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1. Introduction

Taylor (1979) suggests that, in quantitative theoretical investigations under

rational expectations, macroeconomic stabilization policies ought to optimize

the unconditional expectation of the policymaker�s objective function. That

perspective on policy assessment has proven popular; some prominent examples

include Whiteman (1986), Rotemberg and Woodford (1998), Woodford (1999),

Clarida, Gali and Gertler (1999), Erceg, Henderson and Levin (2000), Kollman

(2002), Kim and Henderson (2005) and Schmitt-Grohe and Uribe (2007).

The ordering of policies has conventionally been done by comparing losses

calculated as a linear combination of the volatilities of output and in�ation

gaps. That criterion can be justi�ed as a second-order approximation of the

unconditional welfare of a representative agent around a non-distorted steady state.

As is well known, the non-distorted steady state is the allocation which maximizes

utility in an economy in the absence of constraints. To justify use of the non-

distorted steady state as the approximation �point�, it is necessary to assume that

lump-sum taxation is available.

However, in the more interesting case when the steady-state is distorted, it is

not known whether the loss function can be expressed as a linear combination

of quadratic terms. This paper devises a tractable LQ formulation to the

unconditionally optimal (UO) policy problem when the steady-state is distorted.

An advantage from doing this includes, as Benigno and Woodford (2007) note, the

possibility of ranking alternative policies1.

To design our algorithm we extend the methodology of Damjanovic,

Damjanovic and Nolan (DDN) (2008), which derives the �rst-order necessary

conditions for the policy optimizing the unconditional expectation of welfare2.

Then, similar to Judd (1999) and Benigno and Woodford (2007), the linear-

quadratic approximation is done around the optimal deterministic steady state;

1See also Kim and Kim (2007).
2See also Blake (2001) and Jensen and McCallum (2002, 2010) and Whiteman (1986).
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in our case around the unconditionally optimal steady-state and in Benigno and

Woodford�s case, the timeless-perspective (TP) steady-state.3 In contrast to the

timeless perspective, unconditional optimisation incorporates the e¤ect of policy

on the distribution of initial conditions. However, we show that accounting for

these initial conditions does not preclude the possibility of LQ approximation.

The paper highlights important di¤erences between UO and TP policies when

the steady-state is distorted. Jensen and McCallum (2010) compare UO policies

(what they call "optimal continuation" policies) with the TP, when the steady-

state is e¢ cient. In that case, it is shown that the form of the welfare function to

be optimized is the same across policies. Here we show that the corresponding LQ

problems can be signi�cantly di¤erent when the steady-state is distorted. We �nd

that UO and TP approaches imply di¤erent steady states, di¤erent arguments in

the social welfare function and di¤erent dynamic constraints. Even the number of

dynamic constraint may di¤er across the TP and UO policy problems.

Finally, we also develop a useful approach for constructing the unconditional

welfare measure. Since this measure can be presented in the form of a linear

combination of the second moments, one can apply the Anderson, McGrattan,

Hansen and Sargent (1996) algorithm which has good convergence properties.

Consequently, it is also straightforward numerically to analyze UO policies.

A speci�c application of the approach is provided employing the canonical

New Keynesian model. A number of insights emerge. First, unconditionally

optimal monetary policy is characterized by trend in�ation. That trend in in�ation

complicates the linear-quadrati�cation4. That explains a second insight: The

second-order approximate loss function is no longer de�ned solely over terms in

output and in�ation as found in DDN for the non-distorted steady-state case.

However, the loss function that one obtains is easily interpreted in light of the

underlying distortions in the economy. The approximate loss function is used to

evaluate and rank di¤erent simple rules for monetary policy (i.e., the nominal

3See also Debortoli and Nunes (2006) and Levine, Pearlman and Pierse (2008).
4As shown in Ascari and Ropele (2008) and Damjanovic and Nolan (2010).
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interest rate). The welfare implications of nominal income targeting versus

in�ation targeting are explored and our results are contrasted with some of those

of Kim and Henderson (2005).

The rest of the paper is organized as follows. In section 2 the basic problem

is set out in a general form. The problem is analyzed and it is shown that one

can derive a purely quadratic approximation to the unconditional expectation of

the objective function. Section 3 begins the application; �rst a canonical New

Keynesian, Calvo-price-setting model is set up. Section 4 formalizes the policy

problem and demonstrates the application of the various steps in the approach of

section 2. There is then a brief discussion of the implications for optimal monetary

policy when the steady state is distorted and the authorities are optimizing over

the unconditional loss function. In Section 5 we use the unconditional welfare

criterion to explore brie�y the impact of di¤erent simple rules for monetary policy.

Section 6 o¤ers some conclusions. Appendices contain proofs and details of key

derivations.

2. The general problem

Consider a discounted loss function of the form

Lt = (1� �)Et
1X
j=0

�jl(xt+j); (2.1)

where Et is the expectations operator conditional on information up through date

t, � is the time discount factor, l(xt+j) is the period loss function and xt is a

vector of target variables. Speci�cally, xt = [Zt; zt; it] ; where Zt is a vector of

predetermined endogenous variables (lags of variables that are included in zt and

it), zt is a vector of non-predetermined endogenous variables (including �jump�

variables), the value of which will generally depend upon both policy actions and

exogenous disturbances at date t, and it is a vector of policy instruments, the value

of which is chosen in period t. Let �t denote a vector of exogenous disturbances.

For simplicity, assume that �t is a function of primary i.i.d. shocks, (ei)
t
�1 :
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Further, let the evolution of the endogenous variables zt and Zt be determined

by a system of simultaneous equations,

EtF (xt+1;xt; �t) = 0: (2.2)

Let us further assume, following Taylor (1979), that the policy maker seeks to

minimize the unconditional expectation of the loss function (2.1), subject to

constraints, (2.2)5. That is, he or she searches for a policy rule

' (Etxt+1;xt; �t) = 0 (2.3)

such that

' = argminELt('); (2.4)

where E is the unconditional expectations operator. We call such a policy

"unconditionally optimal" and denote it �UO-policy�.

2.1. Solution

The �rst step is to formulate the non-linear policy problem and identify the non-

stochastic steady state around which approximation needs to take place. Next, the

possibility of a second-order approximation to welfare is addressed; speci�cally the

possibility of a loss function that is solely a function of quadratic terms. However,

an alternative approach to analyzing (2.2)-(2.4) is to solve a non-linear problem

and to analyze the linearized optimality conditions. So, �nally in this section we

establish the equivalence of the LQ approach (which is the central topic of this

paper) with that alternative approach of "optimize then linearize".

5Taylor�s approach may be interpreted as a recommendation: Policymakers ought to seek to
minimize the unconditional value of the loss function. This appears partly, perhaps largely, in
response to the issue of time inconsistency. See Taylor (1979) for further discussion. McCallum
(2005) is an interesting discussion of these, and related, issues.
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2.1.1. Necessary conditions for an optimum

Consider the following Lagrangian function which derives from the above optimal

policy problem:

L (yt;xt; �t) = E (l (xt) + �tF (yt;xt; �t) + �t (xt+1 � yt)) : (2.5)

DDN (2008) show that the necessary conditions for the optimality of policy, ', is

that it implies a path for the endogenous variables, xt and yt; and that there exists

Lagrange multipliers, (�t; �t) ; that together satisfy the �rst-order conditions (2.6),

(2.7) and constraints (2.2)6,

@H

@xt
=

@l (xt)

@x
+ �t

@F (yt;xt; �t)

@x
+ �t�1 = 0; (2.6)

@H

@yt
= �t

@F (yt;xt; �t)

@yt
� �t = 0; (2.7)

where H (yt;xt; �t) is the Hamiltonian for (2.5), such that L (yt;xt; �t) =

E (H (yt;xt; �t)) :

Judd (1999), Woodford (2002) and Benigno and Woodford (2005) demonstrate

very clearly that the choice of the steady-state is crucial (along with the

solution concept for forward-looking policy problems) in being able to obtain LQ

approximations to general non-linear, forward-looking policy problems. To choose

the deterministic steady state around which log-linearization takes place, one needs

to solve the system of �rst-order conditions (2.6), (2.7) and constraints (2.2). The

steady state (X; �) is de�ned by the system (2.8-2.9):

F (X;X; �) = 0; (2.8)
@l (X)

@xt
+ �

@F (X;X; �)

@x
+ �

@F (X;X; �)

@y
= 0; (2.9)

where X, � and � indicate the vectors of steady state values of endogenous

variables, Lagrange multipliers and the average value of shocks, respectively. We

refer to (X; �) as the "unconditionally optimal steady state"7.

6The notation �F is a shorthand for the tensor product,
Pn

i=1 �iFi:
7It is assumed throughout that system (2.8) has a unique solution.
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In the absence of shocks, solution (2.8) shows that unconditionally optimal

policy delivers the steady state with the highest level of steady state welfare. This

is not the case for "timeless perspective"-optimal policy. It is worth emphasizing

that the TP approach discussed in Woodford (2002) implies di¤erent �rst-order

conditions and therefore a di¤erent center of approximation. That di¤erence will

be shown to lead to a di¤erent optimal monetary policy.8

2.2. The possibility of pure second-order approximation

The value of the loss function El (xt) should not change if combined with the

unconditional expectation of the constraints EF (yt; xt; �t). Thus, the appendix

demonstrates that the second-order approximation to this combination has a pure

second-order form. That is,

El (xt; �t) = E [l (xt) + �F (yt; xt; �t)]

= EQl + �EQF + t:i:p+O3: (2.10)

The notation O3 denotes third or higher-order terms. Ql and QF are pure second-
order terms of the log-approximation, around the unconditionally optimal steady
state, to the loss function l (xt) and dynamic constraints EF (xt+1; xt; �t) :

Ql =
1

2

�
X2 @

2l

@x2
bxtbxt� ;

QF =
1

2
X2

�
@2F

@x2
+
@2F

@y2

� bxtbxt
+XX

@2F

@x@y
bxtbxt+1 +X� @2F

@x@�
bxtb�t +X� @2F@y@�

bxt+1b�t;
where we use bxt to denote a log deviation from steady state.

It is straightforward to show that the maximization of the unconditional

objective (2.10) subject to the linearized analogues of equations (2.2) yields

the same solution as log-linearization of the �rst-order conditions (2.6). This

latter approach is proposed by Khan, King and Wolman (2004) in the context

8Speci�cally, in the TP methodology, equation (2.6) is replaced by @l(xt)
@x + �t

@F (yt;xt;�t)
@x +

��1�t�1 = 0; and therefore (2.9) becomes
@l(X)
@xt

+ � @F (X;X;�)@x + ��1� @F (X;X;�)@y = 0:
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of conditional optimization, and is extended in DDN (2008) to unconditional

optimization. See Appendix 7.2 for a con�rmation of our assertion.

2.3. Substitution techniques for UO and TP policies

Although the method of pure second-order approximation, (2.10), is
straightforward and quite e¢ cient, it may be useful to show how one can replicate
the same welfare analysis by substituting variables employing the dynamic
constraints, (2.2). In particular, it demonstrates that even though UO policy
cannot ignore initial conditions, that does not prevent one from using a substitution
approach for UO policy analysis. Consider a second-order approximation to the
dynamic constraint equations,

bxt+1 = �bxt + byt +Qt +O2 (2.11)

where Qt is a pure quadratic form.
The TP methodology expresses the discounted sum of fbxt+sg+1s=0 as a function

of fbyt+sg+1s=0 : In that case, equation (2.11) is integrated forward to yield
+1X
s=0

�sbxt+1+s = a+1X
s=0

�sbxt+s + +1X
s=0

�sbyt+s + +1X
s=0

�sQt+s +O2:

That expression can be simpli�ed as

�
��1 � a

�+1X
s=0

�sbxt+s � ��1bxt = +1X
s=0

�sbyt+s + +1X
s=0

�sQt+s +O2

Then an initial value, bxt; is ignored as a "term independent of policy" and the
�nal expression appears as

+1X
s=0

�sbxt+s = 1

��1 � a

+1X
s=0

�sbyt+s + 1

��1 � a

+1X
s=0

�sQt+s +O2:

This expression is then used to calculate approximate utility.
To deriver the analogous expression in the case of UO policy one applies the

unconditional expectations operator to (2.11)

Ebxt+1 = E�bxt + Ebyt + EQt +O2: (2.12)

Then, one uses the fact that Ebxt+1 = Ebxt, which transforms (2.12) into
Ebxt = 1

1� aEbyt + 1

1� aEQt +O2; (2.13)

which is the desired expression.
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3. Example: Calvo model with distorted steady state

A more or less canonical dynamic New Keynesian model is now developed and

two issues in particular are pursued. First, which model variables appear in the

approximate loss function? Second, some insight is sought into the nature of

optimal monetary policy.

3.1. The Households

There is a large number of identical agents in this (closed) economy where the only

input to production is labour. Each agent evaluates utility using the following

criterion:

E0

1X
t=0

�tU(Yt; Nt(i)) = E0

1X
t=0

�t

 
log(Yt)�

�

1 + v

�Z
i

Nt(i)di

�1+v!
: (3.1)

Et denotes the conditional expectations operator at time t � 0, � is the discount
factor, Yt is consumption and Nt(i) is the quantity of labour supplied to industry

i; labour is industry speci�c. � � 0 measures the labour supply elasticity while �
is a �preference�parameter.

Consumption is de�ned over a Dixit-Stiglitz basket of goods

Yt =

�Z 1

0

Yt(i)
��1
� di

� �
��1

: (3.2)

The average price-level, Pt, is known to be

Pt =

�Z 1

0

pt(i)
1��di

� 1
1��

: (3.3)

The demand for each good is given by

Yt(i) =

�
pt(i)

Pt

���
Y dt ; (3.4)

where pt(i) is the nominal price of the �nal good produced in industry i and Y dt
denotes aggregate demand.
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Agents face the �ow constraint

PtYt +Bt = [1 + it�1]Bt�1 +WtNt(1� �) + �t: (3.5)

As all agents are identical, the only �nancial assets traded in equilibrium will

be those issued by the �scal authority. Here Bt denotes the nominal value of

government bond holdings, at the end of date t; 1 + it is the nominal interest rate

on this �riskless�one-period nominal asset, Wt is the nominal wage in period t (our

assumptions mean that we do not need to index wages on i), and �t indicates any

pro�ts remitted to the individual. It is assumed that labour income is taxed at

rate � . The usual conditions are assumed to apply to the consumer�s limiting net

savings behavior. Hence, necessary conditions for an optimum include:

�U
0
N(Yt; Nt)

U 0Y (Yt; Nt)
= �N v

t Yt = wt (1� �) ; (3.6)

wt =
�

1� � N
v
t Yt; (3.7)

and

Et

�
�U 0Y (Yt+1; Nt+1)

U 0Y (Yt; Nt)

Pt
Pt+1

�
=

1

1 + it
: (3.8)

Here wt denotes the real wage. The complete markets assumption implies the

existence of a unique stochastic discount factor,

Qt;t+k = �
YtPt

Yt+kPt+k
; (3.9)

where

Et fQt;t+kg = Et
kY
j=0

1

1 + it+j
:

3.2. Representative �rm: factor demand

As noted, labour is the only factor of production. Firms are monopolistic

competitors who produce their distinctive goods according to the following

technology

Yt(i) = At [Nt(i)]
1=� ; (3.10)
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where Nt(i) denotes the amount of labour hired by �rm i in period t, At is a

stochastic productivity shock and 1 < �.

The demand for output determines the demand for labour. Hence one �nds

that

Nt(i) =

�
Pt(i)

Pt

�����
Yt
At

��
: (3.11)

There is an economy-wide labour market so that all �rms pay the same wage for

the same labour. As a result, as asserted above, one may write wt(i) = wt; 8i:
All households provide the same share of labour to all �rms. The total amount of

labour will then be

Nt =

Z
Nt(i)di =

�
Yt
At

�� Z �
Pt(i)

Pt

����
di =

�
A�1t Yt

��
�t; (3.12)

where �t is the measure of price dispersion:

�t �
Z 1

0

�
Pt(i)

Pt

����
di: (3.13)

3.3. Representative �rm: price setting

As in Calvo (1983), each period a �xed proportion of �rms are allowed to adjust
prices. Those �rms choose the nominal price which maximizes their expected pro�t
given that they have to charge the same price in k periods time with probability
�k. As usual, we assume that �rms are cost-takers. Let p0t(i) denote the choice of
nominal price by a �rm that is permitted to re-price in period t: As all �rms who
are permitted to reprice will choose the same price, optimal repricing implies

�
p0t
Pt

�1+�(��1)
=

�
�
��1

�P1
k=0(��)

kY �1t+k

h
��t+kwt+kA

��
t+kY

�
t+k(Pt=Pt+k)

���
i

P1
k=0(��)

k(Pt=Pt+k)1��
: (3.14)

where �t is a cost-push shock. The price index then evolves according to the law
of motion,

Pt =
�
(1� �) p01��t + �P 1��t�1

�1=(1��)
: (3.15)

Because the relative prices of the �rms that do not change their prices in period t
fall by the rate of in�ation, the law of motion for the measure of price dispersion
is

�t = ��t�1�
��
t + (1� �) (p0t=Pt)

���
: (3.16)
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4. UO Monetary Policy

Proposition 4.1 sets out the relevant UO Ramsey problem.

Proposition 4.1. The UO Ramsey plan is a choice of state contingent paths for
the endogenous variables f�t+k;�t+k; pt+k; ut+k; Xt+k; Zt+kg1k=0 from date t onwards
given

�
EtAt+k; Et�t+k

	1
k=0
, so as to maximize social welfare function (4.1) subject

to constraints (4.2)-(4.4):

maxEEt

1X
k=0

�k
�
log ut+k
(1 + v)�

� 1

�
log�t+k � ut+k

�
; (4.1)

subject to:

� The Phillips block

p����+1t Xt = Zt; (4.2)

Xt = 1 + ��EtXt+1�
��1
t+1 ;

Zt =
(1 + v)�

�

�
�t
�

ut
�t

�
+ ��EtZt+1�

��
t+1:

� The law of motion of prices

�t = ��t�1�
��
t + (1� �) p���t : (4.3)

� Prices: pt is the relative price set by �rms updating at time t;

pt =

 
1� ����1t

1� �

! 1
1��

: (4.4)

It is useful in formalizing this policy problem to de�ne some variables as follows:

Discounted marginal revenue is Xt := Et
P1

k=0 (��)
k
�

Pt
Pt+k

�1��
; discounted

marginal cost is Zt := Et
P1

k=0 (��)
k �t+k

�
(1+v)�
�

ut+k
�t

�
Pt
Pt+k

����
; period marginal

cost is ut+k := �
1+v
�v+1
t+k

�
A�1t+kYt+k

�(v+1)�
; and � := ��1

�
1��
�
< 1, indexes the steady

state distortions in this economy.
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One can set up the Hamiltonian for this problem, as proposed in section 2, as
follows:

H =

�
1

(v + 1)�
log ut �

1

�
log�t � ut

�
+�t

�
Xt � 1� �����1t+1Xt+1

�
+'t

�
Zt �

�t
�

(1 + v)�

�

ut
�t

� �����t+1Zt+1
�

+�t

�
Zt � p����+1t Xt

�
+�t

�
�t � ��t�1���t � (1� �) p���t

�
+�t

0@pt � 1� ����1t

1� �

! 1
1��
1A :

The necessary conditions for an optimum include:

ut
@

@ut
H =

1

(v + 1)�
� ut � 't

�t
�

(1 + v)�

�

ut
�t
;

@

@�t
H =

�
� 1

��t

�
+ 't

�
�t
�

(1 + v)�

�

ut
�2t

�
+ �t � Et��t+1�

��
t+1;

@

@Xt
H = �t � �t�1�����1t � �tp

����+1
t ;

@

@Zt
H = 't � 't�1���

��
t + �t;

�t
@

@�t
H = � (� � 1) �t�1�����1t Xt � 't�1�����

��
t Zt (4.5)

��t����t�1�
��
t � �tp�t

����1t

1� � ;

pt
@

@pt
H = ��t (��� � + 1)Xtp

1��+��
t + ���t (1� �) p

���
t + pt�t:

To reduce a little on notation, denote

ct :=

�
�t
�

(1 + v)�

�

ut
�t

�
; (4.6)

which represents marginal production costs.

4.1. The steady state

As noted, unconditionally optimal policy is associated with the highest level of

steady-state welfare, unlike TP optimal policy. It is well known (see Benigno and

Woodford, 2005) that TP optimal policy requires price stability in the steady state.
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On the other hand, King andWolman (1999) argue that a slightly positive in�ation

rate maximises steady-state welfare. We now turn in more detail to steady-state

analysis.

The value of the endogenous variables in steady state should solve the system

of constraints (4.2), (4.3), (4.4), (4.6) and the �rst-order conditions, (4.5). As a

result one obtains the following steady state equations:

p =
�
1�����1
1��

� 1
1��
; ' (v + 1)�c = 1� ��c;

� =
�

1��
1�����

�
p���; ��

�
1� ����

�
=
�
1
�
� 'c

�
;

X = 1
1������1 ; � = �'

�
1� �����

�
;

Z = Xp����+1; � = �Xp����+1 = �'
�
1� �����

�
Xp����+1;

c =
�
1� �����

�
Z; �p = (��� � + 1) �� ��� (1� �) p���:

u = � c�
(1+v)�

;

(4.7)

Using these equations, one can derive the following expression

(� � 1) ������1X + '�������Z + �������� + �p���
��1

1� � = 0; (4.8)

which can be used to infer certain properties of the optimal steady-state in�ation

rate.

Proposition 4.2. The steady state in�ation is positive, � � 1: Price stability is
only optimal if either � = 1 or if � = 1 (which corresponds to the non-distorted

steady state). Moreover � is unique and bounded: � � min(�1=(��1���); ��1=(��)):

Proof. See Appendix.

Proposition 4.3. Steady state in�ation increases with the distortion, 1��; and
declines in the discount factor � and the labour elasticity, v.

Proof. See Appendix.

Using parameter values typically found in the literature, expression (4.8)

implies that optimal steady state in�ation is of the order of 0.2% a year. As
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discussed in King and Wolman (1999), this small positive trend in in�ation re�ects

a number of con�icting e¤ects. On the one hand, a small amount of in�ation

can boost demand, as it partially o¤sets the markup distortion. On the other

hand, price dispersion, which is rising in in�ation, acts rather like a cost shock on

�rms, for reasons analyzed in Damjanovic and Nolan (2010). Hence, one �nds that

optimal trend in�ation has a U-shaped relation to price stickiness, �; it is increasing

in � when initial price dispersion is relatively small, and declines once initial price

dispersion is su¢ ciently large. Optimal in�ation declines in the discount factor,

�. As discussed in more detail in DDN (2008) and demonstrated in section 2.3,

UO policy in contrast to timeless perspective policy, gives some weight to the

distribution of initial conditions. In particular, it considers the distribution of the

initial output gap. That is partly why some stimulation of output via in�ation

is desirable. So the smaller the discount factor, the higher is the relative weight

on initial conditions and the higher the optimal in�ation rate. Finally, we note

that the nominal interest rate is positive in the UO steady state. That conclusion

follows from the Euler equation (3.8) which yields 1=(1 + i) = �=� < 1.

4.2. The quadratic form

Having recovered the optimal steady state, one can obtain a quadratic loss
function; that is, an equation of the form (2.10):

EU = EQl + �EQX + 'EQZ + �EQZX + �EQ� + �EQp;

where

Ql = �1
2
ubu2t ;

QX =
1

2
X
� bX2

t

�
� 1

�����1
X
1

2
bX2
t = �

1

2

1

�����1
bX2
t ;

Qz =
1

2
Z bZ2t � 12cbc2t � 12�����Z � bZt+1 + ��b�t+1�2 ;

Qxz =
1

2
Z bZ2t � Z 12 �(��� � + 1) bpt + bXt�2 = 0;

Q� =
1

2
�b�2t � (1� �) p�� 12 (��bpt)2 � 12a���� �b�t�1 + ��b�t�2 ;

Qp =
1

2
pbp2t � 12p ����1

1� ����1

�
�
����1

1� ����1 � 1
� b�t2:
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The details of the derivation are set out in the appendix. One can simplify the
above expression in a number of ways. Consider the following expression:9

EU = �1
2
E
h
ubu2t + 'cbc2t + �x bX2

t + �� b�2t + �� b�t2i : (4.9)

It is possible to write equation (4.9) in a way that relates it more clearly to the
�standard�loss function often employed which is simply de�ned over output and
in�ation. First, recall the de�nitions of but :

but = (v + 1) b�t + (v + 1)��bYt � bAt� :
Now note that bct can be represented as

bct = but � gt:
bgt can be thought of as the �labour wedge� of ine¢ ciency (note the role price
dispersion):

gt :=
@U

@N
=
@F

@N
=
ut
ct
=

�
�

�t

�

(1 + v)�
�t

�
;

which in log-linearized form is simply:

bgt=b�t�b�t:
So one can further simplify (4.9) to

EU= �1
2
E

�
� (1 + v)

�bYt � bY �t �2 +Gbg2t + �x bX2
t + �� b�2t + �� b�t2� : (4.10)

The term bY �t represents the �target�level of output Y �t = bAt�b�t�v� b�t (and where

details concerning coe¢ cients are again given in the Appendix). The �target�rate is

increasing in productivity and declining in the cost-push shock; it is also declining

in price dispersion. The variable bXt represents, in e¤ect, the losses to the �rm

forced to charge suboptimal prices due to price stickiness and expected in�ation,

to which they may not be able to react.

This form of the loss function can easily be nested to familiar cases, either the

non-distorted steady state where � = 1; or where the steady state of the model

economy remains distorted but where the social discount rate is equal to the private

9The coe¢ cients of equation (4.9) are positive for reasonable parameterizations.
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rate of discount, � = 1 (in which case the UO policy and the timeless perspective

policies coincide). In both special cases optimal monetary policy corresponds to

price stability and the loss function (4.10) reduces to a familiar form de�ned simply

over in�ation and output. Speci�cally, if the optimal steady state is characterized

by price stability, then �x = 0:Moreover one can easily show that price dispersion,b�t, is a second-order term in that case. Lastly, the labour wedge bgt is then simply
a cost-push shock, b�t; and can be considered as a term independent of policy.

5. Application: Unconditional ordering of simple rules

The foregoing approach is easily used to evaluate simple rules for monetary policy
and to highlight the potential signi�cance for policy design of a distorted steady-
state. First, write the model in vector autoregressive form as follows:

bpt � ����1

1� ����1 b�t = 0 (5.1)

Etb�t+1 + Et bYt+1 = bYt + (1� �)bit (5.2)

�����Et

� bZt+1 + ��b�t+1� = bZt � c

Z
bct (5.3)

�����1Et

� bXt+1 + (� � 1) b�t+1� = bXt (5.4)

bZt � �(��� � + 1) ����1

1� ����1 b�t + bXt� = 0 (5.5)

�Y �t + bAt � b�t � �u+ v

(v + 1)�

� b�t = 0 (5.6)

�bgt+b�t�b�t = 0 (5.7)

�bct + but � bgt = 0 (5.8)

�but + (v + 1) b�t + (v + 1)�(bYt � bAt) = 0 (5.9)

b�t+1 � a�����b�t+1 + (1� �) p�����
�

bpt+1 = a��� b�t (5.10)

�bit = ��b�t + �f bft +mt: (5.11)

More compactly, one writes

Vt+1 = AVt +B"t+1;

where Vt is the vector of endogenous variables and "t+1 is the vector of exogenous

shocks. In this form it is straightforward to construct the variance-covariance
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matrix, R � EVtV
0
t , using standard software such as Dynare. That is, R is

recovered by solving the following matrix equation

R = ARA0 +B�B0 (5.12)

where � = E"t"0t is the unconditional variance-covariance matrix of the underlying

shock processes. Equation (5.12) can be solved numerically using a doubling

algorithm as described in Anderson, McGrattan, Hansen, and Sargent (1996) using

an equivalent form

R =

+1X
j=0

AjB�B0A0j:

As demonstrated in section 2.2, the social welfare function is then a linear

combination of the elements of matrix R:

In the above linearized system of equations the �nal equation (5.11) is the

policy rule, wherebit is the gross nominal interest rate, bit = log ��� (1 + it)� ; and bft
represents a linear combination of policy feedback variables, while mt is a policy

shock.10

It is clear that steady-state distortions complicate the policy problem so far as

the policymaker�s objective function is concerned11. However, does it make any

di¤erence so far as the design of simple rules are concerned?12.

First, a simple interest rate feedback rule is considered, where the interest rate

responds to current and lagged in�ation only. The feedback on current in�ation is

�xed at �� = 1:5: Given this, the optimized weight on lagged in�ation, f = b�t�1,
is computed. In both the distorted and non-distorted case the optimal feedback

is about 15 in the distorted case and 14 in the non-distorted steady state case.

10The following parameterization is used in the quantitative investigation: � = 0:9; v = 1:1;
� = 7; � = 0:5; and � = 1:3: It is assumed that shocks, At, �t and mt follow AR(1) processes
with: �A = 0:98; �A = 0:008; �m = 0:9; �m = 0:005; and �� = 0:9; �� = 0:02:
11That is, complicates it relative to the objective function in the non-distorted case.
12In the particular model developed above, the UO trend in�ation is rather small and the policy

ordering across distorted and non-distorted steady states is often the same for given simple rules.
However, in simulations not reported, it was possible to �nd simple, plausible rules that result
in welfare "reversals"; that is, where rule 1 welfare dominates rule 2 in the distorted economy,
but where the ranking switched in the non-distorted economy.
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However, the di¤erence in welfare between responding and not responding to

lagged in�ation is quite substantial and may be up to 16 percentage points in terms

of consumption equivalent units (see the top right hand graph in the panel below,

�f is at its optimal value)). As in the TP approach, relative price distortion is very

costly and the optimal simple rule may be very close to price stability (�� = +1):
However, if for any reason the policy reaction on current in�ation is restricted, the

economy may signi�cantly bene�t from a response to lagged in�ation.

One can also show that the optimal feedback on output should be slightly

negative, �f = �0:015: Furthermore, inclusion of real output targeting leads to
very modest welfare improvements, in the order of 10�3 compared with targeting

in�ation alone. This result is consistent with Schmitt-Grohe and Uribe (2007) who

found that a positive feedback on real output did not increase welfare.

The results are summed up in Figure 1 (where the broken line is the non-

distorted economy).
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Figure 1: Suboptimal simple policies
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5.0.1. Targeting Nominal Income Growth

Finally, in�ation targeting and nominal income targeting are compared under an

UO policy criterion as in Kim and Henderson (2005). Kim and Henderson suggest,

in a model with one-period price stickiness, that nominal income targeting may

have superior welfare properties to in�ation targeting. Two rules are compared:

Nominal income growth targeting: it = 0:05 (yt � yt�1 + �t) (5.13)

+(�� � 0:05) �t +mt;

In�ation targeting: it = ���t +mt: (5.14)

In the case of a non-distorted steady state, and a "low" feedback on in�ation

the �ndings are similar to some of Kim and Henderson�s �ndings. Speci�cally,

in the case of a distorted steady-state model, the net welfare gain from targeting
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nominal income growth over in�ation targeting is positive. In the distorted case,

in�ation targeting is rarely dominated by nominal income targeting. In Figure

2 below, the relative welfare gain (over in�ation targeting) in targeting nominal

income growth is plotted against ��:

Figure 2: Relative welfare gain in targeting nominal income growth.

The precise position of these net welfare schedules is quite sensitive to

parameterization of the model (in particular, the persistence of shocks) but in

general one �nds that as the feedback on in�ation rises, in�ation targeting is likely

to dominate nominal income targeting.

6. Conclusion

The paper demonstrates that, in general, one is able to obtain a purely quadratic

approximate unconditional loss function to a model economy with a distorted

steady state. It develops a straightforward, e¢ cient approach to implementing

the UO algorithm. In an application, it is shown that the loss function may be

somewhat more complex than in a model with no steady-state distortions; in�ation

and output are no longer the sole arguments in the loss function. However, the
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loss function so obtained is easily interpreted in terms of the underlying distortions

in the economy. Furthermore, optimal in�ation and nominal interest rates are

positive in the steady state. The implications for the ordering of simple rules is

brie�y explored.

22



References

[1] Anderson, Evan W., Ellen R. McGrattan, Lars Peter Hansen and Thomas

J. Sargent, 1996, Mechanics of forming and estimating dynamic linear

economies, in H. M. Amman and D. A. Kendrick and J. Rust (ed.), Handbook

of Computational Economics, volume 1, chapter 4, pages 171-252, Elsevier.

[2] Ascari, G. and Ropele T., 2007, Optimal monetary policy under low trend

in�ation , Journal of Monetary Economics, vol. 54(8), pp. 2568�83.

[3] Blake, Andrew P., 2001, A "Timeless Perspective" on optimality in forward-

looking rational expectations models," Papers 188, National Institute of

Economic and Social Research.

[4] Benigno, Pierpaolo, and Michael Woodford, 2005, In�ation stabilization and

welfare: The case of a distorted steady state, Journal of the European

Economic Association, vol. 3(6), pages 1185-1236, December.

[5] Benigno, Pierpaolo and Michael Woodford, 2006, Optimal taxation in an

RBC model: A linear-quadratic approach, Journal of Economic Dynamics

and Control, vol. 30(9-10), pages 1445-1489.

[6] Benigno, Pierpaolo and Michael Woodford, 2007, Linear-quadratic

approximation of optimal policy problems, (earlier version is published as

NBER working paper No 12672).

[7] Clarida, Richard., Jordi Gali, and Mark Gertler, 1999, The science

of monetary policy: A new Keynesian perspective Journal of Economic

Literature, 37, 3 pp. 1661-1707.

[8] Damjanovic, Tatiana and Charles Nolan, 2010, Relative price distortions and

in�ation persistence, The Economic Journal, vol. 120( 547), pp 1 080-1099

23



[9] Damjanovic, Tatiana, Vladislav Damjanovic and Charles Nolan, 2007,

Unconditionally optimal monetary policy, The Journal of Monetary

Economics, 55, 491-500.

[10] Debortoli, Davide and Nunes, Ricardo, 2006. On Linear Quadratic

Approximations, MPRA Paper 544, University Library of Munich, Germany,

revised Jul 2006.

[11] Jensen, Christian and Bennett T. McCallum, 2002, The Non-optimality

of proposed monetary policy rules under timeless perspective commitment,

Economic Letters, 77, pp. 163-168.

[12] Jensen, Christian and Bennett T. McCallum, 2010, Optimal continuation

versus the timeless perspective in monetary policy, working paper, Journal of

Money, Credit and Banking Volume 42, Issue 6, pages 1093�1107.

[13] Judd, Kenneth. L., 1999, Numerical methods in economics, MIT Press.

[14] Kim, Jinill, and Dale Henderson, 2005, In�ation targeting and nominal-

income-growth targeting: When and why are they suboptimal?, Journal of

Monetary Economics, Volume 52, Issue 8, November 2005, pp. 1463-1495.

[15] Kim, Jinill and Sunghyun H. Kim, 2007, Two pitfalls of linearization methods,

Journal of Money, Credit and Banking, 39(4), pp. 995-1001.

[16] Khan, Aubhik, Robert G. King and Alexander L. Wolman, 2003, Optimal

monetary policy, The Review of Economic Studies, Vol. 70, No. 4. pp. 825-

860.

[17] King Robert and Alexander L. Wolman, 1999. What Should the Monetary

Authority DoWhen Prices Are Sticky?, NBER Chapters, in: Monetary Policy

Rules, pages 349-404, National Bureau of Economic Research, Inc.

24



[18] Kollmann, Robert, 2002, Monetary policy rules in the open economy: E¤ect

on welfare and business cycles, Journal of Monetary Economics, 49, pp. 989-

1015.

[19] Levine, Paul, Joe Pearlman, and Richard Pierse, 2008, Linear-quadratic

approximation, external habit and targeting rules, Journal of Economic

Dynamics and Control, Elsevier, vol. 32(10), pp. 3315-3349,

[20] McCallum, Bennett T., 2005, What is the proper perspective for monetary

policy optimality? Monetary and Economic Studies, Bank of Japan, 23, 13-24.

[21] Rotemberg Julio. J. and Michael Woodford, 1998, An optimization-based

econometric framework for the evaluation of monetary policy: Expanded

Version, NBER Technical Working Paper No. 233.

[22] Schmitt-Grohe, Stephanie and Martin Uribe, 2004, Optimal �scal and

monetary policy under sticky prices, Journal of Economic Theory, Elsevier,

vol. 114(2), pages 198-230, February.

[23] Schmitt-Grohe, Stephanie and Martin Uribe, 2007, Optimal simple and

implementable monetary and �scal rules, Journal of Monetary Economics,

54, pp. 1702-1725.

[24] Taylor, John B., 1979, Estimation and control of a macroeconomic model with

rational expectations, Econometrica, 47, 5, pp. 1267-1286.

[25] Whiteman, Charles H, 1986, An analytical policy design under rational

expectations, Econometrica, 54(6), pp. 1387-1405, November.

[26] Woodford, Michael, 1999, Optimal monetary policy inertia, The Manchester

School Supplement, 1463-6786, pp. 1-35

[27] Woodford, Michael, 2002, In�ation stabilization and welfare, Contributions

to Macroeconomics, vol. 2, issue 1, article 1.

25



7. Appendices

7.1. The possibility of the second-order approximation

The �rst part of the appendix demonstrates the key result in Section 2.2, namely
the existence of the quadratic form, (2.10). The �rst line of the following block
of equations corresponds to the top line of (2.10), the subsequent lines being its
quadratic approximation:

El (xt) = E [l (xt) + �F (yt; xt; �t)] =

= E

�
l +X

@l

@x
bxt + 1

2

�
X2 @

2l

@x2
+X

@l

@x

� bxtbxt�
+E�

�
F +X

@F

@x
bxt +X@F

@y
byt + �@F

@�
b�t�

+
1

2
�

�
X
@F

@x
+X2 @

2F

@x2

�
Ebxtbxt + 1

2
�

�
X
@F

@y
+XX

@F

@y2

�
Ebytbyt

+
1

2
�

�
�
@F

@x
+ �2

@2F

@x2

�
Eb�tb�t

+�E

�
XX

@F

@x@y
bxtbyt +X� @2F

@x@�
bxtb�t +X� @F

@y@�
bytb�t�+O3:

Using the constraints Etxt+1 = yt, and the property of unconditional expectations
that Ezt+1 = Ezt, this can be rewritten as

El (xt) = XEbxt� @l
@x

+ �
@F

@x
+ �

@F

@y

�
+
1

2
XEbxtbxt� @l

@x
+ �

@F

@x
+ �

@F

@y

�
(7.1)

+EQl + �EQF

+l + �F + ��
@F

@�
Eb�t + 12�

�
�
@F

@x
+ �2

@2F

@x2

�
Eb�tb�t +O3: (7.2)

Here Ql and QF are pure second-order terms:

Ql =
1

2
X2 @

2l

@x2
bxtbxt;

QF =
1

2
X2

�
@2F

@x2
+
@2F

@y2

� bxtbxt +XX @2F

@x@y
bxtbxt+1 +X� @2F

@x@�
bxtb�t +X� @2F@y@�

bxt+1b�t:
Furthermore, using the steady state conditions (2.8), one can show that the
�rst line of expression (7.1) equals zero. Moreover, expression (7.2) consists of
l + �F = l, the steady state value of the loss function and shocks. These are
terms independent of policy (t:i:p:): Thus, it is proved that the loss function can
be represented in a pure quadratic form.

El (xt) = EQl + �EQF + t:i:p+O3:
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7.2. Alternative approaches to recovering UO policy

The approach of some researchers is to solve non-linear problems and then linearize
the resulting optimality conditions. For example, in the context of conditionally
optimal monetary policy, that is the approach taken by Khan, King and Wolman
(2003). This section demonstrates that this alternative approach also works in
the case of unconditionally optimal policy. Speci�cally, the maximization of the
unconditional objective (2.10) subject to the linearized analogues of equations (2.2)
yields the same solution as log-linearization of the �rst-order conditions (2.6). The
�rst-order conditions to the non-linear problem are written as

@H

@xt
=

@l (xt)

@x
+ �t

@F (yt;xt; �t)

@x
+ �t�1 = 0;

@H

@yt
= �t

@F (yt;xt; �t)

@yt
� �t:

The log-linearized versions of these equations are:

@H

@xt
=

@l

@x
+X

@2l

@x2
bxt

+�
@F

@x
+ �

@F

@x
b�t + �X @2F@x2 bxt + �X @2F

@x@y
byt + �� @2F

@x@�
b�t

+�+ �b�t�1 +O2; (7.3)

@H

@yt
= �

@F

@y
+ �

@F

@y
b�t + �X @2F@y2 byt + �X @2F

@x@y
bxt + �X @2F

@�@y
b�t

��� �b�t +O2: (7.4)

These are simpli�ed by plugging (7.4) into (7.3) and using the steady state
conditions (2.8),

@H

@xt
= X

@2l

@x2
bxt

�
@F

@x
b�t + �X @2F@x2 bxt + �X @2F

@x@y
byt + �X @2F

@x@y
byt + �� @2F

@x@�
b�t

�
@F

@y
b�t�1 + �X @2F@y2 byt�1 + �X @2F

@x@y
bxt�1 + �� @2F

@�@y
b�t�1 = 0: (7.5)

Turning now to the LQ approach, utility is represented as (2.10). Hence, the
relevant optimization problem is

maxEl (bxt) = max 1
2
EX2 @

2l

@x2
bxtbxt + 1

2
X2�E

�
@2F

@x2
bxtbxt + @2F

@y2
bytbyt�

+�XX
@2F

@x@y
Ebxtbyt + �X� @2F

@x@�
Ebxtb�t + �X� @2F@y@�

Ebytb�t;
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subject to log-linearized constraints

F (Etxt+1;xt; �t) = X
@F

@xt
bxt +X@F

@y
byt + � @F

@�t
b�t = 0; (7.6)

byt = Etdxt+1: (7.7)

The new Hamiltonian can be written as

eH =
1

2
X2 @
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@x2
bxtbxt + 1
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X2�

�
@2F

@x2
bxtbxt + @2F

@y2
bytbyt�
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bxt +X@F

@y
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b�t�+ rtbyt � rt�1bxt;

where st and rt are the corresponding Lagrange multipliers attached to linearized
constraints (7.6) and (7.7). The resulting �rst-order conditions are

@ eH
@bxt = X2 @

2l

@x2
bxt + �X2 @

2F

@x2
bxt

+�XX
@2F
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b�t + bstX@F@y + �brt:

So, it follows that one may write

1

X

@ eH
@bxt = X

@2l

@x2
bxt + �X @2F

@x2
bxt

+�X
@2F

@x@y
byt + �� @2F

@x@�
b�t + st @F@xt

�X
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byt�1 + �X @2F
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@y@�
b�t�1 + bst�1 @F@y :

This is identical to (7.5) with the following relations between Lagrange multipliers

st = �b�t, rt = �b�t:
7.3. Optimal steady state

7.3.1. Proof of Proposition 4.2: Existence

One may rewrite (4.8) as (7.8):

F (�) = vg(�) + [g(�)� f(�)] + �h(�)f(�) = 0; (7.8)
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where h(�) = 1������
1������1

1�����1
1����� > 0; and g(�) = ��

1����� �
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1�����1 ; f(�) =h
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1����� �
��

1������

i
�
h

��1
1�����1 �

��1
1������1

i
.

It is easy to see that g(1) = 0; h(1) = 1 and f(1) = (����+1)�(1��)
(1�a)(1���) > 0; which

implies that F (1) = � (1� �) (����+1)�(1��)
(1�a)(1���) � 0: The strict equality obtains in

three cases only. First, when prices are �exible, � = 0; second, when the future is

not discounted by �rms, � = 1; and �nally when there are no distortions in steady

state, � = 1:

De�ne �h = ��1=(��) and note that the functions g; f; and h are de�ned on

an interval [1; �h): The di¤erence [g(�h)� f(�h)] is bounded while g(�), h(�) and
f(�) tends to positive in�nity as � approaches �h: Hence, lim

��!�h
F (�) = +1. Since

F (�) is a continuous function, one can conclude that there is a solution to (7.8) on

the interval [1; ��1=(��)): One may easily show then that if �m = �
1=(��1���) then

it follows that F (�m) > 0; since g(�m) � f(�m) > 0: Therefore, optimal in�ation
is smaller than �m:

7.3.2. Proof of Proposition 4.2: Uniqueness

The proof is by contradiction. First it is proved that if � < 1; for any �1 < �m

such that F (�1) = 0; it is necessary that F 0(�1) > 0: By direct di¤erentiation it

follows that

F 0(�1) = (v + 1) g
0(�1) + (�h(�1)� 1) f 0(�1) + �h0(�1)f(�1):

Moreover, since F (�1) = 0; it follows that (�h(�1)� 1) = � (v + 1) g(�1)=f(�1):
Therefore

F 0(�1) =
(v + 1)

f(�1)
[g0(�1)f(�1)� f 0(�1)g(�1)] + �h0(�1)f(�1);

and it is easy to show that for any �1 < �m; g0(�1)f(�1) � f 0(�1)g(�1) > 0; and
therefore, F 0(�1) is positive.

Since F is continuously di¤erentiable, if a solution of (7.8) is not unique, there

will be at least one solution such that F 0(�1) � 0: It has been demonstrated that
such a solution is impossible and the necessary contradiction is obtained.
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7.3.3. Proof of Proposition 4.3

By the implicit function theorem one concludes that d�
d�
= �@F

@�
=@F
@�
: From section

7.3.2, we know that @F
@�
> 0; while @F

@�
= h(�)f(�) > 0: Therefore d�

d�
< 0; and

equilibrium in�ation increases with steady state distortions, measured as 1� �.
Similarly d�

dv
= �@F

@�
=@F
@v
;where @F

@v
= g(�) > 0 for � > 1; therefore d�

dv
< 0; and

optimal in�ation declines with the elasticity of labour.

Moreover d�
d�
= �@F

@�
=@F
@�
; where @F

@�
= � (1� �h(�)) @f

@�
+ �f(�)@h

@�
; and one

may prove by direct di¤erentiation that @f
@�
< 0; @ lnh

@�
> 0; and (1� �h(�)) =

(v + 1) g(�)=f(�) > 0: Therefore @F
@�
> 0; and d�

d�
< 0:

Finally, it is worth noting that steady state in�ation can both increase or

decrease in price stickiness, since the sign of @F
@�
may be positive or negative.

7.4. A2: The second-order approximation to unconditional welfare.

In Section 4.2 of the main text we asserted the existence of the following quadratic

equation,

EU = E (Ql + �QX + 'QZ + �QZX + �Q� + �Qp) ;

where Ql is the second-order term of the loss function and QX ; QZ ; QZX ; Q�; Qp
are the second-order terms of the log linear approximation to constraints (4.2)-
(4.4). This section demonstrates how one derives that equation. The model can
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be rewritten in the following linear-quadratic representation

(
1

(v + 1)�
log ut �

1

�
log�t � ut)�O3

=
1

(v + 1)�
but � 1

�
b�t � u�but + 1

2
bu2t�+ tip;�

Xt � 1� �����1t+1Xt+1
�
�O3

= X

� bXt + 1
2
bX2
t

�
� �����1X

� bXt+1 + (� � 1) b�t+1 + 1
2

� bXt+1 + (� � 1) b�t+1�2� ;�
Zt � ct � �����t+1Zt+1

�
�O3

= Z

�bZt + 1
2
bZ2t�� c�bct + 12c2t

�
� �����Z

�bZt+1 + ��b�t+1 + 1
2

� bZt+1 + ��b�t+1�2� ;�
Zt � p����+1t Xt

�
�O3

= Z

�bZt + 1
2
bZ2t�� p����+1X �(��� � + 1) bpt + bXt + 1

2

�
(��� � + 1) bpt + bXt�2� ;

�t � ��t�1���t � (1� �) p���t �O3

= �

�b�t + 1
2
b�2t�� a�����b�t�1 + ��b�t + 12 �b�t�1 + ��b�t�2

�
� (1� �) p���

�
���bpt + 1

2
(��bpt)2� ;

pt �
 
1� ����1t

1� �

! 1
1��

�O3;

= p

�bpt + 1
2
bp2t�� p ����1

1� ����1 b�t � 12p ����1

1� ����1

�
�
����1

1� ����1 � 1
� b�t2:

The linear relations are therefore,

bXt � �����1 � bXt+1 + (� � 1) b�t+1� = O2; (7.9)

bZt � c

Z
bct � ����� � bZt+1 + ��b�t+1� = O2; (7.10)

bZt � �(��� � + 1) bpt + bXt� = O2; (7.11)

b�t � a��� �b�t�1 + ��b�t�+ (1� �) p���
�

��bpt = O2; (7.12)

bpt � ����1

1� ����1 b�t = O2; (7.13)
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and the following are the quadratic relations:

Ql = �1
2
ubu2t ;

QX =
1

2
X
� bX2

t

�
� 1

�����1
X
1

2
bX2
t = �

1

2

1

�����1
bX2
t ;

Qz =
1

2
Z bZ2t � 12cbc2t � 12�����Z � bZt+1 + ��b�t+1�2 ; (7.14)

Qxz =
1

2
Z bZ2t � Z 12 �(��� � + 1) bpt + bXt�2 = 0;

Q� =
1

2
�b�2t � (1� �) p��� 12 (��bpt)2 � 12a���� �b�t�1 + ��b�t�2; (7.15)

Qp =
1

2
pbp2t � 12p ����1

1� ����1

�
�
����1

1� ����1 � 1
� b�t2: (7.16)

One can simplify these expressions as follows.

Simpli�cation of Qp : Use (7.13) in (7.16) to �nd that

Qp = �
1

2
� b�t2;

where we de�ne

� :=

�
1� ����1
1� �

� 1
1�� ����1

1� ����1

�
(� � 1)����1
1� ����1 � 1

�
:

Simpli�cation of Qz : Use (7.10) in (7.14),

2
EQz

Z
= bZ2t � �1� ������ bc2t � ����� � bZt + ��b�t�2 (7.17)

=
�
1� �����

� bZ2t � �1� ������ bc2t � ����� (��b�t)�2 bZt + ��b�t�
=

�
(��� � + 1) bpt + bXt���1� ������ �(��� � + 1) bpt + bXt�� 2����� (��) b�t�
�
�
1� �����

� bc2t � ����� (��)2 b�2t
= bX2

t

�
1� �����

�
�
�
1� �����

� bc2t
������ (��)2 b�2t + �1� ������ (��� � + 1)2 bp2t � (��� � + 1) 2����� (��) b�tbpt
2

 
��
�
����1 � �����

�
� (� � 1)����1

�
1� �����

�
1� ����1

!b�t bXt:
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Furthermore, from (7.9) one can �nd an expression for E2b�t bXt

E bX2
t = E

�
�����1

�2 � bX2
t+1 + 2 (� � 1) b�t+1 bXt+1 + (� � 1)2 b�2t+1� ;

which implies that

2E b�t bXt = 1

(� � 1)

 
1�

�
�����1

�2
(�����1)

2

! bX2
t � (� � 1) b�2t : (7.18)

Now, combine (7.18) with (7.17) to yield

EQz = �Z 1
2
E
h�
1� �����

� bc2t + Z� b�t2 + Zx bX2
t

i
;

where

Z� =
(��� � + 1)

�
��
�
����� � ����1����1

�
+ (� � 1)����1

�
1� �����

��
(1� ����1)2

;

Zx =
1� �����
1� ����1

1� �2����1

�2����1
+

��

� � 1
1�

�
�����1

�2
(�����1)

2

����� � ����1
1� ����1 :

Simpli�cation of Q� :
2

�
Q� = b�2t � (1� �) p���� (��bpt)2 � a��� �b�t�1 + ��b�t�2 :

One can simplify (7.15) using (7.12)

a���
�b�t�1 + ��b�t�2 =

1

a���

�b�t + (1� �) p���
�

������1

1� ����1 b�t
�2

=
1

a���
b�2t + 1

a���

 
��
�
1� ����

�
����1

1� ����1

!2 b�t2
+2��

1� ����
a���

����1

1� ����1
b�t b�t:

Next, using constraint (7.12), one �nds E2b�t b�t
a��� b�t�1 = b�t + ���(1� �) p���

�

����1

1� ����1 � a�
��

� b�t:
Recall that � =

�
1��

1�����

�
p���, so that

a��� b�t�1 = b�t + �������1 � ����
1� ����1

� b�t +O2:
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This implies

E
�
a��� b�t�1�2 = E b�2t + E �������1 � ����1� ����1

�2 b�t2 + 2�������1 � ����
1� ����1

�
E b�t b�t:

One can simplify the �nal terms in the expression as follows

2
��

1� ����1E b�t b�t = (7.19)

�
1�

�
a���

�2
����1 � ����E

b�2t � ��2

1� ����1
����1 � ����
1� ����1 E b�t2;

2

� (1� ����)EQ� = �E
1� a�������1
���� � ����1

b�2t � E�� � ��

1� ����1

�2 b�t2:
Hence, using these simpli�cations, we return to the quadratic expression.

EU = E (Ql + �QX + 'QZ + �QZX + �Q� + �Qp) ;

= �1
2
Eubu2t � 12� 1

�����1
E bX2

t �
1

2
'ZE

h c
Z
bc2t + Z� b�t2 + Zx bX2

t

i
�1
2
��
�
1� ����

�
E(����1

�
��

1� ����1

�2 b�t2 + 1� a�������1
���� � ����1

b�2t )
�1
2
��E b�t2

= �1
2
E
�
ubu2t + 'cbc2t + �x bX2

t + �� b�t2 + �� b�2t� ; (7.20)

where
�x = 'Z

�
Zx �

1� �����
�����1

�
;

�� = 'ZZ� +��D� +��;

�� = ��
�
1� ����

� �1� a�������1�
���� � ����1 > 0:

Further simpli�cation The log-linear expression of the marginal
disutility from labour ut is

but = (v + 1) b�t + (v + 1)��bYt � bAt� :
Marginal production costs are approximately written as

bct = but � bgt;
where bgt is the labour wedge de�ned as

gt :=
@U

@N
=
@F

@N
=
ut
ct
=
�

�t

�

(1 + v)�
�t: (7.21)
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The �rst two terms in the quadratic loss function (7.20) can be simpli�ed as follows:

ubu2t + 'cbc2t = bu2t + 'c (but � bgt)2
= (u+ 'c) bu2t + 'c (bgt)2 � 2'cbutbgt
= (u+ 'c)

�but � 'c

(u+ 'c)
bgt�2 + 'c (1� (u+ 'c)'c) bg2t

=
1

(v + 1)�

�
(v + 1) b�t + (v + 1)��bYt � bAt�� 'c

u+ 'c

�b�t � b�t��2
+'c

�
1� 'c

(v + 1)�

�bg2t ;
= (v + 1)�

�
1

�
b�t + bYt � bAt � 'c�b�t � b�t��2

+
'c

(v + 1)�
((v + 1)�� 'c) bg2t ;

= (v + 1)�

�bYt � � bAt � b�t � � v

(v + 1)�
+ u

� b�t��2
+

'c

(v + 1)�
((v + 1)�� 'c) bg2t

= (v + 1)�
�bYt � Y �t �2 +Gbg2t ;

where we de�ne Y �t and G as

Y �t : = bAt � b�t � � v

(v + 1)�
+ u

� b�t;
G : =

'c

(v + 1)�
((v + 1)�� 'c) :

To obtain this result, recall that the steady state value of the Lagrange
multiplier ' satis�es the following equation:

'c+ u =
1

(v + 1)�
(1� ��c) + u = 1

(v + 1)�
:

7.5. Linearized equations of the model

For completeness, details are provided of the linear approximate model, consisting
of the �rst-order conditions (4.5) and a system of constraints (4.2), (4.3), (4.4),
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(4.6). The linearized block of equations is thus:

ut
@

@ut
H = �ubut � 'c (b't + bct) ;

�
@

@�t
H = � 1

�
b�t + 'c�b't + bct � b�t�+��b�t � ������Et �b�t+1 + ��b�t+1� ;

@

@Xt
H = �b�t � ������1 �b�t�1 + (� � 1) b�t�� �p����+1 �b�t + (��� � + 1) bpt� ;

@

@Zt
H = 'b't � '����� �b't�1 + ��b�t�+ �b�t;

�t
@

@�t
H = � (� � 1) ������1X

�b�t�1 + (� � 1) b�t + bXt�� '�������Z �b't�1 + ��b�t + bZt� ;
���������

�b�t + b�t�1 + ��b�t�� �p�����11� �

�b�t + �bpt + (� � 1) b�t� ;
pt
@

@pt
H = �� (��� � + 1)Xp1��+��

�b�t + bXt + (1� � + ��) bpt� ;
+���p��� (1� �) (b�t � ��bpt) + �p�b�t + bpt� ;

bXt � �����1Et � bXt+1 + (� � 1) b�t+1� = 0;

Z bZt � cbct � �����ZEt � bZt+1 + ��b�t+1� = 0;

bZt � �(��� � + 1) bpt + bXt� = 0;

�b�t � a���� �b�t�1 + ��b�t�+ (1� �) p�����bpt = 0;

bpt � ����1

1� ����1 b�t = 0;

�bct + but + b�t � b�t = 0:
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