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Abstract 

The price sensitivity of business investment spending is a central element in 
economic analysis. A substantial response of capital spending to its user cost, which 
combines interest, tax, and depreciation rates with relative prices, is critical to evaluating 
the effectiveness of monetary policy, deficit reduction, and tax reform. In spite of this 
central role, however, the supporting evidence for a substantial user cost elasticity (UCE) 
is modest. Several important concerns suggest a downward bias in elasticities estimated 
from the aggregate data typically employed in UCE research. These biases may arise from 
firm heterogeneity, measurement error, capital market frictions, and simultaneity. While 
such biases are theoretically plausible, their empirical importance remains to be 
substantiated. 

With a particularly rich data set, containing over 26,000 observations, this paper 
explores what can be learned about the UCE from micro data. Investment and firm-level 
control variables are taken from an extensive panel of Compustat firms. To construct the 

user cost, we tap a new data source that provides variation across firms as well as across 
time. A number of the econometric biases mentioned above have a substantial impact on 
the estimated UCE. After correcting for the biases, we obtain a precisely estimated but 
small value for the UCE of about -0.25. The effects of capital gains tax cuts and the “flat- 
tax” proposal on investment are evaluated with this estimated UCE. 



The price sensitivity of business investment spending is a central element in economic 

analysis. A substantial response of capital spending to its user cost, which combines interest, 

tax, and depreciation rates with relative prices, is critical in controversies surrounding the 

transmission of monetary policy, the conduct of aggregate stabilization policy, and the impact 

of fiscal policy. With a particularly rich data set, this paper takes a fresh look at the user cost 

elasticity, exploring what can be learned about this key parameter from microeconomic data. 

The user cost elasticity (UCE) plays a significant role in the long-standing controversy 

about how monetary policy impacts real variables. The standard description of the monetary 

transmission mechanism holds that monetary policy affects real activity by altering the level of 

reserves in the banking system that, in turn, affects short-term interest rates and, through the 

term structure, long-term interest rates. With a substantial UCE, monetary policy can have an 

important effect on business investment spending. The absence of a significant UCE casts 

doubt on the validity of this version of the monetary transmission mechanism. r 

Implicit assumptions about the UCE also loom large in real business cycle models. For 

example, Christian0 and Eichenbaum (1992, p. 433) use a Cobb-Douglas production function, 

and hence they maintain that the UCE is unity. Thus, the ability of RBC models to -reproduce 

certain features of macroeconomic data is based in part on capital formation (defined in terms 

of foregone consumption) being quite responsive to variations in interest rates. This 

responsiveness remains unconfirmed econometrically. 

The price sensitivity of investment is also a key element in analyzing fiscal policies. 

The simulation models of Auerbach and Kotlikoff (1987) and Razin and Yuen (1996), for 

’ This empirical shortcoming of the money view, along with new insights from the economics of information, has led 

many to favor a credit view of the transmission mechanism, which holds that variations in the availability of credit is the 
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example, is based on a Cobb-Douglas technology. This technology and its UCE of unity may 

play a large role in assessing the quantitative effects of fiscal policy changes. Indeed, the UCE 

is likely to be important in estimating the effects of a wide variety of fiscal measures designed 

to spur capital formation, such as cuts in the capital gains tax rate and the institution of a “flat 

tax.” We consider the implications of our results for the effectiveness of both of these policies. 

Despite the key role played by the UCE across a wide spectrum of economic analyses, 

the supporting evidence for a substantial UCE is modest. A recent survey of a variety of 

econometric investment models found little compelling evidence that, as historically 

implemented, tax and interest rate policies are effective in stimulating business fixed investment 

(Chirinko, 1993). Blanchard (1986, p. 153) writes “[i]t is well known that to get the user cost 

to appear at all in the investment equation, one has to display more than the usual amount of 

econometric ingenuity.” Bemanke and Gertler (1995, p. 27) add that “empirical studies of 

supposedly ‘interest-sensitive’ components of aggregate spending have in fact had great 

diiculty in identifying a quantitatively important effect of the neoclassical cost-of-capital 

variable.” What should one make of the apparent inconsistency between widely held beliefs 

about a large UCE and the paucity of empirical support for such beliefs? Is the true UCE 

much lower than most economists assume (possibly due to low substitution possibilities in 

production) or is there some fundamental misspecification in econometric models that prevents 

empirical research from uncovering the true UCE? It is important to note that most empirical 

studies of the UCE are based on aggregate data. 2 Several important concerns, however, have 

channel through which monetary policy affects the real economy. The key implication of this view is that monetary 
policy remains effective even with a low UCE. See Bemanke and Gertler (1995) for further discussion. 

2 See Chirinko (1993). Studies that have used firm-level data include Eisner (1967, 1978). Jorgenson and Siebert (1968). 
Cummins and Hassett (1992), and Cummins, Hassett, and Hubbard (1994, 1996). The latter three studies conclude that 

some historical tax policy changes have had a substantial impact on investment. 
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been raised about elasticities estimated from aggregate data that suggest such estimates may be 

biased downward due to problems with firm heterogeneity, simultaneity, measurement error, 

and capital market frictions. While these biases are theoretically plausible, their empirical 

importance remains to be explored and substantiated. 

Such an exploration is undertaken in this paper, which uses an extensive body of 

microeconomic data to estimate the sensitivity of business capital formation to the user cost of 

capital. Micro data clearly are essential to control for firm heterogeneity. The substantial 

variation in the data at our disposal also may improve the quality of instruments needed to 

control for simultaneity. The sample is constructed from Compustat “full coverage” files and 

contains 4,112 manufacturing and non-manufacturing firms. After computing the necessary 

variables and lags, the regression data include over 26,000 observations tiom 198 1 to 1991. 

These firms account for roughly half of aggregate U.S. capital spending in the middle of the 

sample period. To the best of our knowledge, the coverage of our sample is greater than 

available in any previous study of U.S. investment with firm-level data. This extensive 

coverage allows us to use econometric panel methods to isolate biases, and it increases 

confidence when extrapolating the empirical results to the economy at large. . 

In addition to the Compustat data, we tap a new source to construct the user cost of 

capital. Previous studies, including some that employ micro-data, typically test the sensitivity 

of investment to user cost components, such as interest rates and tax parameters, that only 

vary over time and are assumed constant across firms. We have merged user cost variables 

defined at the industry level with Compustat firm data. Thus, the user cost data vary in both 

time-series and cross-sectional dimensions. This variation attenuates concerns about bias due 
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to measurement error. Furthermore, cross-sectional variation permits us to account for fkm 

heterogeneity that may have affected prior UCE estimates from aggregate data. 

Initial results suggest that the UCE estimated from micro data may be much larger (ii 

absolute value) and more precisely estimated than is usually the case with aggregate data. 

Consider the following OLS equation regressing the investment/capital ratio for firm i at time t 

pit/ Kit-l) on distributed lags of the percentage changes in the user cost (Q, contemporaneous 

and six lags) and sales (Sit, contemporaneous and 4 lags) and an intercept (4). (A detailed 

discussion of this equation will be presented in Section 3): 

(1) 1i.t 1 Kit-1 = a(L)(AUi,l/ Ui,t-1) + P4(L)(M,t/ Sit-1) + 0 + Ei,t 

SUM(a) = -0.660 SUM@) = 0.488 R2 = 0.120 
(0.04 1) (0.009) 

The sum of the estimated a’s is the UCE, and it is a substantial -0.660 with a standard error of 

only 0.041. This estimate is much larger than the near-zero values frequently reported in 

studies that employ aggregate data. 

While this initial result is promising, several biases may affect the estimated UCE, and 

their impact can be assessed with our data. We find that firm heterogeneity, measurement 

error, and simultaneity biases all affect the estimated UCE. In addition, the omission of 

variables that measure firms’ access to internal fimds causes an omitted variable bias. While 

controlling for these biases raises the absolute value of the UCE in some cases, the net effect is 

to substantially reduce the UCE relative to the OLS estimate presented above. We conclude 

that the UCE is in the neighborhood of -0.25 with a standard error of 0.03 to 0.06 (depending 

on the particular estimator employed). This point estimate is much lower than the UCE often 
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assumed in academic and policy research. But the precision of the estimate is striking, 

allowing us to clearly reject the hypotheses that the UCE is zero or unity. 

The paper is organized as follows. The data set combining Compustat and user cost 

information is central to this study, and it is described in section 1. Substantial firm 

heterogeneity is documented. Section 2 derives the equation used in our econometric 

exploration and discusses the interpretation of the coefficient estimates. Throughout the 

paper, we focus on the UCE as the measure of the price sensitivity of capital. Section 3 begins 

with a UCE estimated from aggregate data and shows potential benefits of micro data. We 

then explore various biases and identify our preferred instrumental variables estimates, 

including results from the new “orthogonal deviations” estimator presented in Arellano and 

Bover (1995). The estimates fall in a narrow range from -0.18 to -0.25. They are precisely 

estimated, statistically far from both zero and unity, and hence much diierent from values 

often assumed in calibration and policy studies. Section 4 presents some simple policy 

evaluations and section 5 concludes. 

1. Data and Firm-Specific Variation 

To estimate the UCE, we link two unique data sources that each provide information 

particularly well-suited to our objectives. The investment, sales and cash flow data come fkom 

the extensive Compustat “Ml coverage” files. The user cost variable is constructed from 

industry-level information maintained by Data Resources, Inc. The marriage of these data 

sources allows us to conduct empirical analyses that are not possible with the aggregate time- 

series information used in most previous research on investment and the user cost. 
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We employ the version of Compustat that covers the 20-year period 1972-1991. After 

selecting usable data for regressions and computing the necessary lags, we have a sample of 

4,095 firms from all sectors of the economy that provide 26,071 annual observations for the 

regressions from the period 1981 to 1991 .3 In the middle of the sample (1987) our data 

account for 48 percent of aggregate U.S. non-residential fixed investment. The sample 

contains 43 percent of sales of final and intermediate goods for the same year. 

Compustat firm data provide us with substantial benefits vi.&-vis the aggregate time- 

series used in most of the empirical literature on the UCE. One clear benefit arises from 

statistical efficiency. Obviously, we have a huge number of degrees of freedom. Even though 

many of the questions of interest deal with the effect of economy-wide changes (such as 

movements in tax or interest rates that affect all firms), micro data give us a large number of 

replicated “experiments” that greatly improve the precision of our results. Improved precision 

may be important for identifying the UCE, especially to the extent that aggregate results are 

imprecisely estimated and are therefore not able to reject the hypotheses of a UCE equal to 

zero or unity. Furthermore, micro data allow us to estimate a given parameter over a relatively 

short time fkune, thus lessening the role played by parameter instability across time. Finally, 

firm data help us to address and quantify a variety of econometric biases in ways that would be 

difficult, if not impossible, with aggregate time series data. 

The user cost data complement the extensive firm heterogeneity available from 

Compustat by providing additional micro-level variation. We obtained information on the user 

costs for 26 different capital assets (24 types of equipment and two types of structures). These 

3 To protect against results driven by a small number of extreme observations, we exclude observations in the one percent 
tail from the distribution for each independent variable in the regression. We estimate some regressions with fewer than 
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underlying user costs, based on Hall and Jorgenson (1967) and modified by DRI, can be 

represented as: 

(2) vi&* = [PV P’iJl [(I ‘- rnjt - Zj.t) 1 (l-r,)] [rt + Sj] 

where p’u is the asset-specific purchase price for asset j at time t, pya is the industry i output 

price at time t, r( is the financial cost of capital (the same for all industries and assets),4 and Sj is 

the asset-specific economic depreciation rate. The investment tax credit (mu) and discounted 

value of tax depreciation allowances (G) also vary across assets. We created industry-specific 

user costs as a weighted average of the asset user costs. The weights are the proportion of 

capital accounted for by each asset for 26 different industries.5 This industry information was 

then merged with the firm-level Compustat data using each firm’s S.I.C. code.6 

Table 1 provides summary statistics for the main variables that enter our regression. 

The variable &/ &, is the investment-capital ratio (firm and industry subscripts are suppressed 

for simplicity). Investment is Compustat’s capital expenditure variable from firms’ uses of 

funds statement. Capital is the estimated constant dollar replacement value of plant and 

equipment.7 The t-l subscript on the capital stock indicates that it is measured at the 

26,071 observation b-use differencing the data lowers the observation count. 

4 The financial cost of capital is defined as a weighted average of the cost of quity (the dividend-price ratio for Standard 
& Poor’s Composite Stock price Index plus an expected long-run growth rate of 2.4 percent, with a weight of 0.67) and 
the cost of debt (average yield on new issues of high-grade corporate bonds adjusted to a AAA basis, with a weight of 
0.33). The cost of debt is lowered by its tax deductibility and the expected inflation rate, defined as a weighted average of 
past GDP deflator growth rates. 

’ These weights are from the Bureau of Economic Analysis capital flow tables and reflect asset usage by establishment. 
The Compustat data reflect ownership by company. 

6 Because the DRI user cost data are quarterly, we average them to obtain an annual user cost. The averages are 

computed at the fum level to account for the fact that firms have different fiscal years. The user cost information is 

therefore tailored to each firm’s specific accounting period, which introduces further cross-sectional heterogeneity in the 
data. 

’ The capital stock replacement value estimates are based upon the iterative perpetual inventory method presented in 

Salinger and Summers (1983) modified to account for acquisitions and divestitures as described in appendix B. 
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beginning of each accounting year. Output is measured by sales.* Nominal sales data are 

taken from the Compustat net sales figure, and they are deflated by the industry-specific output 

price deflator used to define the user cost in equation 2 (p’~). The growth rate of real sales is 

represented by AS, / ZL. Cash flow (CF3, which is scaled by the beginning-of-period capital 

stock, is net after-tax income plus non-cash expenses. The latter consists primarily of 

depreciation. The AU, / IL variable is the percentage change in the user cost defined in 

equation (2). Further details about data definitions appear in appendix B. 

Summary statistics for our data appear in table 1. The Compustat variables in the first 

three rows have skewed distributions as one would expect in firm data. The gross investment- 

to-capital ratios (mean of 0.173 and median of 0.125) are consistent with moderate capital 

stock growth, assuming that typical depreciation rates are in the range of 10 to 12 percent. 

Mean real sales grew by 3 .O percent per year in our 198 1 to 199 1 sample, although median 

sales growth was more modest at 1.8 percent. The summary statistics for AU, / U,, reveal that 

the user cost fell on average from 1981 to 1991 (mean of -1.3 percent, median of -2.3 

percent). The within-firm standard deviations reported in table 1 show substantial variability of 

the firm data across time.g The within-firm standard deviations exceed the means for all three 

Compustat variables. 

Of particular note, given the emphasis here on microeconomic variation, is the 

information on the percentage of firm-specific time variation in the data. This percentage is 1 

minus the R-squared statistic from the regression: 

* The primary variation in output is due to sales. Blinder and Mac&i (1991, Table 3) report that the ratio of the variance 
of output to the variance of sales is 1.03. 

’ These standard deviations measure variability in the data across time, not across firms. To accomplish this, we subtract 

the firm-by-firm means from each variable prior to computing the standard deviation. 
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(3) (&t-ai)=bt+qt 

where Xit - ai represents mean-differenced variables for firm i at time t, b is the coefficient on a 

time dummy that is one for period t Ad zero otherwise, and Ed is an error term. Because the 

data are mean difkenced, they represent time series variation alone. The statistic reported in 

table 1, therefore, indicates the proportion of time variation in the data that cannot be 

explained by aggregate time effects, i.e., the variance of eit relative to the variance of 

( xi, - ai). If this statistic equals zero, firm-specific variation is completely absent. For the 

Compustat variables (L / K-i, AS, / S,,, and CF, / Kt.,), over 97 percent of variation is firm 

specific. This statistic is lower for the user cost because variation in the interest rate and the 

tax parameters is determined to a greater degree by aggregate factors. Nonetheless, over 67 

percent of the variation in the composite user cost is not explained by aggregate time dummies, 

indicating that the data we construct from the DRI source also has substantial micro-level 

variation. 

2. Econometric Investment Equations: Specification Issues 

In choosing an econometric specification to estimate the UCE, the major problem 

facing the applied econometrician is to relate unobservable expectations of future conditions to 

observable variables. The primary choice is whether to employ a structural model, with 

estimating equations derived explicitly from an optimization problem, or a distributed lag 

model that relies less on theory. The strengths and weaknesses of each approach are evaluated 
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in the first subsection below. A brief derivation of the investment equation used in this study is 

presented in the second subsection. lo 

DisaibutedLag versus StmcturalA4odels 

Econometric investment models can be divided into one of two classes: distributed lag 

and structural models. Based on formal static theory and plausible intuitions, the distributed 

lag approach specifies several factors that could affect investment spending. Among other 

variables that have been included are sales, output, capacity utilization, profits, the flow or 

stock of “liquidity,” balance sheet ratios, debt service, depreciation charges, the gross or net 

capital stock, the age of the capital stock, equity yields, interest and inflation rates, prices of 

output, labor, and capital, and taxes either as statutory rates or payments. Contemporaneous 

and lagged values of these variables usually enter the regression and, combined with the 

estimated coefficients, proxy for unobservable future expectations. 

While early studies with distributed lag models employed various combinations of these 

variables, the focus has been narrowed considerably by the work of Dale Jorgenson (1963, 

1971) and his numerous collaborators. In the “Jorgensonian Neoclassical” model, investment 

depends on the percentage changes in sales and the user cost of capital. Additionally, a 

measure of liquidity has frequently been included, reflecting that finance may not be readily 

available or internal funds may increase the speed with which firms acquire the desired amount 

of capital. Thus, the primary determinants of investment spending are sales (or output), the 

user cost of capital, and liquidity. 

lo See Chirinko (1993) for a more detailed survey of econometric investment models and empirical results and an extensive list of 
references to several of the issues discussed in this section. 
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Distributed lag models perform well empirically. They explain much of the variation in 

aggregate data and, apart Corn the user cost, usually generate precisely estimated, 

economically significant coefficients’that have the theoretically predicted sign. Furthermore, 

despite the availability of alternative specifications, distributed lag models continue to be the 

model of choice among f0recasters.u 

Questions arise, however, about interpreting the estimated coefficients. As noted 

above, distributed lag coefficients are used to forecast future variables. The coefficients also 

represent the parameters of the underlying technology, such as the production function, 

delivery lags, and expenditure lags. Estimated coefficients are thus an amalgam of the 

underlying technology and expectations parameters and, without &-ther information, it is 

diflicult to identify separately these underlying parameters. 

This lack of identification makes inferences potentially problematic. As argued by 

Lucas (1976), the underlying expectation parameters may not remain stable in the face of 

policy interventions. Instability in expectation parameters will lead to instability in the 

estimated coefficients over the sample period and during counter-factual policy analyses. 

This concern has led to an alternative approach for specifying investment models that 

imposes more structure on the econometric model. 12 In these structural models, dynamic 

elements are incorporated explicitly into an optimization problem of a firm looking far into the 

future, and the conditions characterizing optimizing behavior are used to derive an econometric 

equation. These investment equations contain a shadow price for capital that extends into the 

future and is usually unobservable to the econometrician. Moreover, the estimated coefficients 

l1 For example, see the forecasting models described in Pmkken, Varvares, and Meyer (1991) and Sinai (1992). 
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are linked explicitly to the underlying technology and expectation parameters that can be 

identified separately. Thus, this class of models is immune to the Lucas Critique. 

This immunization, however,.proves somewhat costly. There are three general 

solutions to the problem created by the unobservable shadow price of capital. First, the 

shadow price can be equated to financial market data (i.e., the Brainard-Tobin Q). Second, the 

investment equation can be transformed so that most of the &ure unobservable variables are 

eliminated; the resulting Euler equation is relativefy straightforward to estimate. Third, the 

terms constituting the shadow price from period t onward can be forecasted using data 

available in period t (e.g., Abel and Blanchard, 1986). Unfortunately, the resulting investment 

models do not usually perform well empirically. 13 Structural models provide attractive 

frameworks for ultimately understanding investment behavior, but their overall empirical 

performance raises questions about the ability of the current generation of models to deliver 

empirical estimates useful in the analysis of public policies. l4 

The applied econometrician is thus faced with the dilemma of choosing between 

distributed lag models that are empirically dependable but conceptually fragile, or structural 

models that have a solid theoretical foundation but an unsteady empirical superstructure. Both 

approaches have strengths and weaknesses, and thus both provide useM and complementary 

information. The Lucas Critique with its emphasis on structural models has resulted in 

dramatic changes in the formulation of models and direction of research, but its empirical 

l2 It is not, however, the only nzsponse. Believing that the assumptions needed to achieve identification are “incredible,” Gordon 
and Veitch (1986) and a few other authors impose less structure than in distributed lag models, and estimate hybrid VARs. 

l3 See Chirinko (1993, Section 3) for further discussion and Oliner, Rudebusch, and Sichel(l995) for a comparison of the 
forecasting performance of structural and distributed lag models. 

l4 This is not to say that progress is not being made; for example, see the innovative analyses of Goulder and Summers (1989) 

and Jorgenson and Yun (1991). 
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relevance has been questioned.is (In section 4 we present a new test of the empirical 

importance of the Lucas Critique that exploits panel data.) Furthermore, distributed lag 

models provide a direct estimate of the user cost elasticity of primary concern to this study. 

Thus, we proceed with estimating a distributed lag model, though our policy assessments must 

be tempered by the above caveats. 

A Distributed Lug Investment Model 

The distributed lag investment model developed in this subsection is based on a firm’s 

demand for capital and, with the addition of dynamics, demand for investment. The demand 

for capital follows directly from the first-order conditions for profit-maximizing behavior when 

expectations are static. Maintaining that the production function has a constant elasticity of 

substitution (0) between capital and variable inputs, we obtain the following well-known 

relation between the desired (or optimal) stock of capital (K*S, the level of sales (or output), 

and the user cost (or rental price) of capital (II*), 

(4) K*( = c St U,” , 

where Ut is defined in (2) and c is the CES distribution parameter. 

Absent any dynamic considerations, the firm would achieve K*t instantaneously. 

Dynamics enter when specifying the demand for investment, which is divided between 

replacement and net components. In the present model, the translation from a stock demand to 

a flow demand depends on depreciation and delivery lags. Capital is assumed to depreciate 

ls For example, the impact of the Lucas Critique on investment models is examined in Chirinko (1988) who assumes that 
the volatile fiscal env’ironment of the 1980s reflected unanticipated changes in the policy regime. The instability 
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geometrically at a constant mechanistic rate (6); hence, replacement investment (r,) is 

proportional to the capital stock available at the beginning of the period, 

Net investment (I”J is the change in the capital stock between periods t-l and t, and is scaled 

by the existing stock. This ratio (plus 1 .O) equals K / K-1, and it adjusts according to the 

weighted geometric mean of relative changes in the desired capital stock, 

If 1 q_, + 1.0 = K, /K,, = &K;_, /K;_h_,]P~ 
(6) 

h=O 

H 

= I-If dK;_, K:_,, + 1-olp’ 
h-0 

where the p’s represent the delivery lag distribution extending for H+ 1 periods. l6 Taking logs 

of (6), using the approximation In( 1+x) = x, differencing the logarithm of (4) and substituting it 

into (6) for (AK* / K*), using (5) for replacement investment, and appending a stochastic error 

(ES, we obtain the distributed lag investment equation: 

(7) 

It iKt-l = I; / Kt_, + I; / Kt_, 

=6+a&~(AU1_h &,-,)+&h(AS~-~ ‘S&,)+Et’ 
h=O II=0 

There are two extensions of (7) that are important for understanding the empirical 

results from distributed lag investment equations. First, it has been frequently argued that a 

measure of liquidity should enter the model to account for access to investment funds that 

affect the timing of investment along the transition path between steady states. In this model, 

associated with the Lucas Critique is identified, but it is not quantitatively important. Using a much different framework, 

Taylor (1989) arrives at a similar conclusion. 

l6 The geometric adjustment process is employed in (6) because, with the pronounced trends in I, and &, it is preferable to 
specify the investment equation with all variables as ratios or rates. 
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liquidity is measured as cash flow (CFJ and, to avoid units problems, cash flow enters relative 

to the existing capital stock (see Fazzari, Hubbard, and Petersen, 1988b). The specification of 

this variable - CF&r - implies that the effects of liquidity on investment expenditures are 

short-run, perhaps distributed over several periods. If financing constraints affect K*t in the 

long-run, then, lie sales and the user cost, CF, would enter as a percentage change (see 

Chirinko and Schaller, 1995). There is no evidence in our data that the percentage change in 

CFI has any positive effect on investment. 

Second, in the presence of non-static expectations and delivery lags, the terms in (4) 

would be distributed over current and future periods and interpreted as expected values. 

Approximating K*c linearly and assuming that expectations of the output and user cost terms 

are based on extrapolations of their past values, we obtain an investment equation with 

distributed lag coefficients that are a mixture of expectation and technology parameters. 

Because the number of lags used in the extrapolations need not be equal, the assumption of 

extrapolative expectations suggests that the lengths of the sales and user cost lags may differ. 

In addition, the possibility that capital is “putty-clay” implies that output changes lead to a 

more rapid investment response than user cost changes (Eisner and Nadiri, 1968; Bischoff, 

1971), and hence the coefficients on A&, I U~4-r and ASit& I Soar may differ. An 

examination of alternative lag lengths indicated that annual lags of 0 to 6 for AUi,t/ Ui,t-l and 

lags of 0 to 4 for A!$,,/ Si,t-r and CFi,t/ Ki.t.1 are adequate. These considerations lead to the 

following specification: 
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In (8), all of the variables are firm-specific, and hence are subscripted by “i”. The 

coefficients are assumed to be the same across firms except for the depreciation rate, which 

varies depending on a firm’s mix of capital assets. The response of the long-run capital stock to 

percentage changes in the user cost (uniform across firms) is captured by the sum of the a’s, 

which we refer to as the UCE.17 

3. Econometric Results 

In this section, we present a sequence of regression estimates of the UCE. For clarity, 

we report the sum of the distributed lag coefficients on the AU / U,, and AS, / S,, variables 

from equation (8) (the SUM(a) and SUM@) coefficients). Full regression results appear in 

appendix A As we proceed through the results, we observe how various econometric biases 

affect the UCE. Detailed consideration of each bias provides information about possible 

pitfalls that arise in estimating the UCE. We conclude this section with our preferred estimate 

of the UCE of approximately -0.25. 

” To see that the sum of the a’s represents the elasticity of the long-run capital stock with respect to the user cost, consider the 
following abbreviated version of (8): 

I/K = 6+I”/K = 6 + AK/K = 6 +SUM(a)*(AU/U) + . . . 

Canceling 6’s and xeananging yields an expression for the elasticity: (AK / K)/(AU I U) = SUM(a). Note that this derivation 

(ISSUIIICS that AU / U is uniform across all firms. Thii assumption is relaxed when analyzing policy in section 4. 
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Resulti with Aggregate Data Versus Micro Data 

Our empirical exploration begins with an aggregate data regression similar to those in 

the literature. Table 2 presents summary estimates for two such equations. In column 1, we 

report a baseline with a specification and lag lengths identical to those we use in the micro data 

regressions. The user cost data are taken from DRI to ensure a definition of user cost 

comparable to what we use with the micro data. 18 The estimated UCE (SUM(a)) is positive 

and insignificant. The regression in column 2 includes two lagged dependent variables to 

correct serial correlation in the residuals indicated by the Lagrange multiplier statistic. We 

obtain a negative SUM(a) in this model, but its standard error is very large.lg 

What happens when we estimate this same specification with micro data? The answer 

is given by the first column of table 3. This is the regression presented as equation (1) in the 

introduction, and it shows that the results from microeconomic data regressions can be 

dramatically different from those in the corresponding aggregate regressions. The SUM(a) of 

-0.662 is precisely estimated. 20 The hypothesis that the UCE is unity, as often assumed in 

policy analyses and calibrated models, can be rejected. An estimate of -0.662 , in contrast to 

what we and others find from aggregate data, would support the central importance of the 

l8 The sales growth variable in our micro data regression is replaced by GDP growth in the aggregate regressions. Our 
derivation of the investment model is independent of whether the fum’s optimization problem is spccitied with value 
added or gross output, as long as the production technology is strongly separable in its arguments. 

lg In addition to the ‘specifications reported in table 2, we searched for negative SUM(a)‘s in equations that disaggregated 
equipment and structures investment as well as equations that excluded volatile computer and auto investment spending. 
We also searched over all possible combinations of shorter lag lengths for the AU, / U,_, and AGDP, / GDP,_, to see if we 
could obtain negative and significant SUM(a)‘s. In most cases, the SUM(a) was positive. When it was negative, is was 
never significantly different from zero. See table A2 in appendix A for more detailed discussion of these results. 

2o Detailed regression results with coefficients for each lag appear in appendix A. Extending the lag lengths by two years 
had negligible effects on the sum of the coefficients for both sales grown and percentage change in user costs. The 
estimated distributed lag for the percentage change& the user cost typically follow an approximate hump-shaped pattern. 
They rise in absolute value between the contemporaneous and first lag estimates, fall at the second lag, and drop off 
substantially after the second lag. 
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UCE in a broad range of economic analyses. This result, however, is only suggestive. There 

are a variety of econometric biases that may raise or lower this estimate. We now address 

these issues to determine the robustness of these micro-data results. 

Finn Heterogeneity: Fixed Versus Random Effects 

The regression in the first column of table 3 assumes that the intercepts are the same 

for all firms. Even if user cost elasticities are similar across firms, the assumption of a common 

intercept is dubious. Among other factors, different depreciation rates cause intercepts to vary 

across firms (as in equation S), and slope coefficients to be biased. 

The final three columns of table 3 present summary results from three estimators that 

model firm-specific effects as fixed or random. The mean-difference regression is presented in 

the second column. The R* statistic rises substantially when fixed effects are included and an F 

test resoundingly rejects the equality of the firm intercepts.21 Note that introducing fixed firm 

effects with the mean-difference estimator makes the estimated SUM(u) modestly more 

negative relative to the pooled model (-0.721 rather than -0.660). It appears therefore that 

heterogeneity bias could be in part responsible for difficulty in finding negative user cost 

elasticities from aggregate data, although the change in SUM(u) between the pooled and 

mean-difference regressions is small, both economically and statistically.** 

First-difference and random effects estimators are alternative ways to eliminate firm- 

specific effects. In the first-difference regression presented in the third column of table 3 the 

*’ See appendix A for the RZ definition for models that include fmed effects. 

** In addition, note that mean differencing reduces the estimated SUM(P) relative to the pooled regression. This result 

would be expected if firms’ investment response to permanent sales shocks exceeds their response to temporary shocks. 
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estimates of SUM(a) (-0.538) and SUM@) (0.192) are lower than their mean-difference 

counterparts. This result may signal measurement error, a possibility explored later in this 

section. The random effects estimate of SUM(a) is -0.634 and, as expected with this more 

efficient estimator, the standard error falls sharply. However, a Hausman (1978) test statistic 

of 116.3 (distributed as x2( 12) under the null hypothesis) implies that the random effects 

estimates are inconsistent, owing to a correlation between the firm effects and regressors. 

Having rejected the pooled and random effects models, we subsequently restrict attention to 

fixed effect models. 

Omitted Variable Bias and Financing Constraints 

Until the mid-1980s, many empirical studies of investment assumed that firms operate 

in perfect capital markets, and investment can therefore be modeled without reference to firm 

financial conditions.2 An extensive body of recent research tests this assumption and, in most 

cases, finds an important role for variables that measure access to finance in investment 

equations. The financial variable used most often in this context is internal cash flow. If a firm 

has access to internal sources of funds for investment, it need not resort to debt or new equity 

that may be rationed or involve higher costs due to capital market imperfections. If cash flow 

is an important determinant of investment, omitting it from the regression will bias the ~ 

estimated UCE insofar as cash flow and the change in user cost are correlated. 

We examine this possibility by including cash flow in the regressions reported in table 

4. For the mean-difference and first-difference models in the first and second columns the. 

Permanent shocks to sales are more likely reflected in the cross-sectional dimension of the data, which is eliminated by 
the mean-difference transformation. Eisner (1978) considers similar issues. 
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estimated SIJM(y)‘s and their standard errors lead us to strongly reject the null hypothesis that 

investment is independent of cash flow. Including cash flow lowers the SUM@) effect of sales 

growth, which is not surprising given the likely positive correlation between sales growth and 

cash flo~.~~ More important for our purposes, however, including cash flow lowers the 

absolute value of SUM(a) from -0.721 to -0.502 in the mean-difference regression and from 

-0.538 to -0.421 in the first-difference regression_ 

One explanation for this finding is “income effects” induced by financing constraints. 

For a firm operating in perfect capital markets, a user cost change induces substitution effects 

only. But as discussed in Fazzari, Hubbard, and Petersen (1988a), changes in user costs will 

change Grms’ total costs and their available internal finance. Changing internal finance can 

affect the behavior of financially constrained firms over and above the effects arising from 

substitution alone. A lower investment tax credit, for example, may have standard incentive 

effects on the demand for capital and investment but, for financially constrained firms, the 

resulting decline in cash flow could reduce investment further than if the firm operated in 

perfect capital markets. The existence of these “income effects” is consistent with our findings 

in table 4. In the regressions without cash flow, the estimated SUM(a) captures both the 

conventional substitution effect as well as the income effect induced by financing constraints, 

which go in the same direction. When we add cash flow, however, the estimated SUM(a) can 

be interpreted as the user cost elasticity holding cash flow constant, that is, as a measure of the 

23 Jorgenson gives a clear statement of this view in his 1971 survey. 

24 The effect of cash flow on the sales growth coefficients leads to the question of whether the importance of cash flow 

arises from financing constraints or cash flow’s role as a proxy for expected demand. This issue has been considered 

extensively in the financing constraint literature (see the survey in Hubbard, 1995). Results vary across different studies, 
but evidence has been compiled to support the view that much of the cash flow effect is due to financing constraints. This 
issue is not of major concern in our context, however, because of our focus on the UCE. 
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conventional substitution effect alone. As noted in section 2, it is this substitution effect that 

represents the long-run impact of user cost changes on the desired capital stock. “Income 

effects” through cash flow operate only in the short run. 

Measurement Error Bias 

As mentioned above, one explanation for the low SUM(o) in the first-difference 

regression compared with the mean-difference regression is the presence of measurement error 

in the regressors (Hsiao, 1986, p.64). For example, user cost measures do not reflect all the 

intricacies of the tax code (see Ballentine, 1986 and Devereux, Keen, and Schiantarelli, 1994). 

To examine the importance of measurement error, we compare coefficients estimated by first- 

difference and “long-difference” models. For the long-difference model, each variable is 

transformed by subtracting its value lagged two years. Griliches and Hausman (1986) observe 

that, in the presence of measurement error, coefficients from the first-difference estimator will 

be less (ii absolute value) than coefficients from the long-difference estimator, which appear in 

the third column of table 4. The SUM(a) coefficient is virtually the same in the first-difference 

and long-difference regressions. Measurement error in the user cost variable does not appear 

to be a quantitatively important problem. A prime suspect in prior low estimates of the user 

cost elasticity is found “not guilty.” 

Simultaneity Bias and Time Dummies 

Several concerns with the least squares estimates presented to this point suggest the 

need to account for simultaneity in the estimation. Indeed, simultaneity bias provides one 

possible explanation for low estimates of the UCE. Investment comprises an important and 
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volatile component of aggregate demand. Short-run fluctuations of investment therefore 

correlate with the business cycle, and business cycle movements correlate with interest rates. 

Positive aggregate investment shocks, for example, can cause positive movements in output, 

the demand for money, and the demand for credit that tiect the required rates of return on 

debt and equity. The conventional wisdom suggests (Mankiw and Summers, 1988, p. 716) 

that simultaneity biases the UCE toward zero. 

Panel data with microeconomic variation in all regressors provide an opportunity to 

address aggregate sources of simultaneity in a particularly simple way. To the extent that the 

correlation between the error term and the change in the user cost is due to aggregate factors 

common to all firms, this correlation can be swept out of the data with aggregate time 

dummies (vs. The results from including time dummies in the mean-difference, first- 

dBerence, and long-difference regressions appear in table 5. Rather than making investment 

more sensitive to the percentage change in the user cost, however, elimination of aggregate 

simultaneity reduces the absolute value of the SUM(a) substantially with all estimators. 

Aggregate simultaneity appears important, but it has the opposite effect on the UCE than has 

been often assumed.2s 

Simultaneity Bias and Instrumental Variables 

While time dummies control for simultaneity arising from aggregate shocks, one must 

also consider the possibility of additional correlations between the investment error term and 

micro-level regressors. Firm investment shocks may be contemporaneously correlated with 
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sales and cash flow, or industry investment shocks may affect the relative price of the capital 

goods it purchases. Problems such as these suggest the need for instrumental variables 

estimation. Indeed, the extensive variation in our micro data will likely provide better 

instruments than can be obtained at the aggregate level. 

Following common practice, we employ undifferenced lags of the regressors as 

instruments, There is a problem with this approach, however, for the mean-difference 

estimator when, as in the present case, instruments are pre-determined but not strictly 

exogenous. The problem arises because the transformed error term in period t will be 

correlated with the pre-determined instruments dated period t, t-l, t-2, etc. In a mean- 

difference model, the transformed error term contains the mean of the Cm’s error over the 

entire sample; that is, (E, + ~2 + . . . + Ed) / T. The presence of this mean error invalidates the use 

of lags of pre-determined regressors as instruments. 26 To solve this problem, Arellano (1988) 

and Arellano and Bover (1995) propose an “orthogonal deviation” transformation for panel 

data that allows one to remove fixed effects by subtracting the mean of future observations 

from each regressor. With this transformation, lagged, pre-determined regressors are valid 

instruments. The orthogonal deviations estimator is asymptotically equivalent to the first- 

25 A possible explanation for this result is a negative correlation between aggregate demand shocks and the relative price 
of capital goods (Pt / Pv). Such correlation would result if the expansionary cyclical effect of aggregate demand shocks 
caused output prices in general to rise more than the price of investment goods. 

26 The bias in the mean-difference estimator with predetermined variables as instruments is of order l/T, where T is the 
number of time observations in the panel. Hence, this estimator is consistent as T goes to infinity. In practice, however, 
panel data sets usually provide a relatively small number of time-series observations for each ftrm. Our regressions are 
based on twelve time periods, which is larger than many panels, but not sufficiently large that we can confidently rely on 
asymptotic resuhs that depend on large T. See Arellano and Bover (1995) and Urga (1992). The problem with pre 
determined but not strictly exogenous instruments does not arise for the first-difference estimator because the first- 

difference transformation subtracts a single lagged value of each regressor rather than the mean value of the regressor 
over the panel. With first differences, lagged values of the regressors are legitimate instruments as long as they are 

lagged enough periods to avoid correlation with the first difference of the error term. 
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diierence instrumental variables estimator, and it may be more efficient when, as usually 

happens in practice, a subset of the available orthogonality conditions is used. 

We present instrumental variables results in table 6 for the mean-difference (possibly 

biased), first-difference, long-difference, and orthogonal deviations estimators. (The 

instrument list for each regression appears in the footnote to table 6.) Hausman tests reject the 

least squares specifications with p values of two percent or less, implying that consistent 

estimation requires instrumental variables. The point estimates of SUM(a) range from the 

first-difference value of -0.060 to the orthogonal deviations estimate of -0.557. 

The results in table 6 lead to some interesting conclusions. The SUM(a) estimates 

imply that the UCE is likely negative. It is clear that the UCE is significantly below unity (the 

Cobb-Douglas benchmark used in much applied research). Yet, the standard errors of the 

SUM(a) estimates are relatively large, both economically and statistically. One cannot 

formally reject the hypothesis that the UCE is zero for the first-difference and the long- 

difference estimates. Moreover, the policy implications of a UCE near zero versus a UCE near 

one half are likely much different. 

The relatively large standard errors of SUM(a) in table 6 and the corresponding 

variation in their economic interpretation could be due to inefficient estimation arising from 

including too many lags. To explore this possibility and determine the source of this 

imprecision, we examine the individual lag coefficient estimates (presented in appendix table 

A6), rather than focusing exclusively on SUM(a). Across the four instrumental variables 

24 



regressions, the contemporaneous and sixth lag AU, / U,, coefficients are insignificantly 

diierent from zero. Most of the coefficients at lags three or longer are also insignificant.27 

The results in table 7 support the conjecture that more precise estimates can be 

obtained from a more parsimonious lag structure. Here, we present summary results from a 

model that includes only the first and second lag of AU, / U,,. The standard errors decline by a 

factor of at least three and the range of point estimates for SUM(a) narrows substantially 

across the estimators. All the SUM(a) estimates are negative and precisely estimated. They 

are much smaller in absolute value than typically assumed, however, ranging from -0.176 to 

-0.249.28 

Summary= What Is the User Cost Elasticity? 

The information about the user cost elasticity obtained from our micro data (table 7) is 

vastly superior to that obtained from the aggregate data regression (table 2). The UCE, 

27 We examined many different lag lengths for AU, I U,_, between two and six years. There was little evidence of 

sign&ant AU, I U,_, effects beyond the second lag in regressions that included three, four, and five lags of AU, I U,_, 
(both with and without the insignificant contemporaneous value in the regression). The one exception is the orthogonal 

deviations model in which the fifth lag is large statistically and economically and the diitriiuted lag pattcm.is bimodal. 
We find this bimodal pattern implausible. Furthermore, when an orthogonal deviations regression is estimated with lags 
one through four for AU, I U,_, , SUM(a) is quite close to the estimates in table 7. 

28 Cummins, Hassctt, and Hubbard (1994, 1996) employ micro data at times of major tax reforms to estimate adjustment 
cost paramctcrs in a q model and a cost-of-capital model based on Auerbach (1989). The authors are succc.ssful in 
obtaining more precisely cstimatcd and economically reasonable adjustment cost parameters than have typically been 
found in empirical q models employing aggregate data. The emphasis in Cummins, Hassett, and Hubbard is on 
adjustment cost parameters rather than the UCE and their results are not directly comparable to ours. With some 
additional assumptions, however, we can roughly compare some of their results with those presented here. The U.S. data 
regression Cummins, Hassett, and Hubbard (1994) use to obtain the estimates in their table 9 has the form: 
I/K = a + b U, where I/K is the gross investmentcapital ratio and U is a distributed lead of the level of the user cost 
with preset weights that dccliie geometrically and sum to unity. Assuming that the intercept of this equation contains the 
geometric depreciation rate, and subtracting the depreciation rate from both sides of this equation, yields the percentage 
change in the capital stock (the net investment-capital ratio) as a linear function of leads in the user cost level. Cummins, 
Hassett, and Hubbard report an average value for their user cost of about 25 percent and an average estimated value for b 
of -0.66 in years of major tax reform. At these average values, a one percent permanent change in future user costs 
yields a 0.165 percent change in the capital stock (.Ol x .25 x -0.66 = 0.00165). Thus, the implied UCE is -0.165, very 

close to the range of our findings even though the Cummins, Hassett, and Hubbard study employs a very different 

empirical approach. 



investment from 1987 to 1985 or 1986 .30 These results help to mitigate concerns about the 

quantitative importance of the Lucas Critique in our context. 

i%e Effects of Current Tax Initiatives 

We follow a two-step process to estimate the effect of specific tax initiatives on the 

capital stock. First, we determine the effect of the tax change on the user cost of capital. 

Because user costs differ across firms, this calculation is performed at the firm level, and 

therefore requires micro data. Second, the percentage change in the aggregate capital stock 

for our sample (K) is estimated from: 

where w, is firm i’s share of the total capital stock. While the Compustat sample may not 

perfectly represent the U.S. economy, its substantial coverage suggests that these estimates 

will be a good approximation to the aggregate effect of policies that change the user cost. 

To estimate the firm-specific percentage decline in the user cost as the result of the 

recent proposal to cut the top marginal capital gains tax rate from 28 percent to 19._8 percent, 

we follow the approach of Fazzari and Hereon (1996), who use assumptions about corporate 

financial structure that are representative for the U.S. economy.31 Weighting these percentage 

3o The range of UCE estimates from the instrumental variable regressions with time dummies was marginally higher in 
absolute value than those reported in table 7: -0.231 for mean differences, -0.279 for first difference, and -0.326 for 
orthogonal deviations. 

31 These assumptions include the following: fnms pay 50 percent of their income as dividends and 50 percent as capital 
gains; 30 percent of new investment is financed with debt and 70 percent with equity; the real required rate of return on 
equity is 6 percent; and expected inflation is 3 percent. For the results reported here, each firm’s percentage decline in 

the user cost is determined as follows. The user cost can be expressed as the product of components representing relative 

prices (Pi), corporate taxes (TJ, and a required rate of return (FtJ that includes depreciation and the tax-adjusted 

opportunity cost of funds r that the firm must attain to compensate its investors: Ui = Pi*Ti*R; and & = r+6,. The 

capital gains tax rate affects r, and the percentage change in the user cost from a capital gains tax rate cut can be 
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The Lucas Critique and the Tax Reform Act of 1986 

The Tax Reform Act of 1986 was a significant policy change that raised the user cost 

during our sample period and provides an opportunity to test the empirical importance of the 

Lucas Critique. Ifit were the case that the empirical UCE (which is not derived from an 

explicit, policy-invariant structural model) changed with the Tax Reform Act of 1986, one 

would expect to observe large residuals around the time of the policy change in our 

specification that maintains a uniform UCE over the sample. Because the user cost increases 

were, at least in part, anticipated prior to implementation we might expect systematic increases 

of investment in 1985, possibly 1986, relative to 1987 when the when the user cost rose.2g 

Including time dummies in the panel data regressions (which cannot be done with 

aggregate data) provides a test for the systematic changes in the investment-capital ratio 

implied by the Lucas Critique. We include time dummies in the instrumental variables 

regressions reported in table 7 and perform pair-wise equality tests on the 1985, 1986, and 

1987 time dummy coefficients. We also test the joint equality of the time dummy coefficients 

for 1985, 1986, and 1987. The lowest p-values we obtain from these tests are 0.241 for mean 

differences, 0.343 for first differences, and 0.165 for orthogonal deviations. The null 

hypothesis of stability over the tax reform period cannot be rejected. Moreover, the time 

dummy coefficient for 1987 is slightly higher than those for 1985 and 1986, further evidence 

against the view that the anticipation of tax reform led firms to intertemporally substitute 

2g The effective implementation dates varied for different parts of the Tax Reform Act of 1986. 
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investment from 1987 to 1985 or 1986 .30 These results help to mitigate concerns about the 

quantitative importance of the Lucas Critique in our context. 

The E#ects of Current Tax Initiatives 

We follow a two-step process to estimate the effect of specific tax initiatives on the 

capital stock, First, we determine the effect of the tax change on the user cost of capital. 

Because user costs differ across firms, this calculation is performed at the firm level, and 

therefore requires micro data. Second, the percentage change in the aggregate capital stock 

for our sample (K) is estimated from: 

where WC is firm i’s share of the total capital stock. While the Compustat sample may not 

perfectly represent the U.S. economy, its substantial coverage suggests that these estimates 

will be a good approximation to the aggregate effect of policies that change the user cost. 

To estimate the firm-specific percentage decline in the user cost as the result of the 

recent proposal to cut the top marginal capital gains tax rate from 28 percent to 19,8 percent, 

we follow the approach of Fazzari and Herzon (1996), who use assumptions about corporate 

financial structure that are representative for the U.S. economy.31 Weighting these percentage 

3o The range of UCE estimates from the instrumental variable regressions with time dummies was marginally higher in 
absolute value than those reported in table 7: -0.231 for mean differences, -0.279 for first difference, and -0.326 for 
orthogonal deviations. 

31 These assumptions include the following: firms pay 50 percent of their income as dividends and 50 percent as capital 
gains; 30 percent of new investment is financed with debt and 70 percent with equity; the real requirt~I rate of return on 
equity is 6 percent; and expected inflation is 3 percent. For the results reported here, each firm’s percentage decline in 
the user cost is determined as follows. The user cost can be expressed as the product of components representing relative 
prices (Pi), corporate taxes (TJ, and a required rate of return (RJ that includes depreciation and the tax-adjusted 

opportunity cost of funds r that the firm must attain to compensate its investors: Ui = Pi*Ti*& and R = r+g,. The 

capital gains tax rate affects r, and the percentage change in the user cost from a capital gains tax rate cut can be 
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changes by the firm capital shares from 1991, the final year in our sample, yields a weighted 

average reduction in the user cost of 1.89 percent. The estimated impact of this change on the 

long-run capital stock is given in the first column of table 8 for a UCE of -0.25, consistent with 

our regression results. This policy yields only about half a percentage point increase in the 

long-run capital stock. Assuming a typical output elasticity with respect to capital of 0.3, the 

capital gains tax cut is predicted to have an impact on the level of output of only 0.14 percent. 

The flat-tax proposal has a more substantial impact. The flat tax would allow firms to 

“expense” investment, and it would drive the tax component of the user cost measure to 

unity.32 We calculated the tax component for the final year in the sample (199 1) for each firm 

and computed the percentage change in the firm’s user cost that would result if this tax 

component went to unity. The weighted average of these percentage changes (with 1991 

capital shares as weights) is -14.15 percent, which is the figure we use to estimate the impact 

of the Hall-Rabushka flat tax proposal on the long-run capital stock and output. As the 

calculations in table 8 show, our UCE estimate of -0.25 leads to a predicted increase in the 

capital stock of 3.5 percent and a predicted increase in the long-run level of output of 1.1 

percent. In his simulation of the Hall-Rabushka (1995) flat tax, Auerbach (1996, table 3, 

~~prrssed BJ AUi / Ui = Ar I (r+6,). The term (r+6J is taken from our micro data. Fazzari and Hexzon’s estimates 

imply that r will fall by 7.42 percent from a base of 4.53 percent after the capital gains tax rate cut, which implies that Ar 
quals .0742 * .0453. Note that 6, which is ignored in many studies, plays a large role in determiniig AU I U. If 6 is set 
to zero, the percentage change in the user cost triples. In our calculations, and in contrast with Fazzari and Hereon, we 
have not adjusted the capital gains tax rate for the expected holding period of assets. Thus our figures are an upper bound 
on the impact of cutting the capital gains tax rate. 

32 The flat tax would have another effect on the user cost that we do not measure in this exercise. Interest payments 
would no longer be deductible for corporate tax purposes. This change would raise the user cost, holding pre-tax interest 
rates constant. Debt has only a one-third weight in our user cost, however, and proponents of the flat tax argue that other 
aspects of the tax reform that encourage saving would lower pre-tax interest rates. For these reasons, we believe the 
effect of eliminating the corporate interest expense deduction is not substantial. The calculations presented in table 8 
should be viewed as an upper bound on the magnitude of the effect. 
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column 2) finds that output per capita increases by 8.4 percent in the long run.33 This result is 

based on a unitary UCE implicit in the Cobb-Douglas production function. Our results are also 

less than a third of the increase predicted by Hall and Rabushka due to the increase in the 

capital stock alone.34 

5. Conclusion 

What do micro data reveal about the user cost elasticity? The initial pooled regression 

suggested that, in contrast to estimates based on aggregate data that are close to zero, the 

UCE takes on the rather sizable value of negative two-thirds. The UCE, however, is affected 

by a variety of econometric biases. Estimates can be raised or lowered by biases stemming 

f?om heterogeneity across firms, omission of cash flow variables, errors in measuring the user 

cost, and simultaneity among regressors and errors. The extensive panel data at our disposal 

allow us to investigate these biases. Several prove important. Evidence from a variety of 

paneldata estimators indicates that the true UCE is negative, and, in contrast with most 

studies based on aggregate data, precisely estimated. The point estimate is approximately one 

quarter, a much lower elasticity than the value of unity typically assumed in appliedresearch. 

This low elasticity has important implications for several areas of macroeconomic 

research. It suggests that models that rely heavily on prices to allocate capital - especially 

those in the real business cycle tradition - may be misspecified. Our modest UCE estimate 

33 Auerbach’s estimate reflects general equilibrium effects not accounted for in our analysis. 

34 Thii calculation is based on the mid-point of the 2 to 4 percent output increase range that Hall and Rabushka (1995, p. 

87) predict over seven years. Because Hall and Rabushka assume a 0.25 elasticity of output with respect to capital, a 3 

percent output increase translates into a 12 percent increase in capital, which can be compared to our figures in table 7. 
Hall and Rabushka also argue that the flat tax would increase the efficiency of the capital stock resulting in further 
increases in output. We cannot assess this prediction in our framework that focuses on the overall quantity of capital. 
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implies a correspondingly modest effect of interest rates on investment, weakening the 

traditional monetary transmission mechanism. Finally, the effects of policy initiatives to 

. 
stimulate capital formation by cutting taxes are likely to be attenuated. Reducing the capital 

gains tax rate from 28 to 19.8 percent would raise the long-run capital stock by only a trivial 

amount with a UCE in the range of our estimates. Replacing the current tax system by a flat 

tax would increase the long-run capital stock by about 3.5 percent, much less than is claimed 

by proponents of the flat tax. There may be good reasons for supporting these tax policies, 

and thus for shifting the burden of taxation away from upper-income taxpayers. A substantial 

increase in the capital stock is not one of them. 
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Table 1: Summary Statistics for Micro Data 

Variable Mean Median 

L/ K-1 0.173 0.125 

AS,/ S,, 0.030 0.018 

CFJ Kt., 0.226 0.185 

AU,/ U,_, -0.013 -0.023 

Within-Firm Firm-Specific 
Standard Deviation Time Variation 

0.163 0.979 

0.223 0.976 

0.272 0.987 

0.071 0.674 

Note: PaneldataforCompustatfvmsf?om1981to1991,asdescribedinthetexL &/&I istheratiooffixmcapital 
spendingtothebeginningofpaiodcapitalstock,1SSt/SIisfirmsalesgrowth,CF1/IC.I istheratiooftirmcashflowto 
the begim@+f-period capital stock and AUJ Ut.1 is the percentage change in the user cost of capital. The within-tirm 
star&d deviation is computed atIer subtracting firm-by-firm means of each variable Finn each observation. This statistic 
therefiimeasures variation in the time dimension of the panel only. The fim~qecific time variation is one minus the Rz 
statistic tirn a regression of each mean-differenced variable on a set of time dummies, as described further in the text. 
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Table 2: Aggregate Data Regressions 

&/IL, = cb(L) NJtl U,, + /3.(L) AGDP, / GDP,, + h2(L) I, / IC., + I$ + E, 

Baseline Suecification 

SUM(a) 0.246 
(0.232) 

SUWP) 0.557 
(0.428) 

suwv - 

LW 0.885 
(0.246) 

Adjusted R2 0.013 

Addition of Two 
Lamed Deoendent Variables 

-0.025 
(0.067) 

0.164 
(0.114) 

0.860 
(0.086) 

-0.439 

(0.475) 

0.936 

Note: Ordimq least squares estimates with annual data for 1972-1994. Standard errors are in parentheses. The symbols 
cr&), 54(L), and &(L.) represent polynomials in the lag operator of order 6.4, and 2, respectively. The as(L) and pa) 
fonctions begin with order 0 and the Xi(L) function begins with order 1. SUM(a), SUM@), and SUM@.) are the sums of 
the e&rated coef5cien~ () is an estimated constant The dependent variable (IJ K-1) is the flow of real investment 
spending divided by the current dollar replacement value of the capital stock @ginning of the period) deflated by the price 
index for investment. (The results are robust when & is measured by the constant dollar replacement value of the capital 
stock.) Ut is the user cost of capital as computed by DRI (discussed in detail in the text), and is a weighted average of five 
components: public utility structures, building and other structures (excluding mining, exploration and thrms), automobile 
equipment, off&+computing-accounting equipment, and other equipment. GDPt is real GDP in 1987 prices. LMr is a 
modified Lagrange Multiplier statistic that evaluates the null hypothesis of no first-order serial correlation; it is distributed 
t under the null. 
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Table 3: Micro Data Regressions and Heterogeneity Bias 

L&t/&-, = O~(L)AUJU~N + p.(L)ASJSiL_, + 4 +G,, 

Pooled Fixed Effects 
Regression Mean 

(hi = d for all i) Difference 

Fixed Effects 
First 

Difference 
Random 
Effects 

SU-WCL) -0.660 -0.721 -0.538 -0.634 
(0.04 1) (0.054) (0.117) (0.03 1) 

SUM(P) 0.488 0.322 0.192 0.405 
(0.009) (0.012) (0.025) (0.012) 

RZ 0.120 0.411 0.422 0.119 

Nott: Estimateswithmiaodata(1981-1991)andordinaryleastsquaresasdescribedinthetext. Standarderrorsarein 
parentheses. Individual coeflicient estimates appear in appendix table A3. The polynomials in the lag operator as(L) and 
p4(L) are of order 6 and 4 and contain contemporaneous values. SUM(a) and SUM@) are the sums of the estimated 
coefficients; 6 is an estimak& firm-specific constanL The sample for the random effects regression is a randomly selected 
subset of 19,108 observations Corn the full data set of 26,071 observations. The reduction in sample size is due to 
limitations on data size in the LlMDEP software used to perform this regression. To maintain comparability across fixed 
effkzt estimators, the R* statistic is defined to account for firm-specific intercepts as described in appendix A. 
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Table 4: Omitted Variable Bias and Measurement Error 

Ii.t/Ki.t4 = m(L)AUiJU~, + P.(L)ASJSic, + yr(L)CFi,JKi+, + @i +Q 

Mean 
Difference 

S~(~~ -0.502 

(0.053) 

SUM(P) 0.153 
(0.012) 

SUM(y) 0.265 
(0.007) 

First 
Difference 

-0.42 1 
(0.114) 

0.049 

(0.025) 

0.296 
(0.016) 

Long 
Differences 

-0.402 
(0.087) 

0.115 
(0.019) 

0.285 
(0.012) 

RZ 0.457 0.466 0.484 

Note: See notes to table 3. Estimation with ordii least squares. Individual uxffkient estimates appear in appendix 
table A4. The lag operator polynomial p(L) incorporates contemporaneous and four annual lags of cash flow. 
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Table 5: Simultaneity Bias and Aggregate Time Dummies 

IiJLt = a&) A:J, / Vi+, + p,(L) AS, / SW + y,(L) CFti / Ki,, + +i + yt + Q 

Mean Difference First Difference Long Difference 

RZ 0.460 0.463 0.480 

-0.289 -0.087 -0.107 
(0.106) (0.143) (0.103) 

0.150 0.041 0.114 
(0.02 1) (0.025) (0.019) 

0.258 0.290 0.281 
(0.012) (0.016) (0.012) 

Note: See notes to table 3. Estimation is with oniimy least squares. Individual coe&icnt estimates appear in appendix 
table As. The symbol ylt mpresents a time dummy coefficient for each year in the data. 
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Table 6: Simultaneity Bias and Instrumental Variables Regressions i 

I* I Kit., = oh(L) AU* / UQ-~ + p,(L) A& / Sb-1 + y,(L) CFa / I& + @i +Eiz 

Me-an First Long Orthogonal 
Difference Difference Difference Deviations 

SUWCL) -0.254 -0.060 -0.320 -0.557 

(0.140) (0.228) (0.192) (0.157) 

SUWP) 0.080 0.155 -0.004 0.084 
(0.068) (0.091) (0.065) (0.107) 

SUM(Y) 0.421 0.511 0.478 0.472 
(0.092) (0.077) (0.052) (0.050) 

Note: See notes to table 3. Individual coefficient estimates appear in appendk table A6. The instruments for the mean- 
difkrcacc and o&opal deviations qressions are the levels (undiffTerencad) of A&t/ &I. lagged one through nine years 
and A&/ &,+I, and CFu / I+ lagged one through seven years. The instruments for the Greta- repssion are the 
levcl~ of AUU / Ubl, lagged two through ten years and A&/ &-I. and CFiJ I&J-I lagged two thfqh eight years. The 
inbuments for the longdifference rep&on are the levels of ALh,t / U *I, lagged three through eleven years and 
A& / &,, and CFu / &I lagged three through nine years. 
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Table 7: Instrumental Variables Regressions with Short Lags for AUU 1 U~el 

Mean 
Difference 

Suwa) -0.207 
(0.026) 

SUWP) 0.118 
(0.062) 

SUM(Y) 0.497 
(0.063) 

First 
Difference 

-0.239 

(0.060) 

0.170 
(0.077) 

0.487 
(0.068) 

Long 
Difference 

-0.176 
(0.033) 

0.025 
(0.053) 

0.487 
(0.043) 

Orthogonal 
Deviations 

-0.249 

(0.032) 

0.202 
(0.070) 

0.468 
(0.045) 

Note: See notes to table 3. Individual coefficient estimates appear in appendix table A7. The SUM(a) coeffkient is the 
sum of the coeffkients on the first and second lags of AU* / Q-1 . Note. that this distribute-d lag excludes the 
contemporaneous value for reasons described in the text. Instruments are the same as those described in the note’ to table 6. 
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Table 8: Policy Effects 

Capital Gains 
Tax Rate Cuts 

User Cost 
Elasticity: 

AU/U 

AJSIK 

AYIY 

-0.25 

-1.89% 

+0.47% 

+O. 14% 

Flat Tax 

-0.25 

-14.15% 

+3.54% 

+1.06% 

Note: The AU/U row shows the estimated percentage decline in the user cost of capital which is a weighted average of 
e&mated firm-specific percentage changes in the Wzr cost The weights reflect each firm’s share of capital in the data 
sample. TheAU/Uforthccapitalgainstaxisbased~Fepariand~n(19%~asdcscribedinthetext Thedecline 
fortheOattaxpoticyisbasedonthe~uthars’calculatiansasdesnibedinthetext TIteAK/Krowshowsthepenxntage 
change in the long- capital stock as a result of the user cost decline given a user cost elasticity of -0.25. The AY I Y is 
the long run percentage change in output as a result of the increase in the capital stock assuming a 0.3 elasticity of output 
with respect to the capital stock. 
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Appendix A: Detailed Regression Results 

The following tables give detailed information about the summary regression 
results presented in tables 2 through 6 in the text. The appendix tables are numbered to 
correspond to the text tables. (Table A2 corresponds to table 2 in the text, for example.) 

In tables A3 through A6, the variable mnemonics correspond to the symbols in the 
text as follows: 

PCUCI AU, 1 Ui.tvl 

SG ASI S,., 

CF_Kl CFi, 1 I& 

A single digit following any of the symbols above indicates a lag of the number of years 
given by the digit. Time dummies are denoted by DUMnn, where M is the appropriate 
year. Rsq. stands for the R-squared statistic. 

To maintain comparability in the R* statistic across models with Grm-specific 
intercepts we compute R* as follows. For the models that include lags of the percentage 
change in the user cost and the percentage change in sales, R* is defined with regression 
residuals (%J from: 

(Al) ei t =(I/K)i,t -ci -hgO&h ri,t-h 
- “it h 

, 
i,t-h-l 

- hiOPh Si ,I,, 
, 

where Gh and p,, are regression coefficients. The estimated firm-specific intercept is given 

by: 

(A2) 6, =(1/T) ; 
AU 

t=1 
(I/Qi t- C & 

h”, hU 

i,t-h 

’ - i,t_h_l 

where T is the number of years in the panel. This definition of the residuals gives the 
conventional R* for the mean-difference estimator. For the first-difference and long- 
difference estimators, this definition may result in R* statistics that do not necessarily rise 
when additional variables are added to the regression model. We use this definition of R*, 
appropriately modified to account for alterations in the regression equation, for all the 
OLS fixed effects regressions reported in the paper. 



Table A2: Aggregate Data Regressions 

It/K-, = aa AU, /U,, + PI(L) AGDP, / GDPt-I + &.1(L) It / K-1 + $ + et 

Structures 
and 

Equipment 

(1) (2) 

A Without Lagged Dependent Variable 

SUM0 0.246 0.548 -0.065 0.472 
(0.232) (0.142) (0.508) (0.602) 

SUwP) 0.557 0.455 0.764 10.107 
(0.428) (0.366) (0.840) (0.910) 

iI2 0.013 0.381 

L”1 
0.885 0.627 
(0.246) (0.271) 

B. With Lagged Dependent Variables 

suM(cr) -0.025 0.20 1 
(0.067) (0.09 1) 

SUwP) 0.164 0.145 
(0.114) (0.187) 

suM(v 0.860 0.685 
(0.086) (0.126) 

iI2 0.936 0.856 

L”1 
-0.439 -0.92 1 
(0.475) (0.556) 

Equipment 

(3) 

Equipment 
without 

Computers 
and Autos 

(4) 

-0.235 0.348 

10.356 10.070 
(0.207) (0.244) 

0.076 -0.036 
(0.178) (0.153) 

0.512 0.353 
(0.211) (0.234) 

0.946 
(0.152) 

0.935 
(0.093) 

0.923 

0.015 
(0.53 1) 

0.919 

0.154 
(0.463) 

Table footnote appears on the following page. 



Ordinary least squares estimates with annual data for 1972-1994. Standard errors are in 
parentheses. &), p,(L), and L(L) are polynomials in the lag operator of order 6,4, and 
2, respectively; the polynomials for a&) and p,(L) begin with 0; for L(L.) with 1. 
SUM(a), SUM@), and SUM@) are the sums of the estimated coefiicients; Q is an 
estimated constant. The dependent variable (I&r) is the flow of real investment 
spending divided by the current dollar replacement value of the capital stock (beginning of 
the period) deflated by the price index for investment. (The results are robust when & is 
measured by the constant dollar replacement value of the capital stock.) The capital 
goods included in these investment and capital series vary across the four columns. U, is 
the rental price of capital as computed by DRI (discussed in detail in the text), and is a 
weighted average of five components: public utility structures, building and other 
structures (excluding mining, exploration and farms), automobile equipment, office- 
computing-accounting equipment, and other equipment. The weighted average changes 
so that RP1 corresponds to the capital goods included in the investment and capital series 
for a model in a given column; the weights depend on current dollar capital stocks and 
vary over time. GDPt is real GDP in 1987 prices. LMr is a modiied Lagrange Multiplier 
statistic that evaluates the null hypothesis of no first-order residual serial correlation; it is 
distributed t under the null. The lag lengths in panel A are identical to those used with the 
micro data. A search over various lag lengths (all possible combinations of less than or 
equal to 6 for a(L) and less than or equal to 4 for p(L)) to find the most negative value of 
SUM(a) in the aggregate model yielded -.003,0, -. 188, and -. 105 (all with large standard 
errors) for the models in columns (l)-(4), respectively. 
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Table A3: Micro Data Fiegressions and Heterogeneity Bias 

Coef. Std. Cqef. Std. Coef. Std. Coef. Std. 

PCUCI -0.126 0.016 -0.144 0.016 -0.082 0.018 -0.134 0.019 
PCUCIl -0.201 0.016 -0.205 0.015 -0.142 0.023 -0.191 0.018 
PCUCI2 -0.159 0.017 -0.155 0.015 -0.100 0.024 -0.159 0.018 
PCUC13 -0.043 0.016 -0.060 0.015 -0.015 0.025 -0.037 0.017 
PCUCI4 -0.051 0.015 -0.054 0.015 -0.046 0.026 -0.044 0.017 
PCUCIS -0.088 0.016 -0.099 0.015 -0.116 0.027 -0.086 0.017 
PCUC16 0.009 0.025 -0.004 0.023 -0.037 0.026 0.017 0.028 

sum -0.660 0.041 

0.005 
0.005 
0.005 
0.005 
0.005 

0.009 

0.001 

-0.721 -0.538 0.117 -0.634 

SG 0.151 
SGl 0.114 
SG2 0.102 
SG3 0.060 
SG4 0.061 

0.120 
0.082 
0.067 
0.033 
0.021 

0.085 0.006 0.136 
0.051 0.007 0.097 
0.039 0.007 0.089 
0.008 0.007 0.047 
0.009 0.006 0.038 

SUXIl 0.488 0.322 

0.054 

0.004 
0.004 
0.005 
0.004 
0.005 

0.012 0.192 0.025 0.405 

0.151 

0.031 

0.005 
0.005 
0.005 
0.005 
0.005 

0.012 

0.003 

Pooled OLS Mean-diff. OLS First-diff. OLS Random Effects 

INTERCEPT 0.144 

-q. 0.120 0.411 0.422 0.119 
Obs. 26071 26071 21939 19108 



Table A4: Omitted Variable Bias and Measurement Error 

PCUCI -0.088 0.016 
PCUCIl -0.155 0.014 
PCUCIZ -0.123 0.014 
PCUC13 -0.024 0.014 
PCUC14 -0.037 0.014 
PCUCIS -0.087 0.014 
PCUCIG 0.012 0.022 

.Coef. 

-0.b55 
-0.117 
-0.086 
-0.001 
-0.038 
-0.101 
-0.023 

0.018 -0.098 0.024 
0.022 -0.095 0.020 
0.023 -0.080 0.024 
0.025 -0.028 0.023 
0.025 -0.012 0.027 
0.026 -0.068 0.023 
0.025 -0.020 0.030 

SUm -0.502 -0.421 0.114 -0.402 0.087 

SG 0.079 
SGl 0.033 
SG2 0.029 
SG3 0.006 
SG4 0.006 

0.053 

0.004 
0.004 
0.005 
0.005 
0.005 

0.012 

0.004 
0.004 
0.004 
0.004 
0.004 

0.007 

0.047 0.006 0.080 0.006 
0.004 0.007 0.002 0.006 
0.006 0.007 0.035 0.008 

-0.011 0.007 -0.003 0.006 
0.002 0.006 0.001 0.007 

SUm 0.153 0.049 0.025 0.115 0.019 

CF Kl 0.102 
CF-Kll 0.101 
CF-K12 0.036 
CF-K13 O.Ql8 
CFK14 0.009 

0.130 0.005 0.110 0.005 
0.105 0.005 0.137 0.006 
0.041 0.005 0.018 0.006 
0.015 0.005 0.017 0.006 
0.003 0.005 0.004 0.005 

SUXll 0.265 0.296 0.016 0.285 0.012 

Rsq. 0.457 0.466 0.484 
Obs. 26071 21939 18368 

Mean-diff. OLS First-diff. OLS Long-diff. OLS 

Coef. Std. Std. Coef. Std. 



Table A5: Simultaneity Bias and Aggregate Time Dumnies 

Mean-diff. OLS First-diff. OLS Long-diff. OLS 

PCUCI -0.088 0.020 -0.b80 0.022 -0.111 0.032 
PCUCIl -0.136 0.017 -0.117 0.027 -0.075 0.023 
PCUCI2 -0.110 0.017 -0.071 0.030 -0.070 0.029 
PCUC13 0.008 0.016 0.050 0.032 0.047 0.028 
PCUCI4 -0.002 0.017 0.029 0.033 0.021 0.032 
PCUCIS -0.013 0.018 0.026 0.036 0.056 0.031 
PCUCIG 0.051 0.029 0.076 0.034 0.025 0.043 

SUm -0.289 0.061 -0.087 0.143 -0.107 0.103 

SG 0.077 0.004 0.044 0.006 0.079 0.006 
SGl 0.031 0.004 -0.001 0.007 -0.003 0.006 
SG2 0.030 0.005 0.006 0.007 0.037 0.008 
SG3 0.005 0.005 -0.012 0.007 -0.005 0.006 
SG4 0.008 0.005 0.005 0.006 0.006 0.007 

SUlll 0.150 0.012 0.041 0.025 0.114 0.019 

CF Kl 0.099 0.004 0.129 0.005 0.108 0.005 
CF-Kll 0.099 0.004 0.104 0.005 0.135 0.006 
CF-Kl2 0.036 0.004 0.040 0.005 0.017 0.006 
CF-K13 0.017 0.004 0.014 0.005 0.017 0.006 
CF-Kl4 0.007 0.004 0.003 0.005 0.004 0.006 

SUItl 0.258 0.007 0.290 0.016 0.281 0.012 

DUM82 -0.015 0.005 -0.020 0.005 
DUM83 -0.031 0.005 -0.036 0.007 
DUM84 -0.000 0.005 -0.001 0.009 
DUM85 -0.013 0.005 -0.010 0.010 
DUM86 -0.010 0.006 -0.006 0.011 
DUM87 -0.014 0.006 -0.012 0.012 
DUM88 -0.020 0.006 -0.020 0.013 
DUM89 -0.026 0.005 -0.029 0.014 
DUM90 -0.038 0.005 -0.041 0.015 
DUM91 -0.047 0.006 -0.052 0.016 

-0.032 0.006 
0.021 0.007 

-0.013 0.008 
0.015 0.010 

-0.020 0.010 
-0.004 0.010 
-0.035 0.011 
-0.024 0.012 
-0.056 0.013 

Rsq. 0.460 0.463 0.480 
Obs. 26071 21939 18368 

Coef. Std. Coef. Std. Coef. Std. 
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Table A6: Simultaneity Birr and Instnmen tal Variables Regre88ions 

PCUCI 0.021 0.062 
PCUCIl -0.129 0.021 
PCUCI2 -0.120 0.022 
PCUCI3 0.013 0.024 
PCUCI4 -0.009 0.022 
PCUCIS -0.063 0.023 
PCUC16 0.034 0.041 

Coef. 

0:128 
-0.121 
-0.110 
0.066 
0.015 

-0.033 
-0.006 

0.100 -0.015 0.098 -0.020 0.080 
0.047 -0.163 0.045 -0.212 0.037 
0.047 -0.033 0.027 -0.128 0.033 
0.042 -0.027 0.034 -0.023 0.029 
0.040 0.000 0.039 -0.051 0.030 
0.047 -0.049 0.041 -0.095 0.042 
0.041 -0.032 0.080 -0.028 0.049 

sum -0.254 0.140 -0.060 0.228 -0.320 0.192 -0.557 0.157 

SG 0.028 0.048 0.055 0.097 -0.046 0.077 -0.106 0.130 
SGl 0.021 0.009 0.035 0.021 0.055 0.016 0.074 0.018 
SG2 0.022 0.009 0.039 0.013 -0.019 0.007 0.051 0.008 
SG3 0.002 0.007 0.011 0.012 0.027 0.010 0.033 0.010 
SG4 0.007 0.006 0.015 0.009 -0.021 0.008 0.031 0.008 

SUm 0.080 0:068 0.155 0.091 -0.004 0.065 0.084 0.107 

CF Kl 0.316 0.115 0.528 0.102 0.443 0.074 0.514 0.097 
CF-Kll 0.049 0.026 -0.045 0.039 0.004 0.030 -0.053 0.039 
CF-K12 0.033 0.005 0.024 0.010 0.016 0.006 0.010 0.008 
CF-K13 0.015 0.005 0.002 0.008 0.008 0.008 -0.002 0.008 
CFzKl4 0.008 '0.005 0.003 0.007 0.007 0.006 0.002 0.006 

SUm 0.421 0.092 0.077 

Obs. 26071 

0.511 

21939 

0.478 0.052 0.472 0.052 

18368 21939 

Mean-diff. IV' First-diff. IV Long-diff. IV Orthog-dev. IV 

Coef. Std. Std. Coef. std. Coef. Std. 
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Table A7: Inrtrumental Variables Regressions with Short Lags for PCUCI 

PCuCIl -0.112 0.016 -0.138 0.035 
PCUCI2 -0.094 0.018 -0.101 0.031 

Coef. std. 

-0.138 0.031 
-0.038 0.022 

-0.176 0.033 

-0.019 0.059 
0.055 0.014 

-0.019 0.007 
0.028 0.009 

-0.021 0.008 

0.025 0.053 

0.454 0.061 
0.002 0.026 
0.016 0.006 
0.008 0.008 
0.007 0.006 

0.487 0.043 

-0.145 0.021 
-0.104 0.023 

SUm -0.207 0.026 -0.239 0.060 -0.249 0.032 

SG 0.060 0.044 0.047 0.077 
SGl 0.017 0.008 0.044 0.018 
SG2 0.026 0.009 0.044 0.013 
SG3 0.006 0.007 0.019 0.011 
SG4 0.009 0.007 0.016 0.008 

0.036 0.081 
0.057 0.013 
0.052 0.008 
0.028 0.009 
0.029 0.007 

SUlIl 0.118 0.062 0.170 0.077 0.202 0.070 

CF Kl 0.419 0.079 0.493 0.086 
CFKll 0.024 0.018 -0.033 0.034 
CF-K12 0.031 0.005 0.024 0.010 
CF-K13 0.014 0.005 0.001 0.008 
CFKl4 0.009 0.005 0.002 0.007 

0.502 0.087 
-0.047 0.036 
0.011 0.008 
0.001 0.007 
0.002 0.006 

SUEI 0.497 0.063 0.487 0.068 0.468 0.045 

Obs. 26071 21939 18368 21939 

Mean-diff. IV First-diff. IV Long-diff. IV Orthog-dev. IV 

Coef. Std. Coef. Std. Coef. Std. 



Appendix B: Data Definitions 

This appendix describes the firm-specific variables in the study. All of the 

accounting data are from the Compustat Industrial Database maintained by Standard 

and Poor. 

Sales 

This variable is gross sales during the year reduced by cash discounts, trade 

discounts, and returned sales or allowances to customers. 

Cash Flow 

Cash flow is the sum of several variables fi-om Compustat. It includes: 

1. Income before extraordinary items; 
2. Depreciation and amortization; 
3. Deferred Taxes; 
4. Equity in net loss (earnings); and 
5. Extraordinary items and discontinued operations. 

The first two components of cash flow (income and depreciation) are seldommissing 

from firms’ balance sheets. If the a firm reports a missing value for either one of these 

variables, we produce a missing value for cash flow. The last three items, however, 

are missing a greater percentage of the time. We assume that when they are missing, 

their values are economically insignificant, and we set them to zero. 
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The Replacement Value of Capital 

The capital stock appears in the denominator of our dependent variable. The 

problem with using the book values of gross or net property, plant, and equipment is 

that if the capital is many years old, its book value may severely understate the current 

value of the capital, especially in periods of high inflation. Salinger and Summers 

(1983) present an algorithm for approximating the current replacement value of capital 

using accounting data such as that supplied by Compustat. Since its initial 

introduction, many researchers have used variations of the &linger-Summers 

algorithm to construct capital stock series. We modified the original algorithm to 

make it more useful in approximating capital stocks for a wider variety of firms. 

The basic idea behind the algorithm is to build iteratively a replacement value 

series using three steps. First, take the previous year’s value and intlate it in 

proportion to aggregate inflation to obtain the capital stock’s replacement value today 

in the absence of other changes. Second, add the value of the current year’s 

investment, and third, account for capital lost to depreciation. In constructing the 

series, Salinger and Summers make several assumptions: 

1. All of a firm’s capital has the same life (LIFE). 
2. Firms use the straight-line method for book depreciation. 
3. All investments are made at the beginning of the year, and all depreciation is taken 

at the end of the year. 

Given these assumptions, they estimate the useful capital stock life in any year as 

W) 

where 
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GPLANI; = the book value of gross plant in year t ; 

4 = capital expenditures in year t ; and 

DEPR, = book depreciation in year t . 

Because LIFE, fluctuates f&m year to year, Saliiger and Summers substitute the 

average life for each firm over the sample (LEE). They further assume that the actual 

depreciation rate is exponential with depreciation rate 6 = 2 / LEE, equivalent to 

double declining balance depreciation. 

The main formula for the iterative algorithm is: 

WI RK, =(RK+,~+I,)U-6). 

where RK, is the replacement value of the capital stock at time t and P, is the implicit 

price deflator for non-residential capital goods. There are three major extensions to 

the algorithm which we use in this study. First, we make the treatment of changes in 

capital more general. A drawback to the original &linger-Summers specification is 

that it implicitly assumes that capital spending (I, ) is the only way to change the 

capital stock Corn year to year. In fact, acquisitions and divestitures can augment and 

deplete the capital stock independent of reported investment. To obtain a more 

flexible specification for RK, , we replace 1, in equation (B2) with a more general 

capital change variable, KCHG, : 

03% R-K‘ = ( m,_, ++ KCHG, (i-s). 
f-1 ) 

To derive a formula for the variable KCHG, , we appeal to the accounting 

identities: 
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WI 

where 

AGPLAA’T 

AlvPLANI; 

ACQurs, 

RE27RE~ 

AGPLAfl = I, + ACQUrs, - RE27REt 

LUK’XANT = I, + ACQU& - DEPR, 

= the change in gross plant from year t - 1 to year t ; 

= the change in net plant fi-om year t - 1 

to year t ; 
= acquisitions in year t ;l and 
= retirements in year t .* 

In the event of an acquisition, the change in capital, KCHGl, equals I, + ACQUIS, . 

Because Compustat does not have reliable figures for ACQvrS, , we rearrange 

equation A4 to obtain: 

W) I, + ACQUIS, = AGPLANII; + RETLRE, 

W) or KCHG, = AGPWT, + RETIRE, 

In the event of a divestiture, we want to decrease the capital stock by the depreciated 

value of the capital sold. In this case: 

WO KCHG, = AiYPLANI; 

If there is no major acquisition or divestiture, then we retain the original formula: 

W) KCHG, = I, 

’ According to the Compustat manual, acquisitions are defined as ‘cash outflow or funds used for, and/or costs 
relating to, acquisition of a company in the current year or effects of an acquisition in a prior year carried over 

to the current year.” 

’ Compustat defines retirements as “a deduction from a company’s property, plant, and equipment account 
resulting from the retirement of obsolete or damaged goods and/or physical structures.” 
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The task, now, is to derive an empirical test to determine whether a firm has 

undergone an acquisition or divestiture in a given year. There are two rules of thumb 

that aid us in this search. First, AGPM is normally less than 1, because of 

retirements. Therefore, if AGPLAIvir; > 1, by a “substantial” amount, it signals an 

acquisition with a high probability. Second, AGPLJN~ is normally greater than 

REi7RE~ because retirements are the only way to reduce GPUNT, . Therefore, if 

AGPLAfl c REi7RE~ by a “substantial” amount it signals a divestiture. 

We define a “substantial” amount as a discrepancy of ten percent or more. The 

point of imposing the ten percent limit is to make acquisition and divestiture 

adjustments conservative. That is, we only deviate f?om the standard Salinger- 

Summers formula when there is clear evidence that this formula is misleading. In this 

case, if 

AGPLANI;-I, >ol 

GPLAw_, ” 

then we assume an acquisition and set KCHG, = AGPLAW + RETIRE, from 

equation (B7). In contrast, if 

(BlI) 
AGPLANT, +REK?R& < -o 1 

GPm_, 
. , 

then we assume a divestiture and KCHG, = ANPUNK from equation (BS). If 

neither rule holds, we simply set KCHG, equal to I,. 

The second major extension to the algorithm deals with the measurement of 

depreciation. There are two potential problems associated with the depreciation rate 
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calculated by &linger and Summers. First, they assume that it follows a double 

declining balance yielding a depreciation rate 6 = 2 / LIFE . If this estimate of 

depreciation is too large, it could lead us to devalue the capital stock too quickly. An 

alternate (and commonly made) assumption is a single declining balance, or 

S = 1 / LIFE. This method, however, may be too extreme in the other direction. We 

use a depreciation rate of S = 1.5 / WFE . This value makes the average depreciation 

rate we estimate for the Compustat sample similar to depreciation rates obtained from 

aggregate data. 

The second problem that arises in this area is in the reported depreciation of 

firms which may be inconsistent with their GPLANT and NPLANTfigures. This over- 

estimate of depreciation could again lead us to devalue the capital stock too quickly. 

To obtain an alternate measure of depreciation, subtract equation (BS) from equation 

(B4) to obtain: 

0312) AGPLANT - AhRCAN~ = DEPR, -REURE, 

0313) or DEPR, = AGPLAV - ANPUNT + RETIRE, 

If RK, (computed using the firm-supplied depreciation number) is less than - 

NpLANT where T is the maximum year for each firm, then the imputed depreciation 

rate is probably too large because the book value of NPLANT should be lower than the _ 

replacement value of capital in an inflationary environment. In this case, we compute 

an alternate RK, series using the depreciation figures derived in equation Al3 as long 

as the new RK, is larger than the old one. If R.K, using the original method is Zarger 

than NPLANTr , then we use it. 
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The third extension provides an efficient means to get the algorithm started. 

To implement the original algorithm, &linger and Summers rely on pre-sample 

aggregate data to provide seed values for the firms’ capital stock. We simply use the 

reported book value of net property, plant, and equipment (iVPLAh’7) for the first 

observation of each firm. That is, if a firm’s data starts in 1975, RK,, equals 

NPLANT in that year with each year thereafter computed using equation (B3) above. 

Because the book value of NPLANT will usually be less than the replacement 

cost, the use of this seed value creates a distortion in the algorithm. This distortion 

will be offset, however, by several factors. First, any firm that is in the sample at the 

beginning of the dataset in the early seventies did not experience historically large 

inflation rates in the preceding years, so its book value’s understatement of its 

replacement cost should be relatively small. Second, the capital stock of any new firm 

that enters the dataset thereafter is presumably new capital, so that, again, its book 

value should be fairly close to its replacement cost. In addition, even if there is a large 

difference between the actual and estimated initial replacement cost, any distortionaty 

effect will decline over time as the initial capital depreciates away. 
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