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In this paper we analyse the optimal management of a renewable resource (groundwa-
ter) with stock-dependent extraction cost and a backstop substitute, facing two-sector
linear demands. Application to the Kiti region in Cyprus demonstrates the model’s
performance and is used to test for the difference between optimal and myopic behav-
iour. It is found that the presence of a backstop resource diminishes the importance of
optimal dynamic behaviour, whereas in the absence of backstop the optimal control
solution yields a value for social welfare significantly larger than the myopic policy.
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1. Introduction

 

The paper presents a theoretical analysis of  a renewable natural resource
management problem in the face of a backstop technology with perfectly
elastic supply. The model follows Kim 

 

et al

 

. (1989) in that it models multiple
and heterogeneous sectors and uses multistage dynamic optimal control to
characterise the optima (with and without a backstop) and the associated
decentralised open-access resource outcomes. The contribution of this paper
is to consider in this environment the impact of the presence of a backstop
resource upon the optimal and open-access solutions while providing a per-
tinent case study. (Kim 

 

et al

 

. look at the adoption of  alternative water-using
technologies rather than alternative water resources, which is qualitatively
different.) This entails characterising and comparing the optimal and decen-
tralised timing of the adoption of backstop resources by the various sectors

 

* We thank Cambridge Commonwealth Trust, Peterhouse of the University of Cambridge
and the European Commission (DG XII), for financial support. We are indebted for inspiring
discussions to Paul Seabright, Alistair Ulph, and Charles Howe. Finally, we thank the editors
and two anonymous referees, as well as participants in the EAERE conference (2000) and
seminar participants at the University of Cambridge, University of Oxford, and University
College London, for useful comments and suggestions. The usual disclaimer applies.

 

†

 

 Phoebe Koudnouri (email: pkoundouri@aueb.gr), is Assistant Professor, Department of
International and European Economic Studies, Athens University of Economics and Business,
76, Patission Street, Athens 104 34, Greece. Christina Christou is a Lecturer, Department of
Banking and Financial Management, University of Piraeus, Greece.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6627405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

228 P. Koundouri and C. Christou

 

© Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Ltd 2006

 

and ultimately the resulting state of  the renewable resource and welfare.
With the closed-form solution of the model impossible to obtain, the model
is calibrated to the case of groundwater use in the Kiti area of Cyprus, with
desalination as the backstop, and ultimately solved numerically.

The discussion takes place with the Gisser–Sanchez effect (GSE) as its
backdrop. The GSE is a paradoxical empirical result, present and persisting
in the dynamic solutions of  groundwater exploitation, since first identified
by Gisser and Sánchez (1980). Numerous consecutive modifications and
refinements of the basic Gisser–Sanchez model did not change the essence of
the result, which is, the benefits from managing groundwater extraction are
numerically insignificant, even in water-scarce regions. Koundouri (2000,
2004a,b) provides a critical review of  the relevant published work. In this
paper, we show that this effect remains in the presence of backstop resources,
such as the desalination described in the application. That is, there are relatively
few gains to be made from optimal management of the groundwater resource
in the presence of a backstop when compared with myopic groundwater use,
which defines decentralised resource use. In particular, the empirical part of
the paper is composed of two simulations, one in the presence of the back-
stop resource (from desalination) and the other in its absence. In the former,
it is shown that the GSE remains, whereas in the latter the GSE is absent.
Given that the GSE has been shown to be a phenomenon that results when
groundwater resources are abundant (relative to demand), this result is not
surprising. The difference here is that the case study in question shows that
the GSE is also determined by the availability and cost of alternative water
resources, not just groundwater.

In Section 2, we formulate and solve a multistage optimal control model.
In Section 3, we apply the model and test the robustness of GSE, via simulation,
with and without backstop availability. Section 4 concludes the paper.

 

2. The model

 

The model characterises the optimal control solution for a renewable resource
with stock-dependent extraction cost and a backstop substitute, facing two-
sector linear demands. The model is applied to groundwater resources, where
users with distinct demand curves exist (residential and agricultural sectors)
and different supply sources are available; the cheaper ones being exhaustible
but the most expensive ones (typically desalination or possibly large-scale
recycling of past consumption) providing unlimited amounts of the input in
question. Following Kim 

 

et al

 

. (1989), the optimal solution employs the technique
of multistage optimal control, which we extend towards incorporation of a
backstop substitute. The technique allows identification of dynamic endog-
enous adaptations to increasing resource scarcity and backstop technology.

Farmers sell their production in competitive markets so that the price
of water is equal to the value of its marginal product. The agricultural pro-
duction function is assumed to be constant returns to scale, whereas factors
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other than water and land are optimised conditional on the rate of water
extraction. Access to the aquifer is restricted by land ownership. Following
Kim 

 

et al

 

. (1989), model construction begins by stating disaggregate categories
of sector-specific demand curves. Equation (1) represents the inverse demand
function for water for each of the two sectors that demand water

(1)

where 

 

p

 

 is the groundwater price, 

 

w

 

i

 

 represents groundwater quantities
demanded by each sector 

 

i

 

, 

 

a

 

i
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 are sector-specific (uncompensated) demand
parameters, assumed time-invariant, and 
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 > 0. Sector-specific inverse demand
curves are ordered so that , which implies that as 

 

p

 

 increases over
time due to decreasing groundwater availability, water demand for each of
the two economic sectors reaches zero sequentially. In the absence of  back-
stop resource and given that there exist two economic sectors demanding
water, one endogenous switching time results from this series of choke prices.
Thus, aggregate water demand appears as a piecewise linear function.

The marginal pumping cost function (
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where 
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 is the head of  the aquifer above sea level. At lower head levels, it
is more costly to extract water because more and/or deeper wells must be
drilled and the water must be pumped farther distances. As the aquifer nears
exhaustion (
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 0) extraction cost rises rapidly. Thus, we model the average
cost of  extracting water from the aquifer as a positive, decreasing, convex
function of the head, that is, 
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A second feature of the model is that we are dealing with a coastal aquifer. A
distinguishing feature of such aquifers is the possibility of seawater desalina-
tion, which provides a potential backstop water source. Thus, the aquifer is
not the only possible source of water. Following Nordhaus (1973, 1979) and
Heal (1976), we consider a super-abundant resource to flow from a backstop
technology with constant unit cost (

 

π

 

).
The hydrological equation of motion (3) gives the change in the level of the

head of  the aquifer through time and defines the constraint of  the system
(Gisser and Sánchez 1980; Todd 1980)
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seawater intrusion; that is, as the aquifer is emptied, saltwater intrudes into
the aquifer in order to re-establish the hydrological balance, eventually making
water unusable. This quality externality is captured by the salinity coefficient

 

s

 

(0 

 

≤

 

 

 

s

 

 

 

≤

 

 1) and indicates the loss of effective quantity of groundwater available
in the aquifer, because of poor quality (increased salinisation).

 

1

 

 The size of
the aquifer is measured by 

 

A

 

, and 

 

S

 

 is the storativity coefficient (the average
saturation of water in the aquifer). The formulation in (3) implicitly assumes
that changes in the water level are transmitted instantaneously to all users
(infinite hydraulic conductivity). This assumption clearly exaggerates the
degree of common property in some aquifers.

The goal of the planning equilibrium is to maximise the present value of
generated economic surplus from intertemporal water use and the production
of water from desalination, subject to the hydrological constraint of the system.
Social benefits from water use are given by

(4)

where  represents the total quantity of  water used by the 

 

i

 

th
economic sector, and is equal to the sum of sector 
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th’s consumption of
groundwater [

 

q

 

Gi
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)] and water produced from desalination. Total production
costs (

 

TC

 

) are

(5)

Thus, net social benefits (

 

NSB

 

) at a given time are

(6)

Section 2.1 formulates the model in a two-stage dynamic framework. The
multistage formulation and solution is given in Appendix 1 (available from
http://www.aueb.gr/deos/uk/koundouri.htm).
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Please see Appendix 2 (available from URL: http://www.aueb.gr/deos/uk/koundouri.htm)
for the solution of the multistage optimal control problem with aquifer recharge and salinisa-
tion coefficients being a function of the head of the aquifer’s water table (
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2.1 Two-stage optimal control formulation

The ordering of groundwater sector-specific demands according to their price
intercept ( ) together with the existence of the backstop technology,
results in a natural partitioning of the problem into two stages, with the first
stage representing both sectors demanding water and the second stage defined
after the exit of one of the sectors, that is, the sector with smaller ai/bi. This
assures an intertemporal depletion path that moves along the two-sector,
piecewise linear aggregate demand curve. We assume that both groundwater
reserves in the aquifer under consideration and the price of desalination, are
high enough to ensure positive groundwater use in the economy in the first
time period. Given a discount rate r > 0, the mathematical representation of
the dynamic problem developed in Section 2 is

(7)

Equation (7) can be summarised as

(8)

The constraints of the model are the stage-specific hydrological equations of
motion

(9)

The initial conditions are
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where e is the exponential function, Jj represents social benefits for the jth
depletion stage ( j = 1, 2), Tj( j = k – 1) is the jth switch time, also representing
the point of backstop adoption. Assuming that p < π, initial condition (11)
indicates qDi(t = 0) = 0.
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The current value Hamiltonian functions of  the above j-stage optimal
control problem are

(12)

where qGi(t), qDi(t) are the control variables guiding inter-sector water allocation
over time, hj(t) are the state variables representing the hydrological motion of
water over time for the j stages, and λj(t) are the adjoint variables for the j
stages, which represent groundwater scarcity rents at each solution stage.

Necessary conditions for optimality are derived by using the Pontryagin
principle
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where  represents the optimal value function at the switching time. Each of
the j stages represents a control problem and has an adjoint variable λj(t)
associated with it. Equations of (13) are the stages’ equations of motion. The
adjoint equations are represented by (14). These equations demonstrate that
groundwater pumping costs  create the value associated
with user cost. The equations of (15) assure that water use for a particular
sector equates marginal benefit to marginal pumping cost plus marginal user
cost (scarcity value), and guide water allocation among the economic sectors
to equate their marginal value products. They are necessary for allocative
efficiency of groundwater over time and across sectors. The incorporation of
marginal user cost in the equations ensures representation of the scarcity
value of groundwater.

Once desalination is introduced, Equation (16) guides intersectoral allocation
of water by equating their marginal value products. At this time, the opportunity
cost of current pumping becomes zero. Equation (18) is the conventional trans-
versality condition, which sets the efficiency price of the resource pij(t) (given
by  equal to the backstop price (π) and must
hold in the limit as time approaches infinity. The remaining two equations
have been introduced by Kim et al. (1989) for the solution of a multistage
optimal control problem. In equations of (18), Tj − is the point in time just
before the jth switch time and Tj+ is the point in time just after the jth switch
time. That is, these equations state that the adjoint variable, which represents
user cost, must be continuous at each switch time. The equations of (19) give
an additional set of transversality conditions for the stages prior to the final
stage of desalination. These simply represent a marginal condition that equates
the benefit of marginal accretions to the groundwater stock between stages
by setting equal the user cost of one stage and the derivative of the optimal
value function of the next stage with respect to h, both evaluated at the
switching time.

2.2 Solution of the multistage system given backstop availability: 
the mining era

To solve the system of Equations (13) to (19) given the initial conditions in
Equations (10) and (11), it is useful to think in terms of the optimal price
path in each stage of the system. The inverse demand curve for water for ith
agent is given by

(20)

We assume that the cost of desalination is high enough and the extraction
cost of groundwater is sufficiently low that groundwater extraction is always
economic in the first instance. Then condition (15) holds with equality. As
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mentioned in Section 2.1, this condition guides water allocation among
sectors for each stage of the system to equate their marginal value product.
Hence, the price of water for the different sectors is equal at each stage (i.e.,
p1j(t) = p2j(t) = pj(t) for j = 1, 2). This gives

(21)

Thus, the in situ scarcity value of water [λj(t)(s + 1 − f )/(A · S)] is equal to
the royalty {pj(t) − c [hj(t)]}. Rearranging Equation (14) yields

(22)

Equation (22) is a general optimal condition that must hold for all t,
for all j, whether or not desalination is being used. This is a modification of
Hotelling’s r-per cent rule to the case of cost-dependent extraction costs, that
is, the rate of change in the asset value is less than the interest rate. The left-
hand side is the foregone marginal benefit of extracting water in terms of
pounds realised after one period. The right-hand side is the marginal benefit
of conservation, that is, the interest on the resource royalty. The first term on
the right is the foregone increase in value that would have been realised by
conserving the marginal unit. The second term is the increase in future
extraction cost due to extracting the marginal unit now instead of later. Thus,
Equation (22) says that at the margin, the benefit of extracting water must
equal the efficiency cost of extracting water.

Substituting Equation (20) into (16) gives
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< if  qDij(t) = 0 (23)

which says that if  price is below the cost of desalination at any of the j stages,
desalination is not used. The initial condition of the system given in Equation
(11), indicates that we assume that at first desalination is not used [qDi(t = 0) = 0]
hence pj(t) < π. From condition (21) and its time derivative we get
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The solution of the model for the j stages of the mining era (during which
pj(t) < π) is governed by the system of differential Equations (8) and (25); these
define the optimal trajectory of water price and aquifer head, respectively.
Equation (8) of Section 2.1 gives the hydrological equations of motion for
each of the j stages for qGij(t) = ai − bipj(t). The switching times (Tj) are defined
by either one of the following two conditions

(26)

(27)

Thus, to derive optimal switching times we need a differential equation
showing the time path of groundwater extraction by each economic sector.
Given that Equation (15) holds with equality when desalination is not used,
we take the time derivative of this equation for qDij(t) = 0. This gives

(28)

Combining Equations (13), (14), (15), with qDij(t) = 0 and Equation (29)
gives a differential equation for the quantity of groundwater demanded by
each sector,

(29)

Hence, the system of differential equations to be solved for the derivation
of endogenous switches is given by Equations (8) and (29). A numerical solu-
tion is provided in Section 3.

2.3 Steady-state conditions: the desalination era

Once desalination begins, the system reaches a steady state, at which point
desalination continues to be used, price is fixed at π, and the aquifer head is
maintained at h*; hence pj(t) = π, 7j(t) = 0, and hj(t) = 0. Substituting π into
Equation (21) gives

(30)

Combining Equations (13), (14), (30) and the time derivative of (30) we get
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Because c′ [h(t)] < 0, R > 0, r > 0 and AS > 0, Equation (31) says that
c [hj(t)] < π whenever desalination is being used; the cost of extracting water
from the aquifer is less than the cost of desalinated water. This suggests that
the effect of extraction costs is to drive a wedge between the price of the unex-
tracted resource and the price of the extracted resource, and in particular the
latter is higher by the amount of the resource royalty. This is because there
are gains to be had in storing over and above capital appreciation. It is also
worth noting that desalination may never come into play. This would occur if
demand were completely satisfied by water from the aquifer without ever
drawing the aquifer down to h*; a possibility relevant for water-abundant
regions.

2.4 Summary of solution stages

Solving the optimal control problem requires finding the initial general equi-
librium scarcity value of in situ groundwater (λ 0) that will cause the efficiency
price path to rise to the desalination price at exactly the same time that the
aquifer head reaches (h*). In summary, the solution of the model entails the
following three eras:

1. Initial conditions of the system – no desalination: initially pj(t0) < π and below
the marginal benefit of water use for each of the ith sectors in the economy.
Each sector i optimally chooses qDi(t0), given the costs of acquiring ground-
water and h0. No water is produced by desalination (i.e., qDi(t = 0) = 0) and
total demand of water in the economy is satisfied from the aquifer.

2. Endogenous adaptation to increasing resource scarcity – no desalination:
pj(t) < π holds, while the model exhibits an intertemporal depletion path
that moves along the two-sector, piecewise linear aggregate demand curve.
As depletion of groundwater continues, the efficiency price of water increases
and one of the sectors (the one with the lowest WTP for groundwater) exits
the market. The model endogenously identifies sector specific optimal exit
times.

3. Endogenous adaptation to steady-state conditions – desalination begins:
pj(t) = π, which initiates production of desalinated water. This defines the
steady-state where water inflows are exactly equal to water outflows and
Equation (3) balances at h*, thus h(t) = 0. Price changes cease (7ij = 0) and
the balance of quantity demanded is supplied by desalination such that
qDk(t) = ak − πbk − qGk(t). The disaggregated representation of groundwater
demand allows identification of the intersectoral allocation of both desal-
inated and extracted water.

3. Empirical illustration

The empirical application of the model uses data from the Kiti agricultural
region, located in the coastal southern part of the semiarid Mediterranean
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island of Cyprus. The aquifer in this region does not receive substantial nat-
ural recharge and is not interconnected with surface water. Moreover, for all
practical purposes, it can be assumed to have infinite hydraulic conductivity
(Dr George Socratous, pers. comm., 2000). The Kiti aquifer is seriously
depleted and has a smaller water capacity than any other aquifer used to test
the robustness of GSE. Seawater intrusion is pervasive in the area. Although
the doctrine of absolute land ownership implies that ownership of the
resource depends on ownership of land overlying the aquifer (thereby limit-
ing access), in all other respects land owners own groundwater as a common
property resource subject to the rule of capture.

Table 1 summarises the economic and hydrologic parameters for the
region, supplied by the Water Development Department of Cyprus. There
are two sectors in the region demanding groundwater: agricultural and
domestic water users. Given the absence of observations over a wide range of
prices, relevant derived demands were estimated by linear programming. As
explained in Section 2, sequential exits from the market are defined by the
relative magnitude of sector-specific demand parameter ratio (ai/bi). These
equal 1.54 £/m3 for the agricultural sector and 3.19 £/m3 for the domestic sec-
tor. These and all prices and welfare measures in the paper are in Cyprus
pounds. At these prices, the quantity demanded by the agricultural and
domestic sectors becomes zero, respectively; hence, the agricultural sector
should exit the market first. This result is in agreement with the empirical
regularity identified by Gibbons (1986), which indicates that the marginal net
benefits from agricultural uses of water are lower than marginal net benefits
from domestic use.

Table 1 Economic and hydrologic parameters
 

 

Par. Description Parameter value

ba Absolute value of the slope of agricultural water demand 6 118 500 m3/£†
bd Absolute value of the slope of domestic water demand 1 270 000 m3/£
aa The intercept of agricultural water demand 9 436 500 m3

ad The intercept of domestic water demand 4 048 000 m3

εa Price elasticity of agricultural water demand‡ 0.48
εd Price elasticity of domestic water demand‡ 0.18
k1 Cost of pumping per m of water per metre of lift 0.02 £/m3

k2 The intercept of the pumping cost equation 0.37 £/m3

 f Return flow coefficient 0.05 pure number
A Area of the aquifer 12 000 000 m2

S Storativity coefficient 0.70 pure number
s Salinity coefficient 0.30 pure number
R Recharge rate 4 000 000 m3 p.a.
ho Initial elevation of water table 3.45 m
 π Unit price of desalination§ 0.50 £/m3

† In 1998, £1 Cyprus was worth 2.92 Australian dollars or 1.15 UK pounds. ‡ In the relevant economic
range. § Engineering estimate.
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The explicit marginal cost function used in the solution of the system is

c[h(t)] = k1 · [SL − h(t)] = k2 − k1 · h(t)

The difference (SL − h) measures pumping lift, the distance from the water
table to the irrigation surface. This pumping cost function (a specific form of
a general cost function) is very popular in published studies; for example, see
Gisser and Mercado (1973), Kim et al. (1989). Its derivatives have the desir-
able properties: a positive partial derivative with respect to qG and a negative
cross-partial derivative between qG and pumping lift. Another point to note
from Table 1 is that the return flow coefficient f is lower compared with other
groundwater studies. This is due to uniform adoption of sprinkler irrigation
systems in agriculture, which results in approximate equalisation of f between
the two sectors.

The solution method involves first using the steady-state head Equation (31)
to calculate the final head, and solving for the backstop adoption time (tk−1)
such that the solution to the system of differential Equations (8) and (26) with
boundary conditions h(tk−1) = h* and p(tk−1) = π results in h(t0) = h0. Simultane-
ously, we solve the system of  differential equations that allows derivation of
endogenous switches, given by (8) and (29). Substituting the relevant
parameters from Table 1 in equation (31) gives the optimal steady-state level
of the head at h* = 2.28 (m). Programming results indicate that with a 5 per
cent per annum interest rate and desalination price (π) at £0.50 per m3, the
initial per cubic metre scarcity value of in situ groundwater is £0.20 per m3.
This is similar to groundwater scarcity rents simulated for aquifers located in
Israel (Mordechai Shechter, pers. comm., 2000), another semiarid country
facing acute water scarcity. Steady-state conditions are summarised in Table 2.

Desalination is introduced almost instantaneously (in year 1), before any
sectoral exits occur. At steady state, the quantity of water demanded by the
domestic and agricultural sectors is 3.41 Mm3 (millions of cubic metres) and
6.38 Mm3, respectively. Of the total quantity of water demanded, 3.20 Mm3

will be extracted from the aquifer and the remaining 6.59 Mm3 will be pro-
vided from desalination. Of the total quantity of water produced, 2.30 Mm3

and 4.29 Mm3 will be consumed by the domestic and agricultural sectors,
respectively. Moreover, 1.12 Mm3 will be extracted by the domestic sector

Table 2 Steady-state conditions under optimal control
 

 

Price of water (desalination price) 0.50 £/m3

Unit extraction cost 0.31 £/m3

Optimal head (h*) 2.88 m a.s.l.†
Initial marginal scarcity value (λ 0) 0.20 £/m3

Last endogenous switch time (tk−1) 1999
Quantity demanded by domestic 3.41 Mm3

Quantity demanded by agriculture 6.38 Mm3

Quantity extracted from the aquifer 3.20 Mm3

Quantity produced by desalination 6.59 Mm3

† m a.s.l. stands for metres above sea level.
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and 2.08 Mm3 by the agricultural sector. Although the empirical application
of the model does not identify any sectoral exits, the disaggregated represen-
tation of the resource demand allows accurate estimation of the intersectoral
allocation of water, as well as the steady-state quantity of the backstop. This
enables precise welfare calculation.

The components of annual welfare derived from these steady-state condi-
tions are shown in Table 3. These add up to £170.36 million of total annual
welfare discounted indefinitely at a 5 per cent rate of interest.

To test the robustness of the GSE, we calculate welfare under competitive
(myopic) conditions of groundwater extraction. Myopic time trajectories of
extraction rates and aquifer’s head, as well as respective endogenous switch
times, are analytically derived in Appendix 1 (available from http://www.aueb.gr/
deos/uk/koundouri.htm). Taking a discrete-time approximation to our model
gives the results in Table 4.

The first column of Table 4 gives the year of extraction, the second the
opening head of the aquifer, and the third the unit cost of extraction given
the opening head for each year. Column four gives the price of groundwater
under myopic extraction, which is usually equal to the unit extraction cost.
Columns five and six give the quantities of groundwater demanded by the
agricultural and domestic sectors, respectively. Column seven gives the clos-
ing head for each extraction year. Actual lifts and the head of the water table
in the region, correspond to the myopic model’s simulated levels. Columns eight
and nine indicate sector-specific consumer surpluses, that is, annual welfare
derived from agricultural and domestic use of groundwater, respectively. Note
that in the last year, total quantity demanded has been set so as to exactly exhaust
the aquifer. This produces a small producer surplus in year 3 (because price
is above pumping cost) equal to £0.75 million (or equal to £0.68 million if
discounted at 5 per cent rate of interest). However, we have ignored this in the
calculation of overall welfare as this is just an artefact of discrete approximation.

Table 3 Welfare under optimal control (with backstop)
 

 

Consumer surplus from agricultural uses £3.32 million
Consumer surplus from domestic uses £4.59 million
Producer surplus from water extracted £0.61 million
Annual welfare £8.52 million
Total welfare discounted at 5% £170.36 million

Table 4 Welfare under myopic extraction
 

 

t
h0

m a.s.l.†
c(·)

£/m3
p

£m3
qA

Mm3
qD

Mm3
hc

m a.s.l.
wA

£m
wD

£m

1 3.45 0.30 0.30 7.61 3.67 2.25 4.74 5.30
2 2.25 0.32 0.32 7.47 3.64 1.07 4.55 5.21
3 1.07 0.35 0.42 6.88 3.52 0.00 3.87 4.87

† m a.s.l. stands for metres above sea level.

http://www.aueb.gr/
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As shown in Table 4, under myopic groundwater extraction the aquifer is
exhausted in 3 years. Adding up welfare and discounting at 5 per cent yields
net present value (NPV) welfare equal to £27.26 million. This calculation
assumes that when the aquifer is completely exhausted, natural recharge dis-
appears and as a result there are zero benefits after irreversible depletion.

However, given the availability of a backstop technology, as soon as the
aquifer is exhausted the price jumps to £0.50 per m3 and desalination is intro-
duced. This approximates the actual experience in the region, where desalina-
tion was introduced in 2001. Once the aquifer is exhausted in the myopic
case, all demands are satisfied entirely by desalination, rather than partly
from groundwater as is true in the optimal case. Welfare in this case will be
identical to that found in the optimal steady state shown in Table 3, except
for one thing. The producer surplus that exists when groundwater reaches
steady state will be absent in the myopic case, as the price of water reflects the
supply cost for all units. Hence, annual welfare in the desalination phase will
be £7.91 million, capitalised at 5 per cent that is worth £158.20 million, and
discounted back to year 1 that is worth £136.66 million. Adding this to the
NPV from the mining phase as described in Table 4, gives total NPV of welfare,
derived from myopic extraction with desalination, of £163.92 million. Com-
paring this figure with total welfare under optimal control with desalination
(given in Table 3 at £170.36 million), provides a welfare improvement of
3.8 per cent. This suggests that GSE persists in the presence of a backstop
substitute. This is an intuitive result, as the availability of a backstop substi-
tute effectively reduces the scarcity of the resource.

The obvious question that arises at this point is how robust is GSE in the
absence of backstop substitute, when irreversible depletion of the resource is
probable in the near future. To calculate welfare under optimal control in the
absence of a backstop substitute, we take a discrete time approximation to
our model, which yields Table 5.

Columns 1 to 7 are defined as in Table 4. Columns 8 to 11 indicate sector-
specific consumer and producer surpluses. Note that in the last year the total
quantity demanded has been set so as to exactly exhaust the aquifer. Hence,
under the regime of  optimal control the aquifer is exhausted in 4 years.
Adding up consumer and producer welfare for both sectors and discounting
at 5 per cent, yields NPV welfare equal to £22.83 million.

Table 5 Calculation of welfare under optimal control (no backstop)
 

t
h0

m a.s.l.†
c(·)

£/m3
p

£/m3
qA

Mm3
qD

Mm3
hc

m a.s.l.†
CSA

£m
CSD

£m
PSA

£m
PSD

£m

1 3.45 0.30 0.50 6.38 3.41 2.47 3.32 4.59 1.29 0.69
2 2.47 0.32 0.52 6.24 3.38 1.51 3.18 1.13 1.28 0.69
3 1.51 0.34 0.55 6.10 3.36 0.58 3.04 1.08 1.27 0.70
4 0.58 0.36 1.16 2.31 2.57 0.00 0.44 0.03 0.49 0.71

† m a.s.l. stands for metres above sea level.



Dynamic adaptation to resource scarcity 241

© Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Ltd 2006

To calculate social welfare for this scenario we use Tables 1 and 2. Natural
recharge of the aquifer is equal to 4.00 Mm3 and the steady-state quantity
demanded of groundwater under optimal control is equal to 3.20 Mm3. To limit
demand to this level a price of £1.3920/m3 is needed, at which agriculture con-
sumption is 0.92 Mm3 and domestic consumption is 2.28 Mm3. These correspond
to £9.07 million annual consumer surplus for agriculture and £2.05 million annual
consumer surplus for domestic. However, there is considerable producer surplus
because pumping costs of recharged water are £0.37 per m, whereas the sell-
ing price is £1.39 per m3. Applying this surplus to 3.20 Mm3 is worth £3.28
million annually. Thus total annual benefits are £5.40 million, and capitalising
at 5 per cent makes that worth £107.90 million. Assuming this regime did not
start until year 4 after the aquifer is (almost) exhausted, gives NPV welfare
of £88.77 million. Adding this amount to £22.83 million, which is the total
welfare received during the first 4 years of optimal groundwater extraction
before exhaustion of the aquifer, gives an overall NPV welfare of £111.60
million. This is social welfare derived under the scenario of optimal extrac-
tion and sustainable aquifer recharge, in the absence of a backstop substitute.

The disappearance of aquifer recharge in the decentralised solution, even
though the size of the stock is the same as in the centralised solution, is sup-
ported by hydro-geological empirical research (George Socratous, pers.
comm., 2000). That is, hydrogeologists argue that irreversible loss of recharge
can be avoided at little or no cost with careful (optimal) management, even if
the stock of  water is exhausted (or nearly exhausted as in our empirical
illustration). This is a hydrological possibility for aquifers made of fine mater-
ials (e.g., silty sands), whereas it is less relevant for those made of coarse
materials (e.g., gravels). Coastal aquifers, such as the one we are modelling,
are made of fine materials; hence, our decision to investigate the scenario of
sustaining aquifer recharge after water-stock exhaustion. Avoiding hydrogeo-
logical jargon, the explanation for such a hydrogeological possibility in coastal
aquifers is that uncontrolled excess demand for groundwater under the
decentralised solution puts extra pressure on the hydrogeological conditions
of the aquifer, which leads to irreversible damage to (and extinction of) the
aquifer recharge flow. In contrast, under the centralised solution, there is no
excess demand as the social planner rations demand by price to match the
available flow. Hence, no extra pressure is put on the hydro-geological condi-
tions of the aquifer, which results in sustaining the recharge flow of the aquifer.

Comparing the above value of social welfare with the one derived under
myopic conditions of groundwater extraction (£27.26 million) gives a huge
welfare improvement of  409.4 per cent; thus, GSE disappears. Table 6
summarises welfare derived under different extraction regimes with and
without backstop substitute. The circumstances of this case, however, make
discounting virtually irrelevant; the aquifer’s mining phase, as well as its
recharge capacity, last for only 4 years. The intuition is that with a positive
discount rate, the effect of common-property induced recharge destruction
would be much lower in the case of long-lived aquifers.
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Our results suggest that in the presence of a backstop substitute GSE per-
sists, whereas in the absence of a backstop substitute and sustainable natural
recharge GSE disappears. This is an intuitive result because it suggests that
when the scarcity of the resource is reduced because of the presence of an
abundant backstop substitute, welfare gains from controlling resource extrac-
tion are not significant for any practical purposes. However, in the absence of
a backstop substitute, a considerable welfare improvement can be derived
from controlling extraction when myopic behaviour results in irreversible loss
of the recharge capacity of the resource.

In effect, this result indicates that for aquifers located in arid and semiarid
regions – which are where groundwater management matters most – the
avoidance of imminent irreversible depletion gives rise to significant welfare
benefits. Irreversible depletion is not an issue for any of the empirical studies
that identified GSE, and thus, where the introduction of a backstop was not
relevant. Moreover, this result is in agreement with the theoretical result
derived by Tsur and Zemel (1995, 2001). Both in their model (with uncer-
tainty concerning the irreversible event occurrence) and ours (with perfect
myopia concerning the imminent irreversible event occurrence), a policy that
avoids the irreversibility is welfare increasing.

4. Conclusion

Although the notion of a backstop technology as a basis for resource man-
agement remains controversial, we submit that the existence per se of a back-
stop is not the critical issue. Resource substitutes do exist. The critical issue
is at which unit costs can they be made effective substitutes for exhaustible
resources and what happens in the interim on the way to the steady state, as
it is the trajectory to the steady state that captures immediate policy-relevant
concerns. The theoretical model of the paper solves for the optimal time for
adoption of this technology and identifies an endogenously defined trajectory
to the steady state that allows dynamic adaptation to resource scarcity changes.
Possible extensions of the model could allow investigation of a number of
possible features of this trajectory. If  domestic demand for water is driven by
population, is urban emigration endogenous to water price? That is, as water
price increases with aquifer mining, does emigration increase, thereby caus-
ing inward shifts in demand? How would such a scenario be affected by
income growth? Moreover, other applications of the approach could describe

Table 6 Examining the robustness of the GSE
 

 

Regime Backstop Welfare Improvement

Optimal control Available £170.36 M 3.8%
Myopic Available £162.62 M GSE persists
Optimal control Not available £111.60 M 409.4%
Myopic Not available £27.26 M GSE disappears
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the chronological pattern of endogenous adoption of additional backstop
substitutes, possibly less expensive than desalination (e.g., water from a dam
or a reservoir, artificial recharge, water recycling).

The empirical contribution of the paper is a partial resolution of the
Gisser–Sanchez paradox. Results indicate that when a backstop substitute is
available, GSE persists, whereas in its absence it is possible that the GSE
disappears. Intuitively, benefits from extraction management are significant
when myopic behaviour results in imminent exhaustion of  the stock and
irreversible loss of the recharge capacity of the resource. A comparison of
groundwater across other common property resources (e.g., tropical forest in
Pearce 2001) indicates that in the absence of a backstop substitute, a similar
result to GSE arises (i.e., sustainable forest management is even less profit-
able than non-sustainable forestry) if  imminent irreversibilities are ignored. It
is worth noting, however, that it is not purely the presence of a backstop that
releases us from the GSE. The fact that the backstop is perfectly elastic in
supply rather than subject to increasing marginal costs is a major feature of
our model, which contributes to our result. GSE becomes less important the
higher the marginal costs of supply and the more steeply they increase.
Indeed, the conclusion of this paper is that the optimal control of ground-
water is more important when alternatives are economically scarce; that is, they
have a high economic cost. In essence, the simulation in the absence of the
backstop has looked at the case where the backstop is infinitely expensive.

The generality of our results is somewhat compromised by two of our
model assumptions. Firstly, one could argue that a rational extracting agent
will eventually learn that its pumping decisions do affect the stock of ground-
water and will bring this information to bear in its pumping decision, hence,
compromising the relevance of the purely myopic assumption. Dixon (1989),
Negri (1989), and Provencher and Burt (1993) construct game theoretic models
that can accommodate such strategic behaviour under common-property
arrangements. In these models, a firm’s strategy is the groundwater extraction
plan defining its behaviour in each period of  its planning horizon. An
equilibrium in Nash strategies is a set of M admissible groundwater extrac-
tion plans, the jth element of which maximises the value of groundwater to
the jth firm, given the other M − 1 groundwater extraction plans in the set.
The precise nature of the equilibrium depends on whether firms pursue path
(open loop) or decision rule strategies (closed loop). Nash equilibria in path
strategies reflect the inclination of firms to take the extraction paths of the
other firms exploiting the resource as given. Nash equilibria in decision-rule
strategies reflect the inclination of firms to take the decision rules of the other
firms exploiting the resource as given. The relevant equilibrium concept for
decision rule strategies is a type of Markov–Nash equilibria, in which the
decision rules of firms at time t are a function of only the current values of
the state variables. As shown by Negri, path strategies capture only the pumping
cost externality, whereas decision-rule strategies capture both the pumping
cost externality and the strategic externality, and exacerbate inefficient aquifer
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exploitation compared with path strategies. In general, Provencher and Burt
(1993) conclude that the steady-state groundwater reserves attained when
firms use decision-rule strategies are bounded from below by the steady state
arising when firms are myopic and from above by the steady state arising
from optimal exploitation. Hence, if  we had adopted the decision rule struc-
ture in our model, our simulation results would be expected to produce a
smaller welfare difference between optimal management of the aquifer and
no control of groundwater extraction (when the behaviour of the extracting
agents is strategic). That is, such a structure would make the GSE more
robust. However, one might expect the perfectly myopic structure adopted by
our model to perform reasonably well when the groundwater resource is
exploited by a large number of small firms (which is the case for the aquifer
in the Kiti region and most aquifers with overpumping problems), just as the
assumption of competitive ‘price-taking’ behaviour no doubt accurately
depicts the situation in many input and output markets. In other words, each
firm is too small a part of the whole to give serious consideration to how its
pumping decision affects future water supplies. Support for our model comes
from a survey of farmers in Kern County, California, conducted by Dixon
(1989). Secondly, the assumption of infinite hydraulic conductivity, mentioned
in Section 2, exaggerates the degree of common property in some aquifers.
This assumption is, for practical purposes, correct for aquifers made of fine
materials (e.g., coastal aquifers such as the Kiti aquifer). However, it is less
relevant for those made of coarse materials. Hence, the GSE effect is expected
to be more persistent in aquifers made of coarse materials, both in the presence
and absence of a backstop technology in perfectly elastic supply.
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