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Towards the measurement of the impacts of 
improving research capacity: an economic 

evaluation of training in wheat disease 
resistance*
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†

 

It is notoriously difficult to assess the economic value of research aimed at improving
research capacity, particularly for the human capital component of research capacity.
In this paper, a framework is developed and an analysis is undertaken of the value of
training for scientists in wheat rust resistance. The value of improving human capital
is assessed through a framework based on marginal analysis of  the improvement
in productivity outcomes flowing from the increased capacity. On that basis, the value
of programs to build human capacity through training or further education can be
estimated. Although such estimates are necessarily qualified, they provide a basis for
quantifying the value of building research and development capacity.
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1. Research and development capacity building

 

Economic assessment of research and development (R&D) in agriculture
generally focuses on valuing the enhanced productivity of some or all elements
of the farming system, although maintenance research can also be important
(Smale 

 

et al

 

. 1998). The outcomes of R&D, whether it enhances or maintains
productivity, will depend on the capacity of researchers to undertake that
research. Following the Danish Agency for Development Assistance (DAN-
IDA 2000), the capacity to undertake high-quality and effective research involves
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four components: (i) tangible capital; (ii) human capital; (iii) organisational
capital; and (iv) social capital.

Tangible capital refers to the physical facilities, infrastructure, and capital
that underlie and contribute to maintaining or enhancing research, and includes,
for example, laboratories, microscopes, and molecular marker testing equipment.
Human capital refers to the people and their skills, motivation, knowledge,
training, and experience. Organisational capital refers to mandate, management
procedures, policy-making procedures, funding arrangements, and so forth.
Social capital refers to the political and economic support for the R&D.

Investment aimed at building research capacity is an important component
of R&D investment (e.g., Ryan 1999), as it enhances the productivity of
R&D resources. R&D capacity building can alter the mix of R&D resources
available. However, despite the large number of  studies that have assessed
the extent of R&D capacity building, few have quantified the economic value
of the increased R&D capacity that has resulted. If  informed decisions are to
be made about the extent of resources allocated to R&D capacity building
relative to direct R&D technologies, estimates of those values are needed.
Therefore, the development of a method for measuring the level of returns
from investment in R&D capacity building is one of the most important gaps
in R&D impact assessment. There is a need to develop a framework for evalu-
ating the benefits of improved R&D capacity.

Although there is no universally accepted definition of capacity building in
published works, it can take a number of forms, including: laboratories, build-
ings, and glasshouse facilities; scientific training; ‘hands-on’ experience for key
personnel; and visiting scholars. Such investment can have an effect through
increased productivity, or through increased maintenance research, or both.
Given the presence of research spill-overs from one environment to another
(Alston 2002), some productivity enhancement or productivity maintenance
may occur in a particular environment without any R&D capacity in that en-
vironment, although generally both environments require some R&D capacity
(Maredia and Byerlee 2000). The larger the capacity, the larger will be the
potential productivity enhancement and maintenance, and hence, the larger
the potential economic outcomes.

As capacity within a particular region is increased, research outputs can
also increase, and the final outcomes can be expected to have higher economic
value. There can be minimum threshold levels of R&D capacity below which
progress will be very slow, so that there can be a critical mass of capacity
before strong progress can be expected (e.g., see Brennan 1993; Maredia and
Byerlee 2000). There are also likely to be diminishing returns to increasing
investment in R&D capacity within a single production environment.

At the basic R&D level, scientists need to develop the capacity to under-
stand, identify, and classify the relevant biological aspects of their research
before other stages of the process of productivity enhancement can be imple-
mented. When that capacity exists, it needs to be implemented and used to
produce improved outcomes before measurable benefits can occur. Therefore,
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research capacity is a necessary but not sufficient condition for the develop-
ment of improved productivity and/or maintenance outcomes.

Where the enhanced capacity is utilised in the R&D program, benefits will
flow in the future from the improved outcomes. The economic analysis needs
to identify and measure those improved outcomes compared with what would
have occurred otherwise.

It is possible that R&D capacity can be improved without any change in the
productivity outcomes, as improved R&D capacity is not a sufficient condi-
tion for the development of improved productivity. However, there may still
be benefits in having built the capacity, even if  it is not implemented immedi-
ately in the R&D program, as such capacity can: (i) set the environment for
future implementation; (ii) enhance benefits once implementation has occurred;
(iii) stimulate training and education for possible future changes (through
sparking an interest in others); and (iv) encourage implementation of improve-
ments in R&D, by identification of gaps in the process.

In this paper, an analytical framework for evaluating the benefits of improv-
ing the R&D capacity is proposed. The application of that framework is then
illustrated by an evaluation of the training in Australia of wheat pathologists
for the management of rust resistance in wheat in India.

 

2. An analytical framework for valuing capacity building

2.1 Analytical framework

 

Research and development impacts can generally be measured by an assessment
of productivity outcomes with and without the R&D. The measures of pro-
ductivity outcomes depend on the nature of the R&D investment being assessed
and the data available, and can range from total factor productivity to partial
factor productivity measures such as yield per hectare. Similarly, productivity
outcomes will be related to R&D capacity. The precise form and nature of
those productivity outcomes will depend on the analysis being undertaken.

Now consider the nature of R&D capacity and its relationship with pro-
ductivity outcomes. Each of the four components of R&D capacity (tangible,
human, organisational, and social capital) can range from ‘zero’ to ‘full’
capacity. The overall R&D capacity itself  is a combination of the compon-
ents, and the R&D outcomes are a function of the level of each component.

The relationship between the outcomes and the levels of the components is
hypothesised to have the following features:

• The greater the human capital, the greater the productivity outcome, for a
given level of the other three components

• The greater the tangible capital, the greater the productivity outcome, for a
given level of the other three components

• The greater the organisational capital, the greater the productivity out-
come, for a given level of the other three components
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• The greater the social capital, the greater the productivity outcome, for a
given level of the other three components

• If any of the components is zero, productivity outcomes are determined by the
level of technology spill-ins that would occur without domestic research capacity

• If all components are at full capacity, productivity outcomes are maximised
for a given level of investment in R&D projects

Using these principles, an analytical framework was developed to enable
the changes in R&D capacity to be quantified. Within region 
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, the general
model for assessing the impact of R&D capacity can be defined as:
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The relationship between each of the components and the productivity out-

comes is hypothesised as in Figure 1. In the case of human capital, for exam-
ple, for a given level of the other components of capacity, increases in human
capital may follow a logistic curve rather than a linear response. At low levels
of human capital in a given region, productivity outcomes will be positive because
of technology spill-ins from other regions and/or farmer experimentation within
the region. As human capital is further developed, the rate of increase of pro-
ductivity outcomes will increase, but as human capital is increased even fur-
ther, productivity outcomes will reach diminishing marginal returns so that
ultimately additional human capital will not increase productivity outcomes.

For simplicity, this relationship ignores lags that are likely to occur between
a change in research capacity and the resulting increase in productivity out-
comes. However, it is feasible to build in a set of distributed lags where the
productivity outcome this year depends on research capacity for a number of

Figure 1 Relationship between human capital and productivity outcomes, with technology
spill-ins.
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past years. The shape and distribution of the weights in any distributed lag
system would depend on the nature of the research being analysed.

With different levels of the other components of R&D capacity assumed,
different response curves can be identified for increases in human capital. For
example, in Figure 2, the productivity outcomes respond to increasing human
capital with three different levels of the other components. Where the other
components are at 60 per cent capacity, then the response to human capital
is lower than where they are at 80 per cent or 100 per cent capacity. It is likely
that each of the four components of R&D capacity would behave in this manner.

 

2.2 Estimating the relationship between human capital and productivity 
outcomes

 

The relationship between human capital and productivity outcomes can be
specified as a logistic curve:
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where 
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 is the (observed or estimated) productivity outcome in a target region;
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at full human capacity, and 
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Figure 2 Relationship between human capital and productivity outcomes with different levels
of other capacity components.
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where 

 

d

 

 is the level productivity that results from the technology spill-ins
from other regions when there is no R&D capacity in the target region; 

 

y

 

′

 

 is
the productivity outcome from R&D capacity within the region; and 

 

A

 

 is the
parameter of the logistic curve.

The question then is how to elicit values that will define the parameters of
the logistic curve. Considering the case of human capital improvement (through
training, for example), with all other components fixed, 

 

x

 

 can represent
the years of scientific experience in a region, and 

 

y

 

 can represent the rate of
crop yield improvement per year. The maximum level of yield improvement, 

 

a

 

,
can be determined from experimental or expert information. If  the level of
human capital in an area of scientific expertise within a particular region
were zero, then productivity outcomes would rely on technology ‘spill-ins’
from other regions or farmer experimentation.

As the curve is asymptotic to the floor set by the spill-ins, we can set 

 

y

 

 = 

 

y

 

0

when x = 0, where y0 is an arbitrarily small positive number. Thus, from
Equation (3):

y0 = A/(1 + e−b), (6)

so that

A = y0/(1 + e−b), (7)

This can be rearranged to give:

b = −loge(a/y0 − 1) (8)

Substituting Equation (8) into Equation (2) and rearranging, we get:

c = (1/x)[loge(A/y0 − 1) − loge(A/y − 1)] (9)

Thus, given a and d (that is, A) and y0, we can calculate b. If  we define one
other point on the curve for which both x and y are known, we can then cal-
culate c, and hence define the entire logistic curve.

Once the curve has been defined, changes in x represent a movement along
the response curve. Thus, we can then calculate the expected change in y for
a given change in x, and then place an economic value on changes in R&D
capacity. A change in one of the other components being held fixed in this
analysis would lead to a shift from one curve to another as in Figure 2.
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2.3 Units of measurement of parameters

For any relationships to be useful in assessing the value of specific R&D
capacity-building activities, the units of measurement of R&D capacity and
the productivity outcomes need to be defined carefully. If  the aim of the anal-
ysis is to evaluate the impact of a training program, the units for the human
capital component may be expressed in a range of possible measures, such as
cumulative years of professional experience, years of experience post-training,
years of  post-graduation work, the number of  workers with a particular
qualification, or other measures of research worker intensity.

In some cases, those inputs may need to be scaled or normalised in some way.
Where the analysis relates to a single region or system, there will be no need to
normalise the data inputs. However, where comparisons are being made across
regions, or where data from different regions are being combined, the human
capital inputs need to be scaled to the crop area or production that is being
targeted by the R&D. For example, two qualified workers in a small region
may well be able to allow productivity to be maximised, whereas that would be
inadequate for a large diverse region with 100 times as much production. In
that case, the human capital measure can be a measure of research intensity (e.g.,
see Scobie et al. 1991), and may be expressed in terms such as ‘years of experi-
ence per hectare of crop (or per tonne of production) in the target region’.

Similarly, tangible capital inputs need to be defined in such a way as to
capture the productivity of the capital involved, and it may be appropriate
for them to be scaled to the crop area or production being targeted by the
R&D. Possible measures of research capital intensity include the number of
laboratories in a particular region or the money invested in R&D tangible
capital facilities, per tonne or per hectare of crop in the region.

The other components of R&D capacity, namely organisational capital
and social capital, are difficult to quantify for any given region. However,
conceptually, it is possible to develop a measure of these components. Again,
those measures may need to be scaled to the production in the target region, and
would also need to be consistent with the scales used in the measures of the
other components and the productivity outcomes.

The productivity outcomes need to be related to a measurable outcome
such as total factor productivity, wheat yields per hectare, or the value of
disease resistance in each region. The productivity measure needs to be
something that will reflect the differences in outcomes from a change in the
components of R&D capacity.

3. Evaluation of rust resistance capacity building for wheat in India

3.1 Training for rust resistance

To test empirically the framework developed above, we analysed a project
that brought Indian wheat pathologists to Australia for training in wheat rust
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resistance in the late 1980s and early 1990s. Over that period, four scientists were
brought from India for extensive training at the National Cereal Rust Control
Program at the University of Sydney (Brennan and Quade 2004). In undertaking
an economic evaluation of that training, data were gathered on the value of wheat
rust resistance in India (the productivity outcome), and the impact that the train-
ing had on that value was estimated using the framework outlined above. Although
there are likely to be many qualifications to any such estimates, the analysis
illustrates the method for quantifying the value of building R&D capacity.

3.2 Productivity outcomes for rust resistance

Following Brennan and Murray (1998), we can estimate the potential losses
from diseases that could have been controlled by genetic resistance, as well as
estimates of the current losses that occur in the presence of the existing levels
of  resistance. These two figures can be combined to determine the extent
to which the current use of resistance is successful in controlling the diseases.
When expressed as a percentage of potential losses, the current level of control
represents a measure of the success of the R&D capacity in relation to wheat
disease resistance. Where other forms of control can be used as well as genetic
resistance (see Brennan and Murray 1998), only that proportion relating to
resistance is to be included. Thus, the measure of productivity outcomes from
disease-resistance capacity can be defined as:

yi = Σ [rj(Pij − Aij)/Pij], (10)

where yi is the productivity outcome in region i; rj is the relative contribution
of disease resistance to the control of disease j; Pij is the potential economic
losses in region i from disease j (in dollars); and Aij is the actual current eco-
nomic losses in region i from disease j (in dollars) given current controls.

3.3 Data

For the purposes of data collection on rust diseases in India, six key wheat
production regions were defined. Northern Plains was the dominant wheat
production region, although the Central and North-eastern regions were also
significant producers (Table 1).

Data on the productivity outcomes for rust resistance in wheat were
obtained from a survey of wheat pathologists in India (R.G. Saini, pers. comm.
2003). Scientists were first asked to estimate the incidence and severity of
each of the three main rust diseases (stem, leaf, and stripe rust) for each of
the six main wheat production regions in India. The results are shown in
Table 2. For each of the rusts, there are regions where the potential (uncon-
trolled) level of severity in the event of a disease outbreak is given a score of
4.0 (‘severe’) or 4.5 (‘severe’/‘very severe’) out of a possible 5.0 (see Brennan
and Quade 2004 for a discussion of the scoring system used). However, given
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current controls, the present severity of the diseases is 2.5 (‘light’/‘moderate’)
or lower. The incidence scores indicate that environmental conditions for the
rusts are such that the rusts are generally ‘localised’ (scores 2–3) although in
some regions the scores are 1.0 (‘rare’) or 4.0 (‘widespread in some seasons’).

In consultation with experienced plant pathologists, these qualitative
scores can be converted to quantitative estimates of yield loss associated with
each level of disease severity and incidence (see Brennan and Murray 1998),
although there is inevitably an element of subjectivity in that process. The
yield losses associated with each combination of severity and incidence is
shown in Table 3.

The value of the potential and present yield losses can then be estimated
by using representative yields (Table 1) and prices (#A150/t). On this basis,
estimates were obtained of the total value of resistance to each of the three
diseases (Table 4). The calculations show that the highest level of disease
losses per hectare occur in Southern India where wheat production is low,
whereas in the main production regions (Northern Plains, Central, and
North-eastern) the diseases are generally more under control. Overall, with
current controls, stem rust causes average annual losses in India of #A0.51
million, leaf rust #A4.06 million, and stripe rust #A4.86 million. Without
controls, the losses would be #A47 million, #A45 million, and #A258 million,
respectively. The losses vary markedly between regions (Table 4).

Because of the difficulty in undertaking separate analyses for the different
rust diseases, all three rusts were combined for this analysis. Aggregating
across the three rusts for India as a whole, resistance to the three rusts has
the potential to provide benefits of #A344.3 million per year (Table 5). At
present, benefits of #A335.3 million are being provided, so that the produc-
tivity outcome in terms of rust resistance is 97.4 per cent (= 335.3/344.3) of
potential. Thus, the productivity outcome for rusts in India is that resistance
is providing 97.4 per cent of the potential benefits.

3.4 Human capital for rust resistance in wheat

Craig et al. (1991) and Pardey et al. (1991) used the number of full-time
equivalents in research, defined by educational status, as their measure of the

Table 1 Regional wheat data for India (average of 5 years to 2001–2002)

Area 
(000 ha)

Yield 
(t/ha)

Production 
(000 t)

Southern Hills 256 0.74  190
Peninsular India 0 1.00  0
Central 6 025 1.76 10 590
North-eastern India 2 601 2.05 5 323
Northern Plains 15 682 3.01 47 259
Northern Hills 1 558 2.06 3 212
Total India 26 122 2.55 66 574
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Table 2 Scores for disease severity and incidence for rust diseases in India

Table 3 Yield loss associated with disease incidence and severity scores
 

Stem rust Leaf rust Stripe rust

Severity

Incidence

Severity

Incidence

Severity

IncidencePotential Present Potential Present Potential Present

Southern Hills 4.5 2.5 4.0 4.0 2.5 3.5 3.5 2.5 3.0
Peninsular India 4.5 1.0 2.5 3.5 1.5 2.0 0.0 0.0 0.5
Central 4.5 1.0 2.5 3.5 1.5 2.0 0.0 0.0 0.5
North-eastern India 1.5 0.0 0.5 3.5 2.0 2.5 1.0 1.0 0.5
Northern Plains 0.5 0.0 0.0 2.5 1.5 2.0 4.5 1.5 3.0
Northern Hills 1.5 0.0 0.0 4.0 1.5 3.0 4.5 1.0 2.0

Source: Based on a survey of Indian wheat pathologists (Brennan and Quade 2004).

Incidence score 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Severity score (% yield loss)
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.03 0.03
1.0 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.06 0.07
1.5 0.00 0.00 0.01 0.02 0.03 0.03 0.04 0.06 0.10 0.14 0.17
2.0 0.00 0.00 0.03 0.04 0.05 0.07 0.08 0.13 0.20 0.28 0.33
2.5 0.00 0.00 0.08 0.12 0.15 0.20 0.25 0.38 0.60 0.83 1.00
3.0 0.00 0.00 0.15 0.23 0.30 0.40 0.50 0.75 1.20 1.67 2.00
3.5 0.00 0.01 0.30 0.46 0.60 0.80 1.00 1.50 2.40 3.33 4.00
4.0 0.00 0.01 0.60 0.92 1.20 1.60 2.00 3.00 4.80 6.67 8.00
4.5 0.00 0.02 0.80 1.23 1.60 2.13 2.67 4.00 6.40 8.89 10.67
5.0 0.00 0.03 1.25 1.92 2.50 3.33 4.17 6.25 10.00 13.89 16.67

Source: Derived from Brennan and Murray (1998).
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Table 4 Estimation of value of resistance to wheat rusts in India

Yield 
loss (%)

Economic 
loss (#A/ha)

Loss total 
(#A′000)

Value 
controls

% 
resistance

Value of resistance 

Potential Actual
Resistance 
% PotentialPotential Present Potential Present Potential Present #A/ha #A′000

Stem rust
Southern Hills 6.40 0.60 9.54 0.89 2 445 229 8.65 2 216 100% 2 445 2 216 91%
Peninsular India 2.13 0.01 4.27 0.03  0 0 4.24  0 100%  0  0 99%
Central 2.13 0.01 7.50 0.05 45 190 282 7.45 44 908 100% 45 190 44 908 99%
N-eastern India 0.00 0.00 0.00 0.00  3 0 0.00  3 100%  3  3 100%
Northern Plains 0.00 0.00 0.00 0.00  0 0 0.00  0 100%  0  0 100%
Northern Hills 0.00 0.00 0.00 0.00  0 0 0.00  0 100%  0  0 100%
– India Total 0.36 0.00 1.82 0.02 47 638 512 1.80 47 126 100% 47 638 47 126 99%

Leaf rust
Southern Hills 3.00 0.38 4.46 0.56 1 143 143 3.90 1 001 95% 1 086  950 88%
Peninsular India 0.60 0.03 1.20 0.05  0 0 1.15  0 95%  0  0 96%
Central 0.60 0.03 2.11 0.09 12 711 530 2.02 12 182 95% 12 076 11 572 96%
N-eastern India 0.80 0.07 3.28 0.27 8 523 710 3.00 7 813 95% 8 097 7 422 92%
Northern Plains 0.15 0.03 0.90 0.15 14 181 2384 0.75 11 797 95% 13 472 11 207 83%
Northern Hills 2.00 0.04 8.25 0.19 12 855 292 8.06 12 564 95% 12 213 11 935 98%
– India Total 0.37 0.03 1.89 0.16 49 414 4059 1.74 45 355 95% 46 944 43 087 92%

Stripe rust
Southern Hills 1.00 0.25 1.49 0.37  381 95 1.11  286 95%  362  271 75%
Peninsular India 0.00 0.00 0.00 0.00  0 0 0.00  0 95%  0  0 100%
Central 0.00 0.00 0.00 0.00  0 0 0.00  0 95%  0  0 100%
N-eastern India 0.00 0.00 0.00 0.00  1 1 0.00  0 95%  1  0 0%
Northern Plains 2.67 0.04 16.08 0.30 252 151 4693 15.78 247 458 95% 239 543 235 085 98%
Northern Hills 1.60 0.01 6.60 0.04 10 281 69 6.55 10 212 95% 9 767 9 702 99%
– India Total 1.97 0.04 10.06 0.19 262 814 4858 9.87 257 956 95% 249 673 245 058 98%

Source: Derived from data supplied by Indian wheat pathologists (Brennan and Quade 2004).
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human capital input into agricultural research. Pardey et al. (1991) acknow-
ledged the practical difficulties associated with qualification levels, expatriate
researchers, and research managers in constructing a measure of  human
capital in developing countries. Such inherent difficulties remain in this study
as well.

The information on personnel working on wheat pathology was obtained
from personal contact with wheat pathologist Dr R.G. Saini (Punjab Agri-
cultural University, Ludhiana, India; pers. comm. 2003). For India, detailed
data were available on the individuals involved in rust resistance work at
present. The human capital involves 32 scientists, contributing a total of 20.2
full-time equivalents (FTE) on wheat-rust resistance. The data on the qualifi-
cations and experience of those staff  are summarised in Table 6.

In measuring the level of human capital in the area of disease resistance in
a region, the most appropriate measure appears to be a combination of the
level of educational status and the total cumulative years of post-graduate
experience among the plant pathologists in wheat diseases resistance. Three
alternative methods for estimating the total human capital for wheat rust
resistance as a single parameter are explored in this paper:

(i) Total years of experience (‘Sum of years’)
(ii) Total years in study and years of experience (‘Years plus qualifications’)

(iii) Weighted years of experience, with MSc experience as less valuable than
PhD experience (‘PhD equivalents’)

Table 5 Value of wheat rust resistance in India and productivity outcomes

Stem rust Leaf rust Stripe rust All rusts

Potential costs (#A′000) 47 638 49 414 262 814 359 866
Present costs (#A′000) 512 4 059 4 858 9 429
Value of controls (#A′000) 47 126 45 355 257 956 350 437
% resistance 100.0 95.0 95.0 95.7
Potential (#A′000) 47 638 46 944 249 673 344 254
Actual (#A′000) 47 126 43 087 245 058 335 272
Resistance % potential 98.9 91.8 98.2 97.4

Source: Derived from Table 3.

Table 6 Scientist numbers in wheat rust resistance in India, 2004

Educational status
Scientists 

(FTE)

Number of scientists with experience of: 

0–5 yrs 6–10 yrs 11–20 yrs 21–30 yrs

Master’s degree 3.5 2 2 0 0
PhD 16.7 7 7 8 6
– Total 20.2 9 9 8 6

Source: R.G. Saini (pers. comm. 2003).
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It is arguable whether it is appropriate to include years of experience for
each individual in a linear fashion, as it is possible that diminishing marginal
returns from further experience prevail. However, for simplicity in this ana-
lysis, these are treated in a linear fashion. In assessing the years in study, a basic
degree is taken as 3 years, a Master’s degree as 2 additional years, and a PhD
a further 3 years. In assessing PhD equivalents, an assumption was made that
1 year of experience with MSc as the highest qualification was equivalent to
75 per cent of 1 year’s experience with PhD qualification. The impacts of these
assumptions are tested in the sensitivity analysis in the subsequent section.

In each case in this study, the measures are scaled to the wheat area, and
are expressed as ‘years of experience per million hectares of wheat sown’.
Allowing for the proportion of the time each individual allocates to rust
resistance, the three alternative measures of the current human capital for
wheat rust resistance per million hectares of wheat sown in India are: (i) sum
of years: 9.0 years/million ha; (ii) years plus qualifications: 12.5 years/million
ha; and (iii) PhD equivalents: 8.8 years/million ha.

In addition, spill-ins are likely to be high for a characteristic such as rust
resistance in India (R.A. McIntosh, University of Sydney, pers. comm. 2003),
because of the similarity of production environments and technologies to
those in other countries. As the precise level of spill-ins is difficult to assess,
two different levels of technology spill-ins are allowed in the analysis: (i) 50
per cent spill-in, so that resistance would be 50 per cent of potential if  there
were no local human capital; and (ii) 80 per cent spill-in, so that resistance
would be 80 per cent of potential if  there were no local human capital.

From Equation (2), the relationship between human capital for rust
resistance and outcomes for wheat rust resistance in India is estimated. Each
specification provides a separate estimate of  the relationship. From each
relationship, an estimate of the value of a change in human capital can be
estimated (ignoring any lags inherent in the system). Using each of these
specifications of human capital and spill-ins, the relationship illustrated in
Figure 1 is estimated, using Equations (8) and (9) to estimate the required
parameters. The parameter estimates for Equation (2) are shown in Table 7.

The relationships determined from these data are illustrated in Figure 3.
The two curves shown represent the relationships with 50 per cent and with
80 per cent R&D spill-ins.

3.5 Analysis of training in rust resistance

In determining the effect of bringing the Indian wheat pathologists to Aus-
tralia for training at the National Cereal Rust Control Program, some further
assumptions are required: (i) each round of training lifts the human capacity
of that individual for a number of years; (ii) the additional value for each year
is equivalent to one-half  of an FTE of additional experience; and (iii) the
training has a ‘life’ of 10 years in terms of improving human capacity of that
individual.
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Thus, for each plant pathologist trained, the human capacity in India increases
by a total of 5 years. With four Indian scientists trained under the project, the
aggregate human capacity at present is 20 years (or 0.8 years per million ha.)
higher than it would have been without that training, under each alternative
measure.

Inserting that shift in the equation for each set of parameter estimates, the
productivity outcome without that additional human capacity is estimated
(Table 8). The annual gain in productivity outcome varies from 0.43 per cent
to 0.74 per cent. These gains are valued at between #A1.47 million and #A2.55
million per year.

It is apparent that allowing for 80 per cent spill-ins rather than 50 per cent
reduces the gain from the training, by approximately 20 per cent in each case.
It is also apparent that the different specification of human capital can lead to
significant differences in the value of the training. This finding points to the
importance of determining the most appropriate measure of human capital.
Further work on exploring the best options is needed.

For a benefit–cost analysis of the training itself, the lags and time-frame
need to be estimated, as well as the costs involved in the training. While such

Figure 3 Effect of human capital on rust resistance in India.

Table 7 Parameters for alternative specifications of human capacity curves

Specification of 
human capital Spill-ins

Productivity 
outcome 

(y)

Human 
capital 

(x)

Maximum 
outcome 

(a)

Value 
at axis 

(y0)
Param. 

b
Param. 

c

Sum of years 50% 97.39% 9.02 100% 50% −3.892 0.809
Sum of years 80% 97.39% 9.02 100% 80% −2.944 0.596
year + qualifications 50% 97.39% 12.48 100% 50% −3.892 0.585
year + qualifications 80% 97.39% 12.48 100% 80% −2.944 0.431
PhD equivalent 50% 97.39% 8.83 100% 50% −3.892 0.826
PhD equivalent 80% 97.39% 8.83 100% 80% −2.944 0.609
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an analysis is beyond the scope of this paper, Brennan and Quade (2004)
found that a project that brought plant pathologists from both India and
Pakistan for training in Australia had a net present value of #A54 million, a
benefit–cost ratio of 17 and an internal rate of return of 51 per cent (see
Brennan and Quade 2004 for more details).

3.6 Sensitivity analysis

The results are likely to be sensitive to changes in a number of the parameter
values assumed in the analysis. A sensitivity analysis is presented in Table 9,
where the value of the productivity gains from the training is shown for alter-
native assumptions about the level of spill-ins, the impact of training on indi-
viduals, length of benefits, and parameters used in defining the human capital
measures. The results are found to be sensitive to the extent to which training
influences the capacity of the individual and the length of time that the
trainee continues working in the system, as increasing either of these param-
eters markedly increases the overall benefits of the training. The results are
also sensitive to the level of spill-ins, with higher spill-ins implying a lower level
of return from a given increase in research capacity within the target region.
The results with 80 per cent spill-ins are approximately 70–80 per cent of the
results with 50 per cent spill-ins. On the other hand, the figures shown in Table 9
indicate that the results for the ‘PhD equivalents’ or the ‘Years plus qualifica-
tions’ measures are not sensitive to the precise way the individual measures
of human capital have been constructed.

Table 8 Value of training plant pathologists in rust resistance
 

With 
training

Without 
training

Benefit from
training

50% spill-ins
Rust resistance research capacity (%)
– Sum of years 98.1% 97.4% 0.73%
– Sum of years plus qualification 98.0% 97.4% 0.57%
– PhD equivalents 98.1% 97.4% 0.74%

Value of current rust resistance (#Am)
– Sum of years #A337.78 #A335.27 #A2.51
– Sum of years plus qualification #A337.23 #A335.27 #A1.96
– PhD equivalents #A337.82 #A335.27 #A2.55

80% spill-ins
Rust resistance research capacity (%)
– Sum of years 97.9% 97.4% 0.56%
– Sum of years plus qualification 97.8% 97.4% 0.43%
– PhD equivalents 98.0% 97.4% 0.57%

Value of current rust resistance (#Am)
– Sum of years #A337.20 #A335.27 #A1.92
– Sum of years plus qualification #A336.74 #A335.27 #A1.47
– PhD equivalents #A337.23 #A335.27 #A1.96
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4. Discussion

The analysis reported in this paper provides a basis for determining the value
of a project aimed at improving R&D capacity. The approach provides a
framework for assessing other similar projects in the future and provides a
platform for an improved understanding of the economic value of invest-
ments aimed at improving research capacity.

However, the analysis involves a number of simplifying assumptions that
require further investigation before the framework can be applied more broadly.
In particular, areas where further investigation and improved data are likely
to lead to improved outputs from the analysis include further consideration
of: (i) the nature of the relationship between human capital and productivity
outcomes; (ii) the most appropriate measure of human capital; (iii) the role
of spill-overs and the level of spill-ins likely in each case; (iv) the development
of improved measures of the impact of training on the level of R&D capa-
city; and (v) the lags inherent in the relationships between human capital and
productivity outcomes. In addition, more extensive and more disaggregated
data are likely to be valuable in enabling further understanding of the role of
human capital and consequent productivity improvements.

Among the three measures of human capital used, there are no empirical
grounds for preferring one measure over the other. In this analysis, the ‘Years
plus qualifications’ gives a lower level of benefit than the other two measures.
However, for other similar studies, data are likely to be more easily obtained for
the simpler ‘Sum of years’ measure, and the results from this analysis provide

Table 9 Sensitivity analysis of the value of rust resistance training (#A million)

With 50% spill-in With 80% spill-in

Sum of 
years

Years plus 
qualifications

PhD 
equivalent

Sum of 
years

Years plus 
qualifications

PhD 
equivalent

Training increases capacity for individuals by:
0.2 years 1.2 0.9 1.2 0.9 0.6 0.9
0.5 years 2.5 2.0 2.6 1.9 1.5 2.0
1.0 years 3.9 3.2 3.9 3.2 2.6 3.2

Trainee continues working for:
5 years 1.4 1.1 1.5 1.1 0.8 1.1

10 years 2.5 2.0 2.6 1.9 1.5 2.0
15 years 3.3 2.7 3.4 2.6 2.1 2.7

MSc experience equivalence to PhD experience:
50% 2.6 2.0
75% 2.6 2.0

100% 2.5 1.9

PhD qualification over BSc qualification:
4 years 2.0 1.5
5 years 2.0 1.5
6 years 1.9 1.4
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some support for the suggestion that the results obtained from that measure are
not likely to differ significantly from the other, more data-intensive, measures.

5. Conclusion

In this paper a framework is presented for assessing improvements in R&D
capacity through training. Although many avenues for improvement and further
development remain, the framework provides a much-needed and flexible
method for determining the value of improvements in R&D capacity. In
applying it to the project on training in Australia for Indian wheat patholo-
gists in rust resistance, a number of elements of the empirical application of
that framework are highlighted. The results provide a useful analysis of the
impact of training in wheat rust resistance, and provide a basis for determin-
ing whether such training is a worthwhile use of agricultural R&D funds.

References

Alston, J.M. (2002). Spillovers, Australian Journal of Agricultural and Resource Economics 46, 1–32.
Brennan, J.P. (1993). Allocating limited plant breeding resources between crops and environ-

ments, in Imrie, B.C. and Hacker, J.B. (eds), Focused Plant Improvement: Towards Responsi-
ble and Sustainable Agriculture, vol. 1. Proceedings, Tenth Australian Plant Breeding
Conference, 18–23 April 1993, Gold Coast, pp. 5–9.

Brennan, J.P. and Murray, G.M. (1998). Economic Importance of Wheat Diseases in Australia.
NSW Agriculture, Wagga Wagga, NSW.

Brennan, J.P. and Quade, K.J. (2004). Genetics of and Breeding for Rust Resistance in Wheat in
India and Pakistan, ACIAR Impact Assessment Series Report No. 25. Australian Centre for
International Agricultural Research, Canberra.

Craig, B.J., Pardey, P.G. and Roseboom, J. (1991). Internationally comparable growth, devel-
opment and research measures, in Pardey, P.G., Roseboom, J. and Anderson, J.R. (eds),
Agricultural Research Policy: International Quantitative Perspectives. Cambridge University
Press, Cambridge, pp. 131–172.

DANIDA (2000). DANIDA’s Bilateral Programme for Enhancement of Research Capacity in
Developing Countries, Danish Agency for Development Assistance, No. 2000/5. Available
from URL: http://www.odi.org.uk/rpeg/J_Young/Building_Res_Capacity/Documents%20
Reviewed/004_NK_Summary.pdf [accessed April 2004].

Maredia, M.K. and Byerlee, D. (2000). Efficiency of research investments in the presence of inter-
national spillovers: wheat research in developing countries, Agricultural Economics 22, 1–16.

Pardey, P.G., Roseboom, J. and Anderson, J.R. (1991). Topical perspectives on national agri-
cultural research, in Pardey, P.G., Roseboom, J. and Anderson, J.R. (eds), Agricultural Research
Policy: International Quantitative Perspectives. Cambridge University Press, Cambridge,
pp. 265–308.

Ryan, J.G. (1999). Assessing the Impact of Policy Research and Capacity Building by IFPRI in
Malawi, Impact Assessment Discussion Paper No. 11, International Food Policy Research
Institute, Washington, DC.

Scobie, G.M., Mullen, J.D. and Alston, J.M. (1991). The returns to investment in research on
Australian wool production, Australian Journal of Agricultural and Resource Economics 35,
179–195.

Smale, M., Singh, R.P., Sayre, K., Pingali, P., Rajaram, S. and Dubin, H.J. (1998). Estimating
the economic impact of breeding nonspecific resistance to leaf rust in modern bread wheats,
Plant Disease 82, 1055–1061.

http://www.odi.org.uk/rpeg/J_Young/Building_Res_Capacity/Documents%20

