
 

 
Does it matter where patent citations come from? 

Inventor versus examiner citations in European patents 
 
 

Paola Criscuolo & Bart Verspagen 
 

 

 
 
 

 
Eindhoven Centre for Innovation Studies, The Netherlands 

Working Paper 05.06 

 

 

 

Department of Technology Management 

Technische Universiteit Eindhoven, The Netherlands

 

June 2005 
 



 1

 
 

Does it matter where patent citations come from?  
Inventor versus examiner citations in European patents 

 
 
 

Paola Criscuolo* & Bart Verspagen** 
 
 
 

*Corresponding author, p.criscuolo@imperial.ac.uk, Tanaka Business School, Imperial 
College, London, South Kensington Campus, London, SW7 2AZ, UK.  

Tel: +44-(0)2075941582 
Fax: +44(0)2075945915 

 
** ECIS (Eindhoven University of Technology) and TIK (University of Oslo) 

 
May 2006. This version replaces the version of 2005. 

 
 
 
Abstract 
This paper investigates whether the distinction between patent citations added by the inventor or the 
examiner is relevant for the issue of geographical concentration of knowledge flows (as embodied in 
citations). The distinction between inventor and examiner citations enables us to work with a more refined 
citation indicator of knowledge flows. We use information in the search reports of patent examiners at the 
European Patent Office to construct our dataset of regional patenting in Europe and in the US states, and 
apply various econometric models to investigate our research question. The findings point to a significant 
localization effect of inventor citations, after controlling for various other factors, and hence suggest that 
knowledge flows are indeed geographically concentrated.  
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1. Introduction 
 

Patent documents contain citations to other patents and references to non-patent literature in 

order to comply with the legal requirement to supply a complete description of the state of the art 

upon which the invention described in the patent builds. Thus, citations limit the scope of the 

inventor’s claim for novelty and they represent a link to pre-existing knowledge upon which the 

invention is built. This latter notion has been used to justify the use of patent citations as 

indicators of knowledge spillovers. When an inventor cites another patent or a scientific article, 

this may indicate that the knowledge contained in the cited document has been useful in the 

development of the citing patent, and therefore the citation might be a proxy for knowledge 

flows.  

A large body of empirical studies has exploited this use of patent citations to assess the 

spatial nature of technological spillovers (e.g. Jaffe, Trajtenberg et al. 1993; Jaffe and 

Trajtenberg 1996; Jaffe, Fogarty et al. 1998; Jaffe and Trajtenberg 1999; 2002). Here, the 

question is whether or not knowledge spillovers between firms, or from (semi-) public 

knowledge institutes to firms, depend on geographical distance, i.e., whether patent citations are, 

ceteris paribus, more frequent between two patents that originate from research projects 

undertaken by inventors that are located closely together. These studies find that both in the US 

and Europe, such a relationship indeed exists. Thus, knowledge spillovers tend to be more 

intense between parties that are located close to each other in space.  

One of the criticisms of the use of patent citations as indicators of spillovers is that citations 

are a very noisy indicator of knowledge spillovers (Jaffe et al. 1998), i.e., they might be 

interpreted in different ways than pointing to an actual flow of knowledge from the cited to the 

citing patent. A crucial factor in this issue is that citations may be added by the applicant (or 
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his/her patent lawyer), as well as by the patent examiner who judges the degree of novelty of the 

patent. Obviously, when citations are added by the applicant there is more of a case for taking 

citations as indicators of spillovers, because there is some chance that the inventor actually knew 

about the cited patent. When the examiner adds the citation, the inventor may never have known 

about the cited patent, and hence no knowledge spillover has taken place.  

Most citation studies are not able to identify precisely those citations chosen by the inventor. 

Moreover, the role of examiner vs. inventor1 citations differs somewhat between patent systems. 

In any case, when the inventor proposes citations, the final decision on which documents to cite 

in the patent publication lies with the patent examiners, and hence patent documents report the 

inventor citations as chosen by the examiner. The examiner might decide to accept the ones 

proposed by the applicant and/or add new references, where the latter leads to the bias already 

identified above, i.e., that patent citations might not reflect an actual source of knowledge 

spillovers.  

A number of recent studies have investigated this issue in citations appearing in US patents 

(i.e., patents issued by the US Patent and Trademark Office, USPTO), exploiting the fact that, 

since 2001, the USPTO provides information on the source of the citations (Alcacer and 

Gittleman 2004; Sampat 2004; Thompson 2004). In this study we explore the origin of patent 

citations in European Patent Office (EPO) data, where the source of the citations is available for 

all patents (i.e., since the start of the EPO in 1979). We are able to discriminate between the 

citations listed by the examiner, on the one hand, and the ones proposed by the inventor and 

accepted by the patent examiner, on the other, exploiting the information contained in the search 

report.  
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The main objective of this paper is to test whether the references added by the patent 

examiner are systematically and significantly different from the ones listed by the inventor. In 

particular, in light of the strong attention to regional spillovers using citations as indicators, this 

study tries to investigate whether inventor citations and examiner citations are similar with 

regard to their geographical origin. We draw on a large dataset (all EPO patents originating from 

a set of 18 European countries), and apply regression analysis to investigate our research 

question.  

 
2. Theoretical background 
 

It is often assumed that due to the nature of knowledge as only a partial public good, the 

costs of transferring it depend on distance. Knowledge can in principle be shared without 

diminishing its value (i.e., knowledge is a non-rival economic good), but there are costs involved 

in doing so. Face-to-face communication is an efficient way of knowledge transfer, and this is 

obviously easier at short distances than across the globe. Even with modern information and 

communication technologies, geographical proximity may be an important factor in transferring 

knowledge (Morgan 2004). 

Often, the tacit nature of knowledge is given as a reason why knowledge is more easily 

transferred face-to-face, and hence over small distances. Knowledge resides implicitly in the 

minds of people, and codification into written materials only partially reflects the full knowledge 

involved. Hence knowledge flows more intensively between people who have opportunities to 

physically meet on a regular basis. 

Jaffe et al. (1993) have used this (often rather informal) reasoning as a starting point of their 

empirical analysis of the geographical concentration of patent citations. Citations are taken as 

'paper trails' of knowledge spillovers from the cited inventor to the citing inventor. They find, in 
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an analysis of U.S. patenting at the Metropolitan level, that citations are indeed more intense at 

the local level, even after taking account of the pre-existing production structure (i.e., if activities 

of a similar kind tend to be located near to each other, and patents of a similar kind have a higher 

probability to cite each other, citations will equally tend to be clustered even without localized 

spillovers). While they take this as an indicator of spillovers, i.e., unintended flows not directly 

related to any market transaction, Breschi and Lissoni (2001) have argued that citations are often 

related to research relationships that are somehow institutionalized, either through the market, or 

through some form of cooperation. In this case, localized patent citations may be an indicator of 

the localized nature of knowledge flows in a broader sense than just spillovers (i.e., the flows 

may not be externalities), but the question as to why these flows are so localized remains the 

same. Face-to-face contact between researchers and institutionalized contacts between 

organizations may just as well serve to explain why knowledge interaction in general, as opposed 

to spillovers in particular, is easier between firms and organizations that are located close to each 

other. 

However, even broadening the issue to knowledge interaction rather than spillovers per se, 

does not solve the problem that citations are primarily legal instruments rather than direct 

indicators of knowledge flows. Citations are the most important way of limiting a patent's 

claims, and acknowledging claims made in other (earlier) patents. The fact that a cited patent has 

implications for the claims in the citing patent does not necessarily imply that spillovers have 

been going on between the inventors. Jaffe et al. (2002) have used a survey instrument to 

measure spillovers directly (i.e., they asked inventors whether a specific patent had a played a 

role in the invention described in a patent), and correlated this measure with patent citations. 

Their conclusion was that "the likelihood of knowledge spillover (...) is significantly greater (...) 
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than the likelihood without a citation (... but ...) a large fraction of citations, perhaps something 

like half, do not correspond to any apparent spillover (...) citations are a noisy signal of the 

presence of spillovers" (Jaffe, Trajtenberg et al. 2002, p. 400).  

As was mentioned in the introduction, one way of diminishing the noise is to look at whether 

patent citations have been added by the examiner or by the inventor (applicant). Examiner 

citations are less likely to be related to spillovers, because it may be the case that the citing 

inventor was not aware of the cited patent. This indeed seems to be one of the implications of the 

survey evidence reported in Jaffe et al. (2002). This raises the question whether examiner and 

inventor citations are of a different (economic) nature, and, if so, whether such differences can be 

related to the nature of knowledge spillovers/flows (e.g., geographical concentration). These are 

the questions that we will investigate in this study. Because of differences between the patent 

systems in the US and Europe (on which we will elaborate below), we expect that our European-

based evidence will be complementary to the existing studies, which solely use patent data from 

the US patent office (USPTO). 

 
3. Data collection and descriptive statistics 
 

Our primary data sources are the EPO database on patent applications (Bulletin CD), patent 

citations to other patents within the EPO, and patent citations from EPO patents to USPTO 

patents over the period 1985-2000 (all citations are taken from the EPO REFI database). We also 

use information contained in the patentability search report that EPO examiners complete during 

his screening of technically relevant literature. Contrary to other patent office search reports, the 

one compiled by EPO examiners contains various categories of citation which grade the cited 

document according to its relevance. As shown in Table 1, the category ‘D’ refers to those 

citations added by the examiner that were already mentioned in the patent application for which 
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the search is carried out, i.e., were proposed by the applicant. This is our source for inventor 

citations. Thus, we only observe those citations added by the applicant that the examiner 

believed relevant with respect to the patentability of the invention.  

 

*************** INSERT TABLE 1 ABOUT HERE ************* 

 
We complement this with the information contained in the OECD citations database on 

patent applications filed under the Patent Cooperation Treaty (PCT) and on equivalent patents 

(Webb, Dernis et al. 2004). When patent applications are examined under the PCT, they undergo 

an international search that is carried out by one of the International Search Agencies (ISA), of 

which the EPO is one. If the EPO is the designated ISA, the cited documents together with the 

categories of citations are not recorded in the REFI database, but they are in the OECD 

database.2  

For each EPO patent the OECD database provides also a list of all patents filed in other 

patent offices protecting the same innovation (equivalent patents). We use this data to replace 

citations to national patents with their EPO equivalents in order to increase the sample of within 

EPO citations for which we have detailed information on inventor’s address, technological 

classes and priority dates. 

Our basic sample includes all EPO-to-EPO citations and EPO-to-USPTO citations, but the 

latter citation type is only included if both citing an cited patent have an inventor located in the 

US. Table 1 shows, in the last column, the distribution of citations over the citation categories for 

this sample. Note that cited patents can be classified with up to three categories (e.g., “ADL”). 

The largest share (62%) of citations is used to describe the state-of-the-art (A), followed by 

particularly relevant documents (X, 20% and Y, 16%). 9% of all citations are inventor citations 



 8

(D). All other categories of citations are smaller than 5% of the total. An interesting result is that 

the predominance of A citations is even stronger in the sample of inventor citations in the search 

report: 72% of all inventor citations has a category A attached, vs. 62% for the total sample. Also 

interesting is the smaller fraction of X citations among the sample of inventor citations (11% vs. 

21% for the total sample), indicating that inventors have a lesser inclination to cite patents 

‘particularly relevant if taken alone’. This seems to indicate the (expected) tendency for 

inventors to not cite patents that may compromise novelty of their own patent. On the contrary, 

the Y category, which similarly points to patents compromising novelty, but only in combination 

with other patents, occurs as frequent in the sample of inventor citations as in the total sample 

(both at 16%). 

************** INSERT FIGURE 1 ABOUT HERE *************** 

Figure 1 shows, for the same sample as in Table 1, the development of the share of inventor 

citations in the database over time (this includes. We note that this share is (relatively) high 

initially (around 10%), then declines from the late 1980s to the mid 1990s, and finally remains 

largely stable for the rest of the period. Because the later years have more patents, these lower 

numbers contribute a higher weight to the overall count of 9% inventor citations. 

The 9% inventor citations in our database is a small percentage compared with the same 

fraction found in USPTO patents (in the sample of US patents used by Alcacer and Gittelman, 

2004, inventor citations represent 60% of all citations). This finding can be explained by the 

different legal requirements concerning the description of the state of the art in the two patent 

offices. While in the USPTO the inventor and his/her attorney are obliged to provide a list of 

those references describing the state of the art which are considered relevant to the patentability 

of the invention – the so called ‘duty of candour’ – the EPO has no similar requirement (Akers 
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2000; Meyer 2000; Michel and Bettles 2001). As a result, in the EPO, examiners rather than 

inventors or applicants, add the large majority of patent citations. The obvious implication is that 

in the EPO system, more often than in the case of USPTO, inventors may not be aware of patents 

(ultimately) cited in their patent. As pointed out by Michel and Bettles (2001), applicants to the 

USPTO “rather than running the risk of filing an incomplete list of references, (…) tend to quote 

each and every reference even if it is only remotely related to what is to be patented. Since most 

US examiners apparently do not bother to limit the applicants’ initial citations to those references 

which are really relevant in respect to patentability, this initial list tends to appear in unmodified 

form on the front page of most US patents” (p. 197).  

Further descriptive statistics are given in Table 2. The top part of the table provides 

information on the total citations database, while the two bottom panels give information for sub 

samples that we will use in the regressions below. The reason why we focus on these two sub 

samples is that we have comparable auxiliary information (such as the IPC class, information on 

applicant/inventor, etc.) only for EPO and USPTO patents. 

The table shows that our two sub samples are slightly different from the total sample. 

Obviously, the number of citations per patent is lower, but interestingly, this is higher for the 

EPO-to-USPTO sample of citations that for the EPO-EPO sample. Also the fraction of patents 

that have only citations added by the examiner is different for the two sub samples. Both sub 

samples show a higher fraction of patents with only citations added by the examiner, but the 

fraction of patents with all citations added by the inventor is also higher for both sub samples.   

*************** INSERT TABLE 2 ABOUT HERE ************* 
 
 
4. Descriptive findings on the geographical citation patterns  
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As a first approach to the question whether or not inventor and examiner citations have 

different geographical profiles, we proceed to analyse the geographical source of inventor and 

examiner citations at the country and regional (i.e., sub-country) level. We ask whether the 

inventor citations are more likely to originate in the same country (region) as the cited patent 

than examiner citations. Our hypothesis is that inventor citations are a more direct indicator of 

knowledge flows than examiner citations, and hence that inventor citations are more often co-

located. 

The assignment of patents to a country or a region is based on the inventor address (rather 

than the applicant address). A single patent may have more than one inventor, and if these 

inventors are located in different regions (countries), the question whether or not the inventors of 

a cited and citing patent are located in the same region (country) cannot be answered 

unambiguously. Throughout our statistical analysis (i.e., also for the regressions below), we 

approach this issue in the following way. Denote the number of citing inventors by m, and the 

number of cited inventors by n. We then have m*n combinations of citing and cited locations 

(countries or regions). We consider all these combinations, and assign them a weight equal to 

1/m*n. Note that if some of the citing or cited inventors are from the same location, the m*n 

locations will not be unique, but this is taken care of in a natural way by the weighting scheme. 

We create a dummy variable that equals to 1 if the citing inventor and cited inventor are 

resident in the different European regions (variable named Diff_Regions), different US States 

(Diff_USStates) or different countries (Diff_Ctrys). Note that this variable is defined at the level 

of inventor locations, not at the level of a patent-citation-pair. At the patent-citation-pair level, 

there are m*n location-pairs, and hence also m*n values for the geographical dummy variables 

(these are weighted by the 1/m*n weights).  
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We first consider the Diff_Ctrys dummy variable. Figure 2 shows the development of the 

share of citations where this variable is equal to 1. This rises from 30% in the beginning to 45% 

in the last year, indicating that the degree of localization of inventor citations decreases over 

time. We will test for this in a multivariate context below. Table 3 provides some basic statistics 

on this dummy across 30 technological sub-fields as defined by the Observatoire des Sciences et 

des Techniques (OST) and the Fraunhofer Institute (FhG-ISI) (see OST 2002 appendix A5a-1 p. 

346). As expected, across all technological classes inventor citations are more co-localized than 

the examiner citations (that is, the values for inventor citations in the table are smaller). 

Technology fields in which we find a particularly strong dominance of localized inventor 

citations (i.e., low values) are information technology, motors-pumps-turbines, thermal 

processes, and mechanical components (these are the technology fields for which the numbers in 

the last column of Table 3 are below 30%). Inventor citations are relatively weakly localized 

(values in Table 3 above 50%) in food & agricultural products. 

*********** INSERT FIGURE 2 & TABLE 3 ABOUT HERE ******* 
 

We repeat this analysis at a finer level of geographical aggregation. To this end, we use the 

variable Diff_Regions for the European geographical space3 and Diff_USStates for the US 

geographical space. The European regional breakdown that we use is largely based on the NUTS 

classification scheme that Eurostat uses. This is based on administrative regions rather than 

economically coherent regions. Although we would have liked to use the latter, such a 

classification scheme is not available for the European Union as a whole. We use a mix between 

NUTS 2- and 3-digit level, and in cases where the NUTS region corresponds to a (large) city or 

very small area, we combine this with the surrounding or adjacent region in order to arrive at 

more homogenous spatial units (except for Brussels and Berlin).  



 12

The results for this are documented in Figure 3 (time profile) and Table 4a (technology 

fields) for European regions, and in Figure 4 and Table 4b for US States. Obviously, because of 

the stricter geographical definition, we now find higher percentages than in Figure 2/ Table 3. In 

the time profiles, we see somewhat of a contrast between Europe and the US. In Europe, the 

localization effect seems to weaken over time (a higher fraction of citations with different 

regions), but in the US the fraction seems to be more or less constant.  

****** INSERT FIGURES 3 & 4 & TABLES 4a AND 4b ABOUT HERE ********** 

In Tables 4a and 4b, inventor citations appear as more co-located than examiner citations, in 

all technological fields. With regard to the individual technology fields that we identified above 

as particularly high or low in terms of localization of inventor citations, we now find some 

differences. Audio-visual (European space, Table 4a), optical instruments (European space, 

Table 4a), semiconductors (US space, Table 4b), nuclear technology (European space, Table 4a), 

agricultural machinery and food processing (European space, Table 4a), machine tools 

(European space, Table 4a), motors-pumps-turbines (European space, Table 4a) and mechanical 

components (European space, Table 4a) are now highly localized.  

Concluding, our descriptive evidence indeed indicates that inventor citations are more 

indicative of localized knowledge interaction that examiner citations, with variations by 

technology field, but this needs to be put to a test in a multivariate analysis. 

 

5. Econometric approach 
 

We proceed to investigate the differences between inventor and examiner citations in a 

broader and more formal context. To this end, we apply a formal econometric model, in which 

the citation type (examiner or inventor) is the dependent variable. This is a binary variable that 
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takes the value 1 (0) if the citation was added by the examiner (inventor). We interpret this 

model as a prediction tool for whether a knowledge flow is actually observed (i.e., an inventor 

citation), or remains a potential linkage of two pieces of knowledge (i.e., an examiner citation). 

************** INSERT TABLE 5 ABOUT HERE *************** 
 
The explanatory variables used in the regressions are listed in Table 5. Among them are three 

variables measuring geographical proximity. The first of these is a standardized measure of 

regional distance in kilometers (DistanceKM) between the region of the citing and cited inventor 

(but see our explanation of the weighting scheme above). Appendix I explains how this variable 

was calculated. We calculate this variable both for EU-regions, and for US States (but not 

between Europe and the US). From the point of view of the localization effect of knowledge 

spillovers that is observed in the literature, we expect DistanceKM to be positively correlated 

with examiner citations (i.e., the further the distance between two patents, the less likely it is that 

inventors actually make the citation). 

In addition to this, we have the two dummy variables that have been used in Tables 3 and 4. 

One was coded as 0 if the citing and cited patents originate from the same country (Diff_Ctrys), 

and the other is similarly defined at the regional level (Diff_Regions). Along the same lines of 

reasoning as for DistanceKM, we expect these geographical variables to have an odds-ratio 

greater than 1, i.e., examiners are more likely to add citations to patents originating from distant 

location than inventors.  

Our next variable is the Citation lag (in years), which is the time period elapsed between the 

priority dates of the citing and cited patents. This controls for a potential difference in time scope 

between inventors and examiners. We have no strong theoretical expectations on the value of the 

odds-ratios for this variable, but we could hypothesize that examiners, because of their detailed 
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knowledge of patent literature in the specific field they cover, have a ‘longer memory’ and thus 

they would have a tendency to add older patents in the search reports.  

Technological relatedness is another variable that we wish to control for, and this is why we 

include a dummy variable that is coded as 0 if the citing and cited patents are classified in the 

same 4-digit IPC class (Diff_Tech). We include this variable in order to be able to account for the 

potential effect of co-location of similar types of R&D activities. Jaffe et al. (1993) have argued 

that it may be the case that R&D in a certain field tends to be co-located in space (e.g., research 

on semiconductors may be concentrated in Silicon Valley). Because patent citations are by 

definition to technologically related patents, this would lead to a geographical concentration of 

patent citations without necessarily pointing to any additional effect related to stronger 

knowledge flows at the local level. Our Diff_Tech variable, to the extent that its 4-digit IPC level 

indeed captures the relevant technological linkages, accounts for this. If inventors are more likely 

to cite local patents for reasons of technological relatedness, we expect this will turn up in the 

coefficient of the Diff_Tech variable. If, on the other hand, we find that the geographical 

variables are significant in addition to the Diff_Tech variable, this is evidence for a localization 

effect in addition to that of the geographical concentration of R&D activities of a specific kind. 

A next set of variables is related to the citation categories that were explained in Table 1 

above. We construct three mutually exclusive dummy variables capturing the classes (other than 

D, which defines our dependent variable) that are most frequent (A, Y and X). The remaining 

categories account for a minor fraction of the patents in our sample (see Table 1), and hence we 

drop citations classified under one of these categories. This implied excluding from the analysis 

only 3096 citation pairs. The categories X and Y pose a serious threat to the novelty of the patent, 
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and hence, as already observed above, we expect that inventors will be less likely to add citations 

in these categories.  

Tables 6 and 7 provide, respectively, descriptive statistics and the correlation matrix for the 

variables used in the regressions. 

 

*************** INSERT TABLE 6 ABOUT HERE ************* 
 

*************** INSERT TABLE 7 ABOUT HERE ************* 
 
Our baseline estimation method is the logit model. But as was already indicated, our 

dependent variable is skewed, i.e., it contains relatively more 1s than 0s. Also, because citation 

behaviour may be influenced by personal characteristics of the applicant or examiner, as well as 

the specific technology involved in the patent, we might expect that the error term in our 

econometric equation is correlated between citation pairs that involve the same citing patent. In 

order to take account of these special features of the data, we apply a range of specific logit 

models that address this in various ways.  

In order to deal with the correlated error terms, we follow Alcacer and Gittelman (2004) and 

first apply a random effects panel model, in which the random effects refer to the citing patent, 

and what is normally the ‘time’ dimension is represented by the various citations in a given 

citing patent. We also apply a model with clustered errors on citing patents (Moulton 1990). This 

assumes that the observations (citations) are drawn from a population with a grouped structure, 

and that the errors are correlated within the groups. The clustered error structure solves for a 

downward bias that would result in a model that wrongly assumes no clustered errors. 

The skewed nature of the data is addressed by a special logit model, in which the actual logit 

function that is used in the specification is asymmetric. This is the complementary log-log model 



 16

(cloglog). The cloglog model fits an asymmetric sigmoid function to the probability between 

zero and one, unlike the probit and logit models, which are both symmetric around ½.4 The 

probability function of the cloglog model approaches zero fairly slowly, but approaches one 

quite sharply, i.e. the sigmoid function is more elongated in comparison to the logit or probit 

models (Agresti 2002). For the cloglog model, like the ordinary logit model, we have one version 

with robust cluster errors, and one version with random effects. 

6. Estimation results 
 
We first estimate a number of models for the total sample of within-EPO and within-Europe 

citations, which are presented in Table 8. All regressions in this table confirm that a greater 

geographical distance increases the probability of examiner citations (decreases the probability 

of inventor citations), or, in other words, that inventor citations are more geographically 

concentrated. This is shown by the odds-ratios for the variable DistanceKM, which is always 

larger than one and significant. The table also confirms that examiners are more likely to add the 

‘dangerous’ citation types X than the ‘common’ citation type A, which is the reference category. 

But contrary to our expectations, examiners are less likely to add citations type Y compared to 

citations type A.  

 

********************* INSERT TABLE 8 ABOUT HERE **************** 

 

Examiners have a higher tendency than inventors to cite patents over longer citation (time) 

lags, however the odds-ratios of this variable (Citation lag) is very close to one, pointing to a 

small difference between inventor and examiner citations in this respect. Finally, examiners tend 

to cite more outside the technology class (Diff_Tech).  
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Although the various econometric specifications yield the same qualitative results (i.e., signs 

of the effects), they do differ with regard to the magnitude of the estimated odds-ratios. We 

choose the logit model with random effects as the preferred model, based on the two information 

criteria (AIC and BIC). Of the four models, this is the one that has the strongest localization 

effect (highest odds-ratio). The importance of the individual variance component (within citing 

patent variation), i.e., the random effects, indeed seems to be quite high (see value and 

significance of ρ in Table 8). This comes out stronger (higher ρ value) in the random effects logit 

model than in the random effects cloglog model, and therefore the fact that this model scores 

higher on the AIC/BIC may indicate that the individual variance component weights is somehow 

related to the skewness of the data. 

********************* INSERT TABLE 9 ABOUT HERE **************** 

We use the random effect logit model, in Table 9, to further investigate several issues. The 

first issue is an alternative definition of ‘dangerous’ patents (type X and Y). The alternative 

definition combines the two types into one, i.e., the dummy variable Class XY is 1 only if either 

one or both of the variables Class X and Class Y are equal to 1. The result of this regression is 

documented in the second column of Table 9 (the first column in Table 9 is reproduced from 

Table 8 as a baseline comparison). The result indicates that examiners are more likely to cite 

dangerous patents. Other variables are largely unaffected. 

The next issue is the possibility of interaction effects between our independent variables, in 

particular between distance and the other variables. This is documented in the third column in 

Table 9. All the interaction effects that we investigate are significant at the 1% level, except 

distance with Class X, which is significant at the 10% level. The interactions where Class X, 

Class Y and Diff_tech are involved yield positive odds-ratios, which points out that these 
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variables reinforce the effect of distance (or, alternatively, distance reinforces the effect of these 

variables). ‘Dangerous’ patents, or patents outside the own technology class are already less 

likely to be cited by inventors, and this is ‘worse’ if these patents were invented far away from 

the citing inventor’s location. 

The next two columns in Table 9 investigate the time variance of the parameters. We do this 

by selecting a sub sample (cohort) of citations on the basis of the year of the citing patent (1985 

– 1992 and 1993 – 2000). Both cohorts show a significant geography effect, but in the early 

cohort, this is somewhat stronger than in the late cohort. We thus find evidence for a slightly 

weakening impact of distance over time, but this effect is (very) small. In fact, the time-varying 

effects of the other variables are generally much larger. The Citation lag variable changes from a 

negative impact in the first cohort to a positive impact in the second cohort. The Diff_tech 

variable turns from positive but insignificant to stronger positive and significant. Finally, the 

impact of the two dangerous citation type variables also grows positively over time.  

Finally, Table 9 implements regressions for sub samples in which citing patents with all 

citations coming from a single source (inventors or examiners) are eliminated. First, we exclude 

all citing patents for which all citations are examiner citations, next we exclude all citing patents 

for which the citations are all added by the inventor, and finally we exclude both previous types 

of citing patents. The reason why we exclude these types of patents is that citations where all 

citing patents are of one type only, might present cases where unobserved variables (e.g., 

personal characteristics of the examiner or inventor5) dominate the data, rather than a true 

localization effect. If this is a real feature in our data, the cases where one citing patent contains 

both examiner and inventor citations are much more reliable indicators for a localization effect 

(or its absence).  



 19

The most important finding from these three regressions is that excluding “all examiner” 

citations decreases the impact of distance somewhat, but still distance has a significant negative 

impact on inventor citations. We also see a reversal of the Citation lag effect. For the other 

variables, although the deviations of the odds-ratios from one are smaller for the sub samples, the 

basic conclusions remain intact. Concluding, what Table 9 shows, is that the overall results in 

Table 8 are robust to the variations that we apply. Stronger geographical concentration of 

inventor citations than examiner citations is a strong feature of our dataset, no matter what exact 

variables we use to indicate such concentration, and whether or not we exclude certain categories 

of data.  

The results obtained so far are only for the European space. We wish to test whether the same 

results on geography hold for the US. Using our within EPO citation pairs, we can test for this by 

selecting the EPO patents invented in the US and consider the citations between them. In this 

case, our geographical units are states (we do not include Alaska and Hawai, which are 

geographical outliers). These tend to be larger than European regions , and this may affect our 

results. Specifically, we may expect that the effect of distance is smaller, since we are limiting 

the regressions to larger (average) distances. For the US geographical space, we stick to the 

random effects logit model.  

********************* INSERT TABLE 10 ABOUT HERE **************** 

In Table 10, we repeat the range of logit models of Table 8 for the sample of intra-EPO 

citations for (EPO) patents invented in the US. The first column again shows a significantly 

positive effect of distance on the probability of an examiner citation. This confirms that the 

distance effect also holds for the US space. However, as expected because of the larger average 

distances, the effect is less strong as in Table 8/9. We find similar results as before for the 



 20

European space for the Diff_Tech and ClassX variables (both positive effects). However, the 

Citation lag and ClassY variables now have a reverse effect. The ClassY variable now has the 

expected sign (positive).  

In the second column of Table 10, we find the same qualitative results as before for the 

interaction effects. On the other hand, the results for separate cohorts shows the opposite result 

as before: over time, the effect of distance becomes slightly larger (rather than smaller as before). 

Finally, omitting parts of the sample where all citations were added by the examiner and/or 

inventor, again yields the same result: the effects of distance are slightly weakened by these 

omissions, but remain significant. 

********************* INSERT TABLE 11 ABOUT HERE **************** 

It might be the case that the EPO patents invented in the US that we use in Table 11 are a 

peculiar sub sample of patents originating from the US. We therefore also construct a sample of 

citations where the cited patent is a US patent invented in the US, rather than an EPO patent 

invented in the US (the citing patent remains an EPO patent invented in the US).6 The regression 

results for this sample are documented in Table 11 (we use the same random effects logit 

models). Because the USPTO and EPO patents are classified using different classifications that 

are not easy to match, we can no longer include the Diff_Tech variable. 

Table 11 again confirms the effect of positive distance on examiner citations. The distance 

variable is always significant, and has the same order of magnitude as before for the US space 

(Table 10). The Citation lag variable is no longer different from one in the first column. The 

ClassX and ClassY variables remain positive and significant, but their effect is stronger than in 

Table 10. The interaction effects show (again) the same qualitative results as before. For this 

sample, the two cohorts show exactly the same effect of distance. Omitting patents with all 
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examiner citations or all inventor citations again lowers the odds-ratios on distance a bit, but the 

distance effect is still significant. 

********************* INSERT TABLE 12 ABOUT HERE **************** 

In Table 12, we merge the two samples of Table 10 and 11. Hence we have EPO patents 

invented in the US citing EPO or USPTO patents invented in the US. These results are 

qualitatively the same as in the two previous tables, hence again confirming the effect of distance 

on examiner citations.  

********************* INSERT TABLE 13 ABOUT HERE **************** 

Given our specific interest in the geographical issue, we explore in Table 13 the sensitivity of 

the results for alternative variables capturing closeness in space. The table presents results for the 

total time period, for the two cohorts that we applied before, and for the within-EPO/within-

Europe sample as well as for the EPO-US sample of Table 12.. The first three columns in this 

table substitute the DistanceKM variable by the Diff_Region variable that we applied before. 

Because we use EU regions here, this is the sample of Table 8. This implies a much stricter 

definition of the localization effect (whereas the use of DistanceKM allows for a smooth decay 

of the probability of an inventor citation with distance, the effect is dichotomous – within or 

outside the region – in the case of the region dummy). This is reflected in a sharp increase in the 

odds-ratio of the region dummy as compared to DistanceKM. As before (Table 9), we observe a 

small decrease of the effect of distance between the two time cohorts.  

We repeat in the next three columns of Table 13 the same regressions for a dummy variable 

that is 1 when the two patents originate from different US states (Diff_USStates). Again, we 

observe the sharp increase in odds-ratios, and, as before in Tables 10/11, a slight increase in the 

effect of distance over time.  
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Finally in Table 13, we run regressions where the distance effect is captured by the dummy 

that is 1 if the two patents originate from different countries (Diff_Ctrys). Here we can include 

both citations pairs from the European space and the US space. For large countries, this dummy 

does not imply a very strong localization effect, but for small countries it does. In this case, we 

still find a significant localization effect. The odds-ratios are somewhat smaller than for the 

regions/states regressions, but still (much) higher than for the DistanceKM variable. Overall, the 

conclusion from Table 13 is that the localization effect for inventor citations is robust for various 

definitions of localization.  

 

7. A closer look at the effect of distance 
 

So far, we have (implicitly) assumed that the effect of distance is linear, but it might be the 

case that the relation between the likelihood of examiner citation and distance is nonlinear. In 

particular, we would expect that at small distances, the increase in distance by a unit (km) would 

lead to a stronger effect on the likelihood of an examiner citation, than the same increase at 

longer distance. In order to test for this, we employ a non-parametric method that starts with 

eliminating the effect of variables other than distance from the likelihood of an examiner 

citation. To this end, we first estimate a random effects linear probability regression model, with 

cits_examiner as the dependent variable, and independent variables as in Table 9/12. We then 

calculate a residual from this regression as iii eer ˆ−= , where e stands for cits_examiner, and 

iii Xce δβ ++= ˆˆˆ . Here c and β are the parameters in our linear model, X is the vector of 

independent variables except DistanceKM, δ is the random effect associated with the citing 

patent, and hats indicate estimated values. Note that the regressions from which we draw ĉ and 

β̂ did include DistanceKM as an independent variable, but we do not include this variable in the 
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calculation of the residual r. Hence r ‘partials out’ from cits_examiner all variables except 

distance.7  

Next, we run a locally weighted regression (lowess) of r on DistanceKM (we use a 

bandwidth of 0.8). This regression yields a smooth curve, of which each point corresponds the 

‘local’ (for the value of DistanceKM) effect of distance on the likelihood of an examiner citation. 

We first document the results of this procedure for the within-Europe/within-EPO sample in 

Figure 5.8 Instead of the version of DistanceKM that is standardized into units of 173 km, we use 

on the horizontal axis of this figure a distance variable with units of 1 km. 

Figure 5 indeed confirms that the effect of distance is nonlinear. At short distances between 

the cited and citing patent, the likelihood of an examiner citation quickly increases with distance, 

but this effect wears off at larger distances. Beyond 1,000 km (which is, say, the distance 

between the Brussels and Vienna regions, or the Paris and Copenhagen regions), the marginal 

effect of distance on the likelihood of an examiner citation becomes rather low. The longest 

distance between two regions in our sample is around 4,000 km (between the northern 

Scandinavian and Southern Spanish regions) if we do not include the Canary Islands, and 

approximately 1,500 km more if we include them. This non-linear effect of distance is consistent 

with the results found in Bottazzi and Peri (2003).  

***************** INSERT FIGURES 5/6/7/8 AROUND HERE ********** 

In the next three figures (6 – 8), we document, respectively, the results for the samples of EPO 

patents invented in the US citing EPO patents in the US (Figure 6), USPTO patents invented in 

the US (Figure 7) and EPO or USPTO patents invented in the US (Figure 8). All these figures 

show the same non-linear shape as in Figure 5. For the US space, the maximum distance is 

somewhat larger (the horizontal scale extends to 5000 instead of the 4000 of Figure 5, and while 
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this largest distance is a real outlier in Europe, it is not in the US). Despite this, the curvature for 

the three curves for the US space is rather similar to the one for the European space. 

 
8. Concluding summary 
 

The European patent database allows the identification of whether citations are added by the 

applicant/inventor (inventor citations) or the patent examiner. This information is available for 

the complete history of patent citations in the European patent system, and hence provides a rich 

source of data for assessing whether or not inventor citations indeed tend to be concentrated in 

geographical space. On the basis of this database, we have provided evidence based both on 

descriptive statistics and on the basis of multivariate econometrics. Both approaches yield a 

clear-cut conclusion: citations that originate from inventors/applicants are more concentrated in 

space than citations that originate from the patent examiners.  

In our descriptive analysis, this holds both at the national level (inventor citations are more 

often to patents invented in the same country where the inventor is resident), and at the regional 

(i.e., sub-national) level in Europe or in terms of US States (inventor citations are more often to 

patents invented in the same region/state where the inventor is resident). The econometric 

analysis controls for a number of other factors, such as the technological relatedness of the cited 

and citing patent, the citation lag (time elapsed between the cited and citing patent), and the 

citation type (referring to state-of-the art, or citations that may compromise novelty). We also 

apply different measures of distance and co-location of cited and citing patent, and we 

experiment with different sub samples and estimation methods. Finally, we estimate models both 

for the European and US space.  

All econometric evidence points to a significant localization effect of inventor citations. 

Citations added by the examiner are rarely clustered in the same region or state, and span larger 
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geographical distances between cited and citing patent. This result is completely robust across 

sub samples, time cohorts, the estimation methods and the various ways in which distance and 

co-location are measured. 

Otherwise, we find that examiner citations more often involve citations that may compromise 

novelty, which points out that inventors may indeed have a tendency to omit relevant citations 

that may endanger their patent claims.  

By benchmarking inventor citations against examiner citations, we find that knowledge flows 

(to the extent that they are indicated by patent citations) are indeed localized. We take the 

patterns of citation in the sample of examiner citations as somehow representative for the 

potential linkages between global R&D workers, and the inventor citations as the part of these 

potential flows that have indeed materialized. Interpreted in this way, our evidence suggests that 

the actual technology flows are more geographically concentrated than the potential flows, or in 

other words, that knowledge interaction is stronger at small distances than over long distance. 

Testing for potential non-linearity of this relationship, we find that an increase in distance has a 

stronger effect when citing and cited patent are close to each other. In other words, the effect of 

distance is strong initially, but wears off when distance becomes large. 

Our econometric analysis also controls for whether or not the technology classes of the cited 

and citing patent are the same. If the main reason for inventor citations to be more concentrated 

in geographical space was that patents in the same technology class are more often co-located, 

we would have expected that the technology class variables would have been positively 

correlated with inventor citations. But this is not generally the case, and hence we conclude that 

the localization effect that we find for inventor citations results from a source that is additional to 

the (potential) tendency of similar R&D activities to co-locate in space. In other words, the 
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distribution of sectoral composition of R&D activities over space is not the prime responsible 

variable for the localization effect that we observe. 
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Appendix I. Distance calculations 
 

A distance table between the European regions in our sample is not readily available. The 

approach taken here to calculate such a table is based on a computer map of Europe. This map 

was taken from Eurostat's classification server RAMON9 but altered to take into account our 

customized regional breakdown. The map was divided into a dense set of cells (pixels). Each 

pixel was assigned either to a region or a border between municipalities. This was done on the 

basis of the borders drawn on the computer image of the map. Pixels assigned to borders were 

not included in the calculations. The distance between any two pixels on the map was defined as 

the Euclidean distance between them (the unit of measurement is kilometers). The fact that 

Euclidean distance on the flat computer map was used implies that no account was taken of the 

curvature of the globe. Also, no correction was made for the imperfections introduced by the 

projection of the map onto a flat space. The distance between two regions i and j was defined as 

the mean of the individual distance between all possible pairs of pixels, with one pixel located in 

i, and the other pixel located in j.  

Because we report odds-ratios in the documentation of regression results, a unit of 1 km is 

not very useful (it is too small to point out any discernable effect). Thus, we divide the distance 

in kilometres by 173, which is the distance that is found, on average, between two bordering 

regions on our map. We arrived at this 173 km distance by first defining a new variable B, in 

which Bij for regions i and j is defined as the minimum number of borders one has to cross to 

reach j from i (or vice versa).10 We then divide the distance in kilometres by the corresponding 

value of B and take the average over all pairs of regions, which yields 173 km. In cases where 

the citing and/or cited patents involve more than one inventor, we calculate an average distance 

value between all combinations of regions involved on the citing and cited side.  
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Appendix II. The regions  

For the following countries/regions, the NUTS classification has been used: 

Austria  France  
AT11 Burgenland FR1 Ile De France 
AT12+AT13 Niederösterreich FR21 Champagne-Ardenne 
AT21 Kärnten FR22 Picardie 
AT22 Steiermark FR23 Haute-Normandie 
AT31 Oberösterreich FR24 Centre 
AT32 Salzburg FR25 Basse-Normandie 
AT33+AT34 Tirol And Vorarlberg FR26 Bourgogne 
Belgium  FR3 Nord-Pas-De-Calais 
BE1 Brussels Hfdst.Gew FR41 Lorraine 
BE2 Vlaams Gewest FR42 Alsace 
BE3 Region Wallonne FR43 Franche-Comte 
Germany  FR51 Pays De La Loire 
DE1 Baden-Württemberg FR52 Bretagne 
DE2 Bayern FR53 Poitou-Charentes 
DE3 Berlin FR61 Aquitaine 
DE4 Brandenburg FR62 Midi-Pyrenees 
DE5+DE9 Bremen And Niedersachsen FR63 Limousin 
DE6+DEF Hamburg And Schleswig-Holstein FR71 Rhone-Alpes 
DE7 Hessen FR72 Auvergne 
DE8 Mecklenburg-Vorpommern FR81 Languedoc-Roussillon 
DEA Nordrhein-Westfalen FR82 Provence-Alpes-Cote D'azur
DEB+DEC Rheinland-Pfalz And Saarland FR83 Corse 
DED Sachsen Greece  
DEE Sachsen-Anhalt GR1 Voreia Ellada 
DEG Thüringen GR2+GR3 Kentriki Ellada And Attiki 
Spain  GR4 Nisia Aigaiou, Kriti 
ES11 Galicia Italy  
ES12+ES13 Asturias And Cantabria IT1 Nord Ovest 
ES21+ES22+ES23 Pais Vasco, Navarra And Rioja IT2 Lombardia 
ES24 Aragon IT31 Trentino-Alto Adige 
ES3 Madrid IT32 Veneto 
ES41 Castilla-Leon IT33 Friuli-Venezia Giulia 
ES42 Castilla-La Mancha IT4 Emilia-Romagna 
ES43 Extremadura IT51 Toscana 
ES51 Cataluna IT52 Umbria 
ES52 Valenciana IT53 Marche 
ES53 Baleares IT6 Lazio 
ES61 Andalucia IT7 Abruzzo-Molise 
ES62 Murcia IT8 Campania 
ES7 Canarias IT9 Sud 
  ITA Sicilia 
  ITB Sardegna 
Netherlands  
NL1 Noord-Nederland 
NL21 Overijssel 
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NL22 Gelderland 
NL23 Flevoland 
NL31 Utrecht 
NL32 Noord-Holland 
NL33 Zuid-Holland 
NL34 Zeeland 
NL41 Noord-Brabant 
NL42 Limburg 
Portugal  
PT11 Norte 
PT12 Centro  
PT13 Lisboa E Vale Do Tejo 
PT14 Alentejo 
PT15 Algarve 
Sweden  
SE01+SE02 Stockholm And Östra Mellansverige 
SE03+SE04 Småland And Sydsverige 
SE05 Västsverige 
SE06 Norra Mellansverige 
SE07 Mellersta Norrland 
SE08 Övre Norrland 
United Kingdom  
UK1 North 
UK2 Yorkshire And Humberside 
UK3 East Midlands 
UK4 East Anglia 
UK5 South East  
UK6 South West  
UK7 West Midlands 
UK8 North West  
UK9 Wales 
UKA Scotland 
UKB Northern Ireland 
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For the following countries, a national classification has been used: 
Norway Based on Fylken 
NO1 Akershus, Oslo  
NO2 Hedmark, Oppland 
NO3 Østfold, Busekrud, Vestfold, Telemark 
NO4 Aust-Agder, Vest-Agder, Rogaland 
NO5 Hordaland, Sogn og Fjordane, Møre of Romsdal 
NO6 Sør-Trøndelag, Nord-Trøndelag 
NO7 Nordland, Troms, Finnmark 
Switzerland Based on Cantons 
CH1 Jura, Neuchâtel, Fribourg, Vaud, Geneva 

CH2 

Argovia, Appenzell Inner-Rhodes, Appenzell Outer-Rhodes, Basel-Country-Basel-
Town, Berne, Glarus, Lucerne, Nidwalden, Obwalden, St. Gallen, Schaffhausen,
Schwyz, Solothurn, Thurgovia, Uri, Zug, Zurich 

CH3 Valais, Ticino, Grisons 
Denmark Based on postal regions 
DK1 Hillerød, Helsingør, København 
DK2 Fyn, Sjaelland ex. Hillerød, Helsingør, København 
DK3 Jylland 
Finland Based on municipalities 
FI11_12 Uusimaa+Etelä-Suomi 
FI13 Itä-Suomi 
FI14 Väli-Suomi 
FI15 Pohjois-Suomi 
 
The following countries have been included as a single region: 
Ireland 
Luxemburg 
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Figure 1. The share of inventor citations in total citations in the EPO database 

 
Figure 2. Share of inventor citations where inventors of cited and citing patents are from 
different countries 
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Figure 3. Share of inventor citations where inventors of cited and citing patents are from 
different European regions 
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Figure 4. Share of inventor citations where inventors of cited and citing patents are from 
different countries 
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Figure 5. The relationship between distance and the likelihood of an examiner citation, within-EPO 
and within-Europe sample 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* For definition of probability of examiner citation, see text.  
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Figure 6. The relationship between distance and the likelihood of an examiner citation, EPO 
patents invented in the US citing EPO patents invented in the US 

* For definition of probability of examiner citation, see text.  
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Figure 7. The relationship between distance and the likelihood of an examiner citation, 
EPO patents invented in the US citing USPTO patents invented in the US 

* For definition of probability of examiner citation, see text.  
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Figure 8. The relationship between distance and the likelihood of an examiner citation, 
EPO patents invented in the US citing EPO or USPTO patents invented in the US 

* For definition of probability of examiner citation, see text. 
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Table 1. Description of category of citations 

Category of 
citations Description 

Fraction 
of all 

citations 
X Particularly relevant documents if taken alone; citations classified 

under this category are such that when taken alone a claimed 
invention cannot be considered novel or cannot be considered to 
involve an inventive step. 

0.20 

Y Particularly relevant documents if combined with another document, 
such a combination being obvious to a person skilled in the art. 

0.16 

A Documents defining the state of the art and not prejudicing novelty 
or inventive step. 

0.62 

D Documents cited in the application. 0.09 
P Intermediate documents; Documents published on dates falling 

between the date of filing of the application being examined and the 
date of priority claimed. 

0.04 

E Earlier patent documents, but published on, or after the filing date. 0.01 
O Documents that refer to a non-written disclosure. 0.00 
T Documents relating to the theory or principle underlying the 

invention. 
0.00 

L Documents cited for other reasons. 0.00 
Source: EPO examination guides lines part B chapter X 

 
Table 2. Descriptive statistics 
Total Sample  
Number of citing patents 700,674 
Number of citations 2,859,714 
Citations per patent (mean) 3.25 
Number of citing patents with all citations added by the examiner 530,893 
Fraction of citing patents with all citations added by the examiner 75.77 
Number of citing patents with all citations added by the inventor 16,617 
Fraction of citing patents with all citations added by the inventor 2.37 
Sample of within EPO citations  
Number of citing patents 490,230 
Number of citations 982,826 
Citations per patent (mean) 1.91 
Number of citing patents with all citations added by the examiner 400,620 
Fraction of citing patents with all citations added by the examiner 81.72 
Number of citing patents with all citations added by the inventor 34,583 
Fraction of citing patents with all citations added by the inventor 7.05 
Sample of EPO patents citing USPTO patents  
Number of citing patents 432,776 
Number of citations 913,675 
Citations per patent (mean) 2.19 
Number of citing patents with all citations added by the examiner 379,250 
Fraction of citing patents with all citations added by the examiner 87.63 
Number of citing patents with all citations added by the inventor 23,262 
Fraction of citing patents with all citations added by the inventor 5.38 
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Table 3. Comparing the geographical distribution of inventor and examiner-citations (share of 
citations with inventors from different countries)  

Technological sub-fields 
All 

observations 
Examiner 
citations 

Inventor 
citations 

Electrical Components Electronics 59.05 62.10 34.02 
Audio–visual 52.92 53.95 32.76 
Telecommunications 66.50 68.08 34.80 
Information Technology 55.71 56.81 29.20 
Semiconductors 56.41 58.07 30.17 
Optical Instruments 50.27 52.18 36.50 
Analytical, measurement & control instruments 61.36 64.17 34.69 
Medical equipment 58.22 60.45 37.39 
Nuclear technology 57.77 62.30 31.47 
Organic chemistry 52.90 55.32 44.46 
Macromolecular chemistry 52.71 54.91 39.80 
Chemical processes: oil 54.97 57.03 43.45 
Surface treatment 57.31 59.77 35.62 
Materials–metals 56.51 59.70 39.72 
Biotechnology 54.87 57.26 40.65 
Pharmaceuticals–cosmetics 56.32 58.35 41.13 
Food & agricultural products 61.41 62.94 51.85 
Technological processes 59.37 62.52 36.18 
Product handling printing 57.53 60.33 35.44 
Agricultural machinery food processing  61.63 65.78 37.59 
Materials handling 58.80 62.50 37.60 
Environment–pollution 62.28 65.20 34.39 
Machine tools 61.00 65.13 35.36 
Motors–pumps–turbines 58.78 61.67 29.25 
Thermal processes 62.36 65.97 29.08 
Mechanical components 59.98 64.01 29.95 
Transport 60.57 63.74 33.24 
Space–arms 61.26 65.79 32.78 
Household equipment and consumer goods 62.15 65.67 37.09 
Building and public works 60.78 65.47 29.83 
Overall 57.63 60.24 37.47 
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Table 4a. Comparing the geographical distribution of inventor and examiner-citations (share of 
citations with inventors from different European regions) 

Technological sub-fields 
All 

observations 
Examiner 
citations 

Inventor 
citations 

Electrical Components Electronics 62.34 67.22 35.83 
Audio–visual 63.86 67.44 28.07 
Telecommunications 73.02 75.42 36.95 
Information technology 75.69 78.09 34.48 
Semiconductors 62.21 65.58 31.07 
Optical Instruments 44.00 49.54 23.52 
Analytical, measurement & control instruments 65.24 69.42 36.54 
Medical equipment 70.30 73.29 46.43 
Nuclear technology 53.56 62.54 22.87 
Organic chemistry 48.90 50.83 40.66 
Macromolecular chemistry 54.42 57.75 39.14 
Chemical processes: oil 55.88 58.52 40.56 
Surface treatment 62.57 65.82 38.44 
Materials–metals 54.35 58.64 38.57 
Biotechnology 60.00 62.74 42.23 
Pharmaceuticals–cosmetics 65.79 68.75 43.38 
Food & agricultural products 65.56 66.56 58.11 
Technological processes 60.17 63.56 40.10 
Product handling printing 57.82 63.27 32.49 
Agricultural machinery food processing  50.68 62.46 21.49 
Materials handling 58.59 62.89 39.86 
Environment–pollution 64.67 68.66 42.14 
Machine tools 56.57 63.22 25.85 
Motors–pumps–turbines 55.36 60.15 23.90 
Thermal processes 55.70 59.42 33.18 
Mechanical components 46.52 52.86 21.51 
Transport 45.97 49.86 28.84 
Space–arms 58.00 60.81 40.96 
Household equipment and consumer goods 57.94 63.31 31.46 
Building and public works 48.25 52.20 31.69 
Overall 67.46 72.82 44.95 
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Table 4b. Comparing the geographical distribution of inventor and examiner-citations (share of 
citations with inventors from different US States) 
 

Technological sub-fields 
All 

observations 
Examiner 
citations 

Inventor 
citations 

Electrical Components Electronics 68.95 75.31 39.81 
Audio–visual 66.40 71.80 32.10 
Telecommunications 74.33 79.67 32.50 
Information technology 72.85 77.81 36.98 
Semiconductors 59.92 67.04 23.62 
Optical Instruments 61.60 69.02 35.16 
Analytical, measurement & control instruments 71.11 77.05 39.02 
Medical equipment 74.22 79.76 45.77 
Nuclear technology 63.00 71.00 30.22 
Organic chemistry 52.60 56.24 43.97 
Macromolecular chemistry 58.64 61.63 49.01 
Chemical processes: oil 65.52 67.98 55.63 
Surface treatment 68.66 74.70 43.75 
Materials–metals 65.35 71.03 45.68 
Biotechnology 59.00 62.20 45.97 
Pharmaceuticals–cosmetics 69.56 75.08 49.05 
Food & agricultural products 77.08 80.68 59.60 
Technological processes 67.96 73.42 40.57 
Product handling printing 70.53 76.27 43.08 
Agricultural machinery food processing  70.89 74.94 49.77 
Materials handling 65.81 72.22 41.29 
Environment–pollution 76.44 80.24 48.36 
Machine tools 67.29 73.98 40.34 
Motors–pumps–turbines 65.89 71.24 36.05 
Thermal processes 72.75 78.68 38.14 
Mechanical components 69.43 75.69 36.88 
Transport 72.16 77.00 43.21 
Space–arms 67.53 76.25 34.38 
Household equipment and consumer goods 70.43 76.00 41.30 
Building and public works 73.41 79.09 41.55 
Overall 60.97 64.94 36.38 
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Table 5. Variable definitions  
Name  Definition 
Cits_examiner 1 if examiner citation, 0 if applicant citation 
DistanceKM Average km distance between the citing and cited European region or US State, in units 

of 173 km 
Diff_EURegions 0 if at least one inventor in the citing and cited patent application are resident in the 

same region, 1 otherwise 
Diff_USstates 0 if at least one inventor in the citing and cited patent application are resident in the 

same US State, 1 otherwise 
Diff_Ctrys 0 if at least one inventor in the citing and cited patent application are resident in the 

same country, 1 otherwise 
Citation lag Priority year of the citing patent application – priority year of cited patent application 
Diff_Tech 0 if citing and cited patent application are classified in the same four-digit IPC code  
ClassY 1 if the cited patent has been classified under category Y, 0 otherwise 
ClassX 1 if the cited patent has been classified under category X, 0 otherwise 
 
 
 
Table 6. Descriptive statistics  
Variable Obs. Mean Std. Dev. Min Max 
Cits_examiner 251407 0.807 0.394 0 1 
DistanceKM 251407 1.962 2.193 0 21.55 
Diff_EURegions 251407 0.674 0.468 0 1 
Diff_USstates 156623 0.609 0.487 0 1 
Diff_Ctrys 949903 0.576 0.494 0 1 
Citation lag 251407 5.484 3.838 0 23 
Diff_Tech 251407 0.311 0.463 0 1 
ClassX 251407 0.192 0.394 0 1 
ClassY 251407 0.147 0.354 0 1 
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Table 7. Correlation matrix for the variables used in the regressions 
Variable Cits_examiner DistanceKM Citation lag Diff_Tech ClassX 
Cits_examiner 1     
      
DistanceKM 0.2106 1    
 (0.000)     
Citation lag 0.0356 0.1351 1   
 (0.000) (0.000)    
Diff_Tech 0.0221 0.0355 0.0564 1  
 (0.000) (0.000) (0.000)   
ClassX  0.1047 0.0349 -0.0419 -0.0032 1 
 (0.000) (0.000) (0.000) (0.110)  
ClassY -0.0359 -0.023 -0.0147 0.0157 -0.2033 
 (0.000) (0.000) (0.000) (0.000) (0.000) 
Significance levels of each correlation coefficient are reported below each coefficient. 
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Table 8. Results of different logit models using the sample of within-EPO, within-Europe citations 

 Random effects cloglog Random effects logit 
Logit with robust 

cluster errors 
Cloglog with robust 

cluster errors 
DistanceKM 1.231 1.539 1.437 1.146 
 (84.84)*** (93.50)*** (78.75)*** (67.00)*** 
Citation lag 1.003 1.004 1.003 1.003 
 (2.91)*** (2.00)** (2.04)** (3.59)*** 
Diff_Tech 1.071 1.118 1.078 1.047 
 (8.68)*** (7.62)*** (6.19)*** (7.62)*** 
ClassX 1.638 2.556 2.167 1.426 
 (46.84)*** (46.16)*** (43.28)*** (45.57)*** 
ClassY 0.931 0.879 0.932 0.967 
 (7.04)*** (7.03)*** (4.71)*** (4.28)*** 
Observations 251053 251053 251053 251053 
Number of citing pats 159799 159799   
Log-likelihood -112786 -112440 -114305 -115134 
AIC 225586.6 224893.9 228622 230279.1 
BIC 225659.6 224966.9 228684.6 230341.7 
Min cited per citing 1 1   
Avg cited per citing 1.57 1.57   
Max cited per citing 23 23   
Wald χ2 8609.81 10663.88   
Degrees of freedom 5 5   
ρ 0.25 0.34   
χ2 4694.52 3730.15   
Absolute value of z statistics in brackets. * significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 9. Results of different specifications of the random effects logit model, within EPO and within-Europe citations 
 1 2 3 Citing patent in 

1985_1992 
Citing patent in 

1993_2000 All_exam_excl Allinv_excl 
 

All_exam_allinv_excl 
DistanceKM 1.539 1.544 1.554 1.593 1.51 1.261 1.453 1.268 
 (93.50)*** (94.43)*** (51.29)*** (59.23)*** (72.08)*** (51.98)*** (68.08)*** (40.85)*** 
Citation lag 1.004 1.001 1.015 0.978 1.006 0.999 0.995 0.992 
 (2.00)** (0.79) (6.09)*** (5.43)*** (3.07)*** (0.44) (2.41)** (3.33)*** 
Diff_Tech 1.118 1.108 1.016 1.005 1.194 1.035 1.091 1.037 
 (7.62)*** (7.10)*** (0.83) (0.22) (9.54)*** (2.02)** (5.05)*** (1.76)* 
ClassX 2.556  2.493 2.18 2.743 1.801 1.946 1.562 
 (46.16)***  (35.37)*** (22.76)*** (39.76)*** (26.28)*** (28.03)*** (16.32)*** 
ClassY 0.879  0.813 0.781 0.957 0.882 0.826 0.799 
 (7.03)***  (8.87)*** (8.59)*** (1.83)* (5.70)*** (9.10)*** (8.74)*** 
KM*ClassX   1.023      
   (1.77)*      
KM*ClassY   1.066      
   (5.43)***      
KM*Citation Lag   0.992      
   (7.10)***      
KM*Diff_tech   1.076      
   (7.82)***      
ClassXY  1.487       
  (27.26)***       
Observations 251053 251053 251053 92620 158428 75475 224091 48513 
Number of citing pats 159799 159799 159799 62292 97505 40987 136683 17871 
Log-likelihood -112440 -113403 -112368.76 -43740.8 -68592.2 -47449.3 -66107.3 -32089.9 
Min cited per citing 1 1 1 1 1 1 1 1 
Avg cited per citing 1.57 1.57 1.57 1.49 1.62 1.84 1.64 2.71 
Max cited per citing 23 23 23 11 23 23 23 23 
Wald χ2 10663.88 9690.41 10703.55 3952.92 6636.6 3495.78 5677.14 2067.9 
degrees of freedom 5 4 9 5 5 5 5 5 
ρ 0.34 0.34 0.34 0.35 0.33 0 0.15 0 
χ2 3730.15 3703.53 3712.19 1373.34 2362.19 0 678.11 0 
Absolute value of z statistics in brackets. * significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 10. Results of the random effects logit model, within EPO citations of (EPO) patents invented in the US  
  1 2 1985_1992 1993_2000 All_exam_excl Allinv_excl All_exam_allinv_excl 
DistanceKM 1.131 1.151 1.121 1.14 1.067 1.105 1.065 
 (57.41)*** (33.36)*** (37.69)*** (43.31)*** (33.24)*** (39.62)*** (24.74)*** 
Citation lag 0.997 1.01 0.961 0.992 0.975 0.997 0.975 
 (0.97) (2.66)*** (6.64)*** (2.15)** (6.60)*** (0.83) (5.61)*** 
Diff_Tech 1.129 1.164 1.042 1.193 0.988 1.07 0.957 
 (5.60)*** (5.87)*** (1.29) (5.92)*** (0.52) (2.71)*** (1.51) 
ClassX 2.36 2.356 1.851 2.612 1.668 1.725 1.395 
 (30.64)*** (26.08)*** (14.71)*** (25.37)*** (17.28)*** (17.31)*** (9.30)*** 
ClassY 1.19 1.116 1.043 1.328 0.961 1.095 0.884 
 (6.41)*** (3.43)*** (1.10) (7.49)*** (1.29) (2.92)*** (3.34)*** 
KM*ClassX  1.001      
  (0.25)      
KM*ClassY  1.02      
  (3.78)***      
KM*Citation Lag  0.996      
  (6.23)***      
KM*Diff_tech  0.991      
  (2.27)**      
Observations 156623 156623 61692 94930 34063 144466 21906 
Number of citing pats 96118 96118 39268 56849 18214 85867 7963 
Log-likelihood -57791.2 -57761.9 -26161.5 -31300.4 -21565.2 -33292.9 -14581.6 
Min cited per citing 1 1 1 1 1 1 2 
Avg cited per citing 1.63 1.63 1.57 1.67 1.87 1.68 2.75 
Max cited per citing 17 17 17 15 17 17 17 
Wald χ2 4059.95 4079.54 1602.8 2402.42 1434.09 1866.71 739.73 
degrees of freedom 5 9 5 5 5 5 5 
ρ 0.48 0.48 0.45 0.49 0 0.25 0 
χ2 3760.16 3760.38 1442.14 2248.53 0 950.12 0 
Absolute value of z statistics in brackets. * significant at 10%; ** significant at 5%; *** significant at 1%
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Table 11. Results of the random effects logit model, EPO patents invented in the US citing USPTO patents invented in the US 
 1 2 1985_1992 1993_2000 All_exam_excl Allinv_excl All_exam_allinv_excl 
DistanceKM 1.122 1.131 1.122 1.122 1.063 1.09 1.058 
 (58.42)*** (34.39)*** (43.77)*** (38.54)*** (35.45)*** (40.80)*** (26.70)*** 
Citation lag 1 1.008 0.989 1 1.007 1 1.007 
 (0.16) (2.92)*** (3.33)*** (0.01) (3.10)*** (0.08) (3.04)*** 
ClassX 3.288 3.113 3.097 3.005 1.777 2.351 1.648 
 (34.58)*** (25.91)*** (22.45)*** (23.14)*** (17.51)*** (23.23)*** (12.64)*** 
ClassY 1.905 1.732 1.616 2.217 1.092 1.638 1.025 
 (21.38)*** (14.28)*** (12.04)*** (17.31)*** (2.83)*** (15.50)*** (0.69) 
KM*ClassX  1.012      
  (2.00)**      
KM*ClassY  1.02      
  (3.95)***      
KM*Citation Lag  0.998      
  (4.73)***      
Observations 211014 211014 98812 112200 38489 196933 24408 
Number of citing pats 107239 107239 52425 54813 19984 95931 8676 
Log-likelihood -67030 -67008.9 -36745.3 -29699.9 -24227.7 -38628.4 -16257.9 
Min cited per citing 1 1 1 1 1 1 2 
Avg cited per citing 1.97 1.97 1.88 2.05 1.93 2.05 2.81 
Max cited per citing 33 33 33 28 13 33 13 
Wald χ2 4515.48 4484.62 2336.05 2050.34 1530.03 2276.04 871.99 
degrees of freedom 4 7 4 4 4 4 4 
ρ 0.66 0.66 0.65 0.67 0.03 0.39 0 
χ2 10595.15 10579.86 5764.12 4506.89 25.18 2634.76 0 
Absolute value of z statistics in brackets. * significant at 10%; ** significant at 5%; *** significant at 1%
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Table 12. Results of the random effects logit model, EPO patents invented in the US citing EPO or USPTO patents invented in the US  
 1 2 1985_1992 1993_2000 All_exam_excl Allinv_excl All_exam_allinv_excl 
DistanceKM 1.118 1.128 1.115 1.122 1.066 1.102 1.065 
 (83.10)*** (50.92)*** (61.43)*** (55.84)*** (56.24)*** (68.64)*** (46.98)*** 
Citation lag 0.999 1.009 0.984 1 0.993 0.999 0.993 
 (0.81) (4.62)*** (6.93)*** (0.18) (4.73)*** (0.54) (4.27)*** 
ClassX 2.561 2.466 2.272 2.598 1.743 2.138 1.616 
 (44.82)*** (35.41)*** (27.87)*** (31.76)*** (28.95)*** (35.28)*** (21.98)*** 
ClassY 1.411 1.279 1.25 1.597 1.063 1.344 1.006 
 (17.64)*** (10.32)*** (8.72)*** (15.61)*** (3.27)*** (14.88)*** (0.29) 
KM*ClassX  1.01      
  (2.70)***      
KM*ClassY  1.025      
  (7.07)***      
KM*Citation Lag  0.998      
  (8.68)***      
Observations 367637 367637 173994 193640 88697 350058 71118 
Number of citing pats 150338 150338 75843 74494 34773 137377 21812 
Log-likelihood -123571 -123505 -67504 -55236.8 -59252.2 -91955.2 -46545.8 
Min cited per citing 1 1 1 1 1 1 2 
Avg cited per citing 2.45 2.45 2.29 2.6 2.55 2.55 3.26 
Max cited per citing 37 37 37 32 19 37 19 
Wald χ2 8616.98 8578.69 4393.44 4031.03 3903.26 5872.8 2652.65 
degrees of freedom 4 7 4 4 4 4 4 
ρ 0.54 0.54 0.52 0.56 0 0.36 0 
χ2 17304.89 17256.81 8612.76 8221.54 0 6761 0 
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Table 13. Results from the random effect logit using within EPO citations with geographical dummies 
  1985_1992 1993_2000  1985_1992 1993_2000  1985_1992 1993_2000 

Diff_EURegion 3.225 3.381 3.128       
 (108.59)*** (70.48)*** (82.50)***       
Diff_USStates    3.287 3.119 3.475    
    (75.52)*** (49.26)*** (57.55)***    
Diff_ctry       2.536 2.834 2.355 
       (129.26)*** (92.48)*** (91.08)*** 
Citation lag 1.002 0.983 1.005 0.991 0.962 0.986 0.993 0.97 0.99 
 (1.53) (5.22)*** (2.77)*** (3.60)*** (8.22)*** (4.64)*** (7.61)*** (15.31)*** (8.77)*** 
Diff_Tech 1.065 0.98 1.122 1.086 1.029 1.122 1.153 1.076 1.205 
 (5.07)*** (1.00) (7.21)*** (4.71)*** (1.12) (4.80)*** (18.23)*** (6.18)*** (18.00)*** 
ClassX 2.157 1.892 2.289 1.987 1.647 2.147 2.119 1.813 2.252 
 (41.86)*** (21.03)*** (35.73)*** (29.82)*** (14.45)*** (24.55)*** (68.69)*** (34.68)*** (57.01)*** 
ClassY 0.922 0.85 0.978 1.21 1.098 1.312 1.039 0.974 1.098 
 (5.33)*** (6.93)*** (1.11) (8.85)*** (3.09)*** (8.82)*** (3.98)*** (1.88)* (7.00)*** 
Observations 1579306 582110 997162 1115867 376975 738888 1280509 475333 805156 
Log-likelihood -105608 -40218 -65316.2 -55668.2 -25333.8 -29974.3 -323810.01 -132255 -190718 
AIC 0.13 0.14 0.13 0.1 0.13 0.08 0.51 0.56 0.47 

BIC -
22329336.1 -7646653.97 -13642752.87 

-
22329336.1 -7646654 -13642752.9 -17359796.86 -5948856.31 -10567631.22 

Dispersion 0.13 0.14 0.13 0.1 0.13 0.08 0.51 0.56 0.47 
Pearson 0.15 0.14 0.15 0.13 0.15 0.12 0.74 0.74 0.74 
Absolute value of z statistics in brackets. * significant at 10%; ** significant at 5%; *** significant at 1% 
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1 We will use the term ‘inventor citation’ to indicate a citation that was added in the original 

patent application, i.e., irrespective of whether the actual inventor, a patent lawyer or someone 

else otherwise involved with the application added the citation. 

2 In the database where we combine information provided by the REFI and the OECD datasets, 

2.5% of citing patents have none of their citations classified in any category, and 8.4% of citing 

patents have at least one of their citations without category of citation. Because this, in principle, 

corresponds to an omission, we decided to eliminate the citing patents with at least one citation 

not classified, which results in dropping 15.4% of the total citation pairs. 

3 A full list of the 135 regions we use is provided in the appendix. Our countries include the EU-

16 plus Norway and Switzerland. 

4 This model has been used extensively to model grouped survival data (Greenland 1994). The 

model can be written as Pr (Y = 1 | x)= 1-exp (-exp (α + βx)), or as log(-log(1-p(x)))= α + βx, 

where p(x) = Pr (Y = 1 | x). 

5 For example, we might have inventors (applicants) that never cite anything, or examiners who 

have a very high tendency to scrap inventor citations. 

6 Note that we cannot use USPTO patents as the citing patent, because these citations are not 

recorded by the EPO, and hence we do not have information on the source of the citation 

(examiner/inventor). 

7 This method was proposed by Hausman and Newey (1995) and an application can be found in 

Bandiera and Rasul (2003). 

8 We also applied other methods to assess the potential nonlinear nature of the distance 

relationship:we estimated a step-function for DistanceKM,  a linear spline function for 
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DistanceKM, and we also used kernel regression instead of locally weighted regression in the 

above procedure. These methods generally pointed in the same direction of the results that we 

document. 

9 http://europa.eu.int/comm/eurostat/ramon/nuts/home_regions_en.html. 

10 In the geographical literature (e.g. Hagget, Cliff et al. 1977), this is rather common as a direct 

measure of distance. Note that in order for the distance variable to make sense, the regional map 

to which it is applied needs to be contiguous, i.e., every region must be reachable from every 

other region. In our European case, this requires us to deal with a number of sea passages, e.g., 

between the UK and continental Europe. In those cases, we have assumed that the sea area 

between our regions can be considered as a separate, artificial region, and so the map of regions 

becomes contingent. Details of this procedure are available on request, as are the resulting values 

for this variable. 
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