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Abstract

The well-known Klein-Monti model of bank behavior considers a mo-
nopolistic bank. We demonstrate that this model’s results on the com-
parative static effects of a change in the exogenous interbank market
interest rate do not necessarily hold in oligopolistic Cournot or Stack-
elberg generalizations. Introducing asymmetries in the cost functions
of the banks, or in their way of conduct, may imply counterintuitive
effects on the individual banks’ volumes of loans and deposits.
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1 Introduction

This paper investigates extensions of the well-known Klein-Monti model
of a representative, profit-maximizing bank, originally introduced by Klein
(1971) and Monti (1972). The Klein-Monti model is a prototype model of
the so-called Industrial Organization approach to banking, in which banks
are considered as profit-maximizing firms that offer services to agents; see
e.g. the recent book by Freixas and Rochet (1997). These services are
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described by the securities that banks buy from agents (i.e. loans) and sell
to agents (i.e. deposits). The difference between the volume of deposits and
the volume of loans is the bank’s (net) position on the interbank market.

The Klein-Monti model is described and compared to alternative models of
banking in surveys by Baltensperger (1980) and Santomero (1984). It has
been generalized and extended by many authors, for example by Dermine
(1986) and Prisman et al. (1986). Hannan (1991) shows that the model can
be used to derive various empirical predictions. For that reason, it has been
the (implicit) starting point for a number of empirical studies, for instance in
Molyneux et al. (1994), Neuberger and Zimmerman (1990), and Suominen
(1994). The model is also discussed in detail in Freixas and Rochet (1997).

Although the original Klein-Monti model concentrates on the case of a sin-
gle, monopolistic bank, which might apply in countries with only one (state)
bank, the situation of several banks is more interesting. In fact, as Molyneux
et al. (1994) observe for the case of Europe, in many countries the bank-
ing industry is very concentrated, which suggests that oligopoly models are
relevant for banking. In order to extend the Klein-Monti model to the case
of more than one bank, the standard oligopoly models from the theory of
Industrial Organization (Martin, 1993) can be used as a starting point. In
particular, the extension towards a symmetric Cournot oligopoly, in which
all banks are assumed to have the same linear management-cost function,
is straightforward, as shown by Freixas and Rochet (1997). These authors
examine some comparative static properties of both the original model and
the symmetric Cournot version with respect to changes in the exogenous
interbank market interest rate. We extend their analysis to other forms of
market structure.

Intuitively, one would expect an increase in the interbank market rate to
lead to a decrease in a bank’s volume of loans, an increase in its volume of
deposits, and increases in the interest rates on loans and deposits. This is ex-
actly what occurs both in the original, monopolistic Klein-Monti model and
in the symmetric Cournot version of Freixas and Rochet (1997). In this pa-
per we demonstrate that this result does not necessarily hold in asymmetric
oligopolistic generalizations of the model. In order to show this we intro-
duce asymmetries either in the management-cost functions of the banks or
in their way of conduct. For simplicity, we concentrate on the situation with
two banks. In particular, we investigate the Cournot case with asymmetric
management-cost functions and, as an example of asymmetric conduct, the
Stackelberg case. It turns out that in both cases we can obtain counterintu-
itive comparative static effects of a change in the interbank market interest
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rate on individual banks’ volumes of loans (deposits) if, loosely speaking,
the inverse loan demand (deposit supply) function is sufficiently nonlinear.

The next section introduces the original Klein-Monti model of a monopolistic
bank, and summarizes its comparative static properties. This model will be
considered as our benchmark case. Section 3 presents the generalized version
of the model and its comparative static properties in the situation where
the two banks are Cournot oligopolists with asymmetric management-cost
functions. Section 4 examines the Stackelberg case, in which conduct is
asymmetric. Section 5 concludes.

2 The Klein-Monti Model

Assume that there is a single, monopolistic bank, that chooses its outputs
in order to maximize profits. The bank operates on the market for loans
as well as on the market for deposits. The difference between the volume
of loans L and the volume of deposits D of the bank can be borrowed (or
lent, if negative) on an interbank market. Denote the interest rates on the
loan market and deposit market by rL and rD, respectively. The inverse
demand function for loans is given by rL(L), with derivative r′L(L) < 0, and
the inverse supply function of deposits is rD(D), with derivative r′D(D) > 0.
The cost of managing an amount L of loans and an amount D of deposits
is given by the convex management-cost function C(L,D). The functions
rL(.), rD(.) and C(L,D) are continuously differentiable up to any order.

Let r denote the interest rate on the interbank market, which is exogenous
for the bank. Further, α denotes the exogenous fraction of deposits that
is required as a non-interest bearing reserve by the government or central
bank (0 ≤ α < 1).

The bank’s decision problem is to maximize its profits π(L,D), i.e.

max
(L,D)

π(L,D) = [rL(L) − r]L + [r(1 − α) − rD(D)]D − C(L,D)

We assume that π(L,D) is strictly concave. The first-order conditions are

∂π

∂L
= r′L(L)L + rL(L) − r − ∂

∂L
C(L,D) = 0 (1)

∂π

∂D
= r(1 − α) − r′D(D)D − rD(D) − ∂

∂D
C(L,D) = 0 (2)

From (1) and (2), the unique (positive) solution (L̂, D̂) can be derived. The
corresponding interest rates are given by r̂L and r̂D. If the cost function
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is separable, i.e. C(L,D) = CL(L) + CD(D), the maximization problem is
separable. That is, the optimal volume of loans L̂ (and the corresponding
interest rate r̂L) is independent of the properties of the deposit market, and
the optimal volume of deposits D̂ (and the corresponding interest rate r̂D)
is independent of the properties of the loan market.

Freixas and Rochet (1997, p. 59) discuss the comparative static effects of a
change of the interbank interest rate r in the Klein-Monti model, assuming
separability. They show that an increase in r decreases the optimal loan
volume L̂ and increases the optimal deposit volume D̂. The slopes of the in-
verse loan demand and deposit supply functions then imply that an increase
in r increases both r̂L and r̂D. That is, we have dL̂/dr < 0, dD̂/dr > 0,
dr̂L/dr > 0, and dr̂D/dr > 0, which we will refer to as the benchmark case.

3 Asymmetric Management Costs

Next, we consider the case in which there is Cournot competition with two
banks on both markets. Let the index i denote bank i, i = 1, 2. Define
total loan and deposit volumes by L ≡ L1 + L2 and D ≡ D1 + D2. Bank
i maximizes its profit function πi(Li,Di), which is assumed to be strictly
concave. The maximization problem for bank i is

max
(Li,Di)

πi(Li,Di) = [rL(Li+Lj)−r]Li+[r(1−α)−rD(Di+Dj)]Di−Ci(Li,Di)

where i, j = 1, 2, i 6= j. Assume that the cost function Ci(Li,Di) is linear,

Ci(Li,Di) = γL,iLi + γD,iDi (3)

in order to keep the analysis manageable. Note that the cost function (3) is
not necessarily equal for the two banks, i.e. we allow for asymmetric costs.

We assume that a unique (positive) Nash-Cournot equilibrium, (L∗
i ,D

∗
i ),

i = 1, 2, exists, with corresponding interest rates r∗L and r∗D. It is given by
the simultaneous solution of the first-order conditions

∂πi

∂Li
= r′L(Li + Lj)Li + rL(Li + Lj) − r − γL,i = 0 (4)

∂πi

∂Di
= r(1 − α) − r′D(Di + Dj)Di − rD(Di + Dj) − γD,i = 0 (5)

with i, j = 1, 2, i 6= j. In case the two banks have the same cost function,
the solution is symmetric, i.e. L∗

1 = L∗
2 and D∗

1 = D∗
2. On the other hand,
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in the asymmetric costs case we have L∗
i > L∗

j if and only if γL,i < γL,j, and
D∗

i > D∗
j if and only if γD,i < γD,j.

Proceeding, we observe that (4) and (5) implicitly define the reaction func-
tions L1 = f1(L2), L2 = f2(L1), D1 = g1(D2) and D2 = g2(D1). Let us
consider the derivatives of the reaction functions, and concentrate on bank
2. For the loan side we obtain:

f ′
2(L1) = − r′L(·) + r′′L(·)f2(L1)

2r′L(·) + r′′L(·)f2(L1)
(6)

where the first-order and second-order derivatives of rL(·) are evaluated in
the point (L1 + f2(L1)). The denominator is identical to the second-order
derivative of bank 2’s (strictly concave) profit function with respect to L2

and therefore is negative. This shows that f ′
2(L1) > −1. We assume that

r′′L(·) < −r′L(·)/f2(L1), i.e. the inverse demand function for loans is not too
convex. Consequently,

−1 < f ′
2(L1) < 0 (7)

Similarly, for the deposit side we assume r′′D(·) > −r′D(·)/g2(D1) i.e. the
inverse supply function of deposits is not too concave, which implies that

−1 < g′2(D1) < 0 (8)

For bank 1, a similar result holds. Decreasing reaction functions can be
considered as the normal case with quantity strategies (Shapiro, 1989). Note
that with linear inverse loan demand, we have f ′

i(Lj) = −1
2 , and with linear

inverse deposit supply, we have g′i(Dj) = −1
2 , i, j = 1, 2, i 6= j.

Now let us turn to the comparative static effects of a change in the interbank
interest rate r in this Cournot version of the Klein-Monti model. This
question is also considered by Freixas and Rochet (1997, p. 60), who assume
symmetric, linear management-cost functions. Also, for simplicity, they
assume constant elasticities of demand of loans and supply of deposits. We
do not use the latter assumption. We remark that we will only discuss the
details here for the loan side. Details for the deposit side are similar.

Differentiating (4) with respect to r gives



[2r′L(L) + r′′L(L)L1] dL1
dr + [r′L(L) + r′′L(L)L1] dL2

dr = 1

[r′L(L) + r′′L(L)L2] dL1
dr + [2r′L(L) + r′′L(L)L2] dL2

dr = 1
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From this it follows that

dL∗
i

dr
=

r′L(L∗) + r′′L(L∗)[L∗
j − L∗

i ]
r′L(L∗)[3r′L(L∗) + r′′L(L∗)L∗]

i, j = 1, 2, i 6= j (9)

dL∗

dr
=

2
3r′L(L∗) + r′′L(L∗)L∗ (10)

dr∗L
dr

=
2r′L(L∗)

3r′L(L∗) + r′′L(L∗)L∗ (11)

where L∗ ≡ L∗
1 + L∗

2. A similar result can be obtained for deposits. Using
the above equations, we can present Proposition 1.

Proposition 1 In the Cournot version of the model the following holds:

(a) dL∗
dr < 0 and dr∗L

dr > 0.

(b) If r′′L(L∗) is nonnegative and/or the marginal management costs of
loans are identical for both firms, i.e. γL,1 = γL,2, then dL∗

i
dr < 0,

i = 1, 2.

(c) If r′′L(L∗) is sufficiently negative and the marginal management costs
of loans are sufficiently different for both banks, with γL,1 < γL,2 say,
then dL∗

1
dr > 0.

(d) dD∗
dr > 0 and dr∗D

dr > 0.

(e) If r′′D(D∗) is nonpositive and/or the marginal management costs of
deposits are identical for both firms, i.e. γD,1 = γD,2, then dD∗

i
dr > 0,

i = 1, 2.

(f) If r′′D(D∗) is sufficiently positive and the marginal management costs
of deposits are sufficiently different for both banks, with γD,1 < γD,2

say, then dD∗
1

dr < 0.

Proof. Recall that the profit functions are strictly concave, and notice that
r′′j (L∗)L∗

j + rL(L∗) < 0, as the reaction function fj(Li) is downward sloping,
i, j = 1, 2, j 6= i. Using this, part (a) easily follows from (10) and (11).
Furthermore, it follows from (9) that

dL∗
i

dr
<

−r′′L(L∗)L∗
i

r′L(L∗)[3r′L(L∗) + r′′L(L∗)L∗]

6



which implies that dL∗
i /dr < 0 if r′′L ≥ 0. Next, if γL,1 = γL,2, then L∗

1 = L∗
2,

and thus dL∗
1/dr = dL∗

2/dr < 0, irrespective of the sign of r′′L(L∗). This
proves part (b). Part (c) follows from (9) and the fact that L∗

1 > L∗
2 if and

only if γL,1 < γL,2. The parts (d), (e) and (f) can be proven similarly.

From parts (a) and (b) of Proposition 1 we can conclude that in the symmet-
ric case with identical management-cost functions, the comparative static
effects of a change in r on L∗

1, L∗
2 and L∗ all have the ‘normal’ negative sign,

directly comparable to result of the original Klein-Monti model. Moreover,
it appears that this conclusion also holds for asymmetric cost functions as
long as the second-order derivative of the inverse loan demand function in
the Nash-Cournot equilibrium is nonnegative (note that a linear inverse loan
demand function satisfies this requirement).

On the contrary, part (c) of Proposition 1 learns that if the marginal costs
of the banks are sufficiently different, and moreover inverse loan demand
is sufficiently concave in the Nash-Cournot equilibrium, then the sign of
the effect of a change in r on the loan volume of the bank with the smallest
marginal loan costs will be reversed. In particular, if bank 1 has the smallest
marginal loan costs, then the loan volume of bank 1 changes in the same
direction as the interbank market rate, i.e. dL∗

1/dr > 0. This stands in
contrast to the intuitive, benchmark result of the monopolistic Klein-Monti
model and the symmetric Cournot version.

We make two remarks here. First, dL∗
1/dr > 0 implies that dL∗

2/dr < 0,
because dL∗/dr < 0. Recalling that L∗

1 > L∗
2 as γL,1 < γL,2, we see that the

counterintuitive change applies to the bank with the largest market share.
Second, dL∗

1/dr > 0 implies that r′′L(L∗)[L∗
2 − L∗

1] > 0. It can be verified by
using (6) that r′′L(L∗)[L∗

2 − L∗
1] > 0 if and only if f ′

2(L
∗
1) < f ′

1(L
∗
2), i.e. the

derivative of the reaction function of bank 2 is in the equilibrium smaller
than the derivative of the reaction function of bank 1. Finally, the deposit
side can be discussed in a similar way.

4 Asymmetric Conduct

Now consider the Stackelberg model of quantity leadership. Suppose that
bank 1 is the leader (i.e., it can set its quantities L1 and D1 first), and bank
2 is the follower. As in the previous section, assume that the management-
cost functions of the banks are linear, but now also assume that they are
equal. That is, the only asymmetry is now caused by the way of conduct.
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This two-stage model is solved backwards. In the second stage, bank 2
maximizes its profits, taking as given the output (L1,D1) of bank 1. This
maximization problem is the same as that of a Cournot bank. The first-order
conditions for the follower are given by (4) and (5), assuming γL,i = γL

and γD,i = γD, i = 1, 2. In this section, it is convenient to write the
reaction function related to the loans of firm 2 as L2 = f(L1, r), i.e. we
include r explicitly as an argument and omit the subscript ‘2’ of f(·). As a
matter of notation, the first-order partial derivatives of f(·) with respect to
respectively L1 and r will be abbreviated as f ′

L(·) and f ′
r(·). In a similar way,

we write the reaction function for the deposit side of bank 2 as g(D1, r), with
first-order partial derivatives g′D(·) and g′r(·). With regard to bank 2 we make
the same assumptions as made in the previous section with respect to the
Cournot banks. In particular, we have −1 < f ′

L(·) < 0 and −1 < g′D(·) < 0.

Next, look at the first stage of the model. Bank 1 wants to choose the
amounts L1 and D1 such that its profit is maximized, taking into account
how bank 2 will respond to its choice. The problem for bank 1 is therefore

max
(L1,D1)

π1(L1,D1) = [rL(L1 + f(L1, r)) − r]L1

+[r(1 − α) − rD(D1 + g(D1, r))]D1 − C(L1,D1)

where we assume that the profit function π1(.) is strictly concave. The
first-order conditions for the leader are

∂π1

∂L1
= r′L(L1 + f(L1, r))[1 + f ′

L(·)]L1

+ rL(L1 + f(L1, r)) − r − γL = 0 (12)
∂π1

∂D1
= r(1 − α) − r′D(D1 + g(D1, r))[1 + g′D(·)]D1

− rD(D1 + g(D1, r)) − γD = 0 (13)

We assume that a unique (positive) Stackelberg equilibrium exists. It is
characterized by the four first-order conditions and denoted by L̃1, L̃2, D̃1

and D̃2. The corresponding total equilibrium volumes are denoted as L̃ ≡
L̃1 + L̃2 and D̃ ≡ D̃1 + D̃2, and the corresponding interest rates are r̃L and
r̃D.

It follows from (4) and (12) and the assumption that the marginal manage-
ment costs of loans of the two banks are equal that

f(·) = L̃2(·) = [1 + f ′
L(·)]L̃1 (14)
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As a result, L̃1 > L̃2, i.e. the volume of loans of the leader bank is largest.
Similarly, it can be shown that D̃1 > D̃2.

Now consider the effects of a change in the interbank interest rate r. We
first observe that for the follower, the definition of f(·) shows that

dL̃2

dr
= f ′

L(·)dL̃1

dr
+ f ′

r(·)

which implies

dL̃

dr
=

dL̃1

dr
+

dL̃2

dr
= [1 + f ′

L(·)]dL̃1

dr
+ f ′

r(·) (15)

It is easy to verify that f ′
r(·) < 0. Thus, we conclude directly that if

dL̃1/dr < 0, then dL̃2/dr < 0 as well. In a similar way, if dD̃1/dr > 0,
then dD̃2/dr > 0 as well. Next, we present the following helpful lemma.

Lemma 1 In the Stackelberg version of the model, where bank 1 is the leader
and bank 2 the follower, we have dL̃1

dr = A1
A2

and dL̃
dr = A3

A2
, with A2 < 0 the

second-order derivative of the (strictly concave) profit function of bank 1
with respect to L1, and

A1 = −6(f ′
L(·))2 − 6f ′

L(·) − 1 + HL(·)
A3 = −(f ′

L(·))2 + 1 > 0

where

HL(·) =
[1 + f ′

L(·)]r′′′L (·)(f(·))2
2r′L(·) + r′′L(·)f(·)

All expressions are evaluated in the Stackelberg equilibrium.

Proof. See the appendix.

Observe that the sign of HL(·) is minus the sign of r′′′L (·), the third-order
derivative of rL(·). Similarly, for he deposit side there holds:

Lemma 2 In the Stackelberg version of the model, where bank 1 is the leader
and bank 2 is the follower, we have dD̃1

dr = B1
B2

and dD̃
dr = B3

B2
, with B2 < 0

the second-order derivative of the (strictly concave) profit function of bank
1 with respect to D1, and

B1 = (1 − α)[−6(g′D(·))2 − 6g′D(·) − 1 + HD(·)]
B3 = (1 − α)[−(g′D(·))2 + 1] > 0
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where

HD(·) =
[1 + g′D(·)]r′′′D(·)(g(·))2

2r′D(·) + r′′D(·)g(·)
All expressions are evaluated in the Stackelberg equilibrium.

Observe that the sign of HD(·) is the same as the sign of r′′′D(·). Using (7),
(8), and Lemma’s 1 and 2, we easily obtain the following proposition on the
effects of a change in the interbank market rate r.

Proposition 2 In the Stackelberg version of the model, where bank 1 is the
leader and bank 2 is the follower, the following holds:

(a) dL̃
dr < 0 and dr̃L

dr > 0.

(b) If r′′′L (L̃1 + L̃2) = 0, then dL̃1
dr < 0 if and only if c1 < f ′

L(L̃1, r) < c2.

(c) If r′′′L (L̃1 + L̃2) < 0, then f ′
L(L̃1, r) ∈ (c1, c2) implies dL̃1

dr < 0.

(d) If r′′′L (L̃1 + L̃2) > 0, then f ′
L(L̃1, r) ∈ (−1, c1] or f ′

L(L̃1, r) ∈ [c2, 0)

implies dL̃1
dr > 0.

(e) dD̃
dr > 0 and dr̃D

dr > 0.

(f) If r′′′D(D̃1 + D̃2) = 0, then dD̃1
dr > 0 if and only if c1 < g′D(D̃1, r) < c2.

(g) If r′′′D(D̃1 + D̃2) > 0, then g′D(D̃1, r) ∈ (c1, c2) implies dD̃1
dr > 0.

(h) If r′′′D(D̃1 + D̃2) < 0, then g′D(D̃1, r) ∈ (−1, c1] or g′D(D̃1, r) ∈ [c2, 0)

implies dD̃1
dr < 0.

where c1 = −1
2 − 1

6

√
3 ≈ −0.79 and c2 = 1

2 + 1
6

√
3 ≈ −0.21.

Part (a) of Proposition 2 shows that the comparative static effect on the
total volume of loans L̃ has the ‘normal’ negative sign. However, parts (b)
and (d) point out that there are situations where the effect on the volume
of loans of the leader bank 1 is positive, i.e. dL̃1/dr > 0. We notice that the
critical values c1 and c2 are located symmetrically around −1

2 . Recall that
if the inverse loan demand is linear, we have f ′

L(L̃1, r) = −1
2 . Thus, in the
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situations of parts (b) and (d) with dL̃1/dr > 0, the value of f ′
L(L̃1, r) is

sufficiently different from its value in the linear case. Intuitively speaking,
we can say that counterintuitive effects can occur if we are sufficiently far
away from the linear case. We further remark that dL̃1/dr > 0 implies that
dL̃2/dr < 0, because dL̃/dr < 0. Recalling that L̃1 > L̃2, we see that, just
as in the asymmetric Cournot case, the counterintuitive effect applies to
the bank with the largest market share. Finally, we remark again that the
results of the deposit side can be discussed in a similar way.

5 Conclusions

In the original, monopolistic Klein-Monti bank model and the corresponding
Cournot generalization with symmetric management costs, a change in the
exogenous interbank market interest rate leads to the intuitive result of a
decrease in a bank’s volume of loans, an increase in its volume of deposits,
and increases in the interest rates on loans and deposits. This paper demon-
strates that for the Cournot version with asymmetric costs as well as for the
Stackelberg version of the model, the same results hold for the total volumes
of loans and deposits, and the corresponding interest rates.

However, in the asymmetric-cost Cournot version, if inverse loan demand
and inverse deposit supply are sufficiently nonlinear, the changes in the indi-
vidual volumes of loans and deposits of the bank with the smallest costs may
change direction. The same holds for the individual volumes of the leader in
the Stackelberg version. That is, we have shown that for oligopolistic gen-
eralizations of the Klein-Monti model, when there are asymmetries, either
in the cost functions of the banks or in the way of conduct, a change in the
interbank rate may lead to counterintuitive results for the individual loan
and deposit volumes of the banks, even in the case of only two banks. In
both cases, the bank for which the counterintuitive effect occurs is the one
with the largest market share.
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Appendix: Proof of Lemma 1

In this appendix we briefly discuss the proof of Lemma 1. In order to provide
the proof, the following equations are useful:

f ′
L(·) = − r′L(·) + r′′L(·)f(·)

2r′L(·) + r′′L(·)f(·) (A.1)

1 + f ′
L(·) =

r′L(·)
2r′L(·) + r′′L(·)f(·) (A.2)

f ′
r(·) =

1
2r′L(·) + r′′L(·)f(·) (A.3)

∂2f

∂L1∂r
=

−[r′′′L (·)f(·) + 2r′′L(·)][1 + f ′
L(·)]f ′

r(·) − r′′L(·)f ′
L(·)f ′

r(·)
2r′L(·) + r′′L(·)f(·) (A.4)

∂2f

∂L2
1

=
−[r′′′L (·)f(·) + r′′L(·)][1 + f ′

L(·)]2 − 2r′′L(·)f ′
L(·)[1 + f ′

L(·)]
2r′L(·) + r′′L(·)f(·) (A.5)

where the derivatives of f(·) have been computed by differentiating the first-
order condition (4) of the follower.

Let us first concentrate on the leader. Differentiating the first-order condi-
tion (12) with respect to r, and solving for dL1/dr gives the result that in
the Stackelberg equilibrium we have dL̃1/dr = A1/A2, where

A1 = 1 − r′L(·)f ′
r(·) − r′′L(·)[1 + f ′

L(·)]L̃1f
′
r(·) − r′L(·)L̃1

∂2f(·)
∂L1∂r

(A.6)

A2 = 2r′L(·)[1 + f ′
L(·)] + r′′L(·)[1 + f ′

L(·)]2L̃1 + r′L(·)L̃1
∂2f(·)
∂L2

1

< 0 (A.7)

Here, all derivatives of rL(·) are evaluated in the point (L̃1 + f(L̃1, r)), and
f(·) and its derivatives are evaluated in (L̃1, r). Using (A.1), (A.2), (A.3),
and (A.4), it can be verified that (A.6) can be rewritten as

A1= −f ′
L(·)−r′L(·)r′′L(·)[1 + f ′

L(·)]L̃1

[2r′L(·) + r′′L(·)f(·)]2 −2(r′′L(·))2f(·)[1 + f ′
L(·)]L̃1

[2r′L(·) + r′′L(·)f(·)]2 +HL(·)
(A.8)

where

HL(·) ≡ [1 + f ′
L(·)]r′′′L (·)(f(·))2

2r′L(·) + r′′L(·)f(·)
Recalling (14), we substitute f(·) = [1 + f ′

L(·)]L̃1 into (A.8). Rewriting the
resulting expression using (A.1) and (A.2) shows that A1 can be written as

A1 = −6(f ′
L(·))2 − 6f ′

L(·) − 1 + HL(·) (A.9)
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which proves the part concerning A1 of Lemma 1.

Next, in order to demonstrate the part concerning A3, we observe that it
follows from (15) that dL̃/dr = A3/A2, where

A3 = (1 + f ′
L(·))A1 + f ′

r(·)A2 (A.10)

By making use of (A.5) and applying the same methods as above, f ′
r(·)A2

can be shown to satisfy

f ′
r(·)A2 = 6(f ′

L(·))3 + 11(f ′
L(·))2 + 7f ′

L(·) + 2 − [1 + f ′
L(·)]HL(·) (A.11)

Substituting (A.9) and (A.11) into (A.10) gives

A3 = −(f ′
L(·))2 + 1 (A.12)

which completes the proof.
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