1 and ��1, where the MMLE improves but the MLE and HS get

worse.

3.3.4 Simulations based on real data

Finally, we perform a simulation based on the real data used in this paper. This will pro-

vide further evidence about �nite sample performance of the MMLE and will give more

robustness to our estimator choice. The DGP takes the estimates obtained by MMLE and

reported in Table 8 as the true model. It takes the real data for all the individuals used in

that estimation and all the signi�cant x variables except the time dummies. This means

that in this DGP xit is a vector containing observations of the following variables: age,

squared age, household size, number of kids, and income. The true values of the para-

meters are: �1 = 0:4875, ��1 = �0:4375, �0 = (0:0205;�0:0005;�0:0388; 0:0472; 0:0396).
N = 1739, T is the same as in our data (i.e. between 8 and 14 periods), and "it � N(0; 1):
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Table 6: Monte Carlo Results. Dynamic Ordered Probit parameters with di¤erent degrees
of state dependence

Parameter � �1 ��1
Estimator Mean Bias RMSE Mean Bias. RMSE Mean Bias RMSE
True value 1 �1 1
MLE 0:204 0:212 �0:264 0:284 0:244 0:265
HS 0:105 0:116 �0:094 0:136 0:087 0:130
MMLE 0:012 0:044 �0:008 0:089 0:003 0:086
True value 1 �0:5 0:5
MLE 0:212 0:218 �0:214 0:235 0:206 0:227
HS 0:116 0:126 �0:079 0:119 0:078 0:119
MMLE 0:026 0:048 �0:018 0:083 0:018 0:083
True value 1 0 0
MLE 0:227 0:233 �0:180 0:201 0:180 0:201
HS 0:136 0:144 �0:079 0:116 0:084 0:119
MMLE 0:037 0:055 �0:028 0:082 0:032 0:084
True value 1 0:5 �0:5
MLE 0:257 0:263 �0:145 0:171 0:154 0:179
HS 0:170 0:178 �0:083 0:119 0:093 0:127
MMLE 0:052 0:067 �0:036 0:086 0:050 0:093
True value 1 1 �1
MLE 0:297 0:303 �0:105 0:144 0:111 0:148
HS 0:215 0:222 �0:086 0:126 0:091 0:129
MMLE 0:065 0:078 �0:057 0:100 0:069 0:107

Note: 1000 Monte Carlo simulations of the Ordered Probit model in equations (1) and
(2), following the same DGP as in Table 4 (described at the beginning of section 3.3),
but changing the value of the state dependence parameters from negative to positive,
including the case with no state dependence. T = 10:

�i and ci are the estimates of these parameters by MMLE. The distributions of these

two parameters can be seen in graph 1. The distribution of �i is not normal and is

correlated with ci (correlation coe¢ cient between �i and ci is -0.33). Thus, the distribution

of unobserved heterogeneity is not an arbitrary and statistically convenient distribution,

but an empirically founded distribution that captures both real correlations with the

covariates and correlations between �xed e¤ects. These correlations and distributions of

�i and ci are richer than those in the previous simulation experiments. Furthermore,

this is the relevant DGP to compare the proposed strategy for dealing with unobserved

heterogeneity with the random e¤ects approach previously used in the literature. Making

this comparison with an arbitrarily chosen DGP may imply a too favorable assumption

to the random e¤ects, as in our �rst DGP, or a too arbitrarily unfavorable one. However,

this case is the relevant case for our empirical analysis.

For the reasons discussed, we evaluate the �nite sample performance of the random
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Table 7: Monte Carlo Results. DGP based on the real data used in the empirical analysis.

House- Number Household
��1 �1 Age Age2 hold size of Kids Income

True value -0.4375 0.4875 0.0205 -0.0005 -0.0388 0.0472 0.0396
Mean Bias

CRE 0.0945 0.0459 0.0002 0.00006 -0.0080 0.0095 -0.0003
MLE 0.2039 -0.1239 0.0061 -0.00016 -0.0078 0.0121 0.0063
HS 0.1288 -0.0474 0.0044 -0.00010 -0.0049 0.0077 0.0033
MMLE 0.0437 0.0090 0.0029 -0.00006 -0.0030 0.0046 0.0016

Root Mean Squared Error
CRE 0.1041 0.0603 0.0265 0.00021 0.0406 0.0512 0.0348
MLE 0.2066 0.1272 0.0113 0.00018 0.0304 0.0354 0.0257
HS 0.1326 0.0546 0.0098 0.00013 0.0271 0.0310 0.0234
MMLE 0.0576 0.0289 0.0086 0.00010 0.0261 0.0292 0.0222

Note: 1000 Monte Carlo simulations. DGP described at the begging of subsection 3.3.4.

e¤ects approach (CRE) described at the end of section 2.3.1, in addition to the MLE,

HS, and MMLE. To make the comparison as close as possible with the estimators used

in practice, we include the following constant variables as covariates when estimating by

random e¤ects: gender, race, and education indicators. These are implicitly included in

the DGP through the estimated �i and ci, since in the �xed e¤ects these variables can

not be separately identi�ed from the �xed e¤ects.

The results of this simulation are presented in Table 7. The MMLE is clearly the best

of all estimators in terms of RMSE. More speci�cally, the bias and RMSE for the CRE are

twice the bias and RMSE of the MMLE for some parameters like �1 and Household Size.

As in the previous simulations experiments with similar number of periods, the MMLE

exibit small biases.

4 Estimation Results

4.1 Main Model

Table 8 presents the coe¢ cient estimates for the main model based on three di¤erent

estimators. This includes di¤erent speci�cations of the heterogeneity. The �rst estimated

model (column I) is a pooled version of the model in (1) and (2), without individual

speci�c e¤ects. The second estimated model (column II) is the correlated random e¤ects

model described in equations (3) and (4). It is similar to models estimated in Contoyannis,

Jones and Rice (2004). It has homogenous cut-points and uses a random e¤ects approach

to control for the individual speci�c intercept in the linear index. The last speci�cation

(column III) is described in previous subsections; it is the model in (1) and (2) treating
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Table 8: Estimates, Main model.

I II III
Correlated

Variables Pooled Random E¤ects MMLE
Health in t-1: Good 0.6527*** (0 .0185) 0.5028*** (0 .0234) 0.4875*** (0 .0186)

Health in t-1: Poor -0.4417*** (0 .0233) -0.3259*** (0 .0343) -0.4375*** (0 .0242)

Age 0.0011 (0 .0032) 0.0200 (0 .0210) 0.0205 (0 .0222)

Age square -0.0000 (0 .0000) -0.0007*** (0 .0001) -0.0005*** (0 .0001)

Married 0.0344 (0 .0286) 0.1722 (0 .0752) 0.0749 (0 .0606)

Separated/Divorced -0.0580 (0 .0358) 0.0475 (0 .1028) 0.0375 (0 .0729)

Widowed -0.0243 (0 .0408) 0.3668** (0 .1329) 0.0542 (0 .0918)

Household size -0.0782*** (0 .0138) -0.0112 (0 .0189) -0.0388** (0 .0177)

Number of Kids 0.0647*** (0 .0155) 0.0423 (0 .0189) 0.0472** (0 .0188)

Household Income 0.0816*** (0 .0122) 0.0188 (0 .0191) 0.0396*** (0 .0147)

Male -0.0095 (0 .0175) 0.0116 (0 .0265)

Non-white -0.0890* (0 .0467) -0.1277* (0 .0709)

Higher/1st degree 0.1540*** (0 .0345) 0.1563*** (0 .0466)

HND/A level 0.0810*** (0 .0250) 0.0696* (0 .1862)

CSE/O level 0.0860*** (0 .0225) 0.0923*** (0 .0327)

Cut point 1 0.0192 (0 .1233) -0.0277*** (0 .2265)

Cut point 2 1.0698*** (0 .1235) 1.0528*** (0 .2267)

�2u 0.0686
Mean ci 1.1323
Variance ci 0.3277
Mean �i -0.0743
Variance �i 0.6311
Correlation(�i,ci) -0.3326
Akaike Infomation Criterion 38544.0 37334.3 37275.2

Standard errors are reported in parentheses. Number of individuals used in estimation of
all models is 1739. Estimates of year dummies in all models and within means of variables
in random e¤ects are not reported.
* signi�cant at 10% ; ** signi�cant at 5% ; *** signi�cant at 1%.
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�i and ci as �xed e¤ects. It is estimated by MMLE.

To compare magnitudes of the e¤ects across variables and estimates we look at the

relative e¤ects (i.e. ratio of coe¢ cients), and the average and median marginal e¤ects

reported in tables 9 and 10 for the variables with a coe¢ cient signi�cantly di¤erent from

zero.11 ;12

Table 9: Average Marginal E¤ects on Probability of reporting good and poor health for
signi�cant variables. Main model.

(a) Good
I II III

Correlated Random
Pooled St.Err. E¤ects St.Err. MMLE St.Err.

Health in t-1: Good 0.2528 0.0071 0.1883 0.0456 0.1653 0.0080

Health in t-1: Poor -0.1550 0.0078 -0.1149 0.0637 -0.1403 0.0520

Age -0.0005 0.0003 -0.0170 0.0055 -0.0089 0.0064

Household size -0.0282 0.0050 -0.0040 0.0111 -0.0120 0.0054

Number of Kids 0.0233 0.0056 0.0150 0.0149 0.0145 0.0058

Household Income 0.0294 0.0044 0.0067 0.0095 0.0122 0.0045

(b) Poor
I II III

Correlated Random
Pooled St.Err. E¤ects St.Err. MMLE St.Err.

Health in t-1: Good -0.1399 0.0046 -0.1057 0.2125 -0.0984 0.1153

Health in t-1: Poor 0.1477 0.0081 0.0968 0.1372 0.1268 0.0947

Age 0.0003 0.0002 0.0105 0.0140 0.0058 0.0117

Household size 0.0173 0.0031 0.0024 0.0072 0.0081 0.0086

Number of Kids -0.0143 0.0034 -0.0090 0.0171 -0.0095 0.0102

Household Income -0.0181 0.0027 -0.0040 0.0078 -0.0081 0.0082

11These marginal e¤ects are also called partial e¤ects. The marginal e¤ects are averaged (or calculated
their median) across the �rst eight waves of the panel as well as across the values of the covariates for
each individual. This means that we �rst calculate the marginal e¤ect for each individual in the sample
at the observed values of the regressors and then we calculate the average (or the median) of them,
instead of calculating the marginal e¤ect at the average value of the covariates. We do this in order to
obtain summary measures of the marginal e¤ects representative of the situation of the population (see
Chamberlain, 1982, pp.1273). Moreover, a measure that substitutes the values of the covariates and
especially the individual speci�c e¤ect �i with their means (or any other �xed value) ignores any possible
correlation between them. This may give the wrong values of the marginal e¤ects representative of the
population.
12An alternative way to identify and estimate the marginal e¤ects is the approach taken in Cher-

nozhukov et. al. (2010). They show that in a model like ours, with �xed e¤ects, when T is �xed the
(average and quantile) marginal e¤ects are not point identi�ed. However they are set identi�ed and they
propose a way to estimate bounds on the partial e¤ect. These nonparametric bounds tighten as T grows.
The main advantage is that the bounds analysis applies to any T , whereas our bias correction method
depends on T not being very small. However, the bounds analysis is only available with discrete covari-
ates for the moment. In contrast, the bias correction methods work well in many examples, including
continuous covariates, and they consistently point estimate the identi�ed average e¤ect.
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Table 10: Median Marginal E¤ects on Probability of reporting good and poor health for
signi�cant variables.

(a) Good
I II III

Corr. Random
Pooled E¤ects MMLE

Health in t-1: Good 0.2536 0.1889 0.1738
Health in t-1: Poor -0.1555 -0.1175 -0.1544
Age -0.0004 -0.0162 -0.0080
Household size -0.0283 -0.0040 -0.0127
Number of Kids 0.0234 0.0151 0.0154
Household Income 0.0296 0.0067 0.0130

(b) Poor
I II III

Random
Pooled E¤ects MMLE

Health in t-1: Good -0.1402 -0.1014 -0.0910
Health in t-1: Poor 0.1484 0.0949 0.1282
Age 0.0002 0.0094 0.0043
Household size 0.0170 0.0023 0.0077
Number of Kids -0.0140 -0.0086 -0.0089
Household Income -0.0177 -0.0039 -0.0077

The pooled model exacerbates the state dependence e¤ect due to the lack of permanent

unobserved heterogeneity. Though it is not reported, we also estimated the model in (1)

and (2) by MLE. As seen in the simulations it is severely biased, estimating much lower

state dependence e¤ects and higher e¤ect of the other explanatory variables.

More interesting is the comparison between the correlated random e¤ects and the �xed

e¤ects model estimated by MMLE. They are in columns II and III of Tables 8, 9, and

10. The �rst di¤erence is in the variables that are statistically signi�cant. Table 8 shows

that in the MMLE household size, number of kids, and household income have an impact

that is statistically di¤erent from zero. However, none of them has a signi�cant e¤ect

in the random e¤ect estimates. In correspondence, the average marginal e¤ect of those

variables increases in absolute value in the MMLE case with respect to the random e¤ects

model, especially for household income. With respect to the state dependence e¤ect (ef-

fect of hit�1) there are some changes too. The e¤ect of hit�1 = good decreases in absolute

value when estimating by MMLE, and the e¤ect of hit�1 = poor increases. Comparing

coe¢ cients in Table 8 we can also see that the e¤ect of hit�1 = poor increases proportion-

ally less than the e¤ect of the other relevant explanatory variables. In the random e¤ects

speci�cation the ratio of the coe¢ cient of 1 (hi;t�1 = poor) to the coe¢ cient of �Household
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income�is around 17, whereas in the MMLE that ratio is 11. In any case, this partial

increase in the e¤ect of state dependence and of the e¤ect of the explanatory variables

is remarkable because the model in column III allows for more permanent unobserved

heterogeneity and more �exibly than in column II.13

Moreover, many of those di¤erences in the estimated e¤ects of the explanatory vari-

ables between the correlated random e¤ects model and the �xed e¤ects model estimated

by MMLE are statistically signi�cant. As is known, if the restrictions imposed by the

correlated random e¤ects model are correct its estimates are more precise (i.e. e¢ cient)

than the estimates of the �xed e¤ects model (even after the modi�cation of the MLE),

though both are consistent. Given this, we have used a Hausman type test to see if those

important di¤erences are only due to the more imprecise estimates in columns III. We

have made the test over the Average Marginal e¤ects instead of the parameters in table

8 for two reasons. First, Marginal E¤ects (including their average), and not the parame-

ters in equations (1) and (2), are usually the parameters of interest in nonlinear models.

Second, the average marginal e¤ects do not su¤er the di¤erent scales problem that makes

magnitudes in columns II and III of Table 8 not directly comparable and not directly

interpretable. The average marginal e¤ects of both models are well de�ned within the

same scale, as any other marginal e¤ect over choice probabilities, and their magnitude has

the same clear interpretation. If we were primarily interested in a single average marginal

e¤ect, like the e¤ect of hi;t�1 = good over the probability of hi;t = good, we could use a

t-statistic that ignores the others. Doing this for all the average marginal e¤ects we reject

at 5% the null hypothesis that both estimates are the same for four variables. Doing a

joint test we also reject the null hypothesis that the correlated random e¤ects estimates

and the �xed e¤ects MMLE estimates are the same, therefore rejecting, the restrictions

imposed in the correlated random e¤ects model.14

The previous two paragraphs are a clear indication that ignoring the added dimension

of heterogeneity and the �exibility in the distribution of the �xed e¤ects matters when

estimating the model and the marginal e¤ects of variables. It is not only a matter of the

amount of heterogeneity but also a matter of the other restrictions being imposed on the

model in column II.

Besides the formal test of random e¤ects versus �xed e¤ects, we look at the unobserved

heterogeneity both in the linear index equation and in the cut point shift. Figure 1

displays the estimated distribution (histogram) of both �xed e¤ects in the population,

and both exhibit large variation. The average for �i is �0:074 and for ci is 1:13. The
13Recall that permanent unobserved heterogeneity, state dependence and persistence in observable

variables are alternative explanations of the observed high persistence in hit.
14In the Hausman test we have used the Var-Cov of the Fixed E¤ects estimates only, instead of

subtracting from it the Var-Cov of the Random E¤ects. We do this in order to avoid the di¤erence not
being a positive de�nite matrix due to the use of di¤erent estimates of the variance of the errors. This
represents a lower bound for this test and a rejection here will also be a rejection when using the well
de�ned di¤erence in the var-cov matrices.

24



Figure 1: Distribution (histogram) of the �xed e¤ects from MML estimates.

standard deviations of these distributions are 0:79 and 0:57; respectively. In the random

e¤ects speci�cation �i is the compound equation (4) that includes a linear relation to

some observables and an additive unobserved term that is assumed to follow a normal

distribution. Given the estimates of the parameters of equation (4), the estimated average

for �i in the random e¤ects model is 1:41, and its standard deviation is 0:9626. With

respect to the heterogeneity on the cut points, the average of �ci, the �rst cut point, is
-1:13 and the estimate of the �rst cut point in the random e¤ects speci�cation is �0:03.
Also, as can be seen in the right panel of �gure 1 and has been said, there is large variation

in ci among individuals that is ignored by the random e¤ects model estimated. Moreover,

a test rejects normality of the distribution of �i at 1%.15 Finally, the correlation between

�i and ci is �0:33, so there are rich interactions between both �xed e¤ects forming a joint
distribution that is not the simple combination of their marginal distributions.

Focusing on the MML estimates, we �nd evidence of strong positive state dependence.

With respect to socioeconomic variables we �nd that aging and household size have a

small but signi�cant negative e¤ect on SAH. Household income and number of kids have

a small but signi�cant positive marginal e¤ect on SAH. Number of kids has the biggest

e¤ect of all the x variables.

With respect to how the models �t the observed data, in addition to the information

criteria (AIC) reported in Table 8 some predictions of the estimated models and their

sample counterparts are in Table 11. Overall the MMLE model �ts the data better,

because its predictions are closer to the actually observed proportions in the sample.

Likewise, the MMLE predictions capture better the inverted-U shape of the proportion of

reporting excellent or good health as we look at people with higher number of children,

and the slope in the increasing patter when looking at people with higher income.16

15ci can not be normal by de�nition since it is restricted to be positive.
16Note that we are not controlling for any other observable characteristics. Thus, there may be other
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Table 11: Sample vs. predicted proportions of SAH (in %)

Panel A: Total proportions.
Poor or very poor Fair Excellent or good

Sample 16 31 53
Predicted MMLE 15 32 53
Predicted CRE 12 31 57
Predicted Pooled 14 29 57

Panel B: Proportions of people reporting Excellent or good SAH.
Predicted

Sample MMLE CRE Pooled
By number of Kids
0 52 53 57 56
1 55 54 55 57
2 58 56 57 60
3+ 50 51 54 58
By income quartiles
1st quartile 47 50 54 54
2nd quartile 51 52 56 56
3rd quartile 56 55 58 59
4th quartile 58 57 59 59

In addition to considering the average and median marginal e¤ects reported in tables 9

and 10, we look at how many individuals have a signi�cant marginal e¤ect in the sample,

given their particular situation and unobserved characteristics. Table 12 presents the

proportion of individuals with signi�cant (at 10%) marginal e¤ects over the probability of

reporting good and bad health, for the same variables as in table 9. Notice that although

the average marginal e¤ects are signi�cant, there is a great deal of heterogeneity; for

around half the population, the marginal e¤ects over the probability of reporting good

health is not signi�cantly di¤erent from zero for many of these variables.

4.2 Estimates of additional speci�cations

4.2.1 Model with health measures

As explained in subsection 2.2, we add variables that contain information on objective

health problems to provide further evidence of the robustness and importance of state

dependence in SAH. Table 13 presents the estimates of this model by MMLE, and table

14 contains the corresponding average marginal e¤ects. Of the three signi�cant socioe-

conomic variables in the main model only number of kids remains signi�cantly di¤erent

di¤erences between people with di¤erent number of children (or di¤erent income) that can reinforce or
cancel the e¤ect of it on average. Therefore these numbers can not be interpreted as the e¤ect of the
number of children (nor the e¤ect of income).
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Table 12: Proportion of individuals with marginal e¤ects (on the probability of reporting
good and poor) that are signi�cantly di¤erent from zero at 10%.

Variable
Proportion

Good Poor
Health in t-1: Good 60.44% 12.25%
Health in t-1: Poor 55.43% 34.50%
Age 22.71% 2.53%
Household size 37.21% 11.44%
Number of Kids 41.81% 12.65%
Household Income 44.85% 15.35%

from zero (at 10%). Most of the objective health measures have the biggest e¤ect over

SAH, all with the expected signs. The second variables with higher impact are the two

indicators of hit�1.Thus, even after including objective health measures we �nd evidence

of strong positive state dependence here, though it is less than in the main model. The

variance of the unobserved heterogeneity is even higher in both �i and ci than in the main

model.

4.2.2 Linear versus quadratic e¤ect of age

Halliday (2008) found, based on AIC, that a quadratic function of age was only weakly

preferred to the linear model and that there was not much lost with a linear model in

age. We have estimated model III in table 8 excluding age2 as an explanatory variable,

and in our case the �t is worse because the e¤ect of age increase more than linearly at

olger ages. Also, when introducing the quadratic term, the AIC changes much more than

in Halliday (2008). Here in the linear model AIC is 37373.4 and in the quadratic model

is 37275.2, almost a hundred points smaller.

5 Conclusion

In this paper we have considered the estimation of a dynamic ordered probit of a self-

assessed health status with two �xed e¤ects: one in the linear index equation and one in

the cut points. The inclusion of two �xed e¤ects, instead of only one as is usual, is moti-

vated by the potential existence of two sources of heterogeneity: unobserved health status

and reporting behavior. Even though we cannot separately identify these two sources of

heterogeneity we robustly controll for them by using two �xed e¤ects. Based on our best

estimates, the two �xed e¤ects exhibit important variation and it is relevant to account

for both when estimating the e¤ect of other variables. Our estimates also show that state

dependence is large and signi�cant even after controlling for unobserved heterogeneity and
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Table 13: Estimates, health indicators added.

Correlated
Variables Random E¤ects MMLE
Health in t-1: Good 0.4191*** (0 .0337) 0.3696*** (0 .0226)

Health in t-1: Poor -0.1830*** (0 .0401) -0.2784*** (0 .0296)

Age 0.0262 (0 .0324) -0.0215 (0 .0282)

Age square -0.0005*** (0 .0002) -0.0003*** (0 .0001)

Married 0.0974 (0 .1215) 0.0350 (0 .0672)

Separated/Divorced -0.0177 (0 .1547) 0.0340 (0 .0817)

Widowed 0.1601 (0 .2087) 0.0474 (0 .1110)

Household size -0.0181 (0 .0359) -0.0127 (0 .0206)

Number of Kids 0.0667 (0 .0444) 0.0387* (0 .0213)

Household Income 0.0051 (0 .0312) 0.0112 (0 .0177)

Self employed -0.0941 (0 .1073) 0.0216 (0 .0660)

In paid employment 0.1042 (0 .0665) 0.1069** (0 .0425)

Unemployed 0.1311 (0 .0956) 0.0946 (0 .0680)

Retired 0.1089 (0 .1110) 0.1104* (0 .0651)

Long term sick or disa. -0.1893 (0 .1231) -0.2562*** (0 .0707)

Health problems -0.6808*** (0 .0470) -0.7759*** (0 .0334)

Health limits daily acti. -0.6435*** (0 .0465) -0.6865*** (0 .0299)

Health limits work -0.4956*** (0 .0468) -0.4854*** (0 .0306)

Hospital days -0.0331*** (0 .0029) -0.0350*** (0 .0008)

Cut point 1 -0.9318*** (0 .2651)

Cut point 2 0.2788 (0 .2647)

�2u 0.0489
Mean ci 1.2775
Variance ci 0.3942
Mean �i 2.7760
Variance �i 1.4170
Correlation(�i,ci) -0.0551
Akaike Infomation Criterion 27688.2 27310.7

Standard errors are reported in parentheses. Number of individuals used in estimation
of all models is 1437. Estimates of year dummies in all models, constant variables and
within means of variables in random e¤ects are not reported.
* signi�cant at 10% ; ** signi�cant at 5% ; *** signi�cant at 1%.

28



Table 14: Average Marginal E¤ects health for signi�cant variables. Model with health
indicators added.

(a) Good
Correlated Random
E¤ects St.Err. MMLE St.Err.

Health in t-1: Good 0.1416 0.0117 0.1122 0.0074

Health in t-1: Poor -0.0610 0.0134 -0.0832 0.0223

Age -0.0061 0.0087 -0.0135 0.0080

Number of Kids 0.0213 0.0141 0.0109 0.0060

In paid employment 0.0336 0.0215 0.0306 0.0122

Retired 0.0352 0.0358 0.0316 0.0185

Long term sick or disa. -0.0610 0.0396 -0.0729 0.0223

Health problems -0.2250 0.0171 -0.2277 0.0480

Health limits daily acti. -0.2169 0.0167 -0.2045 0.0340

Health limits work -0.1666 0.0162 -0.1439 0.0141

Hospital days -0.0106 0.0009 -0.0099 0.0003

(b) Poor
Correlated Random
E¤ects St.Err. MMLE St.Err.

Health in t-1: Good -0.0780 0.0159 -0.0675 0.0877

Health in t-1: Poor 0.0434 0.0119 0.0650 0.0657

Age 0.0038 0.0052 0.0088 0.0161

Number of Kids -0.0122 0.0081 -0.0070 0.0089

In paid employment -0.0199 0.0133 -0.0201 0.0247

Retired -0.0208 0.0213 -0.0207 0.0266

Long term sick or disa. 0.0404 0.0280 0.0547 0.0570

Health problems 0.1083 0.0239 0.1216 0.1667

Health limits daily acti. 0.1435 0.0264 0.1501 0.1630

Health limits work 0.1041 0.0209 0.0994 0.1136

Hospital days 0.0063 0.0012 0.0065 0.0075

some forms of objective health measures. The comparison with random e¤ects estimates

previously used shows that it matters to �exibly account for more permanent unobserved

heterogeneity.

The recent literature in bias-adjusted methods of estimation of nonlinear panel data

models with �xed e¤ects has produced several potentially equivalent estimators. We �nd

that the a priori the most directly applicable correction to our model, which is the HS

estimator proposed in Bester and Hansen (2009), still has signi�cant biases in our sample

size. This lead us to consider the Modi�ed MLE proposed in Carro (2007). We derive

the expression of the MMLE for our model, conduct Monte Carlo experiments to evaluate

its �nite sample properties, and compare it with the HS. The MMLE has a negligible

bias in our sample size. The Monte Carlo experiments contribute to the literature on
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bias-adjusted methods of estimation nonlinear panel data models by showing how well

two of the proposed methods work for a speci�c model and sample size. This information

will be useful for other applications when choosing among the several correction methods

existing in the literature.
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A Appendix: Reduction of the order of the bias
In this appendix we show that the modi�ed score presented above corrects the �rst order asymptotic

bias of the original score. The algebra is somewhat tedious because of the many terms, but the idea is

clear. We �rst expand the score of the MLE around the true value of the �xed e¤ects and make some

calculations and substitutions on it to obtain the leading term of the bias of the MLE�s score. Then we

show that the modi�cation in the MMLE�s score, equation (10), is subtracting that leading bias term

from the score. This follows Carro (2007), and is adapted to our model with two �xed e¤ects.

The notation used is the same as in section 3.2: 
= (�; �1; ��1) and �i = (�i; ci); we denote partial

derivatives by the letter d; bold letters are used to denote vectors; d�i � @li(
;�i)
@�i

, d
i � @li(
;�i)
@
 ,

d
ci =
@2li
@
@ci

, d��i = @2li
@�2i

, d
�ci = @3li
@
@ci@�i

, and so on; the derivatives evaluated at the true values of

the parameters are represented by including a 0 in the sub-index (e.g. d�i0 = d�i(
0; �i0)).

A.1 Deriving the leading term of the bias of the score in the

MLE
We start by deriving the �rst term of the bias in the score of the original unmodi�ed concentrated

log-likelihood. Expanding this score around �i0, and evaluating it at 
0 we get:

d
i(
0; �i(
0)) = d
i0 + d
�i0(�̂i(
0)� �i0) (A1)

+ d
ci0(ĉi(
0)� ci0)

+
1

2
d
��i0(�̂i(
0)� �i0)2 +

1

2
d
cci0(ĉi(
0)� ci0)2

+ d
aci0(�̂i(
0)� �i0)(ĉi(
0)� ci0) +Op(T�1=2) + : : :

This equation clearly shows that the score evaluated at the true value 
0 di¤ers from the value of the

score we want to obtain, d
i0 = d
i(
0; �i0), as much as �̂i(
0) and ĉi(
0) di¤er from �i0 and ci0. This

is the source of the incidental parameters problem.

Now we need expressions for (�̂i(
0)��i0) and (ĉi(
0)�ci0), for which we do asymptotic expansions,
following Rilstone, Srivastava and Ullah (1996):

(�̂i(
0)� �i0) = b��1=2 + b��1 +Op(T�3=2) (A2)

(ĉi(
0)� ci0) = bc�1=2 + bc�1 +Op(T�3=2) (A3)

where b��1=2 and b
c
�1=2 are the elements of the vector b�1=2, and b

�
�1 and b

c
�1 are the elements of the

vector b�1, which are determined as follows:

b�1=2 = �Q�1R

b�1 = �Q�1 S b�1=2 �
1

2
Q�1 U (b�1=2 
 b�1=2)

R =
1

T

 
d�i0

dci0

!
Q = E(rR)

S = rR�Q

U = E(r2Q)
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From the above expressions we obtain:

b��1=2 =
1
T dci0E

�
1
T dc�i0

�
� 1

T dai0E
�
1
T dcci0

�
E
�
1
T d��i0

�
E
�
1
T dcci0

�
� E

�
1
T dc�i0

�2 (A4)

bc�1=2 =
1
T dai0E

�
1
T dc�i0

�
� 1

T dci0E
�
1
T d��i0

�
E
�
1
T d��i0

�
E
�
1
T dcci0

�
� E

�
1
T dc�i0

�2 (A5)

It is also useful to obtain:

(�̂i(
0)� �i0)2 = (ba�1=2)2 +Op(T�3=2) (A6)

(ĉi(
0)� ci0)2 = (bc�1=2)2 +Op(T�3=2) (A7)

(�̂i(
0)� �i0) (ĉi(
0)� ci0) = ba�1=2 bc�1=2 +Op(T�3=2) (A8)

With respect to the squares of b��1=2 and b
c
�1=2, we get:

(b��1=2)
2 =

�
1
T dai0

�2
E
�
1
T dcci0

�2
+
�
1
T dci0

�2
E
�
1
T dc�i0

�2 � 2 1
T dai0

1
T dci0E

�
1
T dc�i0

�
E
�
1
T dcci0

��
E
�
1
T d��i0

�
E
�
1
T dcci0

�
� E

�
1
T dc�i0

�2�2
(bc�1=2)

2 =

�
1
T dci0

�2
E
�
1
T d��i0

�2
+
�
1
T dai0

�2
E
�
1
T dc�i0

�2 � 2 1
T dai0

1
T dci0E

�
1
T d��i0

�
E
�
1
T dc�i0

��
E
�
1
T d��i0

�
E
�
1
T dcci0

�
� E

�
1
T dc�i0

�2�2
Substituting by expectations, and using the information matrix identity (E(dc�i) = �E(daidci)), we

get:

(b��1=2)
2 = � 1

T

E
�
1
T dcci0

�
E
�
1
T d��i0

�
E
�
1
T dcci0

�
� E

�
1
T dc�i0

�2 +Op(T�3=2) (A9)

(bc�1=2)
2 = � 1

T

E
�
1
T d��i0

�
E
�
1
T d��i0

�
E
�
1
T dcci0

�
� E

�
1
T dc�i0

�2 +Op(T�3=2) (A10)

Following the same procedure for the cross-product, we get:

b��1=2 b
c
�1=2 =

1

T

E
�
1
T dc�i0

�
E
�
1
T d��i0

�
E
�
1
T dcci0

�
� E

�
1
T dc�i0

�2 +Op(T�3=2) (A11)

With respect to b��1 and b
c
�1, we follow the same procedure (replace by expectations and use the

33



information matrix identity) to get:

b��1 =
1

2T

1�
E
�
1
T d��i0

�
E
�
1
T dcci0

�
� E

�
1
T dc�i0

�2�2 (A12)

(
2E

�
1

T
dc�i0

�2�
E

�
1

T
d�cci0

�
+ E

�
1

T
dai0dcci0

�
+ E

�
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T
dci0dc�i0

��
+ E
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T
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E
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1
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da��i0
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� E

�
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T
dc�i0

�
E

�
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T
d��i0
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E
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T
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�3=2)
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T d��i0

�
E
�
1
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� E
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�2�2 (A13)
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Introducing all these expressions in (A1), and taking expectations, we get:

E(d
i(
0; �̂i(
0))) = (A15)
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The remainder of this expression is O(T�1) because Op(T�1=2) terms have zero mean. This means

that the score of the original concentrated likelihood has a bias of order O(1), whose expression is in the

previous formulae.
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A.2 Modi�ed Score
The modi�ed score in (10) can be decomposed in three terms, d
Mi(
) = A+B + C, such that:

A = d
i(
; �i(
)) (A16)

B = �1
2

1

d��idcci � dc�i2
(A17)�

d��i

�
d
cci + d�cci

@�̂i
@


+ dccci
@ĉi
@


�
+ dcci

�
d
��i + d���i

@�̂i
@


+ d��ci
@ĉi
@


�
�2dc�i

�
d
aci + d��ci

@�̂i
@


+ d�cci
@ĉi
@


��
C = � @

@ai

�
E(d
ci)E(dc�i)� E(dcci)E(d
�i)
E(d��i)E(dcci)� [E(dc�i)]2

�����
�i=�i(
)

(A18)

� @

@ci

�
E(d
�i)E(dc�i)� E(d��i)E(d
ci)
E(d��i)E(dcci)� [E(dc�i)]2

�����
�i=�i(
)

A is the score of the original unmodi�ed concentrated log-likelihood. So, we now analyze B and C:

Part B. We �rst want to derive expression for @�̂i=@
 and @ĉi=@
. Di¤erentiating the score of the

concentrated log-likelihood, d�i(
; �i(
)), with respect to 
 we get a system of two equations with two

unknowns. Solving for @�̂i=@
 and @ĉi=@
 we get:

@�̂i(
)

@

=
d
cidc�i � dccid
�i
d��idcci � d2c�i

(A19)

@ĉi(
)

@

=
d
�idc�i � d��id
ci
d��idcci � d2c�i

(A20)

evaluating at 
0 and replacing by expectations:
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=
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Introducing in (A17) and rearranging terms:
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Evaluating at 
0, using the fact that �i(
) = �i0 + Op(T�1=2), adding 1=T 2 in numerators and denomi-

nators and replacing by expectations:
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Finally, taking the expected value of this expression will not change anything, except that the re-

mainder would be O(T�1) instead of Op(T�1=2).

Part C. To analyze C, we need the following result:

@

@�i
E (d
ci) = E (d
�ci) + E (d
cid�i) (A26)

This works with other derivatives of expectations as well.

C is the sum of two derivatives, that we call C� and Cc respectively, evaluated at �i = �i(
). C� is
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equal to:
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@ai
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Working with the derivative and using the above result, we get:

Ca = � 1

E(d��i)E(dcci)� [E(dc�i)]2

fE(d
ci) [E(d��ci) + E(dc�idai)] + E(dc�i) [E(d
aci) + E(d
cidai)]

�E(dcci) [E(d
��i) + E(d
�idai)]� E(d
�i) [E(d�cci) + E(dccidai)]g

+
E(d
ci)E(dc�i)� E(dcci)E(d
�i)
(E(d��i)E(dcci)� [E(dc�i)]2)2

fE(d��i) [E(d�cci) + E(dccidai)] + E(dcci) [E(d���i) + E(d��idai)]
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Likewise, for Cc we have:

Cc = � 1
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fE(d
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fE(dcci) [E(d��ci) + E(d��idci)] + E(d��i) [E(dccci) + E(dccidci)]

�2E(dc�i) [E(d�cci) + E(dc�idci)]g

We then evaluate at 
0 and take the expected value of these expressions.

Putting everything together. Finally, if we add all the terms of B and C from before, which is

equal to d
Mi(
) � d
i(
; �i(
)) = B + C, we get exactly minus (A15). Therefore, the modi�ed score

equal the standard score minus the �rst order term of the bias, because we are subtracting it with the

modi�cation B + C: The reminder of this expansion for d
Mi(
) is O(T�1); as opposed to O(1); which

is the order of magnitude of the bias of d
i(
; �i(
)). This shows that MMLE reduced the order of the

bias of the MLE.

B Computation of the MMLE
Computing the MMLE implies maximizing a likelihood whose �rst order condition is equation (10). This

�rst order condition has known close analytical terms. This means that we can program this optimization

problem in any of the most frequently used programs in economics: MATLAB, GAUSS, and STATA. We

can even use one of the already written routines and tools in those programs to maximize a likelihood,
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provided it allow us specify the analytical form of the �rst order condition; otherwise we would obtain

the MLE instead of the MMLE. We have used FORTRAN to program the MMLE for this paper because

we are more familiar with this programming language and because we have conducted several Monte

Carlo experiments and expected FORTRAN to be faster at doing this. But nothing in MMLE prevents

us from using other software and programing language. MML Estimates reported in Table 8 (our main

model) took 5 minutes. MML Estimates reported in Table 13 took 34 minutes, because it has much more

variables than model in Table 8.

There are three main aspects when computing the MMLE:

1. We �rst have to obtain the several derivatives and cross derivatives of the likelihood (8). This

includes di¤erentiating the MLE�s �rst order conditions for the �xed e¤ects with respect to 
,

so that we obtain @b�i
@
 and @ĉi

@
 . This may look somewhat tedious, but these are straight forward

calculations with known compact general forms that hold for all the parameters.

2. Calculate the expectations in (10). They are expectations of functions ofXit and hit�1, f(hit�1; Xit)

where f denotes here any of the functions that results from the derivatives that compound the

modi�cation. These expectations are conditional on all the values of the xi covariates, on hi0, and

on (�i; ci); that is E [f(hit�1; Xit)jXi = xi; hi0; �i; ci]. Thus, the only random variable over which
the expectation is made is hit�1 whenever t > 1. For t = 1

E [f(hit�1; Xit)jXi = xi; hi0; �i; ci] = f(hi0; xit). For t = 2
E [f(hit�1; Xit)jXi = xi; hi0; �i; ci] = f(hi1 = �1; xit) � Pr (hi1 = �1jxi; hi0; �i; ci) + f(hi1 =
0; xit) � Pr (hi1 = 0jxi; hi0; �i; ci) + f(hi1 = 1; xit) � Pr (hi1 = 1jxi; hi0; �i; ci),
where the Pr (hi1jxi; hi0; �i; ci) are those given by the model in equations (5). For t > 2 we

continue proceeding recursively using Pr (hit�2jxi; hi0; �i; ci) to calculate Pr (hit�1jxi; hi0; �i; ci):
Pr (hit�1jxi; hi0; �i; ci) = Pr(hit�1jxit; hit�2 = �1; ci; �i)�Pr (hit�2 = �1jxi; hi0; �i; ci)+ Pr(hit�1jxit; hi1 =
0; ci; �i) � Pr (hit�2 = 0jxi; hi0; �i; ci) + Pr(hit�1jxit; hi1 = 1; ci; �i) � Pr (hit�2 = 1jxi; hi0; �i; ci),
where Pr(hit�1jxit; hit�2; ci; �i) is given by equations (5) and Pr (hit�2jxi; hi0; �i; ci) has already
been obtained in this recursive process.

3. Concentrate the likelihood and estimate with �xed e¤ects. The problems come from not having

a close form for b�i and ĉi to obtain the analytic expression of the concentrated likelihood, and
from having to estimate as many �xed e¤ects parameters as individuals in the panel with large

N . This problem is not speci�c to the MMLE. It a¤ects any estimator with �xed e¤ects and

has already been treated in the literature. On top of that, computational problems are smaller

with the current technology than they used to be. Classical references o¤ering di¤erent solutions

are Chamberlain (1980) and Heckman and MaCurdy (1980). More recently Greene (2004) also

deals with the computational problem of inverting a large Hessian matrix. We have not used

any of these solutions when estimating the MLE and MMLE. We have followed the proposal in

Appendix B of Carro (2008) that concentrates the likelihood numerically by nesting the �rst order

conditions used to compute the �xed e¤ects in the algorithm that maximizes the concentrated

likelihood with respect to � and �. We have found this to be faster than dividing the optimization

problem in two procedures and iterating back and forth between the two optimization algorithms

until convergence is reached, as proposed by Heckman and MaCurdy (1980). This also does not

require us to invert a large Hessian matrix and, at the same time, produces a correct estimate of

the variance. See Appendix B in Carro (2008) for further details. In any case, the message here is

that these computational problems already have satisfactory solutions.
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