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Abstract

In a decentralized supply chain, double marginalization is an important source of inefficiency. We
suggest in this paper a simple mechanism to reduce it, that uses a wholesale price contract and rene-
gotiation. Our mechanism only requires repeated interaction, and rational behavior from the players.
Specifically, over T rounds of negotiation, the supplier proposes different prices in each round, and the
buyer places orders at the quoted price. Even though prices are decreasing in time, the buyer places a
positive order, to force the supplier to reduce its price in the following round. This interaction results
in higher profits for both supplier and buyer. We solve the buyer and supplier problems and show that,
as T increases, supply chain efficiency tends to 100%, and the sub-optimality gap decreases with 1/T .
Finally, we discuss how these results can be applied to design negotiation processes.

1 Introduction

In the past years, supply chain management has emerged as one of the most important levers

for many companies to remain profitable. For example, Wal-Mart in the United States, Aldi in

Germany or Mercadona in Spain have achieved remarkable profitability in retail, where margins

have traditionally been very low. Key to their success are supply chain management practices,

including logistics (cross-docking), demand management (every-day-low-prices) and supplier

partnering (strategic suppliers).

In many industries, as the number of components outsourced has increased, managing buyer-

supplier relationships efficiently has become critical. One of sources of inefficiency is known

as double marginalization. This phenomenon arises when two companies, working in the same

supply chain, optimize inventory levels and prices taking only its own benefit into account,

and thus create negative externalities for the other company. As a result, the supply chain

operates in a mode that is sub-optimal in the sense that additional profit for the chain could

be created and shared between its firms. Double marginalization has been studied extensively

in the literature. For instance, Lariviere and Porteus [10] show that, in a supply chain with a

manufacturer making to order and a retailer ordering to stock, the total stock in the supply

chain is lower than the one that maximizes the supply chain profit. Indeed, the manufacturer

quotes a price larger than its true cost, and, as a result, the retailer orders less than what a
1valbeniz@iese.edu (corresponding author), IESE Business School, University of Navarra, Av. Pearson 21, 08034 Barcelona,

Spain
2dslevi@mit.edu, Operations Research Center, MIT, 77 Mass. Ave., Cambridge MA, 02139, USA
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centralized chain would. This model can be extended to more general settings, and the resulting

behavior is similar.

Improvements countering double marginalization have been suggested, see Cachon [3] for an

extensive review. These improvements allow the supply chain to move from local optimization,

where each company takes decisions individually, considering only its own profits, towards global

optimization, where the decisions of all the companies take into account aggregated supply chain

profits. Typically, this is achieved by changing the incentives of the different partners in the

supply chain, and aligning them towards a common goal, namely, maximizing supply chain

profits. Several solutions to the problem have been proposed and implemented. Despite wide

use, most of these solutions involve costly implementations. As we describe below, modifying

the ”natural” incentive structure of the supply chain creates additional side-effect costs.

• Buy-back agreements, see Pasternack [13], allow buyers to return unsold merchandise to

the suppliers for a refund. This is extensively used in book distribution, where bookstores

can return unsold items to the published for a full refund. This practice pushes bookstores

to carry larger quantities of books than if they had to bear the inventory risk, i.e., the risk

of discarding the excess inventory at a loss at the end of the selling season. Newspaper

distributors use the same type of contract. In the case of newspapers, in order to receive

a refund for unsold items, distributors usually cut the first page of each newspaper, and

return it to the publisher, as proof that the item was not sold. More generally, reverse

logistics must be put in place, and can be expensive for bulky or heavy items, such as

books.

• Revenue sharing agreements, see Cachon and Lariviere [4], induce the same incentive

effect. This type of contract stipulates a cost per unit paid from buyer to supplier, plus

a share of the buyer’s revenue transferred to the supplier. It is commonly used in the

video rental industry. However, for revenue sharing to be effective, the supplier must be

able to monitor the sales of the buyer, of which he receives a share. Obviously, without

monitoring, the buyer would rather declare a very low revenue so that the payment to

the supplier is reduced. For example, in 2000, see [15], the sales monitoring company

Rentrak brought Hollywood Entertainment, the second largest video store chain in the

United States at the time, to court, for understating sales. The understatement would

have reduced the revenue sharing payments from Hollywood to Rentrak. Hollywood ended

up paying $14m to Rentrak. We can thus see that, to enforce revenue sharing agreements,

either partners must trust each other, or otherwise information technology investments

must be installed, at high cost.
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• Finally, capacity pre-commitments, see Barnes-Schuster et al. [1] and Mart́ınez-de-Albéniz

and Simchi-Levi [12], are used in high-tech and fashion clothing manufacturing. Under

such contracts, the manufacturer requires advance capacity reservation from the retailer,

which is charged up-front; after accurate forecasts are obtained and final production quan-

tities adjusted, the final order is placed by the retailer, up to the reserved capacity, for

an additional execution fee. Selecting the right parameters in these contracts induces the

retailer to order higher quantities, which improves supply chain efficiency.

We suggest in this paper another simple mechanism to reduce double marginalization, that

uses a wholesale price contract and renegotiation. Our mechanism requires repeated interaction,

and rational behavior from the players, and thus should not involve implementation costs, such

as logistics or information systems. By letting the supplier modify the wholesale price a few

times, we improve supply chain efficiency.

Specifically, over T rounds of negotiation, the supplier proposes different prices in each

round, and the buyer places orders at the quoted price. Even though prices are decreasing in

time, the buyer places a positive order, to force the supplier to reduce its price in the following

round. This results in higher profits for both supplier and buyer. Intuitively, this simple

scheme is equivalent to using a non-linear pricing schedule, which is able to reduce double

marginalization. In other words, the effects of renegotiation are similar to those of volume

discounts, which push buyers to place larger orders by promising lower prices for the last units

ordered.

Our model uses the same setting as Lariviere and Porteus [10], with multiple negotiation

rounds. That is, we consider a supplier with a given production cost c, that serves the orders

placed by a buyer after the negotiation is finished. This buyer uses the total quantity ordered

to serve a stochastic final demand D that arrives at the end of the negotiation. The payments

from buyer to supplier are done using a wholesale price contract, with a different price for

each negotiation period. Thus, the buyer maximizes its expected profit given the supplier’s

prices, and the supplier maximizes its (deterministic) profit given the buyer’s current inventory

position.

Under some regularity conditions on the demand distribution, we show that the supplier

and buyer’s problems are well behaved, that price quotes decrease over time and that the

total ordering quantity increases with the negotiation length. Hence, supply chain efficiency

improves. Finally, we show that as the number of negotiation periods goes to infinity, the

supply chain profit converges to the first-best, i.e., the profit of the centralized supply chain.

In addition, the sub-optimality gap decreases with 1/T . With these results in hand, we discuss
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in the conclusion with a very simple model how the negotiation process should be organized.

The paper contains two main contributions to the literature. First, we provide the supply

chain literature with a scheme to effectively improve supply chain efficiency, as an alternative to

supply contract engineering. The logic of our scheme is quite different from the existing coordi-

nating mechanisms: it is dynamic instead of designed in one shot, statically; it is decentralized,

with both players taking decisions unilaterally without considering the optimal supply chain,

instead of relying on a comparison to the centralized supply chain; and finally, the improvement

is progressive and efficiency increases with the length of the negotiation.

Second, our model extends previous work from the economics literature on price skimming,

in the case where the buyer is strategic, in a context of supply chain. Strategic customers have

been studied before, but this paper considers the market power of buyers as well. That is, in

our model, the buyer takes into account the impact of its purchasing decisions on future prices,

in contrast with the literature, e.g., Besanko and Winston [2]. In addition, our model can be

used for further extensions with many buyers and many suppliers, where buyers are not only

strategic but can use their market power.

We start by discussing the literature relevant to this work in Section 2, and turn to the

model in Section 3 and an example in Section 4. We present our results in Section 5 and

analyze supply chain efficiency improvements in Section 6. We conclude the paper in Section

7 with a summary of the insights and further research. All the proofs are contained in the

appendix.

2 Literature Review

This paper directly extends Lariviere and Porteus [10], where the inefficiencies of double

marginalization are analyzed. Perakis and Roels [14] investigate how serious double marginal-

ization can be. For this purpose, they study the worst-case performance of supply chains,

among all possible demand distributions, by considering the price of anarchy, i.e., the worst-

case ratio between profits achieved by a decentralized supply chain and a centralized one. They

show that, for the supply chain configuration used in this paper (simple push supply chain with

2 stages), as the cost-to-price ratio decreases, supply chain efficiency worsens, and approaches

zero. The model of Lariviere and Porteus [10] has also been used to examine actions to reduce

double marginalization. Debo and Sun [5] consider a repeated game and investigate when sup-

ply chain collaboration can be sustained. They find that, when the discount rate for future

profits is high, it is more difficult to achieve supply chain collaboration.

Improving supply chain efficiency is the purpose of the supply contracts literature, which
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focuses on aligning supply chain incentives. Cachon [3] provides an excellent review of the field.

Pasternack [13], Cachon and Lariviere [4], Barnes-Schuster et al. [1], Eppen and Iyer [7], among

others, present supply contracts that move the supply chain towards better coordination.

Some papers from the revenue management literature are also related to ours, as we study

the pricing problem of the supplier. Talluri and van Ryzin [16] provide an overview of the

literature, and devote one section to price skimming models. Elmaghraby and Keskinocak [6]

provide an interesting review of the literature: our work falls into their replenishment/strategic-

customers category, since we have no capacity constraint, and the buyer considers its effect on

the supplier’s pricing strategy. Lazear [11] develops a model where demand is constant, equal

to one unit, but the buyer’s valuation is uncertain and uniformly distributed. The buyer is

myopic, in the sense that he places an order as soon as the price is below its valuation. The

price schedule can thus be described up-front, and decreases over time, so that, in expectation,

more revenue can be extracted from the buyer. Granot et al. [9] extend Lazear’s model by

introducing competition between suppliers. Closer to our work is the model of Besanko and

Winston [2], that consider one supplier and many buyers. They introduce the notion of strategic

customers, i.e., when the buyers anticipate price decreases before placing their orders. They

implicitly assume that the buyers have no market power, i.e., their strategy has no impact on

the supplier’s price. In contrast, since we consider a single buyer, we take into account how

the buyer’s ordering strategy influences the supplier’s prices. Finally, Erhun et al. [8] describe

a similar model to ours, where one supplier faces one buyer, with the difference that in their

model the demand is deterministic and linear with price. Interestingly, they observe, as we do,

that supply chain efficiency is improved as the negotiation is extended.

3 The Model

We consider a firm, that we call the newsvendor or the buyer, that has a single opportunity

to serve a stochastic demand D. In order to fulfill the demand, the newsvendor must install

inventory prior to the demand realization. This inventory can be ordered from a supplier. If

the total order quantity is lower than the demand, then sales are lost; otherwise there is excess

inventory that must be discarded for a low salvage value. We denote by f the p.d.f. of the

demand, and by F its c.d.f. F . Let F = 1 − F . Without loss of generality, let r = 1 be the

per-unit sales revenue and v = 0 the salvage value. Thus, the expected profit of the buyer is

the r times the expected number of units sold, minus the purchasing cost paid to the supplier.

Upstream on the supply chain, the supplier sells to the newsvendor. Let c ∈ [0, 1] be the

supplier per-unit cost. Its profit is thus the dollar sales to the buyer, minus c times the total
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order quantity placed by the buyer.

The details of the interaction between supplier and buyer go as follows. There are T nego-

tiation stages. In each stage, the supplier proposes a price pt to the buyer, and the buyer buys

qt ≥ 0. t = T corresponds to the first period, t = T − 1 to the second, and so on until t = 1

the last period where the buyer can place an order. We denote by xt be the cumulative order

of the buyer from period T up to t + 1, both included. Thus, we have xT = 0, and x0 the total

quantity purchased through the entire negotiation. Figure 1 summarizes the sequence of events

and the notation.

Figure 1: Sequence of events.

Buyer and supplier take decisions so as to maximize their respective expected profits. We

study the sub-game perfect strategies of each player. That is, for each time period t, and state

of the world (i.e., xt), the supplier sets the price pt(xt) that maximizes its profit-to-go given

the buyer’s strategy; alternatively, for each t, xt and pt, the buyer purchases qt(pt, xt) that

maximizes its profit-to-go given the supplier’s strategy. When T = 1, our model corresponds

to Lariviere and Porteus [10].

Specifically, in order to understand the players’ decisions, we denote by Bt(xt) be the maxi-
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mum expected profit that the buyer can achieve with a starting stock of xt at time t, assuming

that both players follow sub-game perfect strategies from t to 1. Clearly,

B0(x0) = Emin{D,x0} =
∫ x0

0
F.

Similarly, we denote by St(xt) the maximum profit that the supplier receives when the buyer

has a starting stock of xt at time t. We have that S0(x0) = 0, since, when the negotiation is

over, the supplier cannot sell to the buyer anymore.

We can describe the buyer’s problem, given pt, as

max
qt≥0

{
− ptqt + Bt−1(xt + qt)

}
. (1)

Let q∗t (pt, xt) be the order that maximizes the buyer’s profit at time t. Note that when Bt−1

is concave, the optimal policy is to order up to xt−1, where B′
t−1(xt−1) = pt, i.e., q∗t (pt, xt) =

max
{(

B′
t−1

)−1 (pt)− xt, 0
}

.

Using the optimal quantity from Equation (1), the supplier’s problem can simply be ex-

pressed as
St(xt) = max

pt

{
(pt − c) q∗t (pt, xt) + St−1 (xt + q∗t (pt, xt))

}
. (2)

From Equation (2), we obtain p∗t (xt) and the corresponding x∗t−1(xt) = xt+q∗t (p∗t (xt), xt). With

this notation, we have

St(xt) = (p∗t (xt)− c) (x∗t−1(xt)− xt) + St−1

(
x∗t−1(xt)

)

Bt(xt) = −p∗t (xt)
(
x∗t−1(xt)− xt

)
+ Bt−1

(
x∗t−1(xt)

) (3)

We observe that the problem’s order and price paths depend only on the parameter xt, the

cumulative amount of orders placed before the negotiation stage t. In particular, the supplier

implicitly fixes the buyer’s order quantity by setting the right price.

Note that for each negotiation stage, Bt(xt) + St(xt) = Bt−1(xt−1) + St−1(xt−1)− c(xt−1 −
xt) = B0(x0)− c(x0−xt). Thus, the total supply chain profit only depends on the final level of

orders x0 and the initial level of stock xt, and not on the payments between buyer and supplier.

4 Example and Intuition

Consider the case of a buyer that faces a stochastic demand uniformly distributed in [0, 1].

Consider that the production cost is c = 0. In that case, a centralized supply chain would

install inventory up to the maximum demand, i.e., x = 1. The supply chain profits would thus

be ED = 0.5.
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In the decentralized supply chain, when there is only one negotiation period, T = 1, the

supplier would set a wholesale of w = 0.5, so that the inventory level installed by the buyer is

x = 0.5. Consequently the profit of the supplier is wx = 0.25, while the expected profit of the

buyer is Emin{x,D} −wx = 0.125. The total supply chain profits are thus 0.375, only 75% of

the centralized case.

Consider now the situation where there are two negotiation periods, T = 2, and both players

take their respective optimal decisions. In the first period, t = 2, the supplier sets a price of

w2 = 0.5625, so that the buyer places an order for q2 = 0.25; in the second period, the supplier

lowers the wholesale price to w1 = 0.375, and the buyer places an additional order for q1 = 0.375.

Thus the total inventory purchased is x = 0.625, which yields profits of w2q2+w1q1 = 0.28125 >

0.25 for the supplier and Emin{x,D}−w2q2−w1q1 = 0.1484375 > 0.125. Thus, both supplier

and buyer win.

One may wonder why the buyer places an order at price w2 > 0.5. Indeed, the buyer can

perfectly anticipate the decrease in price at the next period, t = 1. However, its rational choice

is to purchase q2 > 0: by placing a positive-quantity order, it takes into account that this will

result in a price decrease even larger than if no order was placed. This improves its overall

profits.

Through the example above, we can see how extending the negotiation length T can benefit

both players. In the next section we develop conditions under which the buyer and supplier

problems are well-behaved, and characterize the optimal supplier pricing and buyer purchasing

strategies.

5 The T -periods Negotiation

Clearly, the optimality problems in Equations (1) and (2) have interior unique solutions if and

only if:

• for all t and pt, Bt(z)− ptz is pseudo-concave in z: in that case, p∗t (xt) = B′
t−1(x

∗
t−1(xt));

• for all t and xt, (B′
t−1(z)− c)(z − xt) + St−1(z) is pseudo-concave in z.

It is not clear that these properties are satisfied by the recursive Equation (3), in the same

way that the supplier’s profit was not necessarily pseudo-concave in Lariviere and Porteus [10].

Some regularity conditions on the demand distribution are necessary for pseudo-concavity to

be preserved in the recursion.
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In order to simplify the analysis, we define for each xt, the final total order quantity x0(xt) =

x∗0
(
x∗1(. . . x

∗
t−1(xt) . . .)

)
. Let φt such that

φt(x0) = x0 − xt. (4)

φt relates xt, the cumulative order placed from T up to t + 1, to the total order placed from T

to 1, assuming that supplier and buyer follow their optimal strategies from t to 1. Hence, we

have that xt = (id− φt)(x0). In addition, it is clear that φ0 ≡ 0.

It turns out that we can rewrite in relatively simple way Bt and St as functions of x0. Let

bt(x0) = Bt ((id− φt)(x0)) and st(x0) = St ((id− φt)(x0)) . Working with x0 instead of xt−1,

we can rewrite the buyer’s problem of Equation (1) as

max
x0≥xt

{
− pt(x0 − φt−1(x0)− xt) + bt−1(x0)

}
. (5)

For the maximization problem to have a unique interior solution, we must have that −pt +

ptφ
′
t−1(x0) + b′t−1(x0) = 0 has a unique solution, and is positive before, and negative after that

solution. It is thus sufficient that
b′t−1(x0)

1− φ′t−1(x0)
is decreasing for all x0.

In that case, for each pt, the buyer selects a unique x∗0 such that ut(x0) = pt, where

ut(x0) :=
b′t−1(x0)

1− φ′t−1(x0)
. (6)

In particular, u1(x0) = F (x0).

Using this observation in Equation (2) allows us to rewrite the equation into

st(xt) = max
x0≥xt

{
(ut(x0)− c) (x0 − φt−1(x0)− xt) + st−1 (x0)

}
. (7)

The theorem below provides the conditions to ensure that both the buyer’s and the supplier’s

problem have a unique optimal solution, and that both φt and ut are well-defined.

Theorem 1 φ0 ≡ 0 and u1 ≡ F , and for all t ≥ 1, when ut(x) and φt(x) − x are decreasing

for x < F
−1(c),

φt(x) = φt−1(x) +
F (x)− c

−u′t(x)
(8)

and

ut+1(x) = ut(x) +
F (x)− c

1− φ′t(x)
. (9)

If the recursion is well defined, i.e., for all k ≤ t, φk(x) − x and uk(x) are decreasing for

x < F
−1(c), then

• φk ≥ φk−1 and uk ≥ uk−1;
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• and we can express the buyer’s and supplier’s profit as

bt(x0) =
∫ x0

0
F −

t∑

k=1

uk(x0)
(
φk(x0)− φk−1(x0)

)
,

st(x0) =
t∑

k=1

(
uk(x0)− c

)(
φk(x0)− φk−1(x0)

)
,

where x0 satisfies φt(x0) = x0 − xt.

The theorem characterizes recursively φt, that allows us to retrieve the optimal control from

the supplier’s point of view, and ut, that determines the buyer’s response to the supplier’s price.

In addition, it relates these to the supplier’s and buyer’s objective function.

As pointed out above, for the recursion to be well defined, we need the demand distribution,

through F , to satisfy some regularity conditions. As t > 1, it becomes increasingly difficult to

verify that φt(x)−x and ut(x) are decreasing. Thus, we develop the following results, that lead

to these regularity conditions.

Theorem 2 Consider φt, ut satisfying Equations (8) and (9).

Let λt(p) = φt

(
F
−1(p + c)

)
, vt(p) = ut

(
F
−1(p + c)

)
and g(p) = f

(
F
−1(p + c)

)
.

Then λt and vt satisfy λ0 ≡ 0, v1(p) = p + c, and for all t ≥ 1,

λt(p) = λt−1(p) +
p

g(p)v′t(p)
(10)

and

vt+1(p) = vt(p) +
p

1 + g(p)λ′t(p)
. (11)

In addition, for all t ≥ 0, φt(x) − x and ut+1(x) are decreasing for x < F
−1(c) if and only

if λt(p)− F
−1(p + c) and vt+1(p) are increasing for p > 0.

This reformulation simplifies the analysis. Indeed, both the cost and the demand distribution

have been collapsed into a single parameter, the function g(p) = f
(
F
−1(p + c)

)
. To use

Theorem 1, g must have some regularity properties. Interestingly, this function is related

to the log-concavity of the demand distribution. Indeed, g is concave if and only if f ′/f is

non-increasing, i.e., f is log-concave, since

g′(F (x)− c) = −f ′(x)
f(x)

.

Note that the demand distribution is log-concave for uniform, exponential, gamma or normal

demands, among many others. Next, we solve the recursion of Equations (10) and (11) for

selected demand distributions.
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5.1 Uniform demand

Lemma 1 Consider g(p) = apb, with b ≤ 2. Then the solution to the recursive equations (10)

and (11) is given by λt = λtp
1−b and vt+1 = vt+1p + c, where, for all t ≥ 0,

λt =
1

a(1− b)





t∏

k=1

(2− b)k

t−1∏

k=1

(2− b)k + 1

− 1





(12)

and

vt+1 =

t∏

k=1

(2− b)k + 1

t∏

k=1

(2− b)k

. (13)

Notice that the case with b = 0 corresponds to the case of the uniform distribution. The

case b = 1 + 1/β, with β > 1 corresponds to a Pareto distribution with finite mean, i.e.,

F (q) = (1 + q)−β, with c = 0. The case b = 1 corresponds to the exponential distribution with

c = 0. Note that when b = 1, vt = t and λt =
1
a

(
1 +

1
2

+ . . . +
1
t

)
.

In addition, Lemma 1 can be used to establish the properties around 0 of the solutions to

Equations (10) and (11) for any demand distribution.

Lemma 2 Let λt and vt be the solutions of Equations (10) and (11), with g such that g(0) > 0.

Then, for all t ≥ 0,

λt(0) = 0,
dλt

dp
(0) =

1
g(0)

(
22t(t!)2

(2t)!
− 1

)

and

vt+1(0) = c,
dvt+1

dp
(0) =

(2t + 1)!
22t(t!)2

.

Lemma 2 characterizes the slope of the function λt around 0. This result, as we see in

Section 6, allows us to derive the asymptotic efficiency of the supply chain for large t.

5.2 Approximation of normal demand

Lemma 3 Consider g(p) = ap
(
1− p

r

)
, with a ≥ 0, r ≥ 1 − c. Then the solution to the

recursive equations (10) and (11) is given by

λt =
(

1
a

) {
t∑

k=1

1
k

(
1− p

r

)−k
}
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and

vt+1 = c + r

{
1−

(
1− p

r

)t+1
}

.

This lemma allows us to use a closed-form formula to approximate the normal distribution.

Indeed, consider a normal distribution of average µ and standard deviation σ, and c = 0. As

shown in Figure 2, F can be approximated well by

F a(x) =
1

1 + e
x−µ
σa

.

where σa = σ

√
Π
8

. This approximation is very accurate for values around the mean, but has

heavier tails than the normal distribution.

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Normal distribution p.d.f.
Approximated p.d.f.

Figure 2: Comparison of the p.d.f. of the normal distribution of mean µ = 100 and standard deviation

σ = 30, with the p.d.f. fa with σa = σ

√
Π
8

.

Thus, fa(x) =
e

x−µ
σa

σa
(
1 + e

x−µ
σa

)2 and g can be approximated by ga(p) =
p(1− p)

σa
. Lemma 3

hence provides an approximation for the normal distribution for the specific case of c = 0.

5.3 Exponential demand

For an exponential demand, we describe next the solution of the recursion presented in Theorem

2. When F (q) = e−aq, then g(p) = a(p + c).

12



Lemma 4 Consider g(p) = p + 1. Then the solution to the recursive equations (10) and (11)

is given by

λt(p) =
Q1

t (p)
Q2

t (p)
and vt(p) = c +

Q3
t (p)

Q4
t (p)

where Qi
t are polynomials. The sequence of polynomials satisfies the recursion

Q1
0 = 0, Q2

0 = 1, Q3
1 = p, Q4

1 = 1

Q2
t = (p + 1)Q2

t−1

{(
Q3

t

)′
Q4

t −
(
Q4

t

)′
Q3

t

}

Q1
t = (p + 1)Q1

t−1

{(
Q3

t

)′
Q4

t −
(
Q4

t

)′
Q3

t

}
+ pQ2

t−1

(
Q4

t

)2

Q4
t+1 = Q4

t

[(
Q2

t

)2
+ (p + 1)

{(
Q1

t

)′
Q2

t −Q1
t

(
Q2

t

)′}]

Q3
t+1 = Q3

t

[(
Q2

t

)2
+ (p + 1)

{(
Q1

t

)′
Q2

t −Q1
t

(
Q2

t

)′}]
+ pQ4

t

(
Q2

t

)2
.

For all t ≥ 1, degree(Q1
t ) = degree(Q2

t ) and degree(Q3
t ) = degree(Q4

t ) + 1.

We present below the first elements of the sequence.

Q1
1 = p, Q2

1 = p + 1,

Q3
2 = p(p + 1)(2p + 3), Q4

2 = (p + 1)(p + 2)

Q1
2 = p(p + 1)3(3p2 + 12p + 10), Q2

2 = 2(p + 1)5(p + 3),

Q3
3 = 2p(p + 1)9(p + 2)2(6p3 + 40p2 + 75p + 45), Q4

3 = 2(p + 1)9(p + 2)2(2p3 + 15p2 + 33p + 24)

As t grows, we obtain a sequence of polynomials with positive coefficients. In addition,

we observe that these polynomials are such that λt(p) =
Q1

t (p)
Q2

t (p)
and vt(p) = c +

Q3
t (p)

Q4
t (p)

are

non-decreasing. These curves are illustrated in Figure 3.

Lemma 5 Consider g(p) = a(p+b), with a, b ≥ 0. Then the solution to the recursive equations

(10) and (11) is given by

λt(p) =
Q1

t

(p

b

)

aQ2
t

(p

b

) and vt(p) = c +
bQ3

t

(p

b

)

Q4
t

(p

b

)

This captures the case of the exponential distribution with decay rate a: g(p) = a(p + c).

In addition, we develop below a similar result, Lemma 6, that allows us to use Theorem 1

for a wide class of functions. Namely, we approximate F by exponentials with increasing decay

13
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Figure 3: Plot of λt and vt+1 for t = 1, 3, 5, 7, for g(p) = p + 1 (exponential demand). We observe that λt

is increasing concave, and vt increasing convex (c = 0).

rate: in each interval [qi−1, qi], we have F (q) = fie
−aiqi . This can be done easily for demands

with increasing failure rate.

Lemma 6 Assume that the demand distribution is piecewise exponential, i.e.,

f(q) =





f1a1e
−a1q for 0 ≤ q < q1

f2a2e
−a2q for q1 ≤ q < q2

. . .

fKaKe−aKq for qK−1 ≤ q < qK

0 for qK ≤ q

with 0 ≤ a1 ≤ . . . ≤ aK , and such that F (qi) = fie
−aiqi for i ≤ K − 1.

Then for all t,

φt(x) =
c2Q1

t

(
F (x)

c
− 1

)

f(x)Q2
t

(
F (x)

c
− 1

) and ut(x) = c +
cQ3

t

(
F (x)

c
− 1

)

Q4
t

(
F (x)

c
− 1

) .

Thus, for all t, if
Q1

t

Q2
t

and
Q3

t

Q4
t

are increasing, then φt(x)− x and ut(x) are decreasing.

6 Supply Chain Efficiency

In this section, we analyze the gains of supply chain efficiency achieved by extending the length

T of the negotiation. For this purpose, we compare the highest supply chain expected profit,

14



achieved by global optimization, to the supply chain expected profit in the decentralized setting,

where buyer and supplier have T negotiation periods before facing the demand.

Let z∗ be the optimal centralized quantity, that achieves global optimization: z∗ is such that

F (z∗) = c. In addition, let SC∗ be the corresponding supply chain profit. We compare z∗ and

SC∗ to zT and SCT , the total ordering quantity and supply chain profit, after T negotiation

rounds. zT satisfies φT (zT ) = zT .

Theorem 3 Consider φt and ut defined by Equations (8) and (9). Assume that, for t ≥ 0,

φt(x) − x and ut+1(x) are decreasing for x < z∗. Then zT and SCT are increasing in T . In

addition,

lim
T→∞

zT = z∗ and lim
T→∞

SCT = SC∗.

Thus, the efficiency of the supply chain improves with the number of negotiation rounds.

In addition, the longer the time horizon, the higher the buyer and the supplier’s profits, and

hence the higher the supply chain profit. Both players benefit from extending the negotiation.

This result immediately leads to another question: how fast does the ordering quantity

zT and supply chain profit SCT converge to the optimal z∗ and SC∗? It turns out that the

convergence rate of the ordering quantity is independent of the demand distribution, as long

some regularity conditions are satisfied, as shown below.

We consider first the uniform distribution in [Dmin, Dmax]. Applying Lemma 1 with a =
1

Dmax −Dmin
, b = 0, yields that for z ∈ [Dmin, Dmax]

φT (z) =
(

22T (T !)2

(2T )!
− 1

)
(z∗ − z).

where z∗ = Dmax − c

a
is the centralized optimal order quantity. The total capacity installed

after T negotiation stages, i.e., zT , satisfies φT (zT ) = zT . Solving the algebra yields that

z∗ − zT

z∗
=

(2T )!
22T (T !)2

.

The Stirling factorial approximation allows us to approximate the relative deviation to z∗ for

large T , as
z∗ − zT

z∗
≈

√
1

ΠT
, (14)

where Π ≈ 3.1416. In addition, the price trajectory proposed by the seller decreases as the

negotiation advances. Using Lemma 1, we have that

ut+1 − c

ut − c
=

2t + 1
2t

,

15



where ut is the price proposed t periods from the end, when there are T negotiation rounds in

total. The supply chain profit can be expressed as

SCT =
∫ zT

0
F (t)dt− czT

while the centralized optimal profit is

SC∗ =
∫ z∗

0
F (t)dt− cz∗.

Thus, we have

SC∗ − SCT =
∫ z∗

zT

F (t)dt− (z∗ − zT )F (z∗) =
∫ z∗

zT

(t− zT )f(t)dt.

and since f(t) = a and SC∗ =
a(z∗)2

2
,

SC∗ − SCT

SC∗ =
(

(2T )!
22T (T !)2

)2

. (15)

For T = 1, the supply chain inefficiency is thus 25% and for large T ,
SC∗ − SCT

SC∗ ≈ 1
ΠT

.

The supply chain loss of optimality thus decreases with 1/T .

The split of profit between supplier and buyer can also be calculated. The supplier’s profit

can be expressed as

sT (zT ) =
T∑

k=1

(uk(zT )− c) (φk(zT )− φk−1(zT ))

= a (z∗ − zT )2
T∑

k=1

(2k − 1)!
22k−2((k − 1)!)2

22k−2((k − 1)!)2

(2k − 1)!

= a (z∗ − zT )2 T

= 2T
(

z∗ − zT

z∗

)2

· SC∗

As a result, when T → ∞, sT (zT ) → 2
Π

SC∗. This ratio also appears in Erhun et al. [8],

although with different modeling assumptions. Also, since
z∗ − z1

z∗
=

1
2
, s1(z1) =

1
2
SC∗. Thus,

the maximum gain achieved by the supplier is 4/Π − 1 ≈ 27.3%. The maximum supply chain

gain is 4/3− 1 = 33.3%, while the gain by the buyer is (4− 8/Π)− 1 ≈ 45.6%. The extension

of the negotation thus benefits the buyer more than the supplier, and the supply chain share

of profit for the supplier goes from
s1(z1)
SC1

=
2
3

= 66.6% to
sT (zT )
SCT

→ 2
Π
≈ 63.7%.

Interestingly, the asymptotic behavior of zT and SCT in the general case can be derived from

the uniform demand case. Indeed, Lemma 2 shows that, around z = z∗ (and p = 0 by using the
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transformation proposed in Theorem 2), the functions λT and φT can be approximated locally

by linear functions. This allows us to derive the following result.

Theorem 4 Consider φt and ut defined by Equations (8) and (9). Assume that f(z∗) > 0 and

that around z∗, f is smooth, i.e., infinitely differentiable. Assume also that for t ≥ 0, φt(x)−x

and ut+1(x) are decreasing for x < z∗. Then, for large T ,

z∗ − zT

z∗
=

1√
Π
· 1√

T
+ εz

(
1√
T

)

and
SC∗ − SCT

SC∗ =
f(z∗)(z∗)2

2SC∗Π
· 1
T

+ εSC

(
1
T

)
,

where εi(y)/y → 0 when y → 0.

The theorem suggests that zT converges to z∗ with the square-root of T . In addition, 1− zT

z∗

falls with
γ√
T

, where γ =
1√
Π

, independent of the distribution, and relies only on the fact

that the demand p.d.f. is sufficiently smooth near z = z∗. Finally, we observe that the sub-

optimality gap 1− SCT

SC∗ falls with
1
T

. The convergence coefficient does depend on the demand

distribution.

Theorem 4’s convergence results are illustrated by the numerical experiments below. We

examine the improvement of supply chain efficiency, as a function of the length of the negotiation

horizon. We focus on uniform, exponential, normal and Pareto distributions. Interestingly,

Perakis and Roels [14] show that, when T = 1, the class of Pareto distributions achieves the

worst-case sub-optimality gap. As we show below, this gap is rapidly corrected as T increases.

Figure 4(right) shows how, for all four distributions plotted, the sub-optimality gap decreases

with
1
T

approximately. Figure 4 (left) shows the decrease of 1− zT

z∗
. Figure 5 shows how the

sub-optimality gap goes to 0, for several distributions.

Finally, we have compared the share of the supply chain profit going to the buyer. It is

relatively stable, as shown in Figure 6. This implies that the additional profit generated by

extending the negotiation horizon is shared approximately in a proportional manner, according

to the initial split of profit with T = 1.

7 Conclusions and Discussion

In this paper, we have presented a supply chain model where a buyer faces a stochastic demand,

and must install inventory to serve this demand before it is realized. The inventory can be

ordered from a supplier. Buyer and supplier interact over a multi-period horizon, where, in
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Figure 4: Evolution of 1 − zT

z∗
(left) and 1 − SCT

SC∗ (right) as a function of T , shown in a log-log scale

plot. We show the results for several demand distributions: the uniform [0,1], the exponential of decay

rate 1, the normal distribution of mean 100 and standard deviation 30, and the Pareto distribution with

F (q) =
1

(1 + q)2
. We set c = 0.2. We observe that the log-log slope is approximately −1/2 for the left

figure, and −1 for the right figure.

T = 1 T = 2 T = 5 T = 20

Uniform [0,1] 24.9% 14.0% 6.0% 1.6%

Uniform [5,6] 8.8% 3.3% 1.4% 0.4%

Exponential λ = 1 29.8% 15.9% 6.9% 1.7%

Normal µ = 100, σ = 30 23.0% 12.6% 5.8% 1.6%

Normal µ = 100, σ = 50 24.4% 15.9% 7.0% 1.7%

Pareto β = 2 34.6% 15.9% 7.5% 1.7%

Pareto β = 1.1 29.7% 17.2% 7.4% 1.7%

Figure 5: Optimality gap 1− SCT

SC∗ , for several demand distributions, and c = 0.2. Note that the gap for the

uniform [5,6] is much smaller than the rest because there z∗ = 5.8, SC∗ = 4.32, and thus
f(z∗)(z∗)2

2SC∗ ≈ 3.89,

relatively high. This is in contrast with the uniform [0,1], where
f(z∗)(z∗)2

2SC∗ = 1.
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T = 1 T = 2 T = 5 T = 20

Uniform [0,1] 33.4% 34.6% 35.6% 36.2%

Uniform [5,6] 0% 2.6% 3.5% 4.2%

Exponential λ = 1 37.3% 38.4% 39.3% 40.1%

Normal µ = 100, σ = 30 19.1% 21.6% 23.2% 23.6%

Normal µ = 100, σ = 50 26.9% 25.3% 26.8% 27.4%

Pareto β = 2 36.6% 39.1% 39.6% 41.2%

Pareto β = 1.1 45.4% 44.9% 45.1% 45.4%

Figure 6: Share of supply chain profit going to the buyer, for several demand distributions, and c = 0.2.

each period, the supplier sets a price, and the buyer places an order for that price. The model

is a direct extension to Lariviere and Porteus [10] from single-period to multi-period horizon.

We use the concept of sub-game perfection to define the optimal pricing (for the supplier)

and purchasing (for the buyer) strategy, given the other player’s actions. We find that, under

some demand regularity conditions, including uniform, approximate normal and exponential

demand, both the supplier’s and the buyer’s profit maximization problems are well-behaved,

which is new to the literature.

In addition, we show that supply chain efficiency increases with the length of the negotiation

T . Specifically, we show that the sub-optimality gap between the T -periods negotiation and the

centralized supply chain falls with 1/T , regardless of the demand distribution. Thus, for large

T , the negotiation situation approaches the highest possible efficiency for the supply chain.

Interestingly, our iterative approach provides an asymptotic coordination mechanism with

a single profit sharing between buyer and supplier. Usually, coordination contracts, such as

buy-back, have a degree of freedom that allows any profit sharing to occur. That is, buy-back

allows for flexibility in the shares of profit gained by buyer and supplier. However, this also

complicates the design of the contract, since the degree of freedom can lead to disagreement

between players. In contrast, our proposed mechanism is more rigid, and, as a consequence,

simpler. It provides a natural sharing of profits in the supply chain.

Finally, the paper provides some directions to design the negotiation process between the

buyer and the seller. If negotiating is costly, how long the negotiation should last? This question

can be answered using the asymptotic expected supply chain profit, from Theorem 4,

SCT ≈ SC∗ − f(z∗)(z∗)2

2Π
1
T

If conducting one additional negotiation round costs κ, then the (approximate) optimal length
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of the negotiation should maximize

SC∗ − f(z∗)(z∗)2

2Π
1
T
− κT

and thus

T ∗ =

√
f(z∗)(z∗)2

2Πκ
.

Hence, the optimal negotiation length scales up with
1√
κ

. Hence, if negotiation costs could be

cut by a factor 4, then the negotiation length should be doubled. Thus, our basic model could

potentially be used to study buyer-supplier interactions.

Furthermore, our work presents a number of interesting questions to be explored in the

future.

First, our work focuses on the negotiation between one supplier and one buyer, both strate-

gic. The revenue management literature has studied in a different setting the pricing problem

of one supplier pricing against one buyer with probabilistic willingness-to-pay. Since the sup-

plier maximizes its expected profit, this is equivalent to pricing against infinite buyers. This

situation has been studied both for myopic buyers, see Lazear [11], and for strategic customers,

see Besanko and Wilson [2]. Thus, both the one-buyer situation and the infinite-buyer situation

have been studied. The n-buyers situation is the immediate extension of this work.

Second, following Granot et al. [9], the extension to the case of multiple suppliers is also

interesting. In that situation, the buyer faces the trade-off between placing orders in the

beginning, at a higher price, so that suppliers can offer lower prices, or wait for the suppliers to

compete and reduce prices. This new trade-off may change the suppliers’ behavior, compared

to our model.
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Proof of Theorem 1

Proof. We prove the theorem for each t. First (buyer), as mentioned before the theorem, the

buyer’s problem is well-behaved when ut is decreasing.

Second (supplier), the final order quantity x0 preferred by the supplier is unique and interior

when

s′t−1(x0) + b′t−1(x0)− c
(
1− φ′t−1(x0)

)
+ u′t(x0)

(
x0 − φt−1(x0)− xt

)
= 0 (16)

has a unique solution; and the left-hand side is positive before, and negative after that solution.

Noting that bt(x0) + st(x0) = B0(x0)− c(x0− xt) =
∫ x0

0
F − cφt(x0), we have that b′t(x0) +

s′t(x0) = F (x0)− cφ′t(x0), and Equation (16) can be rewritten as

F (x0)− c + u′t(x0)
(
x0 − φt−1(x0)− xt

)
= 0

Hence, it is sufficient that
F (x0)− c

−u′t(x0)
+ φt−1(x0)

does not increase more than x0, i.e., its slope is no larger than 1. In that case, we have

x0 − xt = φt−1(x0) +
F (x0)− c

−u′t(x0)
= φt(x0).

This explains Equation (8).

Finally, we can rewrite the buyer’s profit, i.e., bt(x0):

bt(x0) = −ut(x0)(φt(x0)− φt−1(x0)) + bt−1(x0) (17)

which implies

b′t(x0) = b′t−1(x0)− ut(x0)(φ′t(x0)− φ′t−1(x0))− u′t(x0)(φt(x0)− φt−1(x0))

= ut(x0)(1− φ′t(x0))− u′t(x0)
(

F (x0)− c

−u′t(x0)

)

or equivalently

ut+1(x0) = ut(x0) +
F (x0)− c

1− φ′t(x0)
,

Equation (9). The recursion given by Equation (17) completes the theorem. Note that the

recursion (and hence the proof) is well-behaved if φt(x) − x and ut(x) are decreasing, the

required condition.
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Proof of Theorem 2

Proof. This simply involves the change of variables p = F (x)−c. Thus λt(p) = φt

(
F
−1(p + c)

)

and vt(p) = ut

(
F
−1(p + c)

)
satisfy the recursion stated in the lemma, since

λ′t(p) = φ′t
(
F
−1(p + c)

)
·

− 1

f
(
F
−1(p + c)

)



and

v′t(p) = u′t
(
F
−1(p + c)

)
·

− 1

f
(
F
−1(p + c)

)

 .

Proof of Lemma 1

Proof. We can verify easily that the recursion given by Equations (10) and (11) is satisfied

by λt = λtp
1−b and vt = vtp + c, where λ0 = 0, v1 = 1 and for t ≥ 1,

λt = λt−1 +
1

avt
, vt+1 = vt +

1
1 + a(1− b)λt

.

The coefficients λt and vt can be found observing that
(

(1− b)λt +
1
a

)
vt+1 =

(
(1− b)λt +

1
a

)
vt +

1
a

=
(

(1− b)λt−1 +
1
a

)
vt +

2− b

a

Thus, using the initial conditions at t = 0, we have that
(

(1− b)λt +
1
a

)
vt+1 =

(2− b)t + 1
a

and hence

vt+1 =
(2− b)t + 1

a(1− b)λt + 1
. (18)

In addition, substituting this in the recursion for λt yields

λt = λt−1 +
(1− b)λt−1 +

1
a

(2− b)t− 1 + b
.

Thus,

(1− b)λt +
1
a

=
(

(1− b)λt−1 +
1
a

)(
1 +

1− b

(2− b)t− 1 + b

)
=

1
a

t∏

k=1

(
(2− b)k

(2− b)k − 1 + b

)
,
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which implies

λt =
1

a(1− b)





t∏

k=1

(2− b)k

t∏

k=1

(2− b)k − 1 + b

− 1





=
1

a(1− b)





t∏

k=1

(2− b)k

t−1∏

k=1

(2− b)k + 1

− 1





.

Substituting this expression in Equation (18) yields

vt+1 =
{

(2− b)t + 1
}





t−1∏

k=1

(2− b)k + 1

t∏

k=1

(2− b)k





=

t∏

k=1

(2− b)k + 1

t∏

k=1

(2− b)k

.

Proof of Lemma 2

Proof. The recursion around p = 0 yields

λt(0) = λt−1(0) + 0

λ′t(0) = λ′t−1(0) +
1

g(0)v′t(0)
+ 0

vt+1(0) = vt(0) + 0

v′t+1(0) = v′t(0) +
1

1 + g(0)λ′t(0)
+ 0,

which results on the recursion used in Lemma 1 with b = 0, i.e., λ′t(0) = λt and v′t(0) = vt.

Proof of Lemma 3

Proof. We prove it by induction. It is true for t = 0. If it is true for t− 1, at time t, we have:

v′t = t
(
1− p

r

)t−1
.

Hence,

λt =
(

1
a

){
t−1∑

k=1

1
k

(
1− p

r

)−k
}

+
1

a
(
1− p

r

)
t
(
1− p

r

)t−1 =
(

1
a

) {
t∑

k=1

1
k

(
1− p

r

)−k
}
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which yields

λ′t =
(

1
ar

) {
t∑

k=1

(
1− p

r

)−k−1
}

=
(

1
ar

)(
1− p

r

)−2





(
1− p

r

)−t
− 1

(1− p

r
)−1 − 1





=
(

1
ap

)(
1− p

r

)−1
{(

1− p

r

)−t
− 1

}
.

Thus,

vt+1 = c + r

{
1−

(
1− p

r

)t
}

+
p

1 + ap
(
1− p

r

)
λ′t

= c + r

{
1−

(
1− p

r

)t
}

+
p

1 +
{(

1− p

r

)−t
− 1

}

= c + r

{
1−

(
1− p

r

)t
}

+ r
(p

r
− 1 + 1

) (
1− p

r

)t

= c + r

{
1−

(
1− p

r

)t+1
}

.

Proof of Theorem 3

Proof. From Theorem 1, we have that φt and ut are increasing in t. Thus, the solution to

φT (x) = x, that characterizes x0 after T negotiation rounds, is increasing in T . As a result,

SCT = bT (x0) + sT (x0) =
∫ x0

0
F − cx0 also increases in T .

Finally, as a function of T , x0 increases but cannot grow larger than z∗, since pT > c always.

As a result, it converges to a finite limit. This limit z can be calculated from the recursion: it

satisfies Equation (8) taken for large t, where φt(z) = φt−1(z) = z:

z = z +
F (z)− c

−u′t(z)
,

which can only hold when F (z)− c = 0, i.e., z = z∗.

Proof of Theorem 4

Proof. Assuming that f is sufficiently smooth around z∗, e.g., when it is infinitely differentiable

near z∗, the Taylor expansion of λT around p = 0, using Lemma 2, is

λT (p) =
1

f(z∗)

(
22T (T !)2

(2T )!
− 1

)
p + ελ(p),
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where εi denote functions such that εi(t)/t → 0 when t → 0. Using the reverse transformation

of Theorem 2, around z = z∗, we have

φT (z) =
(

22T (T !)2

(2T )!
− 1

)
(z∗ − z) + εφ (z∗ − z) .

As a result, the solution to φT (zT ) = zT can be also approximated, so that when T →∞:

z∗ − zT

z∗
(

(2T )!
22T (T !)2

)−1

→ 1.

In addition, using the Stirling approximation, we have that
(

(2T )!
22T (T !)2

)√
ΠT → 1.

This yields the result for z∗ − zT . The approximation of SC∗ − SCT follows from

SC∗ − SCT =
∫ z∗

zT

(t− zT )f(t)dt =
f(z∗)(z∗ − zT )2

2
+ εSC

(
(z∗ − zT )2

)
.
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