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This research examines selected empirical properties of duality relationships. Monte
Carlo experiments indicate that Hessian matrices estimated from the normalised
unrestricted profit, restricted profit and production functions yield conflicting results
in the presence of measurement error and low relative price variability. In particular,
small amounts of measurement error in quantity variables can translate into large
errors in uncompensated estimates calculated via restricted and unrestricted profit
and production functions. These results emphasise the need for high quality data
when estimating empirical models in order to accurately determine dual relationships
implied by economic theory.

1. Introduction

Based on the duality theory, it is possible to make appropriate transforma-
tions and link parameters of a production function, unrestricted profit
function, restricted profit function and/or cost function. Theoretically, these
results suggest a researcher may choose an estimation approach based on data
availability, ease of estimation or other empirical considerations. For
example, Lopez (1984, p. 358) chose to estimate a profit function instead of
a cost function because ‘it is simpler to estimate, and no endogenous variables
need to be used as explanatory variables’. Although a researcher may choose a
particular dual approach, such as estimating a profit function, all information
about the production or cost functions is presumed to be available via duality.
Lau (1976) used Hessian identities to prove that estimates from a restricted
profit function or production function can be recovered from an unrestricted
profit function and vice versa under the assumption of perfect competition.
Thus, uncompensated economic effects may be obtained in three ways: (i) the
unrestricted profit function can be estimated and uncompensated economic
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effects calculated directly; (ii) the restricted profit (cost) function may be
estimated and converted to uncompensated economic effects using Lau’s
results; or (iii) the production function may be estimated, and using Lau’s
matrix identities, uncompensated effects can be calculated.
Although the dual relationship between these functions exists in theory,

these properties often fail to hold in empirical applications. Appelbaum
(1978, p. 87) concluded that ‘finally, we find that the primal and dual do not
yield similar implications, a result … which is very disturbing’. Burgess (1975)
similarly found that estimates derived from a production function were not
consistent with those derived from a cost function. He states ‘Since these
parameters are crucial in assessing the impact of … policy … we are left with
the inescapable conclusion that mild changes in our maintained hypothesis
[choosing the primal or dual approach] may lead to dramatic changes in our
inferences about economic events’ (p. 120).
Some of the differences in primal and dual estimates found by Appelbaum

(1978) and Burgess (1975) are likely to rest with factors such as risk and
stochastic error. Taylor (1984) showed that dual results might not be
achievable if price expectations follow a Markovian structure. Others have
also suggested that duality results do not hold for stochastic models (Pope
1980; Pope 1982; Weaver 1983). However, Chambers and Quiggin (1998)
illustrated that, in some cases, cost functions can be theoretically derived
from stochastic production functions, and Coyle (1999) and Pope and Just
(1998) suggested alternative methods of estimating cost and profit functions
under risk aversion. Thompson and Langworthy (1989) illustrated that
elasticities calculated from primal and dual approaches depend on the choice
of functional form. They showed that identical results will never be obtained
from primal and dual approaches unless the flexible functional form is self-
dual (such as the quadratic) and the underlying data-generating process
identically matches the chosen functional form.
However, even in the best-case scenario where there is no risk and the

‘correct’ functional form is chosen, dual results may still be unachievable.
Elasticity estimates, often used for policy analysis, are obtained using a
particular dataset. How ‘good’ does a particular dataset have to be to achieve
reliable and consistent results from alternative specifications of the technol-
ogy? This is exactly the question this research seeks to answer. Although
previous research has illustrated the impact of risk, stochastic error and
functional form on dual results, little is known about the impact of basic data
composition (i.e. measurement error, price variability or sample size) on
estimated results from alternative dual specifications. Naturally, econometric
parameter estimates are affected by the underlying data and, thus, we might
expect that factors such as measurement error and sample size will also
influence how well estimates from two dual specifications, such as a cost and
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profit function, yield the same implication. However, the extent to which
parameter estimates from a production function, for example, can be used to
make inferences about unconditional price elasticities, typically derived from
an unconditional profit function, given a particular dataset, is unknown. If,
empirically, one can determine the conditions under which alternative dual
specifications do not produce identical estimates of economic effects, such as
an uncompensated elasticity, valuable information may be gained regarding
the suitability of a particular dataset for certain empirical analyses. If a
dataset is not able to meet a particular level of ‘quality’, calculations of
compensated elasticities from uncompensated estimates, as was done by
Lopez (1984) and others, may be unreasonable.
In this analysis, we systematically alter data composition, in a Monte Carlo

environment, to determine the conditions that a dataset must meet for
estimates from a production function, restricted profit function and unre-
stricted profit function to yield comparable results. Specifically, we examine
the impact of measurement error, relative price variability and sample size on
dual results. We find that only under ideal conditions, where the estimated
functional form exactly matches the data-generating process and the data has
no measurement error, estimates from the production, restricted profit and
unrestricted profit functions yield the same implications. In general, we find
that increases in measurement error in quantities, decreases in relative price
variability and, in certain cases, the compounding impact of large sample sizes,
leads to a divergence between estimates generated by alternative dual
approaches. Increasing price variability improves the ability of unrestricted
profit and restricted profit functions to estimate the production technology
because a greater degree of information is incorporated into the estimates than
when low price variation exists. Increasing sample size, coupled with some
degree of measurement error, reduces the ability of production, restricted
profit and unrestricted profit functions to produce identical results because
least squares estimates are not consistent in the presence ofmeasurement error.

2. Measurement error and price variability

Price and/or quantity data are often not precisely measured due to a myriad
of factors, such as aggregation. Although the amount of error in measure-
ment is not typically known, the error may produce poor empirical estimates
if not accounted for (Brester and Wohlgenant 1993; Lewbel 1996). In general,
measurement error produces inconsistent estimates (Greene 2000). However,
it is not known how much measurement error must be present in the data to
interfere with the ability of duality to recover the underlying production
technology. The amount of measurement error in quantities and prices varies
across each dataset, but Morgenstern (1963) found that national income data
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were measured with a standard error in excess of 10 per cent, and the US
Department of Commerce (1988) noted that input and output data for the
Food and Kindred Products category were measured with standard errors
averaging 8 per cent. Lim and Shumway (1992a, 1992b) illustrated that
violations of the maintained hypothesis of profit maximisation can often be
explained by data measurement error. Specifically, they determined the
minimum level of measurement error required for consistency with main-
tained hypotheses such as profit maximisation. This research seeks to
examine the impact of such measurement error on estimated dual results.
Sample size and price variability are also expected to have a role in

recovering the underlying production technology utilising duality. Sample
size can accentuate the effect of, say, measurement error on the precision of
empirical estimates. As the sample size increases, the asymptotic properties of
the least squares estimator are such that parameter estimates should
approach their true values and the standard error of the estimator should
decline (Greene 2000). Thus, increasing the sample size has the potential to
improve estimates if estimation procedures are consistent and efficient and,
with the improved estimates, the ability to use Lau’s Hessian identities to
obtain unrestricted elasticities increases. However, if the estimator is not
consistent, as may be the case with measurement error, then larger sample
sizes will produce unreliable estimates.
Relative price variability is also important in recovering dual relationships.

Quiggin and Bui-Lan (1984) illustrated that insufficient variation in input
prices used to estimate cost functions can result in erroneous conclusions
when testing the hypotheses of economic efficiency and profit maximisation.
Increased price variability facilitates the ability of dual functions to ‘map-out’
the true underlying technology. As suggested by Quiggin and Bui-Lan (1984),
when price variation is low, such as the case with cross-sectional data,
estimating cost or profit functions may be inappropriate. In the case of low
price variability, the natural solution is to estimate a production function.
This research aims to determine how ‘low’ price variability must be for dual
estimates to lead to conflicting results.

3. Methods and procedures

To control extraneous effects that may be involved in empirical estimation,
data were generated using Monte Carlo simulation techniques. The firm’s
primary profit maximisation problem, given a predetermined production
technology, was used as a basis for this study. Restricted profit, unrestricted
profit and production functions were then estimated from data generated
from Monte Carlo simulations. After manipulating Hessian matrices
according to Lau’s results, estimates from the dual functions were compared
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to the ‘true’ Hessian of the underlying technology. Comparisons were made
with various levels of price variability, measurement error and sample size.
The quadratic functional form was used to generate the data and to

estimate all three functions (unrestricted and restricted profit and production
functions), as the goal of this research was to examine the ability of duality to
recover underlying technology, not measure how well various functional
forms recover a production technology. The sensitivity of estimated coeffi-
cients to choice of functional form has been examined elsewhere (e.g. Berndt
and Khaled 1979; Chalfant 1984; Shumway and Lim 1993). The effect of
choice of functional form on the ability to recover dual results has also been
studied (e.g. Thompson and Langworthy 1989). The normalised quadratic
form was chosen as both: (i) the true underlying technological data-generating
process; and (ii) the flexible functional form used for estimating the profit,
restricted profit and production functions. The normalised quadratic was
chosen because it allows the Hessian values to be functions of parameter
estimates only, and not depend on a particular data point. Lau (1976) also
indicated that the quadratic functional form was a logical choice when
examining his Hessian identity results empirically. It is noted that alternative
functional forms may perform differently in Monte Carlo experiments,
however, discussion here is limited to the normalised quadratic. In the
following experiment, we present the ‘best-case’ scenario where the underlying
data-generating process exactly matches the estimated functional form.

4. Lau’s dual relationships

Lau (1976) illustrated the equivalence of estimates from the unrestricted
profit, restricted profit and production functions using Hessian identities. To
illustrate these results, we defined a production process consisting of one
output and four inputs. The variables Y, R and U represent the production,
restricted profit and unrestricted profit functions, respectively. Variable input
quantities are defined as x1, x2, x3 and are collectively referred to as x1–3. For
simplicity, the input prices were normalised with respect to the output price,
P. The last Hessian terms, or output supply effects, were recovered using
symmetry and homogeneity properties. Variable input prices, normalised by
the output price, are represented by w1–3; x4 represents the fixed input and w4

represents the normalised fixed input price.
The production function Hessian matrix is:

@2Y
@x2

1ÿ3

@2Y
@x1ÿ3@x4

@2Y
@x4@x1ÿ3

@2Y
@x2

4

24 35 ¼ a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

2664
3775 ð1Þ
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where aij are the second-order derivatives of the production function, Y.
Manipulating Lau’s results, the unrestricted Hessian from the unrestricted
profit function, U, can be obtained by inverting the Hessian from the
production function.

@2U
@w2

1ÿ3

@2U
@w1ÿ3@w4

@2U
@w4@w1ÿ3

@2U
@w2

4

24 35 ¼ @2Y
@x2

1ÿ3

@2Y
@x1ÿ3@x4

@2Y
@x4@x1ÿ3

@2Y
@x2

4

24 35 ð2Þ

If the second-order derivatives of the unrestricted profit function are denoted
by bij, the following identity is implied:

b11 b12 b13 b14

b12 b22 b23 b24

b13 b23 b33 b34

b14 b24 b34 b44

2664
3775 ¼

a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

2664
3775
ÿ1

ð3Þ

With the restricted profit function, some inputs are fixed. However, estimates
obtained from the restricted profit function, R, can be used to recover
unrestricted estimates. Let cij represent the second-order derivatives of the
restricted profit function. Following Lau, the following identities are defined:

H1 ¼
@2R
@x24

� �
¼ ½c44� ð4Þ

H2 ¼
@2R

@x4@w1ÿ3

� �
¼ ½c14 c24 c34� ð5Þ

H3 ¼
@2R
@w2

1ÿ3

� �
¼

c11 c12 c13
c12 c22 c23
c13 c23 c33

24 35 ð6Þ

The restricted profit Hessian matrix can now be directly compared with the
unrestricted profit Hessian and the production function Hessian:

b11 b12 b13 b14

b12 b22 b23 b24

b13 b23 b33 b34

b14 b24 b34 b44

26664
37775¼

a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

26664
37775
ÿ1

¼ ðH3ÿH02 �H1 �H2Þ ÿðH2 �Hÿ11 Þ
ÿðH2 �Hÿ11 Þ ÿHÿ11

" #
ð7Þ
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Using Lau’s results, equation 7 shows that there is a direct relationship
between the production function, the unrestricted profit function and the
restricted profit function. Thus, estimates from any one of the three forms can
be used to determine estimates from the other two, using theHessian identities.

5. Monte Carlo experiment

The Monte Carlo experiment consisted of five sequential steps as shown in
figure 1. First, a particular scenario was defined with a particular level of
measurement error, price variability and sample size. Second, data were
generated using a predefined technology with the given levels of measurement
error, price variability and sample size. Third, restricted profit, unrestricted
profit and production functions were estimated. Fourth, Hessians from all
three functions were converted to an equivalent level as shown in equation 7.
Fifth, the three Hessians were compared for similarities. Steps two to five
were then repeated 100 times for a particular scenario of measurement error,
price variability and sample size. The results of the Monte Carlo experiment
are summarised in step six.

Step 1 Scenario definition

To examine the effects of price variability; measurement error in quantities;
measurement error in prices, and sample size on duality, several scenarios
were considered. In each scenario, a given level of price variability,
measurement error and sample size was chosen. In the analysis, four levels

Figure 1 Monte Carlo experiment.

Empirical properties of duality theory 51

Ó Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishers Ltd 2002



of measurement error in quantities (0.1, 0.5, 1 and 2 per cent); prices (0.1, 0.5,
1 and 2 per cent); and price variability (10, 20, 30 and 40 per cent) were
selected. The levels of measurement error in prices, quantities and price
variability were calculated as coefficients of variation to provide a consistent
level of variation across all variables. The exact calculation of the measures is
discussed in the following step. Four levels of sample size were also chosen
(50, 100, 250 and 500 observations).
The total number of possible Monte Carlo experiments that would have to

be conducted if every combination of every level of measurement error, price
variability and sample size were generated is 44¼ 256. Each of these scenarios
was run and the results are available from the authors upon request.
However, to simplify the reporting of the results, an orthogonal fractional
factorial design was used such that all main effects could be illustrated
(Addelman 1962). The resulting design consists of 16 scenarios. Table 1
shows the different scenarios reported in the experiment.

Step 2 Data generation

To generate data for the analysis as a single output, four input quadratic
production function was assumed:

Y ¼
X4
i¼1

aixi þ 0:5
X4
i¼1

X4
j¼1

aijxixj ð8Þ

Table 1 Scenarios reported from the Monte Carlo experiment

Scenario
Measurement error

in quantities*
Measurement error

in prices* Price variability* Sample size

1 0.10 0.10 10.00 50
2 0.10 0.50 40.00 500
3 0.10 1.00 20.00 100
4 0.10 2.00 30.00 250
5 0.50 0.10 40.00 250
6 0.50 0.50 10.00 100
7 0.50 1.00 30.00 500
8 0.50 2.00 20.00 50
9 1.00 0.10 20.00 500
10 1.00 0.50 30.00 50
11 1.00 1.00 10.00 250
12 1.00 2.00 40.00 100
13 2.00 0.10 30.00 100
14 2.00 0.50 20.00 250
15 2.00 1.00 40.00 50
16 2.00 2.00 10.00 500

*Calculated as coefficient of variation (standard deviation/mean).
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where Y is the output quantity, xi represents the ith input quantity and the a’s
are parameter values chosen so that economic regularity conditions were met.
These parameters were also chosen so that the elasticity matrix contained
complement and substitute factors of production as well as elastic and
inelastic inputs. These assumed ‘true’ technology parameters used for the
analysis are shown in table 2.1 To ensure symmetry, aij¼ aji was imposed.
The intercept was assumed to be zero, so no output is produced without any
inputs. To maintain quasi-concavity, the linear coefficient terms are positive
and the diagonal quadratic terms are negative.
Given the production function, the primal profit maximisation problem is:

Max p ¼ P � Y ÿ
X4
i¼1

wixi ð9Þ

where Y is the production function, P is the output price and wi represents
the ith input price. Input and output prices, wi and P, were exogenously
determined by generating observations randomly from independent normal
distributions with predefined means and standard deviations. The means
and standard deviations were chosen based on a particular coefficient of
variation (sample standard deviation divided by the sample mean). We use
the coefficient of variation to examine the robustness of duality results to
relative price variation.
The first-order conditions of the profit maximisation problem 9 are:

@p
@xi
¼ Pðaiþ ai1x1þ 0:5ai2x2þ 0:5ai3x3þ 0:5ai4x4Þÿwi ¼ 0 i¼ 1;2;3;4 ð10Þ

Given the input and output prices, the system of four equations (one for each
input first-order condition) was solved simultaneously to obtain input
quantities, xi*. These optimal input quantities were then substituted into the
production function, given by equation 8, to obtain optimal output, Y*.
To allow for the introduction of measurement error into the data, the

optimal quantities obtained by solving equation 10 and the generated prices
were perturbed from their optimal values by random errors with given levels
of variation. The optimal values were treated as means and predetermined
coefficients of variation were used to generate normally distributed random
errors in the variables. Measurement error was defined as the random
displacement of the quantities and the prices from their optimal profit-
maximising levels, as shown in equations 11 through to 13:

1 We have used several different specifications of the true technology and the results
presented in this paper are consistent across the alternatives we tested.
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xit ¼ x�it þ e1it ð11Þ

wit ¼ w�it þ e2it ð12Þ

Pt ¼ P �t þ e3t ð13Þ

where xit*, wit* and Pt* are the input quantities, input prices and output
price, at their optimal profit-maximising levels, e1it ~ N(0, r1i/l1i), e2it ~ N(0,
r2i/l2i), e3t ~ N(0, r3/l3) and xi, wi and P are input quantities, input prices
and output price with measurement error, respectively.2 The index i
represents the ith input price or quantity and the index t represents the
observation number.

Step 3 Estimation of dual functions

Once prices and quantities were determined, the restricted profit, unrestricted
profit and production functions were estimated using the normalised
quadratic functional form. To estimate the restricted profit function, the
4th input, x4, was treated as the fixed input in the production process. The
restricted profit function was estimated in a system with its factor demands:

Table 2 Assumed coefficient values for the production function

Coefficient Value

a1 20
a2 10
a3 30
a4 70
a11 )0.9
a22 )0.7
a33 )0.8
a44 )0.3
a12 0.1
a13 )0.37
a14 0.15
a23 0.2
a24 0.1
a34 0.13

2 We have also conducted the analysis with the optimal output quantity, Y*, disturbed from
its optimal level by a given coefficient of variation. The same conclusions are reached in either
case. When measurement error is introduced into the output quantity, the magnitude of the
mean squared errors reported in the following sections drastically increases because Y*, and
thus the resulting coefficient of variation in measurement errors, is large. Therefore, for ease of
exposition, we do not perturb optimal output quantity from its optimal level. Results for the
alternative specification are available from the authors.
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R ¼
X3
i¼1

ciw
0
i þ c4x4 þ 0:5

X3
i¼1

X3
j¼1

cijw
0
iw
0
j þ
X3
i¼1

ci4w
0
ix4 þ 0:5c44x

2
4 ð14Þ

xk ¼ ck þ
X3
i¼1

cikw0i þ c4kx4 k ¼ 1; � � � ; 3

where R is restricted profit, c are coefficients to be estimated, wi is the ith
input price normalised on the output price, P (to impose homogeneity), x4 is
the fixed input quantity and cij¼ cji to impose symmetry.
In the unrestricted profit function, all factors are variable. Thus, the 4th

input is a variable input in the estimation of the unrestricted profit function.
The following unrestricted profit function and its factor demands were
estimated:

U ¼
X4
i¼1

biw
0
i þ 0:5

X4
i¼1

X4
j¼1

bijw
0
iw
0
j ð15Þ

xk ¼ bk þ
X4
i¼1

bikw0i k ¼ 1; � � � ; 4

where U is unrestricted profit, b are coefficients to be estimated and bij¼ bji so
that symmetry is imposed.
The estimated production function has the same form as equation 8,

because we chose the ‘best-case’ scenario where the same functional form was
used to generate the data and estimate the dual functions. The dual functions
were estimated as a system using ordinary least squares with cross-equation
restrictions. No error structure was generated between equations and the
measurement errors in quantity variables were independently distributed,
thus the ordinary least squares estimator is the appropriate choice.3

Step 4 Conversion of dual functions to equivalent basis using hessian identities

The Hessian of the production function, equation 8, can be used to determine
the Hessian of the unrestricted profit function, equation 15. As a basis for

3 There are econometric methods that can be used to obtain consistent estimates in the
presence of measurement error. However, in practice it is difficult to ascertain which variables
have measurement error and, thus, correcting for the problem is complex. Furthermore, even
if measurement error is suspected, by performing non-parametric tests such as the one
suggested by Varian (1985), there are often no appropriate instrumental variables available to
alleviate the problems associated with measurement error (Greene 2000).
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comparison, the assumed true production function coefficients, the estimated
production function coefficients and the estimated restricted profit function
coefficients were converted to the long-run unrestricted profit Hessian
because economists are typically interested in examining the elasticities that
are generated from the unrestricted Hessian. This conversion is found in
equation 7.

Step 5 Comparison of Hessians

Hessian estimates derived from the estimated production, restricted and
unrestricted profit functions were each compared to the Hessian derived from
the true production function. To quantify how similar the estimates were, a
mean squared error (MSE) was calculated. Each error was calculated as
the difference between the true value and the estimated value of each
unique element of the Hessian matrix (10 unique values in this case). The
mean of the squared errors was then calculated for each Hessian at each
repetition of the experiment. The MSE for each of the three functions was:

MSEi ¼
X10
j¼1
ðtj ÿ ejÞ2

 !
=10 ð16Þ

where tj are the 10 unique true Hessian values and ej are the unique Hessian
estimates from the restricted profit, unrestricted profit function and
production functions (i¼ restricted profit/unrestricted profit/production
function). Since 100 repetitions are performed in the simulation, a distribu-
tion of MSE is generated, with the median value of the MSE distribution
being used as the basis of comparison.

Step 6 Summary of results

To summarise the results of all 256 Monte Carlo experiments, an ordinary
least squares translog regression was estimated where the median MSE from
each scenario was assumed dependent upon the level of measurement error,
price variability and sample size, as shown in equation 17:

logðmedian MSEiÞ ¼ fðlogðMEQiÞ; logðMEPiÞ; logðPViÞ; logðSSiÞÞ ð17Þ

where MEQ is the level of measurement error in the quantities, MEP is
the level of measurement error in the prices, PV is the level of price
variability, SS is the sample size, and the subscripts i¼ 1, 2 and 3 denote
the restricted profit, unrestricted profit and production functions. The
translog function can provide a second-order Taylor series approximation
to any unknown function and allows the estimation of interaction effects
between variables.
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6. Results

In the Monte Carlo analysis, measurement error, price variability and
sample size impact dual results through their influence on coefficient
estimates. In the analysis it is important to make the distinction between
the impact of the measurement error, price variability and sample size on:
(i) coefficient estimates; and (ii) duality. The influenceof these data composition
factors on estimated coefficients is well known. However, the extent to which
these factors hinder the ability to use duality reliably to achieve equivalent
results is unknown. In particular, we illustrate, through the Monte Carlo
experiments, that very small errors in estimated coefficients translate into
very large errors when attempting to use duality to recover uncompensated
effects from restricted profit and production functions.
Table 3 shows the median MSE from the Monte Carlo analysis for each of

the 16 experimental scenarios shown in table 1. The last column of table 3
reports the median MSE for the unrestricted profit function. As shown by the
duality equivalence in equation 7, the reported MSE values for the
unrestricted profit function reflect the direct impact of measurement error,

Table 3 Comparison of true uncompensated effects to uncompensated effects derived from
estimated restricted profit, production and unrestricted profit functions*

Estimating uncompensated effects

Scenario
Restricted profit

MSE 
Production function

MSE 
Unrestricted profit

MSEà

1 0.252 2.002 0.041
2 48.995 5021.100 2.729
3 0.012 1.328 0.005
4 34.650 2721.400 2.742
5 428.550 3094.700 2.811
6 157.860 34.625 0.440
7 1957.000 5181.900 2.845
8 0.958 15.876 0.249
9 8518.400 4844.900 2.975
10 2.868 23.152 0.495
11 3469.100 2765.600 3.292
12 0.699 15.861 0.308
13 189.450 209.850 1.005
14 13200.000 2727.900 3.503
15 3.000 11.738 1.170
16 24402.000 7629.300 3.978

*Reported values are the median mean standard error (MSE) from 100 repetitions in a Monte Carlo
experiment.
 Estimates from restricted profit and production functions were converted to uncompensated estimates via
Lau’s duality results and thenMSE values were calculated by comparison with true uncompensated effects.
àEstimates from the unrestricted profit function were directly compared with true uncompensated effects to
calculate MSE values.
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price variability and sample size on estimated coefficients alone. That is,
unrestricted profit functions coefficient estimates are compared to the true
values of the inverted Hessian of the production function. Because the
estimated coefficients from the unrestricted profit function are directly
compared with the true parameter values, the MSE values reported for the
unrestricted profit function do not give any indication of the impact of data
composition on duality. Thus, the MSE estimates for the unrestricted profit
function can be used as the baseline case from which to separate the impact of
measurement error, price variability and sample size on coefficient estimates
from the impact of these factors on dual results.4 As table 3 indicates, for most
of the 16 scenarios, the unrestricted profit function recovered the true
underlying technology relatively well. In fact, the average unrestricted profit
function median MSE for all 16 scenarios was 1.787. As it appears that the
unrestricted profit function recovered the true underlying technology quite
well, one might assume that duality could be used to accurately determine the
compensated effects from the restricted profit function or the production
function. This assumption would appear to be wrong.
The middle columns of table 3 report the MSE values for the restricted

profit and production functions. To calculate these MSE values, the
restricted profit and production functions were estimated first. Estimates
from these regressions were then converted to uncompensated estimates via
duality, as shown in equation 7. Finally, MSE values were calculated by
comparing these estimated uncompensated effects, derived from restricted
profit and production function estimates, to the true uncompensated effects.
First, it is worthwhile to note that we empirically verified Lau’s Hessian
identities (i.e. MSE¼ 0) when no measurement error is present in the data.
However, when a very small amount of measurement error was introduced
into the data, specifically measurement error in the quantity variables, dual
results began to deteriorate rapidly. For example, a comparison of MSE
values for scenarios one through to four, where the measurement error in
quantities was 0.10 per cent, to the MSE values in scenarios 13 through to 16,
where the measurement error in quantities was 2 per cent, indicates that
increases in quantity measurement error decreased the abilities of the
production and restricted profit functions to recover uncompensated effects.
The MSE values reported in table 3 indicate that the restricted profit and

4 The MSE for the restricted profit function and the production function can be interpreted
as the ability of one function (i.e. the restricted profit or production function) to achieve dual
results implied by an alternative specification of the technology (i.e. the unrestricted profit
function). In contrast, the MSE for the unrestricted profit function can be interpreted as the
impact of measurement error, price variability and sample size on estimated coefficients alone.
Obviously, at the levels of measurement error, price variability and sample size used in this
Monte Carlo experiment, estimated coefficients are hardly influenced, whereas dual results are
greatly influenced.
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production functions recovered the true uncompensated effects very poorly
for most scenarios.5

For all 16 scenarios reported in table 3, the median MSE values for the
restricted profit and production functions were greater than the median MSE
values for the unrestricted profit function. Even in cases in which the median
MSE values for the unrestricted profit function were relatively small, MSE
values for the two dual functions were quite large (e.g. scenarios two, four,
five, six, eight, 11, 13, 14 and 16). Thus, small deviations between true and
estimated coefficient estimates in the restricted profit and production
functions (due to measurement error) translated into very large differences
in true and estimated uncompensated effects. These results imply that, in the
presence of a measurement error even as low as 0.01 per cent (e.g. scenario
two), one could arrive at conclusions quite contrary to those implied by the
actual technology if the restricted profit or production function were used to
make inferences regarding uncompensated effects.
To better summarise the effects of measurement error, price variability and

sample size on the reported MSE values, equation 17 was estimated for each
dual function. Changes in measurement error, price variability and sample
size explained over 97 per cent of the variation in median MSE values for the
unrestricted profit, the restricted profit and production functions. First, we
consider the effects of data composition on the production and restricted profit
functions. Data in table 4 indicate that results between the production and
restricted profit functions are similar except for the effect of sample size. For
example, except for sample size, all variables that are statistically significant in
the production function regression are also statistically significant in the
restricted profit function regression. In addition, except for sample size, the
signs of all statistically significant variables are identical across both equations.
This indicates that the effects of relative price variability, sample size and
measurement error in quantities generally work in the same direction in the
production function and the restricted profit function equations. Measure-
ment error in prices had no statistically significant effect in either equation.
In contrast, the regression explaining the mean squared error for the

unrestricted profit function had many more statistically significant variables
than either the restricted profit or the production function regressions
(table 4). Furthermore, results indicated that many of the significant
variables had opposite signs than in either the production function or
restricted profit function estimations. To explore the practical implications of
these regressions further, figures 2, 3 and 4 were constructed.

5 The analysis could also be conducted with the restricted profit or production functions as
the basis of comparison. Results are similar for all cases. The function used for the basis of
comparison recovers the true technology quite well, whereas the two alternative specifications
diverge from the true values after the dual Hessian conversions.
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Figure 2 illustrates the effect of an increase in sample size on the
production, restricted profit and unrestricted profit functions with measure-
ment error in prices and quantities each set at 1 per cent. The dotted lines
represent MSE when relative price variability is 20 per cent and the solid lines

Table 4 Effects of measurement error, price variability and sample size on MSE 

Variable
Restricted profit

functionà
Production
functionà

Unrestricted profit
function§

Constant 16.658***– 7.721*** 13.011
(3.990)   (1.765) (1.408)

Log measurement error in 5.683*** 2.916*** 2.039***
quantities (MEQ)àà (0.662) (0.293) (0.233)

Log measurement error in )0.084 )0.024 0.111
prices (MEP)àà (0.662) (0.293) (0.233)

Log price variability (PV)àà )7.206*** )4.604*** 0.088
(1.146) (0.507) (0.404)

Log sample size (SS) )0.158 0.896** )1.464***
(0.986) (0.436) (0.348)

MEQ squared 0.469*** 0.297*** 0.042**
(0.051) (0.023) (0.018)

MEQ, MEP interaction )0.047 )0.000 )0.081***
(0.040) (0.018) (0.014)

MEQ, PV interaction )0.946*** )0.378*** )0.143***
(0.085) (0.038) (0.030)

MEQ, SS interaction 0.257*** 0.328*** )0.064***
(0.051) (0.022) (0.018)

MEP squared 0.006 )0.002 0.051***
(0.051) (0.023) (0.018)

MEP, PV interaction 0.048 )0.001 0.111***
(0.085) (0.038) (0.030)

MEP, SS interaction 0.005 0.001 0.054***
(0.051) (0.022) (0.018)

PV squared )0.481** )1.440*** 1.335***
(0.240) (0.106) (0.085)

PV, SS interaction )0.701*** )0.7444*** 0.589***
(0.108) (0.048) (0.038)

SS squared 0.036 0.012 0.162***
(0.089) (0.039) (0.031)

R2 0.97 0.98 0.99

 Dependent variable for each regression is the log median MSE from 100 repetitions of a Monte Carlo
experiment.
Sample size for each regression¼ 256.
àEstimates from restricted profit and production functions were converted to uncompensated estimates via
Lau’s duality results and thenMSE values were calculated by comparison with true uncompensated effects.
§ Estimates from the unrestricted profit function were directly compared with true uncompensated effects to
calculate MSE values.
–One, two, and three asterisks indicates significance at the 0.10, 0.05, and 0.01 levels, respectively.
  Numbers in parentheses are standard errors.
ààMeasured as coefficient of variation (standard deviation/mean).

J.L. Lusk et al.60

Ó Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishers Ltd 2002



Figure 2 The effect of Relative Price Variation (RPV) and sample size on mean squared error.

Figure 3 The effects of measurement error in quantities (MEQ) and sample size on mean
squared error.
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represent the MSE when relative price variability is 30 per cent. Results
indicate that sample size has differing impacts on the MSE calculated for
each function. Increases in sample size were associated with a decrease in
MSE for the unrestricted profit function at both levels of relative price
variability and the restricted profit function with relative price variability of
30 per cent. However, increased sample size was associated with increased
MSE for the production function and the restricted profit function with
relative price variability of 20 per cent. The interaction of increased
measurement error, decreased relative price variability and sample size
typically results in an expectation that increased sample size leads to smaller
error. It is a well-known econometric property that when parameter estimates
are inconsistent estimated coefficients do not approach true values and,
hence, the mean squared error does not converge to zero. A quantitative
estimate of the measurement error, sample size interaction is reported in
table 4.
Figure 2 also illustrates that increased relative price variability significantly

improves the ability of the restricted profit function and the production
function to achieve uncompensated results. Increases in price variability, at
least for this particular functional form, allows the restricted profit and
production function to better trace out the true underlying technology when
duality is utilised.

Figure 4 The effect of measurement error in prices (MEP) and sample size on mean squared

error.
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The effect of measurement error in quantities on MSE, when relative
price variability is 20 per cent and measurement error in prices is 1 per cent,
is illustrated in figure 3. Decreases in quantity measurement error from 1 to
0.5 per cent substantially reduce the MSE for all three functions. In
contrast, measurement error in prices has little impact on the median MSE
for the production and the unrestricted and restricted profit functions
(figure 4). Perhaps the impact of measurement error is dampened by
normalisation of the prices. Alternatively, measurement error in prices may
not have influenced unrestricted and restricted profit function results
because of the particular price levels and coefficients of variation chosen for
this analysis.
Further analysis of the estimated models can aid in interpreting the

influence of measurement error, price variability and sample size on
estimated dual relationships. The estimated coefficients can be used to
predict MSE values, given various data composition factors. The
coefficients imply that the restricted profit function estimates uncom-
pensated effects more accurately than the production function at all levels
of measurement error, price variability and sample size used in the
analysis.
Because the unrestricted profit function estimates are directly compar-

able with the true underlying technology, we were able to estimate the
influence of measurement error, price variability and sample size on
estimated coefficients alone (not on duality). In the case of 1 per cent
measurement error in prices and quantities, 30 per cent relative price
variability and a sample size of 100 observations, the median MSE for the
unrestricted profit function was 0.26. If there was a 1:1 relationship
between the influence of data composition on: (i) coefficient estimates; and
(ii) the ability to achieve identical dual results, we would expect the
predicted MSE for the restricted profit function and production function
to be close to 0.26. However, the estimated MSE for the restricted profit
and production functions at the same levels of measurement error, price
variability and sample size was 2.32 and 40.66. Thus, our results indicated,
for the particular technology used in this analysis, that measurement error,
price variability and sample size had a small influence on parameter
estimates. However, when these small errors in parameter estimates were
compounded via matrix manipulations to achieve dual results, very large
deviations occurred between actual and true values. In this simple exercise,
in which the estimated functional form exactly matched the underlying
data-generating process, duality relationships performed very poorly. In
fact, uncompensated estimates calculated from the restricted profit and
production functions led to economically inconsistent implications relative
to the true uncompensated estimates.
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7. Implications

To further examine the deviation of empirical duality properties from
duality theory, we calculated three other statistics in addition to the MSE
measure: (i) percentage of curvature violations (PCV); (ii) percentage of
statistically significant variables (PSV); and (iii) percentage of economic
violations (PEV). PCV was calculated by checking curvature (i.e. calcula-
ting the eigenvalues) of the uncompensated Hessian for the restricted
profit, unrestricted profit and production functions from each iteration of
the Monte Carlo experiment. The mean number of curvature violations
was calculated by adding up the totals from each iteration. Similarly, PSV
was calculated by summing the number of statistically significant coeffi-
cients and dividing the total by 1000 (100 Monte Carlo repetitions · 10
unique Hessian terms). To calculate PEV, the number of economic
violations was totalled from each Monte Carlo iteration. An economic
violation occurred if the estimated coefficient implied the input was a
substitute when the true coefficient was a complement and vice versa. An
economic violation also occurred if the estimated coefficient implied that

Table 5 Percentage of curvature violations (PCV), significant variables (PSV) and economic
violations (PEV) in 100 iterations of a Monte Carlo experiment

Restricted profit function* Production function* Unrestricted profit function 

Scenario PCV PSV PEV PCV PSV PEV PCV PSV PEV

1 1.0 48.6 9.0 99.00 11.60 43.50 4.0 59.5 3.5
2 98.0 40.8 56.2 98.00 99.80 49.40 100.0 39.0 60.4
3 0.0 89.8 0.7 97.00 18.70 33.40 0.0 90.0 0.0
4 100.0 13.7 52.4 95.00 98.20 52.00 99.0 0.6 59.3
5 99.0 27.7 56.6 95.00 98.30 51.10 99.0 1.4 60.3
6 53.0 23.6 28.8 95.00 16.40 49.10 54.0 9.9 20.4
7 100.0 18.2 54.4 100.00 99.80 47.40 98.0 11.2 59.4
8 19.0 19.9 18.1 100.00 16.80 46.20 13.0 14.7 16.5
9 100.0 7.8 53.6 100.00 99.80 48.40 100.0 1.6 62.0
10 50.0 15.0 32.4 99.00 21.90 46.80 39.0 13.5 22.4
11 100.0 9.9 53.2 95.00 92.80 52.70 98.0 1.2 58.4
12 28.0 37.5 24.9 99.00 30.40 45.50 36.0 38.9 18.1
13 72.0 18.4 42.9 97.00 47.40 49.10 83.0 9.5 27.3
14 100.0 9.3 53.6 95.00 98.20 52.70 98.0 2.4 57.8
15 78.0 18.9 44.3 99.00 31.20 47.40 73.0 9.8 32.1
16 100.0 7.6 52.4 100.00 99.80 48.40 100.0 0.8 56.8

*Estimates from restricted profit and production functions were converted to uncompensated estimates via
Lau’s duality results and thenMSE values were calculated by comparison with true uncompensated effects.
 Estimates from the unrestricted profit function were directly compared with true uncompensated effects to
calculate MSE values.
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the input was own-price elastic (inelastic) when the true coefficient was
own-price inelastic (elastic).
For the 16 scenarios in table 1, table 5 reports the PCV, PSV and PEV

for the three dual functions. As with the MSE, the PCV, PSV and PEV for
the unrestricted profit function were calculated without any matrix
inversions, whereas estimates from the restricted profit and production
functions were converted to uncompensated effects (see equation 7) before
PCV, PSV and PEV were calculated. Interestingly, the restricted profit
function performed almost as well as the unrestricted profit function for the
PCV and PEV measures (see all 16 scenarios in table 5). Using a paired
t-test, the hypothesis that the mean PCV for the unrestricted and restricted
profit functions across all 256 scenarios were equal could not be rejected.
Although the PCV was statistically equivalent for the restricted and
unrestricted profit functions, a t-test implied that the unrestricted profit
function had a higher mean PSV and a lower PEV than the restricted profit
function.
The uncompensated Hessian derived from the production function

violated curvature more frequently than the other two dual functions. At
measurement errors as low as 1 per cent (e.g. scenario one), curvature was
violated 99 per cent of the time for the production function. Although the
production function frequently violated curvature, coefficient estimates
were statistically significant more often than was the case with the
restricted and unrestricted profit functions. This was especially true for
larger sample sizes (scenarios two, four, five, seven, nine, 11, 14 and 16).
In addition, the production function produced a significantly higher
number of economic violations than the restricted and unrestricted profit
functions.
Regressions similar to those reported in table 4 were estimated with the

dependent variables PEV, PCV and PSV rather than the logged MSE. These
results indicate that as errors in measuring input quantities increase, the PEV
and PCV increase for unrestricted Hessian estimates calculated from the
restricted profit, unrestricted profit and production functions. Concurrently,
the PSV decreases for the restricted and unrestricted profit functions.
Measurement errors in prices have little influence on PCV, PSV and PEV for
unrestricted Hessian estimates calculated from all three functions. Increases
in sample size increase PSV and decrease the PEV and PCV for each model.
Finally, price variation tends to slightly decrease the PCV and PEV for each
model. Increases in price variation have a greater influence on PSV for the
unrestricted Hessian estimates calculated from the restricted and unrestricted
profit functions.6

6 These regression results are available from the authors.
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8. Conclusions

Duality allows researchers to recover production technology parameters
using several different approaches. At a theoretical level, several studies have
illustrated the equivalence between many dual economic relationships.
Economists have used these theoretical equivalence results to justify solving
applied problems using the most empirically convenient function. However,
the present study indicates that dual relationships between profit and
production functions, which theoretically hold, may perform poorly in
applied research when data are subject to the frailties of measurement error,
limited price variability and/or sample size.
This study employed Monte Carlo techniques to empirically examine the

dual relationship between the restricted profit, unrestricted profit and
production functions. Lau’s (1976) Hessian identities were used to compare
estimates obtained using these three functions. Data were generated using an
assumed true production technology. Estimates from the restricted profit and
production functions were converted to the uncompensated Hessian using
the dual results provided by Lau (1976) and were compared with the true
values of the uncompensated Hessian. Under ideal conditions (no measure-
ment error), the converted values were identical to the true values, thus
confirming the theoretical dual results. However, these dual identities failed
to hold when conditions that regularly occur in applied work were
introduced. Increases in measurement error in quantities, decreases in
relative price variability and, in certain cases, increases in sample size,
adversely affected the ability of the production and restricted profit functions
to recover the true uncompensated effects. Although it is well known that
measurement error and sample size affect estimated coefficients, we showed
that very small errors in coefficient estimates translated into very large errors
when attempting to calculate uncompensated effects from restricted profit or
production function estimates.
Some research has concluded ‘that the most efficient way of estimating the

product supply or factor demand is to derive them from the empirical
production function, rather than the reverse’ (Mundlak 1996, p. 437). While
such a task is mathematically possible, our results indicate that such
calculations are likely to produce undesirable results when dealing with
fragile empirical data. Similarly, our results imply that if attempting to
estimate uncompensated effects, it would be most desirable to estimate the
unrestricted profit function rather than to use duality to recover the
uncompensated results from the production or restricted profit functions.
Uncompensated results obtained through matrix inversions are likely to be
inaccurate unless input quantities are measured accurately. Furthermore, this
analysis indicates that the restricted profit function recovers uncompensated
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effects more accurately than the production function when quantity
measurement error is present. In addition, uncompensated effects can be
recovered more successfully from the restricted profit function if there is a
reasonable degree of price variability.
The analysis indicates that small amounts of measurement error produce

results inconsistent with duality theory. Consequently, using highly aggre-
gated or secondary data to estimate dual relationships may be problematic.
Analysts should also be cautious when using datasets that contain variables
that are not easily measured or are measured by a proxy variable. Finally,
measurement error problems may arise when aggregating production
variables without regard for potentially heterogeneous quality. In summary,
we found that the dual relationships between the restricted profit, unrestrict-
ed profit and production functions rarely held under conditions typically
found in real-world datasets, indicating that the choice of which approach to
use in applied research may not be as clear as suggested by theoretical
mathematical relationships.
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