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This paper examines the ways in which a service provider’s policies on pricing and service

level affect the size of its customer base and profitability. The analysis begins with the

development of a customer behavior model that uses customer satisfaction and depth of

relationship as mediators of the impact of price and service level on profitability. Based on

this model of customer behavior, the system is analyzed as a queueing network from which

the properties of the aggregate population’s behavior are derived. The analysis reveals the

counterintuitive result that a policy that involves a decrease in prices or an increase in

service level may lead to a smaller customer base. However, this policy may also lead to

higher profits. The novelty of this result lies in the explanation of the phenomenon that

when the customer base decreases due to a change in prices or service quality, companies

may experience gains in profit that result not from a decrease in costs associated with serving

fewer customers but from an increase in revenues resulting from the indirect effects of the

lower prices or higher level of service on customer behavior. The application of optimization

techniques to the model developed in this paper yields optimality conditions through which

managers can assess the long-term profitability of their pricing and service-level policies.
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1 Introduction

This paper examines the impact of pricing and service quality on the size of the customer

base and profitability. The setting in which the analysis takes place is a subscription-based,

capacity-constrained service. The focus is on understanding the interdependence of the

pricing policy and service level and their impact on customers’ potential to generate revenue

and customer behavior in terms of usage of the service. The key to the analysis is the

development of a model where customers choose the depth of their relationship with the

company based on their level of satisfaction. Deeper relationships increase the strain already

faced by a capacity-constrained service-delivery system. If customers are satisfied and choose

to pursue deeper relationships, the company will have to either lower its service quality or

make investments to improve capacity. This paper provides a mathematical model that

sheds light on the underlying dynamics governing such service-delivery systems, providing

useful insights into the optimality of price- and quality-based managerial decisions.

A recent study of a cellular phone company conducted by Bain & Company, Inc. revealed

instances when, within the same segment, customers with high usage levels were more likely

to churn than customers with lower usage levels. Bittencourt and Sellmeister Bueno (2003)

report a similiar finding in the financial services industry. This is a surprising result, par-

ticularly in light of the homogeneity of preferences across the customers examined. The

predominant paradigm is that customers who don’t use a service very often are the ones

most likely to defect. Customer satisfaction has been shown to have a positive impact on

both usage of services (e.g.: Heskett et al. 1994, Bolton and Lemon 1999) and customer

retention (e.g.: Jones and Sasser 1995). Gourville and Soman (2002) make the causal rela-

tionship more explicit when they show that the probability that customers will cancel their

membership to a service is inversely proportional to how often they use the service. Empiri-

cal support for this result comes from industries as diverse as health clubs (DellaVigna and

Malmendie 2001) and cable television (Lemon, White and Winer 2002).

The apparent incongruence between the managerial observations brought to our attention

and the academic predictions described above suggest that the relationship between service

quality, customer retention, service usage and profitability could be more complex than

previously supposed. Indeed, one of the objectives of this paper is to show that results such as

those observed by Bain and by Bittercourt and Sellmeister Bueno (2003) are consistent with

rational customer behavior if we incorporate into our model the dynamics of the customer’s
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choice of depth of relationship.

The frequency with which customers choose to interact with companies is often considered

to be a reliable predictor of their lifetime value, a fact well known to the many managers

in the catalog industry who have been successfully using the RFM (recency, frequency, and

monetary value) framework for years. This follows from the intuition that customers who

are satisfied with a service are likely to use it more often. Customers who like their cellular

phones are more likely to use them in place of their regular phones, and those who like

pay-per-view movies will use this service more often than they will rent movies. However, as

customers use these services more often, they are increasingly more likely to erode the firm’s

profits for at least two reasons. First, because the intrinsic variability of service-delivery

systems will lead to a higher number of service failures. Second, because the increased use of

a service facility can lead to either a decrease in supplier responsiveness and service quality

or higher costs in the form of further investments to prevent such failures.

Service quality is repeatedly cited (e.g., Rust et al. 1995, Bolton and Lemon 1999) to be

a key determinant of switching behavior. An increase in quality or a decrease in price will

make services more valuable to customers, but the effects of these policies on the long-term

financial performance of a firm are not easily determined. A decrease in price or increase

in service level may actually lead to a decrease in the size of the customer base. This can

happen because these policy changes may yield the expected result of increased usage, and

this puts a higher load on the system. Consequently, customers may experience more service

failures, which lead to lower levels of satisfaction, resulting in a decrease in the size of the

customer base in the long run. In this way, a managerial action which objectively gives more

value to customers may ultimately drive some of them away.

This result is important to managers seeking to maximize their customer base in pursuit

of higher profits, but when examining how changes in price and service quality can impact

the size of the customer base, it is important to note that a decrease in the number of

customers does not always leads to lower profits. The number of customers that a company

has can actually be a remarkably poor indicator of the value of the customer base. Financial

analysts often valued dotcoms based on their number of customers, and the market showed

its disapproval of this metric when the prices of such companies crashed (Gupta, Lehman,

and Stewart 2004). There is a complex relationship between pricing, service quality, and

profitability, as the negative impact that changes (e.g., higher levels of quality) have on

profit may have a revenue-based component as well as a cost-based component.

3



This paper connects the operational decisions of pricing and service quality with the be-

havior of customers reacting to these policies. In order to study this problem, §2 reviews the

relevant literature from Marketing as well as Operations. Next, §3.1 develops the individual

customer behavior model that is consistent with the relevant results from the literature and

serves as the building block for the behavior of the customer base. Then, §3.2 shows how

aggregating several customers behaving according to this model leads to a population be-

havior model whose steady-state behavior (analyzed in §4) can account for the phenomena

observed by the companies described above. The analysis continues in §5, where the pric-

ing and service-quality decisions are analyzed through a nonlinear program whose objective

function is profit maximization. Finally, §6 discusses the managerial and academic relevance

of these results and provides some directions for further research.

2 Literature Review

The range of issues addressed in this paper requires an interdisciplinary approach. Two

streams of research in the pricing literature are particularly relevant. First, the literature

fromOperations Management and Queueing Theory informs our understanding of the impact

of pricing and service level on system load. Second, the study of two-part pricing structures

(mostly from Economics and Marketing) helps define the types of policies most suitable for

subscription services. This paper also draws on an already interdisciplinary stream of re-

search which studies the relationship between service quality, customer satisfaction, customer

loyalty, and profitability.

Traditional Operations Management and Operations Research literature has focused on

optimizing the firm’s internal processes, making relatively simple assumptions about cus-

tomer behavior and the cost and impact of service quality (Bitran, Ferrer and Oliveira

2008). Within these fields, there is a significant body of literature that analyzes queueing

systems where the arrival rate depends on pricing and waiting time. The use of pricing as a

mechanism for regulating the size of queues was first studied by Naor (1969), who introduced

the notion of levying tolls to prevent customers from joining the queue during times of heavy

congestion. He showed that social optima can be achieved through tolls or administrative

constraints on the waiting space. Several papers generalized this model (e.g., Yechiali 1971,

Knudsen 1972, Edelson and Hildebrand 1975, Lipmann and Stidham 1977, Mendelson and

Yechiali 1981) by studying pricing decisions under fixed capacity. More recent extensions
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include Van Mieghem’s (2000) addition of the managerial control of scheduling and Chen

and Frank’s (2001) model where managers observe queue length and dynamically adjust

their prices accordingly. Mendelson (1985) and Mendelson and Whang (1990) focused on

problems related to optimal pricing and capacity allocation. Dewan and Mendelson (1990)

extended these results to include customers with heterogeneous value functions. As in these

papers, the analysis in the present paper is based on studying the impact of policies on the

steady-state behavior of a queueing system. There have been significant subsequent advances

concerning the existence of solutions, their stability, and the effect of small disturbances on

equilibrium for these queueing systems (Stidham 1992, Friedman and Landsberg 1993 and

1996, Rump and Stidham 1998).

The present paper diverges from the traditional queueing literature by rejecting the

assumption that each additional job submitted to the facility increases the social (gross)

value. This assumption contends that at every period, either each customer uses the facility

only once, or if she accesses the service more than once, the value of each interaction is

not related to the number of jobs already submitted. Furthermore, the traditional queueing

models also assume that customers use the same estimate of waiting time when deciding

whether or not to use the service. In contrast, the present paper assumes that the value of

the relationship to the customer depends explicitly on that customer’s level of usage, the

aggregation of which results in the expected total value. Finally, this paper takes into account

the impact of past experiences on customer satisfaction and customer behavior, consistent

with studies such as Bolton’s (1998).

Unlike the models cited in the preceding paragraphs, the queueing system developed in

this paper is controlled through service quality and a two-part pricing structure (also called

dual pricing systems or two-part tariffs) which consists of a subscription fee that customers

must pay in order to have access to the service and a usage fee that must be paid each time

the service is used. This pricing structure was chosen for two reasons. First, because it

can be interpreted as a generalization of subscription-only pricing or usage-only pricing by

setting one of the price parameters to zero. Second, because it is a very commonly-used tool

for price discrimination in practice (Tirole 1988), particularly in telecommunications and

financial services, two of the industries that provided the main motivation for the present

study. The analysis of two-part pricing structures in usage-based services dates back at least

to Oi’s (1971) pioneering work in the context of Disneyland tickets. The recent increase in

the use of two-part pricing brought about by the Internet, telecommunications, and paid
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television has renewed academic and managerial interest in various facets of the subject.

Danaher (2002) built on the work of Mahajan et al. (1982) in order to find the prices that

maximize the adoption rate of a new cellular phone service. Essegaier et al. (2002) developed

a game-theoretic model to analyze the mediating effect of capacity constraints on the firm’s

optimal pricing strategy when consumers consistently behave as either “light” or “heavy”

users. The problem studied in this paper requires an innovative approach for at least two

reasons: first, because the existing literature on two-part pricing does not address the long-

term effects on the size of the customer base and profitability; second, because the pricing

and service-quality decisions must be considered simultaneously, along with their impact on

customer behavior (e.g., a light user may become a heavy user if service quality improves).

The quality revolution in manufacturing spilled over to the service industry in the late

1980s and early 1990s and brought about a large number of managerial papers and books

advocating the virtues of quality-oriented companies (e.g., Reichheld and Sasser, Jr. 1990,

Reichheld and Teal 1996). The service-profit chain (Heskett et al. 1994), a framework

connecting operational investments to profitability through service quality, took a prominent

place in managerial circles. It did not take very long before this unprecedented high emphasis

on quality came under scrutiny. Service firms often do not experience the economies of

scale and corresponding cost reductions that were brought about by the implementation

of quality programs in manufacturing firms. Consequently, many service companies faced

the disastrous consequences of implementing financially unsound quality programs (e.g., Hill

1993, Wiesendanger 1993). Quality is a costly investment that must be linked to profitability.

The first step in linking quality to profitability involves linking quality to behavioral

intentions (repurchasing intentions, in particular). There is extensive Marketing literature

on this area (e.g., Rust and Zahorik 1993, Boulding et al. 1993). Bolton’s (1998) analysis

is particularly relevant to the present paper, as it studies the effect of customer satisfaction

on loyalty, using data from a cellular communications firm. Her analysis reveals that the

effect of a bad experience is smaller for customers who have been with the company longer,

a result which was further supported by Rust et al. (1999).

Hall and Porteus (2000) and Gans (2002) made key contributions in modeling and un-

derstanding the connection between quality and customer loyalty in capacity-constrained

services. In Hall’s and Porteus’ paper, customers switch between service providers based

on their past service experience. Gans builds on this work by relating a firm’s selection of

service level to the duration of a customer’s relationship with that firm. He considers the
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setting of the service level to be a strategic decision and assumes that the firm can provide

the targeted service level by adjusting its operational parameters (e.g., a call center can add

or remove service representatives or a retailer can adjust the inventory policy). The model

presented in this paper adds to this stream of research in many ways, three of which are

particularly important. First, the updating mechanism allows the customers’ current level

of satisfaction with the service provider (as measured by their estimate of the service level)

to be a function of the number of past experiences, previous estimates, and satisfaction from

the last interaction. This set of assumptions is consistent with the empirical work of Bolton

(1998) and Rust et al. (1999). Second, customers choose the depth of their relationship (op-

erationalized through the rate of interactions) based on their level of satisfaction, allowing

for the quantification of relationship depth in a way that is not possible in a model where

interactions can only occur at predetermined points. This is an essential capability if we

want to understand the way in which depth of relationship mediates the impact of customer

satisfaction on profitability. Third, the present model allows for the simultaneous optimiza-

tion of two-part pricing and service quality. This is an important managerial contribution,

as price and service-quality level can usually be controlled by managers and two-part tariffs

are the norm in a number of relevant industries.

Rust et al.’s (1995) Return on Quality (ROQ) framework and Kamakura et al.’s (2002)

empirical implementation of the service-profit chain have established the final link between

quality and profitability. The ROQ model provided a fundamental building block by ex-

plicitly quantifying the operational costs and increases in revenue associated with quality.

Kamakura et al.(2002) took a similar approach as they incorporated quality-related costs

into their operationalization of the service-profit chain. The present paper contributes to this

stream of research by explicitly considering the effect of an additional phenomenon impact-

ing the financial accountability problem: the negative impact that an investment in quality

can have on profitability can actually come from the revenue side, not just the cost side.

3 Model Description

3.1 Individual Customer Behavior

Customers interact with the company repeatedly over time and are capable of initiating a

service encounter whenever they choose to do so (the terms “service encounter” and “service

7



interaction” are used interchangeably in this paper). The service quality experienced by the

customer during the k0th interaction is denoted by wk, which depends on the company’s

internal service-quality level (denoted by W , which can be interpreted, for example, as

the average waiting time) as well as a random factor discussed in the paragraphs below.

After each interaction, customers update their expectation of the company’s service quality

through the recursive relationship

w̃k = αkwk + (1− αk) w̃k−1 (1)

where αk ∈ (0, 1) is the weight assigned to the last experience. In this way, the customer’s
w̃k can be connected to the number of previous transactions. Two important special cases

are αk =
1
k
, where the service estimate is the average of all previous service experiences,

and αk = α, which corresponds to exponential smoothing. This type of Bayesian updating

mechanism where customers combine their last experience with a summary statistic of pre-

vious experiences is standard in the marketing literature and has been empirically validated

in a variety of settings (e.g., Bolton 1998). Furthermore, the αk parameter in the specific

formulation presented in Eq (1) takes into account the fact that the customers’ service-

quality estimates can depend not only on their previous estimate and the actual level of

service experienced in the last interaction, but also on the number of previous interactions,

in accordance with the findings of Bolton (1998) and Rust et al (1999) discussed in §2.

Customer satisfaction is represented by the customer’s estimate of the firm’s true service

level and is denoted by x, a random variable whose distribution is given by F (x|w̃k) = F̃k.

This assumption has its limitations, but these do not affect the generality of the analytical

approach or the results of this paper. The consumers’ expectations, F (x|w̃k) ,are based

on a prior w̃0 (which is independent of W ) and on a vector of observations (w1, w2, ..., wk)

which are generated by the stochastic process governed by reality, or F () . There is no

value of W for which the consumer will never defect because the customer’s estimate of

F () will always be based on the observed realizations of this stochastic process, not on

W itself. The methodology used in this paper can be extended to accommodate estimates

and perceptions of higher moments of perceived service quality, allowing for more complex

operational definitions of F̃k. In spite of its real-world appeal, this additional complexity

leads to the same results and insights, and therefore the simpler definition of customer

satisfaction is preferred for the sake of clarity of exposition (the details of this analysis are
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Figure 1: Example of service interactions over time

available from the authors).

3.1.1 Individual Customer Dynamics

The dynamics of the customer-company interactions are summarized in Figure 2. Note

that this figure explicitly depicts how the firm’s decision variables–pu (the usage fee), ps

(the subscription fee), and W (the average waiting time)–are used to control the customer

interface.
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Figure 2: Dynamics of Customer-Company interactions

At the beginning of each period, active customers (i.e., those who have not defected)

pay a subscription fee ps to renew their subscription to the service. Periods are defined to

be of length T (see Figure 1), which can represent days, weeks, or months depending on

the specific application. Customers who choose to renew the subscription agree to enter a

service contract whereby they will pay usage fee pu every time they use the service. This is

one of the most frequently used pricing structures in the telecommunications industry (cf.
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Danaher 2002). Furthermore, this two-part pricing includes the case where customers pay a

fixed subscription fee and have unlimited usage (pu = 0) as well as the case where there is

no subscription fee and customers only pay when they use the service (ps = 0) .

Customers use the service at the rate η, which (as depicted in Figure 2) is a function

of their level of satisfaction and the usage fee (pu) but not the subscription fee (ps). In

contrast to the models of Hall and Porteus (2000) and Gans (2002), there can be more than

one interaction per period. This is how the present model captures the customer’s choice of

depth of relationship. Figure 1 depicts a situation where there were three interactions in the

first period and two in the second period.

The utility customers derive from each service interaction has a fixed component as well

as a random component. The fixed component is given by (v (η)− ηpu), where v (η) is the

intrinsic benefit of receiving the service at rate η for one period. The random component, de-

noted by c(w), is a function of the experienced service quality, w. Since capacity-constrained

service-delivery systems are commonly modeled as queues, quality is assumed (without loss

of generality) to be measured in terms of the waiting time, and therefore the customer utility

function is decreasing in w. In this case, the function c (w) can be interpreted as the cost of

waiting.

3.1.2 Subscription and Defection

Customers will choose to subscribe (or renew their subscription) whenever the expected

benefits outweigh the expected costs–more precisely, whenever

(v (η)− ηpu)− η (c̄ (w̃))− ps > 0, (2)

where

c (w̃) =

Z ∞

0

c(x)dF (x|w̃) (3)

is the amount of dissatisfaction due to waiting that the customers expect to experience given

their current estimate of the service level. Inequality (2) must also hold for new customers

who must decide whether or not to subscribe. Each potential customer arrives with an

expectation of service quality w̃0. Expectations are updated after each service encounter,

and customers defect immediately after a service encounter if their current estimate of w̃

does not satisfy inequality (2). In other words, a potential customer only becomes a new
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customer if inequality (2) is satisfied when w̃ = w̃0.

Even though new arrivals into the system depend strictly on an exogenous arrival rate

and are independent of pu and ps, they are implicitly endogenous in that the probability

that they will become actual customers also depends on the fees, since it is possible for a

customer to defect before paying the subscription fee and undergoing the first interaction

(note in Figure 2 that it is possible for a new customer to go directly to the“customer defects”

stage without actually experiencing the service).

There are very few service situations where the actual mean service level W is perfectly

observable by customers. Typically, for a new customer, W would affect w̃0 only indi-

rectly, through word-of-mouth. However, the effect of word-of-mouth is often biased and can

be overwhelmed by explicit service promises (advertising, personal selling, contracts, other

communications), implicit service promises (tangibles, prices), and the customer’s past ex-

perience with other firms in the same industry as well as firms in other industries (Zeithaml,

Berry and Parasuraman 1993). With this in mind, we believe that an initial approach to the

problem where w̃0 is independent of W is legitimate, but that a real-world estimation of the

arrival rate should take many more factors into account.

The analysis in the sections that follow will make use of the function b
³
η; ps, pu, F̃ (·)

´
,

defined as

b
³
η; ps, pu, F̃ (·)

´
= (v (η)− ηpu)− η (c̄ (w̃))− ps. (4)

This function represents the customer’s expected net utility per unit of time, where the unit

is the period of length T . The way the two-part tariff is incorporated into the consumer’s

decision model is consistent with recent behavioral findings that consumers devise a summary

statistic based on the cost per unit of a two-part tariff and compare it with their expected

usage level (Redden and Hoch 2006). The customer will choose the usage rate η∗ that

maximizes b
³
η; ps, pu, F̃ (·)

´
and will defect whenever

b
³
η∗; ps, pu, F̃ (·)

´
= b∗ < bmin. (5)

The threshold bmin represents the value a customer expects to receive from the competition

minus any applicable switching costs and can be set to 0 (as in (2)) without loss of generality.

Indeed, (5) can be made equivalent to the commonly-used logit and probit model by making
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particular assumptions about the functional form of b (·) and the distribution of the error
terms of the probabilistic variables. This formulation of the defection decision is consistent

with the conclusions Gupta and Zeithaml (2006) reached after examining the published liter-

ature connecting customer metrics to financial results: there is a strong correlation between

customer satisfaction (captured here by F̃ (·)) and customer retention. The threshold, bmin,
which represents the expected utility of switching to the competition, it is assumed to be

constant for a number of reasons. First, because customer expectations of a given firm’s ser-

vice quality are shaped by several different factors (described in our justification of why w̃0

is independent of W ) according to the results of Zeithaml, Berry and Parasuraman (1993).

Second, because in most real-world applications our actual service level, W , is not perfectly

observable by the competitors, so there is no a priori reason to assume that they would

adapt their service levels optimally and rationally based on our decision of W. Finally, even

if competitors choose to adapt their service levels, these decisions can often not be made

instantaneously. The delay in the competitors’ change of capacity would then be followed by

a delay in the time until the customers’ perceptions of quality changes, making the constant

threshold a reasonable assumption given the time frame in which these decision are made

by actual firms.

3.1.3 Depth of Relationship

The next propositions present monotonicity properties of the customer’s optimal choice of

depth of relationship and the corresponding level of utility the customer derives from inter-

acting with the firm. Proposition 1 connects the customer’s optimal depth of relationship

with the firm’s decision variables, and Proposition 2 connects the customer’s expected net

utility per unit time with the firm’s decision variables.

Proposition 1 (a) The set of usage rates that maximize the expected utility per period is

nonincreasing in pu.

(b) The set of optimal usage rates is also nonincreasing in the expected waiting cost c̄.

(c) If the cost function c is increasing, then the set of optimal usage rates is nonincreasing

in w̃.

Proof. See Appendix A.1.

Proposition 1 establishes the monotonicity of the customer’s usage of the service as a

function of the usage fee, the expected interaction cost, and the service-level estimate. The
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behavior of the expected net utility with respect to these parameters is characterized in

Proposition 2.

Proposition 2 (a) The expected net utility per period, b∗ = maxη≥0 b (η), is nonincreasing

in the expected cost c̄. If F̃ (x|w̃) is decreasing in w̃ and c (·) is nondecreasing, then b∗ is also

nonincreasing in w̃.

(b) The expected net utility per period is nonincreasing in both the expected value of the

usage fee pu and the periodic membership fee ps.

Proof. See Appendix A.1.

This monotonicity property allows the company to use the customer’s estimate of service

level as a concrete and manageable measure of customer utility. The properties of Proposi-

tions 1 and 2 will hold for any specific form of the function v(η). Different types of customer

behavior can be modeled by varying the cost and the value functions. For example, a step-

increasing value function will result in a step-decreasing depth of relationship. When v(η) is

concave, the maximization problem has a unique solution (η∗) , and the result of Proposition

1 applies to the unique optimal usage rate η∗.

3.2 Dynamics of Aggregate Customer Behavior

The evolution of the relationship between customers and the firm is modeled as a Markov

process, where each state is defined by the number of previous interactions and the customer’s

current level of satisfaction (operationalized through the estimation of the average waiting

time). Customers remain with the company as long as b∗ > bmin (as in (5)). The expected

net utility is monotonic in the current level of satisfaction, as shown in Proposition 2. Thus,

requiring the customers’ utility to be above the threshold is equivalent to requiring the

estimate w̃ to be below w̃max, where w̃max is implicitly defined by b∗ (w̃max) = bmin.

In order to define a finite set of states, the interval [0, w̃max] is partitioned into a set I of S

disjoint subintervals, where I = {I1, ..., IS} = {[0, u1) , [l2, u2) , ..., [lS, uS]}, and ui = li+1, i =

1, ..., S − 1, and uS = w̃max. Given the monotonicity properties of the net utility function,

this partition is equivalent to partitioning the interval [b∗ (0) , bmin] into S subintervals. The

states are defined so that a customer who has interacted with the firm k times and whose

level of satisfaction (w̃k) falls in the interval Ii is in state (i, k). A customer in state (i, k)

who accesses the service for the (k + 1)th time experiences service quality wk+1, updates the
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level of satisfaction according to (1), and moves to state (̃ı, k + 1), where ı̃ is defined so

that w̃k+1 ∈ Iı̃. Figure 3 provides a representation of this model, where customers move

downward through the network while they are with the firm.
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Figure 3: Evolution of customers

The transition probabilities in this network are a function of the true distribution of

waiting time (which depends onW , the service-quality decision variable) and the customer’s

update mechanism. If the true distribution of waiting time is F (x) and the customer’s

estimate of the mean of the service quality is updated according to Equation (1), then

Pr (w̃k+1 ≤ x|w̃k = y) = Pr

µ
wk ≤

x− (1− αk) y

αk

¶
= F

µ
x− (1− αk) y

αk

¶
.

Given that a customer is in state (i, ·), w̃ is assumed to be uniformly distributed in [li, ui),

i.e., fw̃k (y|w̃k ∈ Ii) =
1
∆i
, where ∆i = ui − li. More precisely,

Pr (w̃k+1 ≤ x|w̃k ∈ Ii) =
R ui
li
Pr (wk+1 ≤ x|wk = y) fw̃k (y|w̃k ∈ Ii) dy

= 1
∆i

R ui
li

F
³
x−(1−αk)y

αk

´
dy.

The transition probability pkij = Pr {w̃k+1 ∈ Ij|w̃k ∈ Ii} (moving from state (i, k) to (j, k+

14



1)) is then given by

pkij = Pr (lj ≤ w̃k+1 ≤ uj|w̃k ∈ Ii) = Pr (w̃k+1 ≤ uj|w̃k ∈ Ii)− Pr (w̃k+1 ≤ lj|w̃k ∈ Ii)

= 1
∆i

hR ui
li

F
³
uj−(1−αk)y

αk

´
dy −

R ui
li

F
³
lj−(1−αk)y

αk

´
dy
i
.

Note that the assumption that the estimates are uniformly distributed is asymptotically

exact as ∆i → 0. From the Lebesgue density theorem, it follows that

lim
∆i→0

1

∆i

∙Z li+∆i

li

F

µ
uj − (1− αk) y

αk

¶
dy −

Z li+∆i

li

F

µ
lj − (1− αk) y

αk

¶
dy

¸
= F

µ
uj − (1− αk) li

αk

¶
− F

µ
lj − (1− αk) li

αk

¶
.

A scaling factor pD can be introduced into the model to account for customer defections

that are caused by exogenous factors (e.g., moving, dying) that are assumed to remain con-

stant over time (c.f. Schmittlein, Morrison and Colombo 1987). If this factor is introduced,

all transition probabilities are multiplied by (1− pD) . In what follows, it is assumed that

pD > 0 unless otherwise noted. Note, however, that the model will still converge if pD = 0,

as the necessary condition for convergence, Pr (w̃ > wmax) > 0, is true under the assumption

that customers will not tolerate an arbitrarily low service quality.

4 System Behavior in Steady State

This section will analyze the customer base as a migration process and explain the coun-

terintuitive result that decreasing price or increasing service can result in a decrease in the

number of customers in the system. This analysis will answer questions concerning the effect

of the service level and pricing on the expected duration of customer relationships, the total

number of customers, and the level of demand experienced by the service facility by modeling

the customer base as an open migration process. The company will then be analyzed as a

network of infinite server queues. The states correspond to stations in the network, and the

time between interactions corresponds to service time.

The arrival process of new customers to state (i, 0) at the top of the network is assumed

to be a homogeneous Poisson process with rate λ0i . For customers in states (i, ·), the mean
time between interactions is 1

ηi
, where ηi =

1
∆i

R ui
li

η∗ (w̃) dw̃. Since η∗ (w̃) is a monotonic
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function of w̃, ηi will also be monotonic. If the time between interactions for customers in

state (j, k) has a general distribution with mean 1
ηj
, then the result of Proposition 3 follows

from queueing network theory.

Proposition 3 (Arrival rate to each state) In equilibrium, the number of customers at each

state (j, k) is independent and has a Poisson distribution with parameter
λkj
ηj
, where λkj is the

arrival rate to state (j, k) and is the solution to the following system:

λkj =
X
i:Ii∈Î

pk−1ij λk−1i for all j : Ij ∈ Î and for k = 1, 2, ... (6)

where Î = {Ii ∈ I : [w̃ ∈ Ii]→ [b∗ (w̃) ≥ bmin]}.

Letting λk =
¡
λki : si ∈ Ūbmin

¢
be the vector whose elements are the arrival rates to the

states corresponding to customers of age k, and letting Pk =
£
pkij
¤
be the matrix of transition

probabilities, (6) can be written as:

λk = λk−1Pk−1

= λ0P0P1 · · ·Pk−1.
1 (7)

The demand for service will be the sum of the demand of customers at every state, so the

total arrival rate to the service facility is

λ =
∞X
k=0

(λke) , (8)

where e is the unit column vector. N, the expected total number of customers in the system,

is given by

N =
∞X
k=0

X
sj∈Ūbmin

λk
j

ηj
. (9)

This system has an infinite number of states. However, the total arrival rate to the ser-

vice facility and the expected total number of customers in the system is always finite, as

established by the proposition below.

Proposition 4 (Finiteness of the total arrival rate and the expected number of customers)
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(a) The total rate of arrival to the service facility is finite.

(b) The expected total number of customers in the system is finite.

Proof. See Appendix A.1.

After every interaction, some customers leave the system, and the rate of arrival to the

next level of states decreases. If customers stay long enough in the system and become

insensitive to actual realizations of service quality, the rate of arrival to the service facility

and the expected number of customers in the system could become unbounded. This is of

no concern, as it would only happen when pD = 0 and Pr (w̃ > wmax) = 0, which in turn

requires wmax to be unreasonably high and ak to be decreasing and tending to 0–a highly

unlikely situation in a realistic scenario.

Another question to explore is how the service level affects the aggregate demand as well

as the number of customers in the system. In order to answer this question, we must explore

the behavior of the arrival rate of customers who request service at the service facility as a

function of the level of service chosen by the firm. The following proposition assumes that

F (x|W ) is nonincreasing in the average waiting time W in order to derive an important

monotonicity property.

Proposition 5 The total arrival rate to the service facility is nonincreasing in W .

Proof. See Appendix A.1.

An alternative approach yielding the same results is to make the more general assump-

tion that the firm selects a distribution of service levels from a family of distributions

{Fi (x) , i ≥ 0}, where the index i can be either discrete or continuous. In this case, it is

also necessary to assume that the distributions can be stochastically ordered so that either

Fi (x) ≥st Fj (x) or Fi (x) ≤st Fj (x), i.e., the firm selects the service level from a stochasti-

cally ordered set.

Figure 4 presents results from a numerical example (see Appendix A.2 for details) which

illustrates the effect of the service level on the the firm’s customer base. Here one can observe

the counterintuitive effect that as the quality of service decreases, the number of customers

does not always decrease (it may in fact increase). This effect, which can be predicted by the

preceding analysis, can be intuitively explained as follows. As the service quality decreases,

the probability that a customer will decide to leave the company increases, and thus that

customer’s total number of interactions decreases. At the same time, the intervals between
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Figure 4: Effect of the service level on the total number of customers for different usage fees

(pu).

that customer’s consecutive interactions increase. The expected length of stay is defined by

the relationship

E(Length of Stay)=E(Total Number of Interactions)×(Average Interval Between Interactions),

where E() denotes the mathematical expectation. The net effect on the average length of

stay will depend on the relative magnitude of these two terms. According to Little’s Law,

the expected number of customers in the system will be equal to the product of the arrival

rate of potential customers and the average length of stay of each customer. Therefore, the

total expected number of customers will ultimately depend on the relative sizes of those same

opposing elements: the expected number of interactions (which goes down when quality goes

down) and the average length of the intervals between them (which goes up when quality

goes down). As service quality decreases, the increased interval between interactions can be

high enough to offset the decrease in the total number of interactions and produce a greater

total “Length of Stay,” which leads to a greater number of customers in steady state; hence,

we obtain the counterintuitive result that the size of the customer base can actually increase

when service quality goes down.

Alternatively, consider the partial derivative ofN with respect toW , ∂N
∂W

=
P

k

P
j

∂
λkj
ηj

∂W
.
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Note that ηj does not depend on W . Since ηj is defined as the average usage rate for cus-

tomers in state (j, k) (i.e., for customers with a given estimate of service level), ηj depends

only on pu and ps. It follows that

∂N

∂W
=
X
k

X
j

1

ηj

∂λkj
∂W

.

Letting J+=̇
n
(j, k) :

∂λkj
∂W
≥ 0

o
and J−=̇

n
(j, k) :

∂λkj
∂W

< 0
o
, it can be affirmed that N is

increasing in W whenever

X
(j,k)∈J+

1

ηj

∂λkj
∂W

>
X

(j,k)∈J−

X
k

1

ηj

∂λkj
∂W

.

When the usage rate is constant, the total number of customers in the system is also

nonincreasing in W . This property can be verified by observing that the total number of

customers, N, is bounded from above by

N̄=̇
1

min
£
ηj
¤X

k

X
j

λkj (10)

and from below by

N
¯
=̇

1

max
£
ηj
¤X

k

X
j

λkj , (11)

with both bounds being nonincreasing in W.

The remainder of this section will examine the effects of the firm’s pricing policies on

the arrivals to the service facility (service requests) and on the number of customers in the

system. It is important to note that the transition rates between states corresponding to

customers who stay in the system are functions of the service level provided by the firm and

the customers’ estimation procedure. These rates are affected by neither the usage fee pu

nor the subscription fee ps. However, pricing affects each customer’s decision of whether or

not to stay with the company. Intuitively, one might expect that the higher the price, the

higher the customer’s demand for service quality. In the present model this translates into

a contraction of the subspace of service-quality estimates that would be sufficiently high for

the customer to stay with the firm.

Recall that customers stay with the company as long as their expected net utility per
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period is above a threshold bmin. For fixed values of pu and ps, this is equivalent to requiring

the customer’s estimate to be below a critical value wmax (this result follows immediately

from the monotonicity property in part (a) of Proposition 2). Since the net utility per

period is also monotonic in pu and ps (part (b) of Proposition 2), it follows that wmax=̇w :

b∗ (w, pu, ps) = bmin is decreasing in pu and in ps. That is, in response to higher prices,

customers will demand higher levels of service. This observation leads to the next result,

which is analogous to Proposition 5, with the difference that the decision variables are now

pu and ps rather than W.

Proposition 6 The total arrival rate to the service facility is nonincreasing in both the

average usage fee pu and the subscription fee ps.

Proof. See Appendix A.1.

In the case of expected number of customers in the system as a function of the usage

fee pu, there are, as was the case with service quality, two opposing effects–recall that the

number of customers depends on average length of stay, which is the product of the number

of interactions and the average interval between them. Based on the monotonicity property

of the usage rate (Proposition 1), an increase in the usage fee will produce an increase in the

time between customer interactions. On the other hand, an increase in price will make the

customer’s criteria for staying in the company more stringent, which will tend to reduce the

number of interactions. Thus, the net result of an increase in price on the size of the customer

base is not necessarily monotonic (as is illustrated by the numerical example in Figure 5)

and will depend on the relative importance of those two effects (number of interactions and

average interval between them). This dynamic is analogous to the one in Figure 4, and the

bounds for N obtained in (10) and (11) are also nonincreasing in pu. Note that in both

Figures 4 and 5, the number of customers increases for sufficiently small values of the control

variable (in response to what customers might objectively consider undesirable changes in

price and service quality) before it decreases as managers might expect, so careful managerial

selection of the pricing and service-quality levels is particularly important to yield the desired

results.

The effect of the subscription fee on the rate of usage is simpler to analyze. An increase

in ps will not influence the rate of usage. This result is formalized in the proposition below.

Proposition 7 The expected total number of customers in the system is nonincreasing in

the periodic membership fee ps.
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Figure 5: Effect of the usage fee on the total number of customers for different levels of

service (W , average waiting time, in hours).

Proof. See Appendix A.1.

5 Profit Optimization

This section examines how price and service quality affect profitability. The previous section

has shown that the size of the customer base in steady state is non-monotonic in the service

quality and usage fee. As mentioned earlier, this result raises questions concerning the

adequacy of maximizing the size of the customer base or using the size of the customer base

as a proxy for profitability in the long run, since fewer customers sometimes yield higher

profits. This section provides a rigorous approach to the issue of profit maximization.

The function to be maximized is the rate at which profit is generated in steady state.

The revenue per period, denoted R, is given by

R = λpu +Nps.

Let C (λ,W ) be the cost per period of providing service levelW to a set of customers arriving

at rate λ. C (λ,W ) is assumed to be increasing in λ and decreasing and convex in W . The
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profit optimization problem can then be formulated as the following nonlinear program:

maxΠ = λpu +Nps − C (λ,W )

s.t.

λ = g (pu, ps,W ) , N = h (pu, ps,W ) , W ≥ 0.

The restrictions on λ and N correspond to the implicit functions for the arrival rate and

the size of the customer base, derived in (8) and (9) respectively.

Let

L = Π− γ1 [g (pu, ps,W )− λ]− γ2 [h (pu, ps,W )−N ] ,

where γ1 and γ2 are Lagrange multipliers. Using the notation where yx is the partial deriv-

ative of ywith respect to x, the necessary optimality conditions are given by the following

set of equations:

λ− γ1gpu − γ2hpu = 0, N − γ1gps − γ2hps = 0, −CW − γ1gW − γ2hW = 0,

pu − Cλ + γ1 = 0, ps + γ2 = 0,

g (pu, ps,W )− λ = 0, h (pu, ps,W )−N = 0, and W ≥ 0.

Straightforward algebraic manipulation yields

pu
∂λ

∂W
+ ps

∂N

∂W
=

∂C

∂W
+

∂C

∂λ

∂λ

∂W
, (12)

λ+ pu
∂λ

∂pu
+ ps

∂N

∂pu
=

∂C

∂λ

∂λ

∂pu
, (13)

and N + pu
∂λ

∂ps
+ ps

∂N

∂ps
=

∂C

∂λ

∂λ

∂ps
. (14)

These equations are analogous to equating marginal revenues with marginal costs for each of

the three decision variables: service qualityW in (12), usage fee pu in (13), and subscription

fee ps in (14).

The LHS of (12) reveals that the marginal revenues due to improving service quality can

be decomposed into two parts. The first part corresponds to the effect of service quality on

the arrival rate into the service facility (service requests). The second part corresponds to
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the effect of service quality on the number of customers in the system. Proposition 5 asserts

that the arrival rate is nonincreasing in W , but the size of the customer base can be either

increasing or decreasing, as illustrated in Figure 4. The impact of an increase in service

quality on profitability will depend on the relative size of these effects (changes in the arrival

rate and the number of customers) in light of the prices. Note that the cost side has two

terms. This is because increasing the service quality has a direct effect on costs (providing

good service is assumed to be more costly than providing bad service) as well as an indirect

effect (service quality has an effect on how many customers will demand the service).

In Equation (13) the marginal revenue gained from increasing the usage fee is decomposed

into three parts. The first is the direct effect of a price increase on the revenue. This is the

additional revenue gained assuming that the number of customers demanding service will

remain constant in spite of the price difference. The second and third parts correspond to

the indirect effects, which are analogous to those explained in the previous paragraph. The

first indirect effect
³

∂λ
∂pu

´
is the simplest to understand, since the result of Proposition 6

guarantees that the arrival rate is nonincreasing in pu. The last term, on the other hand,

cannot be understood as intuitively. As depicted in Figure 5, increasing the usage fee can

have a positive or a negative impact on the size of the customer base. As in the case of the

waiting time, an increase in pu may also result in an increase or a decrease in profitability.

Finally, Equation (14) shows that the marginal revenue gained from increasing the sub-

scription fee is decomposed into three parts. The first is the direct effect of a price increase

on the revenue due to the number of customers that will be paying the subscription fee

in steady state (i.e., the size of the customer base). The second and third terms on the

LHS correspond to the indirect effects. Propositions 6 and 7 ensure that both ∂λ
∂ps

and ∂N
∂ps

are negative, making this the most intuitive of the optimality conditions, as the dynamics

involved are the same ones found in traditional pricing problems.

6 Discussion

This paper provides an important building block for understanding the underlying structure

of the dynamics governing the impact of price and service quality on customer satisfaction

and profitability. Changes in price and service quality that provide more value to customers

sometimes result in fewer rather than more customers in the long run. Another puzzling

phenomenon has been that in some cases where the size of the customer base actually has
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increased as expected, managers have been observing profits go down. This paper provides an

explanation for these phenomena and recommends actions that will enable managers to act

optimally under these circumstances. The key factor driving the results is the incorporation

of a variable that captures each customer’s depth of relationship, chosen according to each

individual’s perception of service quality.

In a wider context, the analysis addresses the issue of customer interface design from the

perspective of a long-term relationship between a company and its clients. Service quality

plays a key role in long-term relationships: it acts as one of the main drivers of customer

satisfaction, which in turn determines loyalty and hence the length of the relationship itself.

Companies must carefully manage their service-quality levels in order to differentiate their

service offerings. Fee structures also play a determining role in long-term relationships, as

pricing exerts a large influence on the customers’ frequency of interaction and propensity to

defect.

The focus of this paper is on the impact of service quality and fee structures on customer

behavior and the resulting effect on the long-term value of customer relationships to the firm,

in order to provide insights into the design of customer interfaces (choosing fees and service

quality) to optimize profitability. In particular, the results explain the interdependence of

the pricing structure, service level, and long-term behavior of customers and quantify the

effect of these collective factors on the expected utilization of the service facility, the size of

the customer base, and the revenues.

The most intriguing result of this paper relates to the fact that the number of clients that

a company will have does not necessarily increase as service quality increases. In order to

explain this phenomenon, the analysis in §4 reveals that the number of clients at any given

point in time depends on the rate at which new customers are acquired and the average

length of their relationship with the company. The length of the relationship, in turn, is

determined by the total number of interactions multiplied by the average time between

interactions. If the service level falls below a certain threshold, customers leave. As the

level of service decreases, the number of interactions decreases because the probability that

the customer will cross the threshold will increase. However, the length of time between

interactions will also increase because customers will not use the service as often as they

would if the service level were higher. The increase in the average length of time between

interactions can offset and even surpass the decrease in the total number of interactions.

Companies that earn revenues each time the customer uses their service are worse off in this
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situation (they would profit better from making decisions which maximize the number of

interactions). Companies that charge a subscription fee, on the other hand, can be better

off: they decrease their operational costs due to the reduced number of interactions while

simultaneously increasing their customer base. This result is rather unintuitive and serves

to show the value of mathematical analysis in devising and implementing strategic policies.

The models developed in this paper can help managers design the way in which the firm

will interact with its customers. These models can be used to evaluate the consequences

of decisions–such as changes in service quality, fee structures, and product quality–in

terms of customer retention, revenues, and costs. These are high-level decisions that have

important implications regarding the type of customers that companies attract and retain,

which in turn determines the company’s sources of revenue. The result that lower levels of

quality may lead to a larger customer base and higher profitability is of great interest to

managers deciding how to position their services in light of their competitors’ offers and the

expectations of their target market.

The findings of this paper open the way for a number of new research opportunities.

One possible extension is to incorporate the impact of marketing expenditure on the arrival

rate of new customers. It would be interesting to investigate the case where the impact is

made constantly over time as well as the effect of a single campaign on the steady state of

the system. This paper can also be extended to the case where the firm interacts with a

heterogeneous customer base. If the customer base can be divided into discrete segments

that can be targeted separately, the firm’s control problem reduces to simple replications of

the one solved in this paper. However, the problem becomes more complex as the represen-

tation of heterogeneity and the addressability of individual customers become more difficult.

Developing this paper’s model into a decision-support tool for controlling the customer in-

terface, compatible with various models of customer heterogeneity, is a rich research topic

worth pursuing. Finally, generalizing the results of this paper to the case where customers

interact with the firm through multiple channels is the subject of current investigation by

the authors.
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A Appendices

A.1 Proofs

Propositions 1

Proof. The proofs are trivial under the assumptions that v(η) is concave and c (w̃), the

expectation of the function c (given by (3)), is increasing in w̃. These assumptions are quite

robust for most applications. For the general case, assuming b is smooth we have ∂2b
∂η∂pu

≤ 0.
It then follows from Topkis (1978) that b has decreasing differences in (η, pu) and therefore

b∗ (η) is nonincreasing in pu. This proves part (a). For part (b), we note that ∂2b
∂η∂c
≤ 0 and

the result follows from the same argument used above. Finally, for part (c), note that if
∂c̄
∂w̃

> 0 then b has decreasing differences in (η, w̃), since ∂2b
∂η∂w̃

= ∂2b
∂η∂c̄

∂c̄
∂w̃
≤ 0.

Proposition 2

Proof. The proof for this proposition is based on the envelope theorem. For part (a),

first note that ∂b∗

∂c̄
= ∂b(c̄,η)

∂c̄
= −η,where η ∈ η∗ (c̄). By definition, η ≥ 0, and therefore,

∂b∗

∂c̄
≤ 0. If c is increasing, ∂c̄

∂w̃
≥ 0, implying that ∂b(w̃,η)

∂w̃
= ∂b(c̄,η)

∂c̄
∂c̄
∂w̃
≤ 0. The argument

when c is decreasing is symmetric, concluding the proof of part (a). For part (b), note that
∂b∗

∂pu
= ∂b

∂pu
= −η. Since η ≥ 0, it follows that ∂b∗

∂pu
≤ 0. For the membership fee, ps, we simply

note that ∂b∗

∂ps
= ∂b

∂ps
= −1 < 0.

Proposition 3

Proof. Follows immediately from Kelly (1979).

Proposition 4

Proof. For part (a), to see that λ is always finite we can check that limt→∞
λk+1e

λke
< 1

(D’Alembert’s ratio test). First, note that

λk+1e

λke
=
λ0P0P1 · · ·Pk−1Pke

λ0P0P1 · · ·Pk−1e
=
λkPke

λke
.

Next, note that the sum of every row of Pk is less than 1 as long as there exists a level of ser-

vice that will cause at least one customer to defect (an assumption which is trivially satisfied

in practice if customers will not tolerate an arbitrarily low level of service). Therefore, every

element of Pke is less than 1 and λkPke
λke

= λk+1e
λke

< 1. For part (b), assuming that customers

require a positive expected utility and that v (0) = 0, f ≥ 0 implies that at every state the
access rate ηj is positive (ηj = 0 implies a nonpositive utility). Then, the expected number
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of customers in the system, N =
P

k

P
j

λkj
ηj
, is bounded from above by 1

minj{ηj}
P

k

P
j λ

k
j .

Given that 1

minj{ηj} > 0 and that
P

k

P
j λ

k
j is finite (part (a)), we conclude that N is also

finite.

Proposition 5

Proof. If customers base their decisions on the first moment of the distribution of waiting

time, then the probability that a customer in state (i, k) will leave the system is:

Ã
1−

X
j

pkij

!
= Pr (wk+1 ≥ wmax|wk ∈ Ii)

=

µ
1− 1

∆i

Z ui

li

F

µ
wmax − (1− α) y

α

¶
dy

¶
.

For any W1 < W2,

F

µ
wmax − (1− α) y

α
|W1

¶
≥ F

µ
wmax − (1− α) y

α
|W2

¶
.

Thus, Z ui

li

F

µ
wmax − (1− α) y

α
|W1

¶
dy ≥

Z ui

li

F

µ
wmax − (1− α) y

α
|W2

¶
dy

for i = 1, ..., S, and for every k ≥ 0, the sum of every row of Pk(W1) is greater or equal to

the sum of every row of Pk(W2). It then follows from (7) and (8) that λ(W1) ≥ λ(W2).

Proposition 6

Proof. The probability that a customer in state sti will leave the system is given by:

Ã
1−

SX
j=1

ptij

!
= Pr (wt+1 ≥ wmax|wt ∈ Ii)

=

µ
1− 1

∆i

Z ui

li

F

µ
wmax − (1− α) y

α

¶
dy

¶
.

Let wmax (pu, ps) =̇w : b∗ (w, pu, ps) = bmin. For any pu ≤ pu2 and any ps, wmax (pu1, ps) ≥
wmax (pu2, ps), and thus F

³
wmax(pu1,ps)−(1−α)y

α

´
≥ F

³
wmax(pu2,ps)−(1−α)y

α

´
, and for i = 1, ..., S,

Z ui

li

F

µ
wmax (pu1, ps)− (1− α) y

α

¶
dy ≥

Z ui

li

F

µ
wmax (pu1, ps)− (1− α) y

α

¶
dy.
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Then, for every t ≥ 0, the sum of every row of Pt(pu1) is greater or equal to the sum of every

row of Pt(pu2), and from (7) and (8) it follows that λ(pu1) ≥ λ(pu2). Analogously, for any

ps1 ≤ ps2 and any pu, wmax (pu, ps1) ≥ wmax (pu, ps2) and the result follows.

Proposition 7

Proof. ∂N
∂ps

=
P∞

k=0

P
j

∂
λkj
ηj

∂ps
, where

∂
λkj
ηj

∂ps
=

∂λkj
∂ps

ηj−
∂ηj
∂ps

λkj

(ηj)
2 . Since ηj does not depend

on ps, ∂N
∂ps

=
P∞

k=0

PS
j

∂λkj
∂ps

ηj
. Given that λkj =

P
si∈Ūbmin(ps)

pk−1ij λk−1i , pij does not depend on

ps, and Ūbmin is decreasing in ps, it follows that for every (j, k), λkj is also decreasing in ps.

Since for every j, ηj ≥ 0, the result follows.

A.2 Parameters for simulations

In Figure 4 the customers’ utility functions are given by v (η) = k1
√
η, the waiting cost

is given by c (x) = k2x
2, and the customers’ estimates of waiting time are exponentially

distributed with mean w̃. Thus, c̄ (w̃) =
R∞
0

k2x
2 1
w̄
e−

1
w̄
xdx = 2k2w̄

2 and η∗ = k1
2(p+2k2w̄2)

2 .

The value of the parameters is given by W = 0.5, α = 0.6, β = 0, pD = 0.5× 10−3, k1 = 12,
k2 = 2, bmin = 0, and ps = 2.
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