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Abstract

When the parameters of the model describing consumers’ reaction to
a mailing are known, addresses for a future mailing can be selected in a
profit-maximizing way. Usually, these parameters are unknown and are to
be estimated. Standard estimation are based on a quadratic loss function. In
the present context an alternative loss function is suggested by the mailing
company’s profit function. This leads to different estimators and higher ex-
pected profit.

risk function, empirical Bayes estimator, bootstrap, marketing

1 Introduction

We consider the following situation. A direct mailing company (the ‘firm’,
for brevity) has a data base with addresses to which it considers sending a
mailing. For each of these ‘list members’ the value of a number of back-
ground variables is known. From a test mailing the influence of these vari-
ables on response behavior can be analyzed. To estimate the parameters of
this process a number of econometric techniques are available like probit
analysis or nonparametric methods, cf. Bult and Wansbeek (1995). When
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the response parameters are known the list members can be ranked and the
most promising addresses can be selected.

In this process two steps, estimation and selection, are considered sep-
arately. The purpose of this note is to indicate how the expected profit of
the firm can be increased by integrating the two steps. Following Blattberg
and George (1992), the idea behind this is that estimation takes usually place
by considering (asymptotic) squared-error loss, which puts the same price at
over- and under-estimates of the parameters. In the case that we consider, the
firm’s expected profit can be expressed as a function of the parameters, and
this function is not symmetric. The expected profit can hence be increased
by pursuing an alternative estimation strategy.

In section 2 we outline the model and the risk function. Section 3 de-
rives an empirical Bayes estimator for the crucial parameter in the model.
It appears that generically it is optimal to select more addresses than would
follow from taking the squared-error based estimator at face value. This
approach is based on a strong distributional assumption on the parameter.
A way to circumvent this problem is using a bootstrap approach. This is
pursued in section 4. An empirical illustration is provided in section 5, and
section 6 concludes.

2 The model and the risk function

Let the sample used for the test mailing be indexed byi, i = 1, . . . , n. The
characteristics of the list members as known to the firm are contained in the
vectorxi . We assume that the inclination to respond positively to a mailing
is yi , which obeys the model

yi = x
′

iβ − α + ui,

whereα andβ are parameters, andui is a disturbance term, distributed inde-
pendently ofxi . We do not observeyi itself but only its sign: whenyi > 0 an
addressee has responded, and whenyi ≤ 0 he hasn’t. We moreover assume
thatu is normal, and we set its variance freely at 1. The parametersα andβ
are appropriately estimated by probit analysis.

When these parameters are known, they can be applied to the complete
list to select the set of addresses to be mailed. For each member of the list,
the value of the ‘index’n ≡ x ′β is computed. High values ofn indicate a
good prospect, and low values a bad prospect. It remains to find the ‘cut-
off’ point nc separating the two. As is easily seen, it is determined by the
equality of cost to (expected) returns. We arbitrarily normalize the cost of a
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mailing to 1 and denote byw the returns to a positive reply. The response
probability at index valuen is8(n− α), sonc has to satisfy

8(nc − α) =
1

w
,

so

nc(α) = 8
−1

(
1

w

)
+ α.

So whenα increases, hence the average inclination to respond decreases, the
cut-off value goes up and less addresses should receive a mailing. The same
holds whenw decreases, i.e. the mailing is less lucrative on average.

Now assume that the distribution ofn is continuous,

n ∼ f (n), f (n) > 0 ∀n.

Then we can express the expected profit of the firm as

π(α) =

∫
∞

nc(α)

{w8(n− α)− 1} f (n)dn.

The notation suggests the important role played byα. It enters the profit
function not only explicitly but also throughnc(α).

When the parameters are not known but an estimateα̂ is substituted, the
‘feasible’ cut-off point is

nc(α̂) = 8
−1

(
1

w

)
+ α̂, (1)

leading to the profit function

π(α̂) =

∫
∞

nc(α̂)

{w8(n− α)− 1} f (n)dn.

This suggestsπ(α) − π(α̂) as the loss function to be employed in profit-
maximizing estimation ofα. An obvious risk function then is

R(α̂) = Eα

∫ nc(α̂)

nc(α)

{w8(n− α)− 1} f (n)dn, (2)

where the expectation is taken with respect to the distribution ofα. Mini-
mizing this risk function gives a profit-maximizing estimator ofα.

In order to operationalize this procedure we have to become explicit as to
the distribution ofα. A practical approach is to use the sampling distribution
of the estimator ofα employing standard optimization based on squared
loss. We call the ensuing estimator the empirical Bayes estimator. Another
approach is to use a bootstrap technique. The following two sections deal
with these approaches.
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3 Empirical Bayes estimation

The first approach, the empirical Bayes approach, takesα ∼ N(µα, σ
2
α ),

whereµα is the point estimator ofα andσ 2
α its sampling variance. The es-

timator of α̂ follows from minimizing the risk (2). The first-order condition
is

dR(α̂)

dα̂
= Eα

{
w8

(
nc(α̂)− α

)
− 1

}
f (nc(α̂))

= Eα

{
w8

(
8−1

(
1

w

)
+ α̂ − α

)
− 1

}
f (nc(α̂))

= wσαEα∗
{
8

(
8−1

(
1

w

)
+ α̂ − σαα

∗
− µα

)
−

1

w

}
f (nc(α̂))

= wσα

{
8

(
8−1

(
1
w

)
+ α̂ − µα√

1+ σ 2
α

)
−

1

w

}
f (nc(α̂)) = 0, (3)

where the third step is based on the transformation

α∗ ≡
α − µα

σα

and the last step is based on the fact that, forx ∼ N(0,1), there holds1

Ex8(ax + b) = ExEzI(−∞,ax+b)(z),

with z ∼ N(0,1), independent ofx, and

ExEzI(−∞,ax+b)(z) = ExEzI(−∞,b)(z− ax)

= P {z− ax ≤ b}

= 8

(
b

√
1+ a2

)
.

From the last line of (3) the solution forα̂ appears to be

α̂ = µα +8
−1

(
1

w

){√
1+ σ 2

α − 1

}
, (4)

so the optimal cut-off point is

nc(α̂) = µα +8
−1

(
1

w

)√
1+ σ 2

α

1We are indebted to Ton Steerneman for the result and its derivation.
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instead of (1).
Summarizing, from (4) we see that the firm increases its expected profit

by adjusting the estimatorµα from a first, squared-error based estimation
step by a term whose sign depends on8−1

(
1
w

)
. This term is negative for

w > 2, i.e. the returns to a positive reply exceed twice the cost of a mailing.
We may consider this to be the typical case. Then,µα has to be updated in a
downward direction, so more addresses have to be mailed than the outcome
of classical estimation implies. The size of the term increases withσ 2

α .
Note that the distributionf (n) of n plays no role in the estimator.

4 Bootstrap estimation

The empirical Bayes method as we implemented it in the previous section
is attractive in the sense that it yields a closed-form expression for the es-
timator. The price to be paid is the introduction of a possibly unrealistic
distributional assumption onα. This can be avoided by the bootstrap ap-
proach.

This approach starts out by estimatingα a number of times, sayM =
200. This yields estimatorsα1, . . . , αM . The risk function then is

RB(α̂) =
1

M

M∑
m=1

∫ nc(α̂)

nc(αm)

{w8(n− αm)− 1} f (n)dn,

leading to the first-order condition

dRB(α̂)

dα̂
=

1

M

M∑
m=1

{
w8

(
nc(α̂)− αm

)
− 1

}
f (nc(α̂)).

Soα̂ is the solution of

1

M

M∑
m=1

8

(
8−1

(
1

w

)
+ α̂ − αm

)
= w.

This equation is easily solved by numerical methods.

5 An empirical application

6 Conclusion

We have shown how in direct mailing profit maximization leads to a natural
form of the loss function in estimation. (bla bla bla)

5



There are a number of imperfections, though. One is that we have con-
centrated on the intercept parameterα, neglectingβ while doing so. The
role played byβ is much less explicit, and the only wayβ enters into the
analysis is through the indexn. For our analysis to be valid knowledge ofβ
is not required, but we have implicitly assumed that the ordering according
to valuesn = x ′β is correct even though we have to substitute an estimator
for β when computing the indicesn.

Another extension would be to introduce second-order considerations.
(bla bla) This can be used to determine the optimal size of a test mailing,
atopic which has been neglected in the literature so far.

Bounded support ofn, or discreten
Graphs!!!!
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