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1 Introduction

One fundamental empirical problem that researchers scrutinize in macroeco-

nomics is the relationship between inflation and real economic activity. Okun

(1971) claims that given a stable Philips curve, due to changes in demand man-

agement policies, high inflation leads to high inflation variability and that there

exists a positive relationship between inflation variability and output variability.

In his Nobel lecture, Friedman (1977) argues that a rise in the average rate of

inflation and its variability, reducing the efficiency of the pricing system, lead

to a lower output.1 In this context, given the vast empirical literature that

demonstrates the presence of a positive relationship between inflation and price

variability with its potential implications on output growth and output growth

volatility, it is not surprising to see that achieving low and stable inflation con-

stitutes a major macroeconomic policy goal.

Several researchers have empirically investigated the linkages between the

rate and variability of inflation and output growth. Okun (1971) finds a high

correlation between inflation and its volatility, yet reports a low correlation

between inflation and output growth variability. Logue and Sweeney (1981)

document a positive relationship between the average inflation rate and the

variability of output growth, but inflation rate variability does not affect real

growth variability. Katsimbris (1985) finds a positive association between in-

flation variability and industrial production growth rate for several countries.

Fountas, Karanasos and Kim (2001), and Grier, Henry and Shields (2004) re-

port that inflation uncertainty has a significant negative effect on output growth.

Caporale and Mckiernan (1996) present evidence of a positive relationship be-

tween output growth and output growth uncertainty. Clark (1997), and Iscan

1Several researchers, including Vining and Elwertowski (1976), Lach and Tsiddon (1992),
Grier and Perry (1998), have found a positive relationship between inflation and price vari-
ability.
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and Osberg (1998) show that neither average inflation nor inflation volatility

significantly affects economic growth.

Several other researchers have approached the question on the relationship

between uncertainty and economic activity from a different angle. In particular,

to demonstrate the negative impact of monetary instability through its effects

on the informational content of prices, Beaudry, Caglayan and Schiantarelli

(2001) lay out a simple theoretical model and examine the impact of aggregate

price uncertainty on the time-variation in the cross-sectional distribution of

capital investment spending at the aggregate and the industry level. They show

an increase in macroeconomic uncertainty could lead to a significant reduction

in the cross-sectional dispersion of the investment rate indicating significant

resource allocation problems. Along the same lines, Baum, Caglayan, Ozkan and

Talavera (2006) find support from the data that increased uncertainty distorts

firms’ cash holding behavior hindering the efficient allocation of firms’ resources

between capital spending and short-term liquidity needs.

In this paper we have two main objectives. Recent theoretical work, includ-

ing Morana (2002), suggests that inflation can exhibit long memory properties

due to the output process, and that it would be desirable to investigate these

two series within a bivariate framework.2 Hence, our first goal is to develop

a new class of bivariate processes—bivariate Constant Conditional Correlation

ARFIMA-FIGARCH model—to investigate the dual long memory properties

present in inflation and output growth series extending Baillie, Han and Kwon

(2002) to a bivariate framework using the multivariate FIGARCH structure

2Many researchers have looked into time series properties of inflation and output growth
series. Researchers including Barsky (1987), Brunner and Hess (1993) argue that inflation
contains unit root, others, for example, Baillie, Chung and Tislau (1996), Baum, Barkoulas
and Caglayan (1999) find evidence in favor of fractional integration. Baillie, Han and Kwon
(2002) demonstrate that not only inflation but also its conditional variance exhibits long
memory features. Conrad and Karanasos (2005) also present evidence for dual long memory
properties of inflation. Finally, Diebold and Rudebusch (1989) indicate that aggregate output
can be represented by an ARFIMA process.
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proposed by Teyssiere (1997).3 This methodology serves us to achieve our sec-

ond objective by allowing us to construct volatility measures from our bivariate

framework in understanding the causal linkages between the means and the

volatilities of inflation and output growth that have been investigated by many

researchers in the past.

We carry out our empirical investigation using monthly inflation and output

growth series for the U.K. over the period between February 1957 and May 2005.

We start our empirical analysis estimating the Baillie et al. (2002) model. We

then implement the bivariate ARFIMA-FIGARCH (dual long memory) model.

Having obtained the dual long memory parameters for both series, we exploit

the generated conditional variances as proxies for inflation and output growth

volatilities to investigate various causal relationships à la Granger.

The causality tests reveal the following findings. Similar to the findings in

the literature we observe that i) inflation causes higher inflation uncertainty

and a reduction in output growth as Friedman (1977) claims; ii) output growth

causes an increase in inflation and inflation variability. We also find that out-

put growth volatility leads to an increase in inflation, inflation uncertainty and

output growth. These findings are in line with earlier theoretical work.

The rest of the paper is organized as follows. Section 2 discusses the theoret-

ical underpinnings of the univariate and bivariate ARFIMA-FIGARCH model

and presents the small sample properties of the quasi-maximum-likelihood esti-

mation method we implement from a Monte Carlo exercise. Section 3 documents

our findings. Section 4 concludes and gives suggestions for further research.

3This methodology is useful due to its capability to jointly capture dual fractional dif-
ferencing parameters in both the mean and the squared values of the residuals of the series
within a bivariate framework.
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2 Modeling inflation and output growth

Based on the specific assumptions of the analytical models, one can arrive at

a positive, negative, or zero effect of inflation on output growth. Mirroring

the diverse analytical findings, empirical research, some of which we refer to

in the introduction, fails to reach firm conclusions. However, it is possible to

arrive at erroneous or biased conclusions should one did not take the proper

time series properties of the underlying variables into account. Furthermore, if

inflation exhibits long memory properties due to the output process, it would

be adequate to model the two series using a bivariate structure. In what follows

below, we propose a new methodology to model the mean and the variance of

inflation and output growth series within a bivariate framework to account for

the possible linkages between the two while allowing the two series to possess

long memory in their means as well as their variances.

2.1 Univariate fractionally integrated model

In this section we outline the dual long memory ARFIMA-FIGARCH model

proposed by Baillie, Han and Kwon (2002), which we extend to a bivariate

framework in the following section. They propose the following model to study

the presence of dual long memory properties in the conditional mean and the

conditional variance:

ϕ (L) (1− L)dm (yt − µ) = α (L) εt, (1)

εt = ξt
2
√

ht, (2)

λ (L) (1− L)dv ε2
t = ω + (1− β (L)) vt, (3)

where dm and dv capture the presence of long memory behavior of the mean,

(m), and the variance, (v), of the series. The skedastic innovation is defined as

vt = ε2
t − ht (4)

5



and ξt is an independent identically distributed (i.i.d.) random process with

mean zero and unity variance, Et (εt) = 0, V art (εt) = ht, and E (εtεs) = 0 for

s 6= t. L denotes the lag operator and ϕ (L) = 1 − ϕ1L − ϕ2L
2 − ... − ϕpL

p

and α (L) = 1 + α1L + α2L
2 + ... + αqL

q. Furthermore, we define λ (L) =

λ1L + λ2L
2 + ... + λsL

s, and β (L) = β1L + β2L
2 + ... + βrL

r. For stationarity,

all the roots of ϕ (L), α (L), λ (L) and (1− β (L)) must lie outside the unit

circle.

The long memory operator can be conveniently expanded as a hypergeomet-

ric function

(1− L)d = F (−d, 1, 1;L) =
∞∑

k=0

Γ (k − d)
Γ (k + 1)Γ (−d)

Lk =
∞∑

k=0

λkLk, (5)

where Γ(·) denotes the gamma function with Γ(k + 1) = k! = k × Γ(k) and

λk = k−d−1
k λk−1. When −0.5 < d < 0.5, the process is said to be stationary

and ergodic. For 0 < d < 0.5, the autocorrelations of the process decay at a

hyperbolic rate and the process is said to exhibit long memory. For −0.5 < d <

0, the sum of absolute values of the autocorrelation of the process converges to

a constant and it is said to have short memory. For d ∈ [0.5, 1) the process

is mean reverting, even though it is not covariance stationary, as there is no

long-run impact of an innovation on future values of the process.

Using equation (4) we can rewrite equation (3) as:

(1− β (L))ht = ω +
[
1− β (L)− λ (L) (1− L)dv

]
ε2

t . (6)

Assuming that equation (6) follows FIGARCH (1,dv,1), Bollerslev, Mikkelsen

and Ole (1996) show that the conditional variance will be positive provided that

w > 0, β − dv ≤ 1
3 (2− dv) and dv

[
λ− 1

2 (1− dv)
]
≤ β (dv + λ− β). Further-

more, when dv = 0, we obtain the standard GARCH(r, s) model. When dv = 1,

we have an Integrated GARCH model. Note that if 0 < dv < 1, the process

captures the long run persistence in the conditional volatility. Consequently, the
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fractionally integrated GARCH model nests both variance-covariance stationary

GARCH and integrated GARCH models, allowing flexibility in the representa-

tion of the model. The added benefit of this approach is that the model permits

one to study the long run dependence in the conditional variance-covariance

structure along with that in the mean of the series.

2.2 A bivariate ARFIMA-FIGARCH model

Here, we propose a new approach to investigate the presence of long memory in

the series while estimating the parameters of interest within a bivariate frame-

work. In doing so, we extend the standard univariate ARFIMA-FIGARCH

framework suggested by Baillie et al. (2002) using the multivariate ARFIMA

structure proposed by Teyssiere (1997) assuming a constant correlation coeffi-

cient.

Let us define vector Yt =
(

y1t

y2t

)
and assume that the conditional mean

process of Yt can be expressed as a bivariate ARFIMA(p, d, q) model:

Φ (L)

[
(1− L)d1m 0

0 (1− L)d2m

]
Yt = Ψ(L)εt, (7)

where εt =
(

ε1t

ε2t

)
, with Et (εt) = 0, V art (εt) = Ht, Φ (L) = I−Φ1L− ...−

ΦpL
p, and Ψ (L) = I + Ψ1L + ... + ΨqL

q. To achieve stationarity, all the roots

of Φ(L) and Ψ(L) are assumed to be outside the unit circle. The coefficients of

the matrices for Φ and Ψ of the lag operators are defined as:

Φi =
(

ϕ1,i ϕ12,i

ϕ21,i ϕ2,i

)
(i = 1, 2, ...p) ,

Ψj =
(

α1,j α12,j

α21,j α2,j

)
(j = 1, 2, ...q) .

Next, we characterize the bivariate fractionally integrated FIGARCH(r, dv, s)

model with constant conditional correlation for Yt as
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Θ (L)

(
(1− L)d1v 0

0 (1− L)d2v

)
ε2

t = w + (I−B(L))vt (8)

where ε2
t =

(
ε2
1t

ε2
2t

)
, Θ (L) = Θ1L+ ...+ΘsL

s, B(L) = B1L+ ...+BrL
rand

all roots of Θ (L) and B(L) lie outside the unit circle to achieve stationarity.

Similar as in the univariate case, we set the skedastic innovation matrix as vt =

ε2
t − V ECH(Ht), where εt|Ht−1 ∼ N (0,Ht), and Ht =

(
h11,t h12,t

h21,t h22,t

)
.

Substituting vt into equation (8), we obtain

(I−B (L))V ECH(Ht) = ω+
[
I−B (L)− (I−Θ (L)) (1− L)dv

]
ε2

t , (9)

and express the elements of this matrix as:

(1− βii (L))hii,t = ωi +
[
1− βii (L)− (1− λii (L)) (1− L)div

]
ε2

i,t (10)

h12,t = h21,t = ρ 2
√

h11,t
2
√

h22,t, (11)

where i = 1, 2 and ρ denotes the constant conditional correlation coefficient.

Equation (10) denotes the presence of long memory in the variance and equation

(11) captures the cross correlation between the residuals given, ρ, the constant

correlation coefficient.

Here, stationarity is ensured by imposing restrictions on the diagonal ele-

ments of the variance–covariance matrice. Hence, positive definiteness in the

bivariate diagonal CCC-FIGARCH model is assured when |ρ| < 1, βii − div ≤
1
3 (2− div) and div

[
λii − 1

2 (1− div)
]
≤ βii (div + λii − βii).

2.2.1 Estimation method and a Monte-Carlo study

Inference in the estimated models is based on quasi-maximum likelihood (QMLE)

estimation. Assuming the residuals are conditionally normal, the logarithm of

the loglikelihood function can be described as

L (θ, ε1, ε2, ..., εT ) = −(T/2)n ln(2π)− (1/2)
T∑

t=1

ln |Ht| − (1/2)
T∑

t=1

ε′tH
−1
t εt

(12)
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where θ denotes the parameters that will be estimated. The empirical method-

ology we employ is similar to that in Baillie et al. (1996) where we maximize

the loglikelihood function conditional on initial values of the vectors of residu-

als ε2
t , t = 0,−1,−2, ..., are set to sample unconditional variance. The initial

observations y0, y1, y2, ... are set to the sample average.

Earlier researchers have shown that QMLE is consistent and asymptotically

normal for specific cases of the ARFIMA and or the FIGARCH models.4 In

particular, simulation evidence for FIGARCH and some complicated ARCH

models suggest that QMLE is consistent and asymptotically normal. However,

full theoretical treatment is not available, yet. In our Monte Carlo simulation

experiment, we conjecture that constants associated with the mean and the

conditional variance are known, the limiting distribution of the QMLE is

DT (θ − θ0) → N
(
0,
[
D−1

T Γ−1 (θ0)Υ (θ0) Γ−1 (θ0)D−1
T

]−1
)

where Γ−1 (θ0) and Υ (θ0) are the Hessian and outer product gradient, evaluated

at the true parameter values θ0, respectively and diag(DT ) = (T (1/2)−d, T (1/2), ..., T (1/2)).

We specifically carry out a detailed Monte Carlo simulation exercise for bi-

variate ARFIMA(24, d, 0)− FIGARCH(1, d, 1) model to verify the adequacy

of the estimation method which we implement in the next section. The model

is simulated with the parameter designs of dπ,m = dy,m = 0.20 and dπ,v = 0.45

and dy,v = 0.30 where π and y denotes inflation and output growth, respec-

tively. We investigate the above designs for sample size T=500 and T=1000

for 1000 replications in all cases, respectively. Table 1, based on our simulation

results, presents average biases, root mean squared errors (RMSE) as well as

the standard errors (SD) for our designs. The distributions of the QMLE for

dπ,m, dy,m, dπ,v, and dy,v are provided in Figures 1a-1b and 2a-2b, respectively.

4See Li and McLeod (1986), Dahlhaus(1989), Moehring (1990), Lee and Hansen (1994)
and Lumsdaine (1996).
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Results obtained from our Monte Carlo experiments are very satisfactory and

provide evidence of a very small parameter estimate bias for each parameter.

In other words, our simulation exercise suggests that our estimators are close to

their true values with high precisions. Note that corresponding results for other

parameters also yield similar results with small biases and RMSE. Although we

refrain from tabulating those results due to space considerations here, they are

available from the authors upon request.

3 Empirical Analysis

3.1 Data

The empirical investigation is carried out on monthly consumer price index

(CPI) and industrial production index (IPI) series derived from DATASTREAM

database over the period between February 1957 and May 2005 for the United

Kingdom. We measure the inflation (πt) and output growth (yt) series as

the monthly difference in the natural logarithm of the CPI and IPI; πt =

100∆ log (CPIt) and yt = 100∆ log (IPIt), respectively. Over the sample pe-

riod, the mean inflation and output growth rates are 0.48% and 0.13%, respec-

tively. Interestingly, the standard deviation of output growth happens to be

much larger than that of the inflation series (1.39% versus 0.68%) implying

that the output growth is more volatile than inflation.

Next we investigate the autocorrelation coefficients for inflation and output

growth series. Figures 3 and 4 display the autocorrelations of inflation and

output growth up to 100 lags, respectively. Different from the behavior of

a standard stationary (I(0)) or a non-stationary (I(1)) process, we can see

from Figure 3 that the autocorrelations of inflation decay at a slow hyperbolic

rate. Figure 4 shows that the autocorrelations of output growth also decay

slowly and display cyclical dependence. Finally, although we do not present the
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KPSS and PP test statistics, they provide evidence that neither of the series

can be characterized as non-stationary nor as I(0).5 Therefore, based on these

observations, it seems plausible that both inflation and output growth series

exhibit long run dependence; a hypothesis that we can test.

3.2 Estimating the univariate ARFIMA–FIGARCH model

Prior to estimating our bivariate ARFIMA-FIGARCH model for inflation and

output growth series, we run a univariate ARFIMA(p, dm, 0)−FIGARCH(1, dv, 1)

model for both series separately to gain a sense of the presence of dual long

memory in these series. We define the mean equation as

(
1− ϕ1L− ...− ϕ24L

24
)
(1− L)dm xt = c + εt (13)

to eliminate higher higher order serial correlation and the potential influence of

seasonality. Here, xt depicts the output growth or inflation, and we assume that

dm ≤ 1 and we assume that εt ∼ N(0, ht). The structure of the conditional

variance is captured by a FIGARCH(1, dv, 1) model

(1− βL) ht = $ +
[
1− βL− λL(1− L)dv

]
ε2

t . (14)

where 0 ≤ dv ≤ 1, $ > 0 and λ, β < 1.

Note that although we estimate up to 24 AR lags for the mean equations,

Table 2 displays those parameters that are significant at the 10% level and

better along with the other parameters of interest. We carry out the estimation

using the QMLE method and use a range of starting values to check for the

robustness of our findings.

Table 2 reveals that the long memory parameter estimates of mean inflation

and mean output growth series are between zero and 0.5 (dπ,m = 0.209 and

dy,m = 0.202) and they are significant at the 1% level. We have similar ob-

servations when we investigate the long memory parameters of the volatilities
5These results are available from the authors upon request.

11



of the series; dπ,v = 0.438 and dy,v = 0.308, respectively.6 Furthermore, given

the presence of long memory in the mean equations, the AR(24) specification

captures the serial correlation for the inflation and the output growth series.

Ljung-Box Q and Q2 test statistics indicate that there is no significant presence

of higher order serial correlation in the standardized and squared standardized

residuals of either series.

3.3 Estimating bivariate ARFIMA–CCC–FIGARCH model

Armed with the information above we now estimate a bivariate ARFIMA(p, dm, 0)−

FIGARCH(1, dv, 1) model for the inflation and output growth series assuming

a constant correlation coefficient structure. We write the mean process of the

vector Yt =
(

πt

yt

)
as:

(
I−Φ1L− · · · −Φ24L

24
) [ (1− L)dπ,m 0

0 (1− L)dy,m

]
Yt =

(
cπ,m

cy,m

)
+ εt,

(15)

where the roots of Φ(L)=
(
I−Φ1L− ...−Φ24L

24
)

lie outside the unit circle,

the coefficient matrix Φp=
(

φ1,p φ12,p

φ21,p φ22,p

)
( p = 1, 2,...,24) and the vector of

residuals εt =
(

επ,t

εy,t

)
is conditionally normally distributed with εt|Ht−1 ∼

N (0,Ht) and

Ht =
(

hπ,t hπy,t

hyπ,t hy,t

)
.

The bivariate volatility process, is defined as:(
(1− b1L) 0

0 (1− b2L)

)(
hπ,t

hy,t

)
=
(

cπv

cyv

)
+
(

1− b1L− (1− a1L) (1− L)dπv

1− b2L− (1− a2L) (1− L)dyv

)(
ε2
11,t

ε2
22,t

)
(16)

6We carry out a battery of tests to see if data support these findings. The Wald test
statistics illustrate the presence for long memory for all volatility processes of inflation and
output growth series. Similar finding are obtained when we carry out likelihood ratio tests.
All tests statistics are available from the authors upon request.
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with constant conditional correlation ρ, where the covariance component is de-

scribed as hπy,t = ρ
√

hπ,t

√
hy,t. Similar to our previous estimation approach,

we compute the AR coefficients up to 24 lags for the mean inflation and the

mean output growth series.

Table 3 depicts coefficients that are significant at the 10% level, or better.

Note that the fractional differencing parameters in the mean and the variance of

the series obtained from our bivariate model are very similar to those computed

using the univariate approach proposed by Baillie et al. (2002). This is possibly

due to the observation that the constant conditional correlation coefficient, ρ is

not significantly different from zero, implying that the variance-covariance ma-

trix is diagonal.7 The Ljung-Box Q and Q2 test statistics suggest that the AR

specification we implement adequately captures the data generating mechanism

for inflation and output growth series after taking into account the long memory

in both series.

3.4 Granger-Causality Tests

Now that we have estimated the model and derived the associated conditional

variances of each of the series, we can examine the bidirectional causal relation-

ships between the means and the variances of inflation, πt, and output growth,

yt, using Granger causality approach. Table 4 reports the size of the coefficients

and provides the F statistics for Granger-causality using four, eight and twelve

lags to ensure that the results are not driven by the choice of lag length.

Panel 4a reports our results on the causal relationship from inflation and

output growth to inflation and output growth uncertainty (variability). We

first report in Panel 4a that increased inflation leads to an increase in inflation

uncertainty. The relationship is positive and highly significant at all lags sup-
7One can in fact let the data determine ρ relaxing the constant correlation coefficient

assumption. However, this extension is beyond the purpose of the current paper.
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porting the earlier research such as Friedman (1977). The next two columns

document the causal link from inflation and output growth to output growth

variability. For both cases, we find a positive yet an insignificant causal rela-

tionship. The last column of Panel 4a presents evidence on the causal effect

from output growth to inflation uncertainty. We document that output growth

causes an increase in inflation volatility at eight and twelve lags. Recall that

output growth generally leads to an increase in inflation due to the ‘Philips

curve’ effect. In fact, third column of Panel 4c presents evidence to this pre-

diction. Therefore, by the Friedman (1977) hypothesis, an increase in inflation

triggers higher inflation volatility.

Panel 4b turns to investigate the causal effects of inflation uncertainty and

output growth volatility on inflation and output growth. We first provide evi-

dence that inflation volatility leads to a reduction in inflation and this relation-

ship is highly significant at twelve lags only. In fact Holland (1995) points out

that monetary authorities will contract growth rate of money supply when in-

flation uncertainty increases, which in turn leads to a fall in inflation. Findings

supporting the above hypothesis have been reported in the literature, for in-

stance by Grier and Perry (1998). Column three of panel 4b shows that output

growth volatility leads to a higher inflation in the UK. This can be explained

within the context of a model by Deveraux (1989). Extending the Barro and

Gordon (1983) model, Deveraux shows that higher real uncertainty reduces the

optimal amount of wage indexation and induces the policy-maker to engineer

more inflation surprises to generate favorable real effects. Next, we turn to the

causal effects from output growth uncertainty to output. Our analysis reveals a

positive relationship. This observation can be justified for instance by Sandmo

(1970) who points out that income volatility would lead to a higher saving rate

due to precautionary motives, which in turn leads to higher growth according to

Solow’s growth theory. Models developed by other researchers including Black
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(1987), Blackburn and Pelloni (2004) also arrive at a similar prediction. Finally,

we look into the relationship from inflation uncertainty to output growth. How-

ever, although the causal relationship is consistently negative, it is insignificant.

Theoretical studies generally conclude that an increase in inflation will either

reduce output growth or will have no impact.8 Column two of Panel 4c displays

a negative relationship which is significant at eight and 12 lags. The next column

presents evidence in support of the traditional ‘Phillips curve’; an increase in

output growth will lead to an increase in inflation. We then turn to investigate

the causal effects of output growth uncertainty on inflation uncertainty. It can be

argued that policy makers are interested in minimizing the variability of inflation

and output growth and there exists a tradeoff between the two. Column four

documents a significant positive causal relationship at all lags. Finally, we look

at the causal effects from inflation uncertainty to output growth uncertainty.

We find that the relationship is positive but insignificant at all lags.

4 Conclusion

In this paper, we have two main objectives. First, given the recent theoretical

work, including Morana (2002), that inflation can exhibit long memory proper-

ties due to the output process, we propose a new class of bivariate processes—

ARFIMA-FIGARCH model— to investigate the dual long memory properties

in the mean and the conditional variance of inflation and output growth series.

The model we propose extends Baillie et al. (2002) univariate dual long memory

model into a bivariate framework by using the multivariate FIGARCH approach

Tyerssiere (1997) proposed. The methodology we propose is important due to

its capability to jointly capture dual fractional differencing parameters in both

the means and the variances of the series. Second, using the conditional vari-

ances generated from our bivariate model, we investigate several causal linkages
8See Gillman and Kejak (2005) for a survey.
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between the means and the variances of output growth and inflation series that

researchers have scrutinized in macroeconomics.

We carry out our empirical analysis for using monthly UK data spanning the

period between February 1957 and May 2005. Our findings can be summarized

as below. We first show that both inflation and output growth series exhibit

long memory in the means and conditional variances. We then carry our causal

investigation. We show that an increase in inflation as well as output growth

(which in turn causes an increase in inflation) will lead to an increase in inflation

variability. Our results also depict that output growth volatility has a positive

causal impact on both inflation and output growth. Finally we show that while

output growth volatility induces higher inflation volatility inflation leads to a

reduction in output growth. These findings are in line with earlier theoretical

work.

Given the ultimate objective of the policy makers is to weigh the deviation

of mean inflation and output growth from a set target value while keeping an

eye on their variances, the proper modelling of these variables is extremely

important. We believe that the approach we propose here might be useful for

further research in this area.
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Table 1. Simulation results

Panel A 500 True Bias RMSE SD
dπ,m 0.20 -0.0150 0.0942 0.0929
dy,m 0.20 -0.0148 0.0668 0.0652
dπ,v 0.45 0.0210 0.2279 0.2271
dy,v 0.30 0.0225 0.2233 0.2224

Panel B 1000 True Bias RMSE SD
dπ,m 0.20 -0.0075 0.058 0.0578
dy,m 0.20 -0.0065 0.0509 0.0505
dπ,v 0.45 0.0140 0.2173 0.2170
dy,v 0.30 0.0161 0.2009 0.2004
Table reports the averages of biases and RMSE of the QMLE of the estimates

of the fractional differencing parameter.
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Table 2. ARFIMA-FIGARCH modelling of inflation and output growth
Inflation (πt) Output growth (yt)

cm 0.019 0.050
(1.136) (1.263)

dm 0.209 0.202
(3.967)*** (4.146)***

ϕ1 −0.032 −0.425
(−0.715) (−7.375)***

ϕ2 −0.031 −0.231
(−0.821) (−5.123)***

ϕ12 0.416 −0.069
(10.700)*** (−2.089)**

ϕ24 0.251 −0.052
(6.894)*** (−1.653)*

cv 0.0001 0.191
(0.020) (2.903)***

dv 0.438 0.308
(6.652)*** (3.724)***

α 0.281 0.303
(8.530)*** (2.532)***

β 0.511 0.017
(8.396)*** (0.07)

Q(20) 16.253 19.183
[0.135] [0.319]

Q2(20) 12.005 7.262
[0.807] [0.989]

AIC 1.372 3.119
HQ 1.402 3.148
S 1.346 3.092
LogL −388.095 −894.473
Notes: 1) ***, ** and * denote significance at the 1%, 5% and 10% levels.

2) Q(20) and (Q)2(20) are the Ljung-Box tests for serial correlation in the

standardized and squared standardized residuals, respectively.
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Table 3. Bivariate ARFIMA-CCC-FIGARCH modelling
Inflation (πt) Output (yt)

cπ,m 0.027 cy,m 0.071
(1.753)* (1.859)*

dπ,m 0.195 dy,m 0.205
(3.826)*** (4.496)***

φ11 1 -0.021 φ22 1 −0.437
(−0.510) (−7.849)***

φ11 12 0.417 φ22 2 −0.237
(10.750)*** (−5.399)***

φ11 24 0.249 φ22 12 −0.067
(6.842)*** (−2.089)**

φ12 1 0.016 φ21 1 −0.129
(1.176) (−1.918)*

φ12 12 0.020 φ21 12 −0.053
(1.444) (−0.802)

cπ,v 0.00001 cy,v 0.185
(0.00001) (2.867)***

dπ,v 0.442 dy,v 0.328
(6.727)*** (3.787)***

a1 0.279 a2 0.301
(8.494)*** (3.461)***

b1 0.513 b2 0.010
(8.446)*** (0.289)

rho 0.032
(0.772)

Q1 (20) 14.580 Q2 (20) 19.453
[0.508] [0.305]

Q2
1 (20) 13.198 Q2

2 (20) 10.221
[0.702] [0.899]

AIC 4.497 S 4.429
HQ 4.565 LogL −1281.229
Notes: 1) ***, ** and * denote significance at the 1%, 5% and 10% levels.

2) Q(20) and Q2(20) represent the Ljung-Box Q test and Q2 tests.
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Table 4: Granger-Causality Test
Panel 4a:
Lags H0: πt → hπt

H0: πt → hyt H0: yt → hyt H0: yt → hπt

4 0.2826 0.7655 –0.7325 –0.0269
(3.529)*** (1.294) (0.907) (2.037)*

8 0.2456 0.7416 –0.8154 0.0087
(2.075)** (0.698) (0.990) (4.465)***

12 0.1649 1.1564 –0.6364 0.0060
(1.577)* (0.889) (1.097) (3.395)***

Panel 4b:
Lags H0: hπt → πt H0: hyt → πt H0: hyt → yt H0: hπt → yt

4 –0.0937 0.0073 0.0751 –0.2093
(0.613) (1.505) (9.980)*** (1.113)

8 –0.0968 0.0187 0.0600 –0.2617
(0.968) (2.080)** (6.153)*** (0.823)

12 -0.0667 0.0325 0.0497 –0.2592
(2.760)*** (2.954)*** (5.424)*** (0.772)

Panel 4c:
Lags H0: πt → yt H0: yt → πt H0: hyt → hπt H0: hπt → hyt

4 –0.2496 0.0375 0.0033 0.3106
(1.101) (2.623)** (1.894)* (0.358)

8 –0.3375 0.0029 0.0272 0.1573
(1.786)* (2.097)** (4.424)*** (0.358)

12 –0.3461 0.1632 0.0324 0.1122
(2.101)*** (2.253)*** (3.265)*** (0.627)

Notes: 1) ***, ** and * denote significance at the 1%, 5% and 10% levels.

2) Sum of the coefficients of lagged exogenous variables are reported.

3) F-values are reported in the brackets.
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Figure 2a. Monte Carlo Simulation for d(π,v)
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Figure 2b. Monte Carlo Simulation for d(y,v)
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