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Measuring producer welfare under output price
uncertainty and risk non-neutrality

David S. Bullock, Philip Garcia and Kie-Yup Shin†

Procedures to measure the producer welfare effects of changes in an output price distri-
bution under uncertainty are reviewed. Theory and numerical integration methods are
combined to show how for any form of Marshallian risk-responsive supply, compen-
sating variation of a change in higher moments of an output price distribution can be
derived numerically. The numerical procedure enables measurement of producer welfare
effects in the many circumstances in which risk and uncertainty are important elements.
The practical ease and potential usefulness of the procedure is illustrated by measuring
the producer welfare effects of USA rice policy.
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1. Introduction

Extensive published literature exists on evaluating producer welfare consequences of
changes in agricultural policies, prices and technology. Typically, the classical producer
surplus measure, the geometric area behind an ordinary supply curve generated assum-
ing non-random prices, is used to identify the welfare consequences of such changes
(e.g., Cramer et al. 1990). However, reality is often more complicated than this simple
procedure can address. Producers face price uncertainty, and policy changes can alter
the entire price distribution. The question is how to measure the ex ante producer
welfare effects of such a change in the price distribution when the producer is not
risk-neutral. Unfortunately, in this case, the classical producer surplus measure does
not provide a meaningful estimate of the welfare impact of the policy or price change.1

One objective of the present paper is to review the methods that measure welfare
changes when a change in policy leads to a change in the price distribution. This
review allows us to discuss why little empirical research using these procedures exists.
We then combine theory with numerical integration methods to show how, for any
form of Marshallian risk-responsive supply, compensating variation of a change in
higher moments of an output price distribution can be derived. Our procedure can
help policy analysts measure producer welfare effects in circumstances in which risk is

† David S. Bullock (email: dsbulloc@express.cites.uiuc.edu) is an Associate Professor and
Philip Garcia is a Professor in the Department of Agricultural and Consumer Economics,
University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. Kie-Yup Shin is a Senior
Researcher at the National Agricultural Cooperative Federation, Seoul, Korea.

1 We distinguish between cases of price uncertainty and price variability, and focus on price
uncertainty. When prices vary but are known, producers’ welfare impacts may be measured by
the classical ‘producer surplus’ area behind ordinary supply curves.
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2 D.S. Bullock et al.

an important element. To illustrate the practical ease and usefulness of our procedure
we apply it to measure the producer welfare effects of USA rice policy.

2. Model, notation and definitions

It is convenient to establish notation and definitions for the commonly used expected
utility model developed by Baron (1970), Sandmo (1971), Batra and Ullah (1974), and
others.2 The producer’s objective is to solve the maximisation problem:

max
x

E{U(W + pf(x) − rx) | γ }, (1)

where E is an expectations operator, U is a utility function, p is an m-dimensional
vector of output prices, f(x) is a corresponding m-dimensional vector of (non-joint)
production functions, r is an l-dimensional vector of input prices, x is a corresponding
l-dimensional vector of input quantities, W is non-random and exogenously deter-
mined wealth, and the n pertinent parameters are contained in a vector γ ∈ Rn. The
price vectors p and r, and the vector of production functions f(x) may be considered
random or non-random variables, depending on the case at hand. The moments of the
distribution(s) of the random variables p, r, and f(x) in (1) are included as elements of
γ , and we explicitly denote that expectations depend on γ . Initial wealth W is also an
element of γ .

In Appendix 1 (Bullock et al. 2005), we derive and define concepts common in the
literature: the indirect certainty equivalent function L∗(γ ), the vector of (Marshallian)
risk-responsive input demand functions x∗(γ ), and the (Marshallian) profit function
π∗(γ ). Let γ 1 denote a vector of parameters in an initial situation, and γ 2 denote
a vector of model parameters in a subsequent situation. An intuitively appealing
welfare measure of the effect on the firm of a change in parameters from γ 1 to γ 2 is
compensation-dependent ex ante compensating variation, implicitly defined by identity
(2):3

E{U(W1 + pf(x∗(γ 1)) − rx∗(γ 1)) | γ 1}︸ ︷︷ ︸
EU∗(γ 1)

≡ E


U


W2 − c(γ 1, γ 2, EU∗(γ 1))

+
yc(γ 1,γ 2,EU∗(γ 1))︷ ︸︸ ︷

pf(x∗(γ −W2
,W2 − c(γ 1, γ 2, EU∗(γ 1)))) −

xc(γ 1,γ 2,EU∗(γ 1))︷ ︸︸ ︷
rx∗(γ −W2

,W2 − c(γ 1, γ 2, EU∗(γ 1)))︸ ︷︷ ︸
πc(γ 1,γ 2,EU∗(γ 1))



∣∣∣∣∣∣∣γ 2


.

(2)

2 Initially our model, notation, and definitions follow Pope et al. (1983), though our notation
is slightly less sparse to aid in explanation.

3 Equivalent variation has equally intuitive appeal, but we omit further discussion of equiv-
alent variation to save space.
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Measuring producer welfare 3

The compensation-dependent compensating variation function c(γ 1, γ 2, EU∗(γ 1))
shows the maximum amount of money the firm would pay,4 (before making any
input/output decisions) to face parameter vector γ 2 instead of γ 1. Also defined in
(2) are the Hicksian profit function π c(γ 1, γ 2, EU∗(γ 1)), the vector of Hicksian
risk-responsive supply functions yc(γ 1, γ 2, EU∗(γ 1)), and the vector of Hicksian
risk-responsive input demand functions, xc(γ 1, γ 2, EU∗(γ 1)). These functions show
the profits, supplies, and input demands of a firm facing parameter vector γ 2 and
receiving/paying compensation c(γ 1, γ 2, EU∗(γ 1)) before taking any action.

Conceptually, the compensating variation function c(γ 1, γ 2, EU∗(γ 1)) defined in (2)
can be applied in numerous situations. A change from γ 1 to γ 2 can represent changes
in the distribution(s) of output and input prices (p, r), and/or in the parameters of
production functions f(x). In the present paper, we follow the main thrust of the
literature by focusing on situations in which the distribution of a single output price
changes. (The framework presented can be extended to more general changes in the
joint distribution of all prices and production functions, but only at the expense of
notational complication.)

3. Literature

The producer welfare measure defined in (2), the ex ante compensating variation
function, is based on the risk preferences of the firm as revealed by the utility function
U . Because risk preferences are not observed directly from market data, empirical
application of this stochastic welfare measure has been restricted. Most papers have
focused on imposing restrictive assumptions on changes in the price distribution and
on producers’ risk preferences to derive procedures that relate data to theoretical
measures of changes in producer welfare under uncertainty and risk aversion. Little
attempt has been made to apply this theory to real-world data.

3.1 Chavas and Pope (1981)

Chavas and Pope (1981) examined the use of risk-responsive supply functions to
measure the welfare effects of a change in the mean of the output price distribution.
Their measure of compensating variation differs slightly from that defined implicitly in
(2) in that they assume that the producer’s decisions do not depend on the compensation
itself. We call this compensation-independent compensating variation, and denote it
cci. This measure is defined implicitly by Equation (3):

E{U(W1 + pf(x∗(γ 1)) − rx∗(γ 1))|γ 1}︸ ︷︷ ︸
EU∗(γ 1)

≡ E{U[W2 + pf(x∗(γ −W2 , W2)) − rx∗(γ −W2 , W2) − cci (γ 1, γ 2, EU∗(γ 1))] | γ 2}. (3)

4 Or, if negative, its absolute value is the minimum amount the firm would be willing to
receive.
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4 D.S. Bullock et al.

Chavas and Pope (1981) showed that Equation (3) implies that compensation-
independent compensating variation is identical to the change in the indirect certainty
equivalent:

cci (γ 1, γ 2, EU∗ (γ 1)) ≡ L∗ (γ 2) − L∗ (γ 1)︸ ︷︷ ︸
�L∗(γ 1,γ 2)

. (4)

Chavas and Pope (1981) addressed the situation in which only one element of γ ,
the mean of the output price distribution, changes. Write γ 1 = (µ1, γ −µ) and γ 2 =
(µ2, γ −µ) to reflect the change in the parameter vector between situations 1 and 2. Let
y∗(µ, γ −µ) represent the ‘risk-responsive supply function’, which shows how producers
respond to changes in the parameters in question. Chavas and Pope’s (1981) analysis
focused on the welfare implications of the geometric area behind the ‘risk-responsive
supply curve’ between the means of two price distributions (Figure 1), and is expressed
as: ∫ µ2

µ1

y∗(µ, γ 0
−µ

)
dµ. (5)

This geometric area seems familiar, because it resembles the classical change in
‘producer surplus.’ However, there are two differences. In Figure 1 the mean of the
price distribution, and not the price itself, is the variable on the vertical axis, and
the integral is taken behind a ‘risk-responsive’ supply curve, not an ordinary supply
curve.

Chavas and Pope (1981) showed that when a firm is risk-averse, the geometric area
represented by the integral in (5) equals compensation-independent compensating
variation in (3) and (4), under the assumptions of (a) constant absolute risk aversion

Figure 1 Chavas and Pope’s (1981) measure of the change in producer welfare when the mean
of the output price distribution changes and all other moments remain unchanged.
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Measuring producer welfare 5

(CARA), (b) non-stochastic production, and (c) additive output price uncertainty.
Under these assumptions,

cci ((µ1, γ
0
−µ

)
,
(
µ2, γ

0
−µ

)
, EU∗ (µ1, γ

0
−µ

)) ≡
∫ µ2

µ1

y∗ (µ, γ 0
−µ

)
dµ. (6)

The welfare measure shown in (6) is restrictive in three ways. First, it only allows
one parameter in γ to change. Second, the assumptions of constant absolute risk aver-
sion, non-stochastic production, and additive output price uncertainty are restrictive,
and even unreasonable in many applications. Third, using compensation-independent
compensating variation as the welfare measure may be limiting as it assumes that the
producer is not fully aware, before making production decisions, of potential compen-
sation.

3.2 Pope et al. (1983)

Pope et al. (1983) derived measures of producer welfare change under more general
changes in the parameter vector γ . Using line integral theory (cf. Kaplan 1984) and
taking partial derivatives of Equation (A.1.5) in Appendix 1 of Bullock et al. (2005),
Pope et al. (1983) derived Equation (7) below, which shows the change in the indirect
certainty equivalent implied by a change in the parameters from γ 1 to γ 2.

�L∗(γ 1, γ 2) ≡ L∗(γ 2) − L∗(γ 1)

≡
∫ γ 2

γ 1

∂L∗(z)
∂z

dz

≡
∫ γ 2

γ 1

[U−1′
( )]
[

E
{

U ′( ),
∂π∗(z)

∂z

∣∣∣∣ z
}]

dz

≡
∫ γ 2

γ 1

[U−1′
( )]
[

E{U ′( ), | z}E
{

∂π∗(z)
∂z

∣∣∣∣ z
}

+ cov
(

U ′( ),
∂π∗(z)

∂z

)]
dz.

(7)

Pope et al.’s (1983) measure is quite general, placing no restrictions on risk pref-
erences, the form of the distribution of output prices, or the type of output price
uncertainty (e.g., additive, multiplicative);5 it also allows output to be stochastic. In
(7), z is a vector of dummy variables of integration holding the place of the vector
of arguments γ of the function L∗(γ ). Also, U−1(·) ≡ U−1(E{W + π∗(z) | z}), and
U(·) ≡ U(W + π∗(z)). Because the line integral in (7) is path independent (Kaplan
1984, pp. 291–298), the path of integration is an arbitrary one between endpoints γ 1

and γ 2. However, (7) is difficult to apply to real-world research, because estimation of
the covariance term cov(U ′( ), ∂π∗(z)

∂z ) is problematic.

5 Under additive uncertainty output price typically takes the form p = f (·) + ε; under
multiplicative uncertainty, output price typically takes the form p = f (·)ε, where in either case
f (·) is a function of various parameters, and ε is a random variable.
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6 D.S. Bullock et al.

Pope et al. (1983) also derived an expression for compensation-dependent compen-
sating variation (Kaplan 1984).6

c(γ 1, γ 2, EU∗(γ 1))

≡ c(γ 1, γ 2, EU∗(γ 1)) − c(γ 1, γ 1, EU∗(γ 1))︸ ︷︷ ︸
0

≡
∫ γ 2

γ 1


 n∑

j=1

∂c(γ 1, z, EU∗(γ 1))
∂z j

dz j




≡
∫ γ 2

γ 1




n∑
j=1




∂W
∂z j

+ E
{

∂πc(γ 1, z, EU∗(γ 1))
∂z j

∣∣∣∣ z
}

+
cov
(

(U ′(W−c(γ 1, z, EU∗(γ 1))+πc(γ 1, z, EU∗(γ 1))),
∂πc(γ 1, z, EU∗(γ 1))

∂z j

)
E{U ′(W− c(γ 1, z, EU∗(γ 1)) + πc(γ 1, z, EU∗(γ 1))) | z}


 dz j


 .

(8)

As with (7), Equation (8) holds for the general case identified immediately above, but
contains a complicated covariance term that is difficult to estimate in applied research.

Pope et al. (1983) pointed out that if we assume additive output price uncertainty
and non-stochastic production, an implication of (8) and the envelope theorem is that
compensation-dependent compensating variation for the change from γ 1 = (µ1, γ 0

−µ)
to γ 2 = (µ2, γ 0

−µ) may be found by taking a definite integral behind the Hicksian
risk-responsive supply curve:

c




γ 1︷ ︸︸ ︷(
µ1, γ

0
−µ

) γ 2︷ ︸︸ ︷(
µ2, γ

0
−µ

)
, EU∗(γ 1)


 ≡

∫ µ2

µ1

yc




γ 1︷ ︸︸ ︷(
µ1, γ

0
−µ

) (
µ, γ 0

−µ

)
, EU∗(γ 1)


dµ.

(9)

6 To explain the derivation in our notation, first differentiate compensation-dependent com-
pensating variation in (2) to obtain a term for ∂c(γ 1, γ 2, EU∗(γ 1))/∂γ 2 = ∂c(γ 1, γ 2, EU∗(γ 1))/
∂γ21 , . . . , (∂c(γ 1, γ 2, EU∗(γ 1))/∂γ2n ). Then, let a vector of dummy variables z stand in place of
γ 2, which is the second vector of arguments of function c(γ 1, γ 2, EU∗(γ 1)). Keeping the first
vector of arguments γ 1 and the last argument EU∗(γ 1) constant, allow z to move over a path
of integration that has endpoints γ 1 and γ 2, and take a line integral of ∂c(γ 1, z, EU∗(γ 1))/∂z
= (∂c(γ 1, z, EU∗(γ 1))/∂z1, . . . , ∂c(γ 1, z, EU∗(γ 1))/∂zn) to obtain a term for compensation-
dependent compensating variation. To ease the notational burden we assume W to be an
element of vector γ . In Pope et al. (1983), γ represents all parameters except W . Our formula
in (8) has the term ∂W/∂zj, and Pope et al.’s (1983) Equation 9 lacks this term only because of
the notational difference.
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Measuring producer welfare 7

Note that (9) requires no restrictions on risk preferences. Therefore, in addition to
providing a measure of the theoretically preferable compensation-dependent compen-
sating variation (9) is slightly more general than Chavas and Pope’s (1981) measure in
(6), which was derived by assuming additive output price uncertainty, non-stochastic
production, and CARA. Also, because only parameter µ is changed in (9), the covari-
ance terms in (7) and (8) disappear. However, identity (9) has two limitations. First,
to apply (9) the functional form of the Hicksian supply curves must be known, and
estimation of a Hicksian supply curve when utility is unobservable presents a challenge.
Second, (9) only considers a change in the mean output price parameter.

Pope et al. (1983) partially addressed the first limitation by showing that when a
CARA firm faces a change in one or more of the means of the output price distri-
butions (these means are the elements of a vector µ), the Hicksian and Marshallian
risk-responsive supply curves are the same. The implication is that with CARA utility
and non-stochastic production, the compensation-dependent compensating variation
in (9), the difference in the certainty equivalent and compensation-independent com-
pensating variation in (6) are equal,7 and can be represented by an integral similar to
the classic producer surplus integral, except that the means of the price distributions,
and not actual prices, are used:8

�L∗




γ 1︷ ︸︸ ︷(
µ1, γ

0
−µ

)
,

γ 2︷ ︸︸ ︷(
µ2, γ

0
−µ

) ≡
∫ µ2

µ1

y∗(µ, γ −µ1
) dµ

≡
∫ µ2

µ1

yc




γ 1︷ ︸︸ ︷(
µ1, γ

0
−µ

)
,
(
µ, γ 0

−µ

)
, EU∗ (µ1, γ 1)


 dµ

≡ c




γ 1︷ ︸︸ ︷(
µ1, γ

0
−µ

)
,

γ 2︷ ︸︸ ︷(
µ2, γ

0
−µ

)
, EU∗ (µ1, γ 1)




≡ cci




γ 1︷ ︸︸ ︷(
µ1, γ

0
−µ

)
,

γ 2︷ ︸︸ ︷(
µ2, γ

0
−µ

)
, EU∗ (µ1, γ 1)


 . (10)

In (10), γ 1= (µ1,γ −µ1 ) and γ 2 = (µ2,γ −µ1 ) as only the means of the output price
distributions change. In (10), Pope et al. (1983) derived what in many cases seems
like an empirically practical measure of producer welfare change under uncertainty:
the measure employs Marshallian instead of Hicksian supply curves, and there is no

7 When vector µ in has more than one element, we must reinterpret (10) as follows. The single
supply function y∗( ) should be changed to a vector of supply functions y∗( ), and dµ is a vector
with the same dimensions. The definite integral is a path-independent line integral, which can be
converted to a sum of definite integrals by letting the variables in µ change sequentially between
endpoints µ1 and µ2. See Pope et al. (1983, footnote 2) and Just et al. (1982, pp. 338–341).

8 Pope et al. (1983) showed that under CARA and-non-stochastic production, this integral
also represents equivalent variation.
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8 D.S. Bullock et al.

Figure 2 Pope and Chavas (1983) use the “shutdown price” and CARA assumptions to derive a
measure of the change in welfare due to a change in more than one moment of the output price
distribution.

complicated covariance term to estimate such as those appearing in (7) and (8). But
the practical applicability of (10) was achieved through the restrictive assumptions of
CARA and that only µ changes.9

To address the limitation that (9) and (10) are not applicable to changes in higher
moments of the output price distribution, Pope et al. (1983) suggested using the con-
cept of shutdown prices to measure producer welfare changes associated with general
changes in the moments of the output price distribution. They argue (Figure 2) that the
difference in geometric areas behind two two-dimensional Marshallian risk-responsive
supply curves, where each curve is drawn as dependent on the mean output price, may
be used to measure the change in welfare.10

Pope et al. (1983) identified two unanswered research questions (Figure 3). The first
question was whether for practical purposes the Marshallian risk-responsive supply
curve closely approximates the Hicksian risk-responsive supply curve. Citing argu-
ments consistent with Willig (1976), they suggested that even if the CARA assumption
does not hold, only a small error is obtained from integrating behind (observable) Mar-
shallian supply curves, instead of integrating behind (unobservable) Hicksian supply
curves to obtain compensating variation.

Pope et al.’s (1983) second unanswered research question was whether it was pos-
sible, following Hausman (1981), to analytically solve ordinary differential equations
to measure the geometric areas behind (unobserved) Hicksian curves using just the
information revealed by (observed) Marshallian curves. For the consumer case and
only one price change, Hausman’s (1981) method derives an ‘exact’ measurement of
welfare change. This method may be useful in the measurement of dead-weight losses,
which may not be well approximated even when Willig’s (1976) bounds imply that the
total change in consumer welfare is closely approximated (Hausman 1981).

9 Chavas and Holt (1990, p. 536) report empirical findings that cast doubt on the use of
CARA utility functions.

10 In Appendix 2 (Bullock et al. 2005), we offer our own detailed explanation of the shutdown
price method.
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Measuring producer welfare 9

Figure 3 Progress in measuring welfare changes under output price uncertainty.

3.3 Pope and Chavas (1985)

Pope and Chavas (1985) investigated Pope et al.’s (1983) first unanswered question
(Figure 3), and proposed an approximation to compensating variation for a change
in the mean output price distribution, assuming decreasing absolute risk aversion
(DARA). The authors placed Willig-type error bounds on compensating variation
using the change in classical producer surplus. They derived bounds for the ‘percentage
error’ of using the integral behind the Marshallian risk-responsive supply curve. They
asserted that for most reasonable policy settings the bounds are narrow, providing a
priori evidence that the integral behind the Marshallian risk-responsive supply curve
may be a good approximation to compensating variation (less than 5% error).

There are limitations to this Willig-type approach. First, it is not applicable to welfare
measurement associated with changes in price risk, that is, with higher moments of the
price distribution. Second, for many firms a change in the output price distribution
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10 D.S. Bullock et al.

might have considerable wealth effects, causing the approximation error to be large,
discouraging the use of a Willig-type approach. Third, even when the Willig-type
approach provides good approximations for changes in one group’s welfare, it may
provide a poor approximation of changes in dead-weight costs (Hausman 1981).

3.4 Larson (1988)

To address Pope et al.’s (1983) second unanswered research question (Figure 3), and to
address the limitations of the Willig-type approach, Larson (1988) followed Hausman
(1981) to show how ordinary differential equations can be solved to analytically derive
closed-form expressions of compensating variation associated with a change in the
mean of an output price distribution.

Larson’s (1988) procedure is more general than that of Pope et al. (1983) in that it re-
laxes their assumptions of CARA or DARA. However, Larson’s (1988) method can be
used only with Marshallian risk-responsive supply functions from which the functional
form of the Hicksian risk-responsive supply function can be analytically derived. Also,
Larson (1988) showed how his method could be used to find compensation-dependent
compensating variation from a change in only the mean of a single output price’s dis-
tribution. He did not consider the welfare effects of changes in other parameters.

3.5 Tsur (1993)

Tsur (1993) argued that the procedures reviewed above were difficult to implement and
rarely used. He asserted that the major difficulty was estimation of the risk-responsive
Marshallian supply function y∗(γ ), or the risk-responsive Hicksian supply function
yc(γ 1, γ 2, EU∗(γ 1)) used in Equations (6), (9), and (10). In response, he developed ‘a
simple and practical technique for evaluating producer welfare under price uncertainty’
(p. 44). Tsur’s (1993) model has the producer solving an expected utility maximisation
problem, similar to (1) except the producer chooses output y directly, and not indirectly
through input choice x:

Max
y

{∫ ∞

0
U (py − C (y, c) ; b) g (p; a) dp

}
. (1′)

The problem’s parameters may be placed into three categories: γ = (a, b, c), where a
is a vector of parameters in the probability density function g( ) of random output price
p; b is a vector of parameters in the utility function U( ) and may include exogenous
wealth; and c is a vector of parameters of the cost function C(·). Tsur (1993) developed
analytical solutions for y∗(a, b, c), and for the indirect certainty equivalent because
of a change in the output price distribution assuming: (i) CARA preferences; (ii) a
constant-returns-to-scale cost function; and (iii) the output price takes on either a
gamma distribution or a truncated normal distribution. Implementation of Tsur’s
(1993) method requires knowledge of the marginal cost function, the output price
distribution, and the absolute risk aversion coefficient.

The usefulness of Tsur’s (1993) procedure relative to estimating a risk-responsive
supply function can be questioned. Cost functions require data on input prices, output
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Measuring producer welfare 11

levels, and some measure of the level of technology. Estimation of cost functions
with related input demand functions is facilitated by theoretical restrictions on the
parameters, and by our profession’s experience with various flexible forms. However,
problems still exist in defining the specification and aggregation of input prices and
quantities, and the specification of technical change over time. Also, cost functions
are commonly estimated and reflect behaviour at different levels of aggregation (e.g.,
producers, geographical regions). Tsur’s (1993) procedure appears to call for producer-
level data, which requires a ‘representative’ sample, and similar accounting techniques
to ensure meaningful parameters. In contrast, risk-responsive supply functions are
estimated at market level, and require specification of price expectations and risk
measures, as well as the functional form, and the nature of technical change.

In many cases, estimating risk-responsive supply functions is more practicable than
Tsur (1993) asserted. A large number of risk-responsive supply functions have been
estimated under various price expectations mechanisms, risk measures, and for a variety
of crop and livestock commodities (Just 1974, 1975; Traill 1978; Hurt and Garcia 1982;
Antonovitz and Green 1986, 1990; Brorsen et al. 1987; Seale and Shonkwiler 1987;
Aradhyula and Holt 1989; Holt 1989, 1994; Chavas and Holt 1990, 1996; Holt and
Aradhyula 1990, 1998; Holt and Moschini 1992; Park and Garcia 1994; Krause and
Koo 1996; Rambaldi and Simmons 2000).

Another aspect of Tsur’s (1993) method that may be difficult to develop empirically is
a measure of the absolute risk aversion coefficient.11 He offered a procedure to develop
the risk coefficient by estimating production as a function of wealth, socioeconomic
characteristics, and the parameters of the price distribution. However, Tsur’s (1993)
approximation offers little empirical guidance regarding the variables, their expected
relationships, and ease of estimation. Further, determining the reasonableness of the
risk coefficient is not trivial as comparisons to coefficients estimated using elicitation
procedures may be suspect (Robison 1982; Pennings and Garcia 2001).

Finally, Tsur’s (1993) procedure requires restrictive assumptions about the output
price distribution, preferences, and the producer’s cost function. Tsur (1993) showed
how to implement his procedure if the price distribution shifts from one gamma
distribution to another, or from one truncated normal distribution to another, but
not for a more general shift from one type of distribution to another. Tsur’s (1993)
procedure also relies on CARA preferences and constant returns to scale technology,
which may be untenable for many producers and industries.

3.6 Dual approach: using indirect expected utility

The dual method offers an alternative approach to welfare measurement under uncer-
tainty. Similar to the dual approach under certainty, a form of the indirect expected
utility function is assumed. Applying a version of Roy’s identity provides output supply

11 Tsur (1993) provides a comparative analysis of the relative attractiveness of alternative
programs that change the underlying price distributions under constant returns to scale produc-
tion. In this case, the magnitude of the absolute risk coefficient is of concern only if the absolute
welfare gains and the supply response to changes in uncertainty are of interest. For non-constant
returns to scale technology or when the actual welfare or supply response measures are needed,
the absolute risk aversion coefficient must be estimated or parameterised.
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12 D.S. Bullock et al.

and input demand equations (Holt and Chavas 2002, p. 231). To date, few empirical
applications exist (Appelbaum and Kohli 1997; Coyle 1999). The dual approach has
advantages and disadvantages compared to other approaches. An advantage is that it
uses symmetry from theory to reduce the number of estimated parameters in an applied
model. A limitation is that it specifies the functional forms of the output supply and
input demand equations ‘rather than allowing the functional form to be determined
by the observed data’ (Slesnick 1998, p. 2114; Sheffrin and Turner 2001, p. 629). Pope
and Saha (2002) write, ‘. . . duality is not at issue conceptually so much as the essence
of the tradeoffs between method used, light shed on the problem, and the cost of using
each approach.’ (pp. 139–140).

In an applied context, Holt and Chavas (2002, p. 237) identify that while dual models
under uncertainty exist, no serious attempt has been made ‘to estimate a consistent set
of output supply and input demand equations that incorporate reciprocity conditions.’
Consequently, it is difficult to determine if these procedures offer further insights or
explanatory power for the relationship between risk and producer response. Similarly,
in light of limited information, our ability to use these procedures to effectively measure
producer welfare in the presence of government programs that might alter higher
moments of the price distribution is uncertain and requires further research.

4. Numerical procedure to measure producer welfare changes
under price uncertainty

There is a gap in the published literature reviewed. There is no way to measure
the change in producer welfare under general changes in the output price distribu-
tion for general functional forms of supply and non-restricted producer risk pref-
erences. We narrow this gap by showing how numerical methods can be employed
to measure welfare changes under price uncertainty. Our method offers several ad-
vantages over existing methods of estimating producer welfare changes under price
uncertainty. Unlike Pope et al. (1983) and Tsur (1993), our method does not im-
pose any restriction on risk preferences. Unlike Larson (1988), our procedures per-
mit complete flexibility in specification of the functional form of the risk-responsive
Marshallian supply function, and are applicable under general changes in the output
price distribution – not just changes in the mean. Unlike Tsur (1993), our method is
not limited to analysing changes from a distribution in one family of distributions to
another distribution in that same family (such as from one gamma distribution to an-
other). Unlike the dual approaches, ‘because a closed form is not necessary’ (Slesnick
1998, p. 2115), our method allows the functional form of the risk-responsive supply
function to be determined by the data.

Numerical methods for applied welfare economics were introduced by Vartia (1983),
who presented a method of deriving Hicksian from Marshallian curves. Several appli-
cations of Vartia’s (1983) method to the measurement of consumer welfare changes
under price certainty have appeared (Hayes and Porter-Hudak 1987; Fan et al. 1998;
Minot 1998; Lavergne et al. 2001). Wright and Williams (1988) also have used numer-
ical procedures in an indirect utility function framework to investigate the impact of
price changes on consumer welfare under uncertainty. It is a natural step to extend
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Vartia-type methods used to study changes in consumer welfare to measure the impact
of price changes on producers. We take this step, focusing on the impact of price changes
on producer welfare under uncertainty.12 Our method provides a specific response to
Sheffrin and Turner’s (2001) critique that ‘the numerical approximation methods of
Vartia (1983) [do not] . . . readily adapt to capture changes in the moments of the
price distribution’ (p. 629). Indeed we do adapt Vartia’s (1983) method to approximate
the compensation-dependent compensating variation for changes in the first and sec-
ond moments of the output price distribution from information in a risk-responsive
Marshallian supply function.13 Though our procedure can be generalised, for purposes
of illustration we confine our analysis to changes in three or fewer parameters.

4.1 Change in the parameter vector from (W 1, µ1, σ 1) to (W 1, µ2, σ 1)

First, we develop a procedure to find compensating variation for a change in parameter
vector from (W 1, µ1, σ 1) to (W 1, µ2, σ 1). This is the same parameter change analysed
by Chavas and Pope (1981), Pope et al. (1983), and Larson (1988). However, our nu-
merical approach provides a number of advantages. Like Larson’s (1988) method, our
method does not restrict preferences to be CARA. Our method allows for use of any
functional form of Marshallian risk-responsive supply, whereas Larson’s (1988) differ-
ential equations approach can only be used with a few assumed functional forms. An
advantage of our method over Chavas and Pope’s (1981) is that we find compensation-
dependent compensating variation, not compensation-independent. An advantage of
our method over Chavas and Pope’s (1985) and Tsur’s (1993) is that we do not require
the CARA assumption. Finally, our method has an advantage over Pope et al. (1983)
in that we require only knowledge of the risk-responsive Marshallian supply function,
whereas Pope et al. (1983) require knowledge of the risk-responsive Hicksian supply
function, which is more difficult to estimate as utility is not observable.

Let t denote an auxiliary variable such that 0 = t = 1, and let µ(t) be a differentiable
function connecting µ1 = µ(0) to µ2 = µ(1). Let h(t) ≡ c(γ 1; W 1, µ(t), σ 1; EU∗(γ 1)).
That is, h(t) is compensating variation for a change in the parameter vector from (W 1,
µ1, σ 1) to (W 1, µ(t), σ 1). Differentiating this identity with respect to t, using (8), the
definition of Hicksian supply in (2), and the Fundamental Theorem of Calculus, we

12 Earlier work used Vartia-type procedures to measure the welfare change from changes in
certain prices. Because errors in measurement of welfare changes can result from econometric
estimation of demand or supply curves, it is therefore desirable to estimate confidence intervals
for estimates of welfare change. Hausman (1981, p. 669) discussed how analytical methods
that solve differential equations could be used to construct confidence intervals for an estimate
of compensating variation from a change in price faced by consumers with certainty. This
work was gradually extended to the measurement of the mean and variance of the distribution
of compensation variation for changes in n (certain) prices in an n-equation demand system
(Porter-Hudak and Hayes 1986, 1991; Breslaw and Smith 1995). In a more related context,
Wright and Williams (1988) use Vartia’s numerical algorithm and an indirect utility function
approach to derive an exact measure, the expected (ex ante) equivalent variation, of consumer
gains from market stabilisation under price uncertainty.

13 Similar numerical algorithms, such as those appearing in Breslaw and Smith (1995) or
Porter-Hudak and Hayes (1986, 1991), can be adapted.
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have a first-order differential equation in h(t):

dh(t)
dt

≡ ∂c(γ 1; W1, µ(t), σ1; EU∗(γ 1))
∂µ

dµ(t)
dt

≡ yc(γ 1; W1, µ(t), σ1; EU∗(γ 1))
dµ(t)

dt

≡ y∗(W1 − h(t), µ(t), σ1)
dµ(t)

dt
. (11)

In (11), µ(t) and dµ(t)/dt are known functions, and h(t) is an unknown function to
be found. By noting that h(0) = 0 and integrating (11) with respect to t, we have:

h(t) = h(t) − h(0)

=
∫ t

0

dh(t)
dt

dt =
∫ t

0
y∗(W1 − h(t), µ(t), σ1)

dµ(t)
dt

dt. (12)

Compensating variation for the change from µ1 to µ2, h(1), is the solution to (12) if
t = 1.

Next, we develop a practical method for calculating or approximating h(1). For any
functional form of supply, Equation (12) can be solved numerically. Following Vartia
(1983), an algorithm that provides a numerical solution to (12) can be described. By
choosing numbers t1, t2, . . . , tN+1 such that 0 = t1 < t2 < · · · < t N+1 = 1, we derive
from (12) the following:

h(1) = h(tN+1) =
N+1∑
i=2

[h(tk) − h(tk−1)]

=
N+1∑
i=2

∫ tk

tk−1

y∗(W1 − h(t), µ(t), σ1)
dµ(t)

dt
dt. (13)

Examining the sum of integrals in (13), when tk − tk−1 is small (i.e., when N is large)
we approximate y∗(W1 − h(t), µ(t), σ 1) by the mean of its values at the limits of the
integral: y∗(W1 − h(t), µ(t), σ 1) ≈ 0.5[y∗(W1 − h(tk−1), µ(tk−1), σ 1) + y∗(W1 − h(tk),
µ(tk), σ 1)], resulting in,

∫ tk

tk−1

y∗(W1 − h(t), µ(t), σ1))
dµ(t)

dt
dt

≈ 0.5[y∗(W1 − h(tk−1), µ(tk−1), σ1) + y∗(W1 − h(tk), µ(tk), σ1)]
∫ tk

tk−1

dµ(t)
dt

dt

= 0.5[y∗(W1 − h(tk−1), µ(tk−1), σ1) + y∗(W1 − h(tk), µ(tk), σ1)] · [µ(tk) − µ(tk−1)].

(14)

Next, assume that µ(t) is linear: µ(t) = µ1 + t[µ2 − µ1], 0 ≤ t ≤ 1. For a given
integer N, and for every k = 1, . . . , N + 1, let tk = (k−1)/N. To shorten the notation,
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let hk = h(tk) and let y∗
k = y∗(W1 − hk, µ(tk), σ 1), k = 1, . . . , N. First begin with

starting values of µ(t1) = µ1 and h1 = 0. Then generate a sequence h2, . . . , hN+1 such
that

hk = hk−1 + 1
2


y∗(W1 − hk−1, µ(tk−1), σ1)︸ ︷︷ ︸

y∗
k−1

+ y∗(W1 − hk, µ(tk), σ1)︸ ︷︷ ︸
y∗

k




× [µ(tk) − µ(tk−1)]. (15)

Because the term hk appears on both sides of (15), it must be determined iteratively.
Define h(1)

k = hk−1, and for k = 2, . . . , N + 1, and m = 2, 3, . . . , let

h(m)
k = hk−1 + 1

2

[
y∗(W1 − hk−1, µ(tk−1), σ1) + y∗

(
W1 − h(m−1)

k , µ(tk), σ1

)]
× [µ(tk) − µ(tk−1)]. (16)

As the number m increases, |hk
(m) − h(m−1)

k | will become negligibly small. When at
some number Mk, |h(Mk)

k − h(Mk−1)
k | is deemed sufficiently small, we can use (15) to

write

hk ≈ 1
2

[
y∗(W1 − hk−1, µ(tk−1), σ1) + y∗

(
W1 − h(Mk)

k , µ(tk), σ1

)]
× [µ(tk) − µ(tk−1)], (17)

and start the calculation for k + 1.
Once the value of hk is approximated for k = 1, . . . , N + 1, the compensation-

dependent compensating variation for the change from µ1 to µ2 can be approximated
following (13) as,

c(W1, µ1, σ1; W1, µ2, σ1; EU∗(γ 1))

≈
N+1∑
k=2

0.5
[

y∗
(

W1 − h(Mk−1)
k−1 , µ(tk−1), σ1

)
+ y∗

(
W1 − h(Mk)

k , µ(tk), σ1

)]
× [µ(tk) − µ(tk−1)]. (18)

Letting N grow arbitrarily large allows (18) to provide an arbitrarily close approxi-
mation of compensating variation.

4.2 Change in the parameter vector from (W 1, µ1, σ 1) to (W 2, µ2, σ 2)

Now we consider the more general case in which the whole parameter vector changes
from (W 1, µ1, σ 1) to (W 2, µ2, σ 2). This is the case analysed by Pope et al. (1983).
The advantage of our numerical procedure is that it does not require knowledge of
the risk-responsive Hicksian supply function, but instead employs the risk-responsive
Marshallian supply function, which in principle is easier to estimate empirically.
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Furthermore, our procedure can be easily generalised to analyse the producer wel-
fare effect of changes in third and higher moments of the output price distribution.

By assuming the existence of appropriate shutdown mean prices, we can derive
a formula for compensating variation for the general parameter change (see Equa-
tion (A.2.6) in Appendix 1, Bullock et al. 2005):

c


 γ 1︷ ︸︸ ︷

µ1, σ1, W1;

γ 2︷ ︸︸ ︷
µ2, σ2, W2; EU∗(γ 1)




≡
∫ W2

W1

1 · dW︸ ︷︷ ︸
W2−W1

+
∫ µ∗(W2,σ1,EU∗(γ 1))

µ1

yc(γ 1; W2, µ, σ1; EU∗(γ 1)) dµ︸ ︷︷ ︸
c(W2,µ1,σ1;W2,µ∗(W2,σ1,EU∗(γ 1)),σ1;EU∗(γ 1))

+
∫ µ2

µ∗(W2,σ2,EU∗(γ 1)))
yc(γ 1; W2, µ, σ2; EU∗(γ 1)) dµ︸ ︷︷ ︸

c(W2,µ∗(W2,σ2,EU∗(γ 1)),σ2;µ2,σ2,W2;EU∗(γ 1))

.

(19)

We can approximate the second integral on the right-hand side of (19) in a manner
similar to (18), except that instead of finding compensating variation for a parameter
change from (W 1, µ1, σ 1) to (W 1, µ2, σ 1), we must find compensating variation for
a parameter change from (W 2, µ1, σ 1) to (W 2, µ∗(W 2, σ 1, EU∗(γ 1)), σ 1), where
µ∗(W 2, σ 1, EU∗(γ 1)) is the shutdown mean price, that is, the price µ at which yc(γ 1;
W 2, µ, σ 1; EU∗(γ 1)) = y∗(W 2 − c(γ 1; W 2, µ, σ 1; EU∗(γ 1)), µ, σ 1) = 0. Similarly,
the third integral on the right-hand side of (19) can be found numerically.

4.3 Example

To provide an example of how our numerical methods may be applied to welfare
analysis, we use Shin’s (1999) estimation of the USA risk-responsive rice supply curve.
Shin (1999) used a rational-expectations approach and data from 1976 to 1995 to
estimate the supply function as y∗(W, µ, σ ) = −23 399 + 17.196µ − 17.899σ 2 +
0.0046161W + 106.09ALR + 11.711YEAR.

The variable ALR represents a government acreage reduction policy, and YEAR is
used to proxy technological change. The quantity variable is stated in millions of cwt,
µ is in 1982–1984 US dollars/cwt, and σ 2 is in 1982–1984 US dollars/cwt squared.
Shin (1999) uses the 1991–1995 means of the exogenous variables above to obtain a
baseline risk-responsive supply function. Schnepf and Just (1995) report that the most
efficient USA rice producers have around $3.00/cwt of variable cash expenses (in 1992
dollars). When deflated to 1982–1984 dollars using the CPI, this shutdown price is
roughly $2.00/cwt. The 1991–1995 mean of the ALR and YEAR variables was 0.80.
Substituting these values and the $2.00 shutdown price into the equation above, we
obtain a baseline Marshallian risk-responsive supply function of

y∗
base (W, µ, σ ) =

{
25.895 + 17.196µ − 17.899σ 2 + 0.0046161W if µ ≥ 2.00

0 if µ < 2.00.
(20)
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Shin (1999) also estimated rice demand (not reported here), and assumed rational
expectations to conduct numerous policy simulations. By way of example, we will
apply our numerical welfare measurement method to obtain the producer welfare
effects for one of Shin’s (1999) policy simulations, in which he examined the effect
of raising the target price policy variable from $10.00/cwt to $11.00/cwt (in nominal
dollars) while maintaining the acreage control variable at 0.80. Raising the target price
variable truncates the producer price distribution, both raising its mean and lowering
its variance. In his simulated equilibrium (Shin 1999, Table 6.1.3, p. 136), the policy
of a $10.00/cwt target price and a 0.80 acreage control results in a producer price
distribution with mean µ1 = $7.888/cwt (in 1982–1984 dollars) and a variance of σ 2

1 =
0.57903. The $11.00/cwt target price policy results in a producer price distribution
with mean µ2 = $8.207/cwt (in 1982–1984 dollars) and a variance of σ 2

2 = 0.28442.
Our task is to use our knowledge about Marshallian risk-responsive supply to

calculate compensating variation for this policy change that raises the target price
from $10.00/cwt to $11.00/cwt. Using an SAS program (see Appendix 3, Bullock
et al. 2005), we numerically calculated USA rice producer compensating variation
because of this policy change as $89.107 million (in 1982–1984 dollars). The total
change in µ, the mean of the output price distribution, from $7.888/cwt to $8.207/cwt
is divided into 1200 increments. The change in the target price is assumed not to
change wealth, and so the wealth variable remains constant at W1 = W2 = 3574.843
everywhere in the program. But the program is written such that if the wealth were to
change to a new amount W 2, this change is easily calculated by placing a new value
for wealth ‘wtwo’ in lines 15 and 100. Risk-responsive Hicksian supply curves yc(W 2,
µ, σ 1, EU∗(γ 1)) and yc(W 2, µ, σ 2, EU∗(γ 1)) are traced all the way down to assumed
shutdown price of $2.00. Note that while Shin (1999) assumed a linear functional form,
our computer program easily could be applied to any functional form of Marshallian
risk-responsive supply by simply substituting the desired functional form for the linear
form in lines 30, 55, 60, and 63 of the program. This provides a distinct advantage
over previous analytical methods, which are limited to a few functional forms of
supply.

The model analysed above provides an excellent example of the potential importance
of accounting for changes in risk in policy analysis. If we ignore the change in risk,
and only consider the change in the mean of the output price distribution from µ1 =
$7.888/cwt to µ2 = $8.207/cwt (in 1982–1984 dollars), then Larson’s (1988, p. 600)
analytical method can be employed to calculate that the compensating variation for
this change in mean output price to be $53.809 million (in 1982–1984 dollars) from the
following formula:

c = β

δ
[µ1 − µ0] − 1

δ

[
q0 − β

δ

] [
e−δ[µ1−µ0] − 1

]
, (21)

where β = 17.196, δ = 0.00416161, µ0 = 7.888, µ1 = 8.207, and q0 = y∗
base (W =

3574.843, µ = 7.888, σ = √
0.57903) = 166.05. Hence, accounting for the reduction

in risk that is brought about by the rise in the target price raises the estimated gain in
producer welfare from $53.809 million to $89.107 million, which is almost 66 per cent.
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While our analysis is only illustrative, it does confirm the importance of considering
the change in risk in applied analysis.

5. Conclusions and limitations

Our review traced the development of producer welfare measurement, focusing on
the theoretical restrictions and empirical procedures needed to develop appropriate
measures. We have presented a new procedure that combines theory with numerical
integration methods to measure compensating variation of a change in endowed wealth
and in the first two moments of an output price distribution for any form of Marshallian
risk-responsive supply. Our procedure can be adapted to evaluate producer welfare
effects from changes in third and higher moments of the output price distribution.

When effects of second and higher moments are analysed, our approach is limited
as it requires the existence of shutdown prices. This poses no problem when a firm
produces only one product, for an output price of zero will always force a shutdown.
However, as discussed in Pope et al. (1983), if a firm produces more than one good,
even a zero price of one good may not cause the firm to stop producing all goods
and so shut down. Additionally, it is often the case that there are no price-quantity
observations in the data in the neighbourhood of the shutdown price, which causes
standard deviations of estimates of the vertical intercepts of supply curves to be large.
Thus, in a statistical sense, the confidence we can place in welfare measures that rely
on accurate estimation of the entire supply curve may be limited (Just et al. 1982, pp.
165–175). Hence, the statistical accuracy of welfare measures using shutdown prices
should be monitored using bootstrapping techniques to draw statistical inferences
about welfare change measurements.

While our method offers improvements over earlier methods, further theoretical
and empirical efforts are needed to stimulate a more common usage in applied work
of welfare measures in the presence of risk. In the context of price risk, our pro-
cedure only requires the development of risk-responsive Marshallian supply func-
tions, but in the presence of multiple products and changes in higher moments of the
subjective probability distribution is limited by the shutdown price problem. Tsur’s
(1993) procedure does not suffer from the shutdown price problem, but is limited
by its CARA assumption, the difficulties in developing reliable measures of the ab-
solute risk coefficient, and the absence of an empirical template that would assist
researchers in its implementation. More generally, both procedures are limited as they
do not explicitly consider the presence of stochastic production, nor do they consider
the measurement of producer welfare in the presence of dynamic output and input
adjustments.

Hence, why these procedures have not been applied to measure changes in producer
welfare in the real world is evident, but we summarise. The complex theory and em-
pirical procedures needed to appropriately measure welfare changes in the presence of
certain types of risk are still in development, and often the techniques are only appro-
priate in specific situations. In addition, usage is limited by the absence of comparative
empirical evidence that would provide more definitive conclusions regarding the rela-
tive attractiveness of these procedures in applied situations. Further, the measurement
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of welfare under risk requires sophisticated and in-depth knowledge of procedures
that may not overlap. That is, a disconnection may exist between policy analysts and
the individuals who model risk in markets – or at least between the skills necessary
to implement risk measurement in policy analysis. It may well be that the procedures
reviewed here have been only rarely applied because policy researchers have not un-
derstood them, or do not have the technical skills to implement them. We hope that
our study strengthens the needed connection.
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