
 

 

 

 

Risk-return tradeoff and the behaviour of volatility on the 

South African stock market: Evidence from both 

aggregate and disaggregate data 

 

Mandimika, N.Z. and Chinzara, Z. 

 

 

Working Paper 198 

November 2010 

 

 

 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6625479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 
 

Risk-return tradeoff and the behaviour of volatility on the South 
African Stock market: Evidence from both aggregate and 

disaggregate data∗ 

 

Mandimika, N.Z.♠ and Chinzara, Z.♣ 

 

Abstract 

The study analyses the nature and behaviour of volatility, the risk-return relationship and the long-term trend 
of volatility on the South African equity markets, using aggregate-level, industrial-level and sectoral-level 
daily data for the period 1995-2009. By employing dummy variables for the Asian and the sub-prime 
financial crises and the 11 September political shock, the study further examines whether the long-term trend 
of volatility structurally breaks during financial crises and major political shocks. Three time-varying 
GARCH models were employed: one of them symmetric, and the other two asymmetric. Each of these 
models was estimated based on three error distributional assumptions. The findings of the study are as 
follows: Firstly, volatility is largely persistent and asymmetric. Secondly, risk at both the aggregate and 
disaggregate level is generally not a priced factor on the South African stock market. Thirdly, the TARCH-M 
model under the Generalised Error Distribution is the most appropriate model for conditional volatility of the 
South African stock market. Fourthly, volatility generally increases over time and its trend structurally 
breaks during financial crises and major global shocks. The policy and investment implications of the 
findings are outlined.  
 
 Keywords: Risk-return tradeoff, stock market volatility, asymmetric GARCH models 
 JEL Classification: G10, G11, G12, C52 

 

1. Introduction 

Since Markowitz (1952) settled on the idea that investors would demand higher returns 
on a market portfolio than a risk-free investment, the relationship between risk and return has 
been subjected to extensive theoretical and empirical enquiry. This comes as no surprise 
given the importance of risk in the pricing of financial assets and financial derivatives, and in 
portfolio diversification. In a major theoretical breakthrough, Merton (1973) demonstrated 
that, subject to risk-averseness, conditional expected excess returns on the aggregate market 
are a positive function of their conditional variance. Denoting an indirect utility function by J 
(.), aggregate wealth by Wt, conditional expected returns on aggregate wealth between time t 
and t+1 by εwt+1, and conditional variance of returns on aggregate wealth by (ߪ௪೟శభ

ଶ ), Merton 
(1973) showed that, under the assumption of a fixed investment opportunity set or of 
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Gaussian distribution of rate of returns, the relationship between return and risk can be 
described by the following function: 
          

 ൫ߝ௪೟శభ൯ ൌ ቂି௃ೢೢௐ೟
௃ೢ

ቃ ൫ߪ௪೟శభ
ଶ ൯ ൌ ௪೟శభߪሺߣ

ଶ ሻ     (1) 

where ሾെܬ௪௪ ௧ܹ/ܬ௪ሿ  is a measure of risk averseness of investors that can be denoted by ߣ . 
Equation (1) shows that the returns that investors expect to earn in the future are directly 
proportional to the product of the expected variation in returns and a measure of risk 
averseness  . Because investors are generally risk-averse, they will invest in a project if the 
expected returns from such an investment are high enough to compensate for the expected 
riskiness of that investment, thus  ߣ  is expected to exhibit a positive sign.    

Over the past three decades, several empirical studies based on different methodologies 
have tested the existence of risk-premia in returns of developed, emerging and developing 
stock markets, albeit with mixed results. For developed stock markets, Campbell (1985) and 
Harvey (1991) used the instrumental-variable technique to document a positive risk-return 
relationship for the US and a negative risk-return relationship for the 16 OECD countries. 
Using a two-stage Markov Switching model, Turner et al. (1989) found that the relationship 
between risk and return is not stable but changes from positive to negative from time to time. 
French et al. (1987), Chou (1988), Glosten et al. (1993), Theodossiou and Lee (1995), 
Hansson and Hordahl (1998), Jochum (1999), and Lanne and Saikkonen (2004) used 
different specifications of univariate (some authors) and multivariate (other authors) 
Generalised Autoregressive Conditional Heteroskedastic-in-mean (GARCH-M) family of 
models to document mixed evidence about the existence of the risk-premia in the developed 
stock markets of the US, Europe, Australia and Asia. Thomas and Wickens (1989) and Pagan 
and Hong (1991) used non-parametric models to find weak evidence of a positive risk-
premium for German, Japan, UK and weak evidence of a negative risk-premium for the US 
respectively.1 

For emerging markets, Poshakwale and Murinde (2001) used the GARCH-M model to 
show that risk was not a priced factor for the Eastern Europe emerging market. Using the 
EGARCH-M model, Karmakar (2007) and Saleem (2007) found significant evidence of a 
positive risk-premium for India and Pakistan respectively. Using the same model, Yu and 
Hassan (2008) studied the Middle East and North Africa (MENA) region and found 
significant positive risk-premia for Bahrain, Oman and Saudi Arabia, and significant negative 
risk-premia for Egypt, Jordan, Morocco and Turkey. Kovačić (2008) and Leon (2008) used 
different GARCH-type models under different error distributions to document weak evidence 
of positive risk-premia for Macedonia and for the West African Economic and Monetary 
Union countries respectively.  
 Despite the fact that the South African stock market is the largest and most liquid 
market in Africa, studies on the risk-return relationship have remained limited until recently. 
The only relevant study for South Africa is by Mangani (2008) who studied the risk-return 
relationship using weekly data on 42 individual stocks and two portfolios, the first based on 
the ALSI and the second composed of equally weighted portfolios of the 42 stocks. Using the 

                                                            
1 The studies are not reviewed individually for succinctness. However their results vary from country to country. 
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GARCH-type models, Mangani (2008) found that, expect for two stocks, volatility is largely 
an unpriced factor. Furthermore, the author found limited evidence of leverage effects and 
asymmetry in volatility for the portfolios and most of the stocks.  
 The current study is in the same spirit as Mangani (2008), but tries to address some of 
the shortfalls of the latter. Firstly, unlike in Mangani (2008), daily data comprised of the four 
benchmark indices for the aggregate market, nine industrial indices and 33 sectoral indices 
are used. Since a number of studies document that the South African stock market is 
informationally efficient (see Mkhize and Msweli-Mbanga, 2006:85), higher frequency 
(daily) data will provide better dynamics of the return-generating process than lower-
frequency (weekly) data. Secondly, the finding of limited evidence of asymmetry by Mangani 
(2008) is questionable as it contrasts a number of studies that show that stock market data are 
characterised by volatility asymmetry (cf. Karmakar, 2007, Leon et al., 2005, and Koutmos, 
1996). In fact, more recent studies by Chinzara and Aziakpono (2009) and Chinzara (2010) 
document that volatilities of the aggregate and four main sectors of the South African stock 
market are inherently asymmetric. A possible explanation of the difference in conclusions 
pertaining to the symmetry of volatility could be due to the fact the two latter studies used 
more recent data (1995-2008) than Mangani (2008), who used data from 1973-2002. Thirdly, 
while the majority of relevant studies use GARCH models,2 most of those studies assume the 
Gaussian distribution of returns in estimating their models. Koop (1994) argues that models 
that assume normal distribution of the error term are likely to face the risk of 
misspecification. In this regard and in line with Kovačić (2008) and Leon (2008), the current 
study assumes three error distributions3 and then compares the estimated results from the 
three distributions to determine the most appropriate one. Finally, the current study also 
analyses the long-term behaviour of volatility at both aggregate and sectoral level, and further 
investigates whether the long-term trend of volatility is subject to structural breaks during 
major world shocks and financial crises.  
 The remainder of the paper is structured as follows: Section 2 describes the data used 
and discusses some of properties of the data. Section 3 presents the methodologies used to 
analyse the behaviour of volatility, the risk-return relationship and the long-term trend in 
volatility. Section 4 reports and discusses the results of the study. Section 5 sums up the 
paper, and articulates the policy implications as well as suggesting further areas for research.  
 

2. Data and Descriptive Statistics 

Data used comprise daily indices for four JSE benchmark indices, nine industrial indices, and 
33 sectoral indices (including two subsectors) of South Africa’s equity markets, as defined by 
the Industry Classification Benchmark (ICB) for the period 30/06/1995 to 31/07/2009, 
totalling 46 indices and 3 677 observations per index, and was obtained from Thompson 
Datastream.4 The choice of the industries, sectors and subsectors, as well as the period of 
study was based primarily on data availability. Non-trading days (e.g. holidays and 
                                                            
2 GARCH models have been widely commended for their ability to model time-varying volatility. 
3 Gaussian, Generalised Error distribution and Student–t distribution 
4 Note that a few indices started after 2000, so their data are not available from 1995. 
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weekends) and thin trading raise concerns regarding the relevance of using daily data. 
However, the speed at which stock prices assimilate new information make daily data an 
attractive choice – particularly given their ability to capture daily trading information 
dynamics. In line with Chowdhury (1994), Chang et al. (2006) and Chinzara and Aziakpono 
(2009), all the non-traded days were removed from the data. 

As a practice in standard empirical literature, the daily index series were converted into 
continuous compounded returns as follows: 

yt= (lnPt – lnPt-1)*100        (2) 

where yt denotes the continuous compounded returns at time t, Pt is the closing stock price 
index at time t and Pt-1 is the closing stock price index for the previous day. Equation (2) has 
the advantage of removing the need to consider explicitly the rate at which the returns are 
compounded. Table 1 provides the general properties of the returns, particularly on 
descriptive statistics, stationarity, serial correlation, and heteroscedasticity tests. 

The reported descriptive statistics are sample means, median, maximum, minimum, 
standard deviation, skewness, kurtosis and the Jarque-Bera statistics. With the exception of 
Forestry and Paper, Automobile and Parts, Household Goods and the AltX, all mean returns 
are positive, implying a bullish market over the sample period. Risk, as measured by standard 
deviation of returns, is highest in the Consumer Goods industry, ranging from 0.548%-
1.372%, while the Industrials industry is the least volatile, ranging from 0.566%-0.675%. If 
risk is a commonly priced factor we would expect the highest mean returns to be matched by 
the highest standard deviation. However, from the descriptive statistics this relationship is not 
apparent. It is evident that the highest mean returns are in the Pharmaceuticals and 
Biotechnology sector (0.034%) while the lowest are in the Automobile and Parts sector (-
0.02%); however the highest standard deviation is found in the Automobile and Parts sector 
(1.372), while the lowest standard deviation is found in the Real Estate sector (0.444).5 From 
this casual observation there is no discernable positive relationship between risk and return. 
In fact, it seems that the Automobile and Parts sector exhibits a negative risk-return 
relationship.  

Generally the data exhibit characteristics that are common with financial series. For 
instance, the highly statistically significant Jarque-Bera test statistics imply that the 
distribution of the returns departs from normality. More clearly, the non-normality of the data 
is confirmed by the skewness and the kurtosis parameters. Of the 53, 39 are negatively 
skewed while 14 are positively skewed. The fact that the majority of the returns are 
negatively skewed, implies that the return distributions of the sectors and indices have a 
probability of earning returns greater than the mean (Karmakar 2007:101).The high kurtosis 
ratios imply that the distribution of the returns are characterised by fat tails. Both the 
Augmented Dickey Fuller (ADF) and the KPSS statistics show that all the returns series are 
stationary.6           

                                                            
5 Although the Small and Mid Cap series have the lowest standard deviation, the Real Estate sector has the 
lowest standard deviation amongst all the Industries and Sectors. 
6 The KPSS was used as a confirmatory test since the ADF test may be biased towards rejection of the null 
hypothesis in cases where the error terms follow an MA or ARMA process (see Davidson & MacKinnon, 
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 Ljung-Box statistics for both returns [LB(12)] and squared returns [LB2(12)] are 
statistically significant. The former implies the existence of serial correlation in returns, a 
contrast to the informational efficiency of the stock market. Methodologically, this justifies 
the need for an autoregressive component in the mean equation to whiten the error term. The 
latter case entails that there is evidence of volatility clustering and heteroscedasticity (i.e. 
time-varying second moments), thus justifying the use of the GARCH family of models, as 
they capture the time-varying nature of conditional volatility (Kovačić, 2008:193; Magnus 
and Fosu, 2006:2044).7 

 

3. Methodology 

This study is divided into two parts. The first part analyses properties of volatility and 
the risk-return relationship. The second part involves estimating conditional volatility and 
analysing its behaviour over time and whether volatility structurally breaks during sudden 
global political events and financial crises. To examine the relationship between daily returns 
and conditional risk, one symmetrical and two asymmetrical univariate GARCH-in-mean 
models were employed. The models were then estimated under three distributional 
assumptions. While there is literature that might suggest the superiority of some types of 
models over others, or of some distributional assumptions over others (see Brooks, 2002), 
experimentation seems to suggest that the performance of different models under different 
distribution assumptions may depend on the underlying properties of the data. In light of this, 
the idea here is to compare the performance of three GARCH-in-mean models across the 
three distributional assumptions, and also to examine whether the risk-return relationship 
varies depending on model specification.  

Proposed by Engle, Lilien and Robins (1987), the ARCH-M specifies the mean returns 
of a security as a linear function of time-varying conditional risk/variance. In the original 
ARCH-M model, the time-varying conditional variance is specified as a function of squared 
past error terms from the mean equation. However, given the superiority of GARCH models 
over the original ARCH model (see Tse, 1998; Brooks, 2002), in this study the conditional 
variance is modelled using the symmetric and two asymmetric GARCH models.  

More generally, a GARCH-M (p, q) model is specified as follows: 
 

),0(~/, 2
1

1
ttttiti

k

i
itiit hNIhrar −−

=
− +++= ∑ εεδμ   (3a) 

                                                                                                                                                                                         
2004:622). The appropriate lag for the ADF equation was determined using the Schwarz information criterion 
with maximum lag set at 30 days. Given that stationarity tests are just an intermediate step and that both the 
KPSS and ADF are widely documented in textbooks and empirical literature, the theoretical technicalities of 
these tests will not be discussed here. For discussion see e.g. Brooks (2002) and Gujarati (2009). 
7 Visual inspection of returns series also showed that their variances change over time, with small (large) 
changes tending to be followed by small (large) changes. This reinforces the appropriateness of GARCH 
models. Given that there are up to 46 returns series, it will be impractical to report the graphs here. However, 
they are available on request. 
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where Equation (3a) is an appropriate mean equation whose current error term εt, given the 
previous day’s information set It-1, has a mean of zero, a variance of ht, and is serially 
uncorrelated8; rt and rt-i denote the current and lagged returns respectively, and ඥ݄௧ି௜ is the 
conditional standard error of εt at time t-i. Equation (3b) is a GARCH (p, q) variance 
equation, where ht is the conditional variance of the residuals (εt), ω is a constant, αi is the 
coefficient of the lagged squared residuals that are generated from the mean equation (i.e. ε2

t-

i), and βj is the coefficient for the lagged conditional variance (ht-j). Because the GARCH (p, 
q) assumes that the condition that ω>0, αi>0;βj>0 is satisfied, ht is always positive. The 
condition given in (3b), i.e. 1<+ ji βα , is necessary for the stationarity of the GARCH 

model, otherwise the variance will be unstable and shocks will be explosive (Brooks, 2002). 
Particularly important with respect to this study is the coefficient of ඥ݄௧ି௜. This 

coefficient (δi) shows the link between returns (rt) and conditional risk (ඥ݄௧ି௜). If δi is 
positive and statistically significant, then in accordance with the portfolio theory, investors 
are rewarded with higher returns for their higher risk appetite. More technically, this would 
imply that risk is a priced factor in the period under study.  

Nevertheless, there are some drawbacks with the GARCH (p, q) variance specification. 
Firstly, the GARCH (p, q) in general and the GARCH (1, 1) in particular, may be weakly 
identified if αi is too small.9 This results in the understatement of standard errors and 
upwardly biased t-tests, and thus leads to a wrong inference that volatility is persistent even 
when it is not (Ma, et al., 2007). Secondly, the GARCH (p, q) does not capture volatility 
asymmetry, which usually characterises stock markets. In this regard it could be necessary to 
extend it with an asymmetry component, thus the threshold GARCH (TARCH/GJR GARCH) 
model and the exponential GARCH (EGARCH) are also explored.10 

Proposed by Zakoian (1990) and Glosten et al. (1993), GJR GARCH (p, q) takes the 
same mean equation as (3a) and simply re-specifies the GARCH (p, r, q) model with an 
additional term to account for asymmetry as follows: 
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βεγεαω ; 1,0 <+> ji βαω  (4) 

                                                            
8 The autoregressive (AR) lags of the return/growth series are added to whiten the error term. This is especially 
important given that the Ljung-Box statistics for all the series were statistically significant, implying the 
presence of autocorrelation in the series. Thus AR terms will be added until serial correlation is dealt with. The 
tests for autocorrelation are based on the Durbin-Watson (DW) and the Breusch-Godfrey LM (B-G) tests. 
9 This phenomenon is termed Zero-Information-Limit-Condition (ZILC). For an elaborate discussion of the 
(ZILC), see Nelson and Startz (2007) and for the implications of ZILC for the GARCH (1, 1) model see Ma, et 
al., 2007 
10 Brooks (2002:469) among others suggests that equity returns exhibit asymmetric responses of volatility to 
positive and negative shocks. Asymmetric responses are attributed to leverage effects, which occur when a fall 
in the value of a firm’s stock causes the firm’s debt-to-equity ratio to rise, which leads ordinary shareholders to 
perceive their future cash flow stream as being relatively more risky. 
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where It-k = 1 if εt-k<0, or = 0 if εt-k>0, It-k is the asymmetry component and kγ  is the 

asymmetry coefficient. If the asymmetry coefficient is positive and significant (i.e. kγ > 0), 
then this would imply the existence of leverage effects or asymmetry in volatility. 
Asymmetry in volatility is based on the intuition that good news (εt-k >0) and bad news (εt-k 
<0) have different impacts on conditional volatility, which can be depicted as αi and αi+ kγ

respectively. If kγ is statistically significant, then clearly the impact of good news on volatility 

is different from that of bad news. If kγ > 0, the leverage effect exists in stock markets and if 

0≠kγ then the impact of news is asymmetric (Brooks, 2002).11 The other coefficients αi and 
βj are interpreted as in the GARCH (p, q) model. 

A possible weakness with both the GARCH (p, r,) and GJR GARCH (p, r, q) 
specifications of the variance is that the ‘artificial’ non-negativity assumptions that are made 
about parameters αi and βj may be violated in real analysis of financial data. Thus the 
EGARCH model may be necessary since its logarithmic functional form ensures that the 
conditional variance will always be positive irrespective of the sign of the parameter. 
Proposed by Nelson (1991), the EGARCH (p, m, q) model also adopts a mean equation like 
(3a), but specifies the variance equation as follows:  
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1,0 <+> ji βαω ; 0<kγ , if volatility is asymmetric.  
 
where αi and βj are still interpreted as they are in the GARCH (p, q) model. As in the GJR 
GARCH model, kγ  is the asymmetry coefficient, although its interpretation differs. If 0<kγ
and significant, then volatility is asymmetric (Brooks, 2002:469). 

In order to estimate the above models, it is necessary to make assumptions about the 
distribution of the error term. Although Table 1 shows that the returns series departs from 
normality, the log-likelihood function for the GARCH models does not necessarily require 
the series to be normally distributed. Following Kovačić (2008) and Leon (2008), three error 
distributional assumptions are explored for each of the three models: the Gaussian 
distribution, the Student–t distribution and the Generalised Error Distribution (GED). The 
log-likelihood function under the Gaussian distribution is specified as follows: 

 lt=െ ଵ
ଶ
 logሺ2ߨሻ െ ଵ

ଶ
௧ߪ݃݋݈

ଶ െ ଵ
ଶ

ሺݎ௧ െ ௧ߪ/௧ିଵሻଶݎߠ
ଶ,    (6)  

where rt and rt-1 denote current and lagged returns respectively, 0<θ<1, t is the number of the 
observations and other variables are as defined earlier.  

                                                            
11 The difference between kγ > 0 and ≠kγ 0 is that the former case would imply that there is evidence for both 

leverage and asymmetric effects. In the latter case kγ can take both positive and negative values. Should it take a 
negative value, then only evidence of asymmetric effects and not leverage effects exist in the data (Eviews 6 
Manual, 2009). 
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A common feature of financial data is that they are characterised by fat tails. The 
Student–t distribution and the GED are normally used to account for this phenomenon. Under 
the Student–t distribution, the log-likelihood function takes the following form: 

 lt=െ ଵ
ଶ

݃݋݈ ቀగሺఔିଶሻ௰ሺఔ/ଶሻమ

௰ሺሺఔାଵሻ/ଶሻమ ቁ െ ଵ
ଶ

௧ߪ݃݋݈
ଶ െ ሺఔ ା ଵሻ

ଶ
log ቀ1 ൅ ሺ௥೟ିఏ௥೟షభሻమ

ఙ೟
మሺఔିଶሻ

ቁ  (7) 

given ߁ሺ·ሻ  is the gamma function and ν>2 is the shape parameter which controls for the tail 
behaviour. It should be noted that as ν → ∞ the Student–t distribution converges to the 
normal distribution. 

Proposed by Nelson (1991), the log likelihood under the GED is as follows:  

lt=െ ଵ
ଶ

݃݋݈ ቀ ௰ሺଵ/௩ሻయ

௰ሺଷ/௩ሻሺ௩/ଶሻమቁ െ െ ଵ
ଶ

௧ߪ݃݋݈
ଶ െ ቀ௰ሺଷ/௩ሻሺ௥೟ିఏ௥೟షభሻమ

ఙ೟
మ௰ሺଵ/௩ሻ

ቁ
௩/ଶ

  (8) 

where ߁ሺ·ሻ  is defined as in Equation (7), v is a positive parameter (i.e. v > 0) that describes 
thickness of the tails. The GED is a normal distribution if v=2, and fat-tailed if r <2.12 

The parameters for the models were estimated using the Maximum Likelihood (ML) 
approach, which involved applying the Marquardt algorithm to the above log-likelihood 
functions. The ML approach requires that initial parameters are specified. Eviews estimation 
software provides its own initial parameters for the ARCH procedures based on the mean 
equation (Eviews 5, 2007:192), which could then be altered manually if convergence is not 
achieved or if parameter estimates are implausible (Brooks, 2002). Neither of the two 
problems were encountered, thus the authors utilised the initial values provided by Eviews in 
all the estimations.13 Diagnostic tests for heteroscedasticity and autocorrelation based on the 
Arch LM test and the Box-Pierce-Ljung statistic were done for all the estimated models. 

Once the models were estimated, the next step involved comparing the performance 
of the models under the different error distributions to select the most appropriate model for 
each of the series. The comparison was based on whether there was significant evidence of 
asymmetry in the data, whether the model was stationary ( 1<+ ii βα ), and whether the 

model had good diagnostic properties. In cases where the performance of the models was 
indistinguishable in the above aspects, the model with the lowest Schwarz (1978) Bayesian 
Information Criteria (SIC) was considered as the most appropriate.14 Using the most 
appropriate model, the time-varying conditional variance of each of the returns (a proxy for 
returns volatility) series was then estimated. 

Given that stock market volatility is a source of financial and macroeconomic 
instability (Chinzara and Aziakpono, 2009), it is important to analyse its trend over time. 
Excessive stock market volatility may affect/inhibit the smooth functioning of the other 
financial markets and subsequently negatively affect savings, investments, economic growth, 
                                                            
12 For a detailed discussion on the distributional properties of the Student–t and GED distributions refer to 
Knight and Satchell (2001:153) and Zivot and Wang (2006:257). 
13 For robustness, alternative manually selected initial values were attempted, but results did not show any 
significant sensitivity. Thus, the reported coefficients for the respective GARCH models are robust. 
14 The SIC is used because it embodies a much stiffer penalty term than the Akaike (1978) Information Criterion 
(AIC) (Brooks, 2002:257). 
 



9 
 

and the performance of the real economy in two ways. Firstly, stock market volatility creates 
uncertainty in an economy, which usually results in capital flight. This complicates the task 
of macro-economic policy makers who are charged with creating an environment that fosters 
real economic growth by controlling policy variables such as interest rates, which are 
significantly influenced by capital flows (Rigobon and Sack, 2003). Secondly, because a rise 
in volatility in the equity markets is usually interpreted as a rise in equity-risk, this could 
subsequently cause a shift in investment funds to flow towards less risky assets. This move 
could increase the cost of funds for new firms as investors seek to invest in ‘blue chip’ 
companies (Edwards and Garcia, 2008:61). This flow of funds away from equity markets 
could make it difficult for both new and well-established firms to plan and budget accurately 
for long-term projects as the availability of investment funds from the stock markets becomes 
uncertain. The effect of these factors could adversely impact the performance of an economy 
at large. Therefore, it is imperative that policy makers have knowledge of stock market 
volatility over time.  

On the one hand investors are interested in stock market volatility, as the central idea of 
investment in stock markets (and financial markets at large) is based on the ability to 
maximise return per unit of risk. Moreover, investors would be interested in the trends of 
volatility over time on the stock markets as this would inform their investment decisions such 
as portfolio diversification.  

To analyse the trend of volatility, a benchmark approach by Frömmel and Menkhoff 
(2003) and Chinzara and Aziakpono (2009) was adopted but augmented by adding dummy 
variables for the 1997-1998 Asian crises, September 2001 political shock, and 2007-2009 
sub-prime financial crisis to assess whether the trends structurally broke due to those shocks. 
The augmented model is as follows:  

 
   ݄௧

ଶ ൌ ଵߚ  ൅ ଶܶߚ  ൅ 1ܯܷܦଷߚ  ൅ ߚସ2ܯܷܦ ൅ 3ܯܷܦହߚ  ൅ ݑ௧      (9)   

where ht
 2is the conditional variance for each of the returns series, and T is the time variable. 

The coefficient β2 shows the general trend of volatility over the period of study. A positive 
(negative) and significant β2 would mean that volatility significantly increased (decreased) 
over the sample period. DUM1=1 if the period is the Asian crisis, 0 otherwise, DUM2=1 if 
the period corresponds to the global shocks due to the 11 September attacks, 0 otherwise, and 
DUM3 =1 if the period is the sub-prime financial crisis, 0 if otherwise.15 If the coefficients of 
any of the dummy variables, β3, β4 or β5, are positive and significant this would mean that 
there was a structural break in volatility during the period concerned.  

 

4. Empirical Results 

4.1 The Behaviour of Volatility  

                                                            
15 The exact dates for the dummy variables are as follows: Asian Crisis: 1997/10/27 – 1998/12/21; September 11 
shocks: 2001/09/11 – 2002/03/13; Sub-prime crisis: 01/01/2008 – 31/07/2009.    
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The starting point for all our estimations was to determine the appropriate mean 
equations for each of the return series. This involved estimating and testing the mean 
equation for serial correlation using the DW and the B-G tests. The results for the mean 
equations are reported in Table 2. As evident in most of the mean equations, serial correlation 
was dealt with after adding one autoregressive [i.e. AR(1)] lag, and in a few circumstances 
after adding two autoregressive lags [i.e. AR(2)]. The ARCH-in-mean models for each of the 
series were then estimated based on the appropriate mean equations. A total of 414 models 
were estimated and the results are reported in Table 3. 

As evident in Table 3, most of the GARCH-in-mean were stationary [i.e. α+ β<1]16 
except for those for the Industrial Metals (GED), Automobile and Parts (Student–t and GED), 
Personal Goods (Gaussian), Media (Student–t), Pharmaceuticals and Biotechnology 
(Student–t) and Industrial Engineering (Student–t and GED) which are non-stationary.17 A 
similar result is also evident from the TARCH-in-mean model where explosive volatility is 
evidenced in only a few sectors. However, for most of the returns (across GARCH and 
TARCH specifications), α+ β is very close to one, implying that the returns-generating 
processes are characterised by high degree of persistence or long memory in conditional 
variance. Therefore, any ‘shock’ in volatility in the current period will persist for many future 
periods (see Magnus and Fosu, 2046:2006). The EGARCH-in-mean model, on the other 
hand, is largely non-stationary and the results from this model show that a shock in returns 
will continue to grow indefinitely into the future.  

The results show that there is significant evidence of asymmetry and leverage effects in 
all the returns except for Automobile and Parts and Real Estate (Gaussian) returns.18 This 
implies that unexpected bad news increases volatility more than unexpected good news of 
similar magnitude. There are two common economic explanations for leverage effects. The 
first explanation hinges on the leverage effect hypothesis postulated by Black (1976) and 
Christie (1982). If the price of a share drops (negative return), financial leverage increases, 
leading to an increase in stock return volatility. These financial ‘leverage effects’ have 
become associated or synonymous with asymmetric volatility and yet it is possible that the 
evidence of asymmetric volatility could simply reflect the existence of time-varying risk-
premia. The second explanation centres on the relationship between volatility and expected 
returns. In the event of an anticipated increase in volatility, expected returns tend to increase, 
leading to a decline in the stock price. This is because volatility is a measure of risk, and if 
investors are assumed to be risk-averse, an increase in risk (volatility) will result in a decline 
in demand for that stock, leading to a fall in price. If volatility is priced, then an increase in 
volatility raises the required return on equity, leading to an immediate share price decline, 
often referred to as the volatility-feedback effect (Karmakar, 2007:108-109). 

It is possible that both the (financial) leverage and volatility-feedback effects could be 
at work concurrently. If for example there is an expectation in the market of an increase in 
                                                            
16 Note that in cases where none of the first-order models [GARCH (1,1), TARCH (1,1,1) and EGARCH 
(1,1,1)] captured excess volatility, higher-order specifications were considered. Thus in some cases, the 
stationarity condition is (α1+α2+β1).  Results for such models are marked + in Table 3. 
17 In parentheses are the error distributions under which the models were estimated, e.g. Industrial Metals (GED) 
means the model for the Industrial metals sector was estimated assuming the generalised error distribution.  
18 The asymmetry coefficients are negative and significant and positive and significant in the EGARCH and the 
TARCH models respectively. 
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volatility, the result is that market participants would place more sell orders than buy orders. 
The end result is a drop in price to balance the buying and selling volume. Therefore an 
anticipated increase in volatility leads to an immediate price decline, as predicted by the 
volatility-feedback hypothesis. This drop in share prices will raise the leverage ratio, which, 
according to the leverage-effect hypothesis, brings about a further decline in price (Karmakar, 
2007:109). 

Irrespective of the source of the asymmetry, the implication affects the pricing of the 
securities and portfolio selection. From the results, the GARCH-in-mean and TARCH-in-
mean models imply very different volatilities following a negative shock in comparison to 
EGARCH-in-mean models. If returns are linked to volatility, the EGARCH-in-mean model 
would suggest greater risk-premia since volatility increases indefinitely following negative 
news. On the other hand, the GARCH-in-mean and TARCH-in-mean models would imply 
lower risk-premia than the EGARCH-in-mean model, since volatility is not as explosive in 
the former models as in the latter model. Furthermore, the dynamic hedging strategies 
associated with the two sets of volatilities would differ significantly based on the volatility 
persistence (Karmakar, 2007:110). 
 

4.2 Risk-Return Relationship 

Table 3 also reports the coefficients for the risk-return trade-off for the estimated 
models. The results generally show that the risk-return relationship is negative and 
insignificant or positive and insignificant across the three models and error distributions, and 
across industries and sectors. Partly in line with a finding by Chinzara and Aziakpono (2009), 
volatility in the All Share Index, Benchmark Index and the AltX index returns is not a priced 
factor. The same result is echoed at an industrial level. At best it is evident that a few 
industries, such as Consumer Services, Industrials and Technology, show strong evidence of 
a negative relationship between risk and return. However, the results for the three models are 
mixed at sectoral level.19 

Generally the GARCH-M model at a sectoral level does not show significant evidence 
of a positive risk-premium, with the exception of three sectors. Two sectors show significant 
evidence of a negative risk-premium. A similar picture is evident from the EGARCH-M 
model although in this case four sectors, three of which are similar to those in the GARCH-M 
model, show significant evidence of positive risk-premium. However, unlike in the GARCH-
M model, a considerable number of sectors (12) show significant evidence of a negative risk-
premium. The results for the TARCH-M model are not very different from the GARCH-M 
and EGARCH-M models except that five sectors show significant evidence of positive risk-
premia, two similar to those in the GARCH-M and EGARCH-M models. Like in the 
EGARCH-M, twelve sectors show significant negative risk-return relationship, albeit that 
only four of those sectors are similar to those in the EGARCH-M model.  

The existence of positive risk-premia in a few of the sectors is in line with empirical 
literature (cf. French et al., 1987; Campbell and Hentschel, 1991). On the other hand, 
although the negative risk-premia violate the fundamental principles of portfolio theory (cf. 

                                                            
19 Notice that in some instances, the results are also mixed across the three error distributions. 
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Markowitz, 1952), it has been widely documented in other empirical studies (cf. LeBaron, 
1989; Whitelaw, 1994; Fraser and Power, 1997; Lettau and Ludvigson, 2009; Balios, 2008). 
At least three reasons have been suggested to explain this negative risk-premia. Firstly, Chou 
et al. (1992), Whitelaw (1994) and Lettau and Ludvigson (2009) argue that such a finding 
may be due to misspecification of the time-varying nature of the risk-return relationship. 
Secondly, LeBaron (1989) and Balios (2008) attribute this finding to non-synchronisation of 
trading when the market is characterised by illiquidity and thin trading, forcing investors to 
forgo risk-premium in pursuit of a successful transaction. Thirdly, Koutmos et al. (1993) 
argue that the negative risk-premium can demonstrate the fact that local investors are not 
faced with foreign exchange risk, thus they will not demand an exchange rate risk-premium 
(i.e. returns are measured in South African rands). It is possible that once returns are 
converted to a foreign currency, such as the US dollar, the positive risk-premium will become 
evident (Koutmos et al., 1993). Since GARCH-type models have been widely credited for 
their ability to appropriately model time-varying risk, and given that the results are quite 
similar across the three models and error distributions, the first reason is strongly ruled out in 
the current study, although with caution it is our considered view that the second and third 
explanations are more plausible than the first explanation in the context of the current study. 
 

4.3 Model Selection and Diagnostic Checks 

The three models were compared across the three error distributional assumptions. In 
sectors where evidence of asymmetry was found, comparison was only between the 
EGARCH-M and TARCH-M, since the standard GARCH-in-mean model cannot capture 
asymmetry. In most of these cases, the TARCH-M model estimated under the GED seem to 
perform best (i.e. better TARCH-M models estimated based on Student–t and Gaussian and 
all the EGARCH-M). Evidently it is more stationary, captures volatility clustering and 
heteroscedasticity and has the minimum SIC. Specifically, as shown in Table 3, the TARCH-
M under GED is the most appropriate model for 36 of the returns, TARCH-M under Student–
t for seven of the returns, EGARCH-M under GED for one, and GARCH-M under GED for 
two returns best model for one sector respectively and the GARCH-M model was best for 
one sector.20 

In order to confirm their appropriateness and robustness, the selected models were put 
under more diagnostic tests in addition to the ARCH LM test. The standardised residuals 
from these estimated models were examined for skewness, kurtosis, autocorrelation and 
heteroscedasticity and the results compared with those obtained for returns series as in Table 
1. The descriptive statistics for the raw series and those of standardised residuals are reported 
in Table 4. Results reveal that kurtosis is now very low, indicating that the residuals now 
follow a normal distribution. Normality of the residuals is also confirmed by the skewness 
ratios which are now much closer to zero than those of the returns series. Furthermore, the 
LB(12) statistics for the standardised residuals are now insignificant, confirming that 

                                                            
20 The selected models are denoted by an asterisk next to the SIC coefficient (*). 
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autocorrelation is no longer evident.21 These diagnostic tests results confirm that the selected 
models are well specified.  

Based on the selected model, volatility for each of the returns for the aggregate market, 
the industries and the sectors was estimated and the long-term trend was analysed. In what 
follows, the results of this analysis are discussed.  
 

4.4 Trend of Volatility and Effects of Financial Crises and Political Shocks 

To analyse the long-term trend of volatility, Equation (9) was estimated and the results 
are reported in Table 5. Generally the results show that volatility in the aggregate market, the 
industries and the sectors of the JSE has increased over the period of time (i.e. β2>0 and is 
statistically significant). This is with the exception of some industries and sectors, for 
example the Chemicals sector, the Beverage and the Food Producers sector, the Travel and 
Leisure sector, the Food and Drug Retailers sector, the Health Care Equipment and Services 
sector, the Fixed Line Telecommunications sector, the General Industrials and Industrial 
sector, and the Consumer Goods industry sector, all of which show significant evidence of 
decreasing volatility over the period. The latter result is not very surprising given that most of 
the sectors are for basic necessities or important services, most of which do not have close 
substitutes. On the other hand, there are a number of possible explanations for the former 
result. For instance, volatility of most of the sectors within the mining industries could be due 
to the increasing USD/ZAR exchange rate volatility since the abandonment of exchange 
controls between 1994 and 2008 and the closure of some mines in early 2008 (Baxter, 2010). 
Oil price shocks between 2000 and 2008 might have also played a role in increasing the 
volatility of the stock market. Furthermore, the impact of factors such as the Asian and sub-
prime financial crises cannot be ruled out.    

The impact of latter three factors on the long-term trend of volatility was further 
analysed and results are also reported in Table 5.The results show there were structural 
breaks in the trend of volatility of the aggregate market and all the industries due to these 
events. However, when the analysis is disaggregated to sector level, the results show that not 
all sectors experienced structural breaks in volatility due to these events. For instance in the 
Materials industry, only the Forestry and Paper, Industrial Metals and Mining sectors showed 
a structural break in volatility during all three periods. In the Consumer Goods industry, 
Beverages was the only sector whose volatility structurally broke during these periods. In the 
Consumer Services industry, only the Food and Drug Retailers sector did not show evidence 
of structural break in volatility during all three periods. In the Health Care, Oil and Gas and 
Technology industries, there was no evidence of volatility structurally breaking due to these 
three shocks in the Pharmaceuticals and Biotechnology, Oil and Gas Producers and Software 
Computer and Services sectors. In the Industrials industry volatility all the sectors except 
Industrial Engineering and Electronic and Electrical Equipment showed structural breaks in 
all three periods. The pattern is different in the Financials industry, as volatility of all the 
sectors structurally broke during these periods. 
                                                            
21 Only two sectors, Platinum & Precious Metals and Oil & Gas Producers, have standardised residuals whose 
LB2(12) is significant at 10%. 
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The Chemicals, General Mining, Platinum and Precious Metals, Food Producers, Food 
and Drug Retailers, Electronic and Electrical Equipment, Industrial Engineering and Fixed 
Line Telecommunications sectors did not react positively to the 9/11 attacks on the US. This 
was also the case with the volatility of the Mid Cap returns. The Automobile and Parts sector 
was the only sector that did not show any evidence of structural break in volatility reaction in 
any of the three periods. Due to unavailability of up-to-date data, the volatility of the Personal 
Goods, Household Goods and AltX series was only shown to have reacted to the current 
financial crisis. 

There are a number of reasons why volatility breaks down during financial crises and 
international political shocks. Since South Africa is an emerging market, investors view it at 
par with other emerging markets, thus a financial crisis in an emerging market such as the 
Asian crisis is likely to be felt in South Africa directly. One the other hand, the channels 
through which a global crisis like the sub-prime crisis is felt in the South African stock 
market could be different from the Asian crisis, because the South African market is not well 
integrated into the major global financial markets (cf. Chinzara and Aziakpono, 2009). Thus 
the effects of a global shock are likely to be manifested indirectly through declining world 
commodity prices, shrinking export markets,22 and reduced foreign direct investment and 
other financial inflows.23 These pressures will lead the volatility in the macroeconomy, which 
in turn triggers volatility in stock prices and returns.24 As for the case of a political shock, like 
the aftershocks of 9/11, volatility in the stock market is likely to emanate from the general 
fall in global investors’ confidence and raised uncertainty on a global scale. As the results 
reveal, the effects of September 11 political shock were particularly felt in the Travel and 
Leisure sectors, implying that consumers became sceptical about travel. The issue of 
structural breaks in the behaviour of the South African stock markets has also been indirectly 
echoed by Morris, et al. (2009), although the latter study was primarily concerned with the 
presence of long memory in South African stock returns. They found that South African 
returns are subject to regime switches, with bearish regimes tending to be longer and more 
persistent than bullish regimes.  

  

5. Conclusion  

This study analysed the behaviour of volatility, the risk-return relationship, and the 
long-term trend of volatility on the South African equity market. Daily data for four JSE 
benchmark indices, nine industries, 33 sectors and two subsectors were used. Three GARCH-
M family models were estimated under three error distributional assumptions, with 
estimations totalling 432 models. Results show that volatility at aggregate, industry and 
sector levels is generally persistent and there is significant evidence of asymmetry and 
leverage effects. Furthermore, except for a few sectors, volatility is generally not a priced 

                                                            
22 Notice in Table 6 that South African exports decreased during the sub-prime crisis.  
23 In fact, capital outflow particularly affected the Automobile and Parts, and Mining and Retail sectors as these 
sectors depend heavily on foreign investment. 
24 Chinzara (2010) shows that volatility in the South African macroeconomy impacts on the volatility of the 
stock market.  
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factor. In fact, in some sectors significant evidence of a negative risk-premium was found. 
This can be a result of thin trading and illiquidity, and the fact that local investors are not 
exposed to foreign currency risk since returns are measured in local currency. It was further 
found that the TARCH-M under the GED is the most appropriate model for modelling 
volatility of most of the aggregate, industrial and sectoral returns of the JSE. Based on this 
model and distribution, conditional volatility was estimated and its long-term behaviour was 
analysed, with dummy variables added for the Asian and sub-prime financial crises and the 
post-September 11 political shocks, to examine whether these events caused structural breaks 
in the trend of the conditional volatility. The results generally show that both the financial 
crises and the political shock caused a structural break in the trend of volatility.  
 The findings of this study have implications for both investment and policy making. 
Firstly, the fact that volatility is generally not priced would have an implication for the factors 
to consider when investing. When investors are choosing in which sectors or stocks to invest, 
they need to consider more than risk (volatility). It is possible that factors such as skewness 
influence stock returns. Harvey and Siddique (2000) note that investors would prefer stocks 
whose returns are right-skewed to stocks whose returns are left-skewed. Investors also need 
to consider other factors such as book-to-market and the relative size of the firms. Secondly, 
the general increase in volatility in most of the industries and sectors is another issue of 
which investors and policy makers need to be aware. For investors it would be worthwhile to 
diversify their portfolios between risky and stable sectors, especially during global shocks 
and financial crises. Increasing volatility in the stock market is problematic for policy makers 
as it may cause large amounts of capital outflow, which could amplify financial instability, 
which might ultimately trigger macroeconomic instability. Although the effects of external 
political, macroeconomic shocks and global stock market volatilities are often difficult to 
avoid, given the increasing integration of world economies and financial markets, countries 
may minimise the effects of these spillovers by diversifying their exports, and maintaining 
macroeconomic and political discipline. Given the limited evidence that risk is priced, further 
research should try to incorporate the third moment (skewness) and the fourth moment 
(kurtosis) in the GARCH specification if the results vary.  
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APPENDICES: TABLES OF RESULTS 
 

 
 Table 1: Descriptive statistics and stationarity tests 

 
Mean Median Max. Min. Std.Dev Skewness Kurtosis Jarque-Bera LB(12) LB2(12) ADF (Level) KPSS(Level) 

Basic Materials                         
Basic Materials 0.017 0.000 4.848 -5.130 0.768 -0.020 8.263 4242.369a 67.886a 2864.921a -35.1485a 0.145a 
Chemicals 0.016 0.000 2.919 -4.656 0.529 -0.040 7.706 3392.829a 93.168a 338.211a -38.1738a 0.144a 
Forestry & Paper -0.004 0.000 9.259 -8.368 1.140 0.146 9.426 6338.809a 50.861a 426.552a -54.8889a 0.122a 
Industrial Metals 0.025 0.000 8.939 -11.499 1.087 0.104 12.173 12894.430a 49.731a 350.451a -54.8780a 0.178a 
General Mining 0.015 0.000 6.697 -6.471 1.120 0.398 7.320 2955.623a 49.749a 984.773a -56.4888a 0.219a 
Mining 0.024 0.000 5.045 -5.197 0.823 -0.017 7.537 3153.184a 63.187a 2563.115a -35.4296a 0.067a 
Platinum & Precious Metals 0.032 0.000 5.342 -7.837 0.998 -0.332 6.830 2314.704a 106.642a 1308.915a -36.5265a 0.084a 
Consumer Goods             
Consumer Goods 0.026 0.000 6.172 -5.361 0.781 0.336 8.175 4170.637a 23.827b 521.021a -58.5769a 0.051a 
Automobile & Parts -0.020 0.000 40.085 -39.747 1.372 -0.192 429.033 27800444.000a 483.882a 905.263a -58.2119a 0.179a 
Beverages 0.016 0.000 5.443 -5.890 0.778 0.040 7.269 2792.709a 30.482a 788.766a -58.0677a 0.077a 
Food Producers 0.018 0.003 3.847 -6.912 0.548 -0.579 14.581 20747.720a 40.174a 695.422a -56.1169a 0.246a 
Personal Goods 0.031 0.000 14.858 -4.972 0.981 3.477 59.314 125295.900a 27.085a 156.277a -33.1210a 0.048a 
Household Goods -0.002 0.000 4.215 -4.934 1.155 0.020 4.724 115.720a 54.525a 398.845a -20.5918a 0.116a 
Consumer Services             
Consumer Services 0.014 0.013 2.933 -4.502 0.513 -0.752 9.792 7412.333a 124.98a 991.223a -52.2216a 0.191a 
Media 0.022 0.006 5.009 -8.217 0.888 -0.525 9.657 6956.925a 75.833a 1037.214a -53.7212a 0.204a 
Travel and Leisure 0.007 0.000 5.338 -4.635 0.640 -0.253 8.529 4721.492a 88.877a 430.541a -53.1173a 0.342a 
Food & Drug Retailers 0.032 0.000 7.901 -7.043 0.718 -0.146 12.631 14221.600a 21.113b 672.025a -57.1265a 0.073a 
General Retailers 0.014 0.008 2.866 -3.868 0.562 -0.392 6.706 2197.788a 202.86a 1082.716a -50.2773a 0.122a 
Financials             
Financials 0.015 0.000 3.524 -5.781 0.596 -0.428 10.000 7616.786a 85.993a 1266.423a -52.7078a 0.089a 
Banks 0.021 0.000 4.299 -6.064 0.785 -0.052 7.009 2463.041a 90.755a 1119.856a -53.5091a 0.056a 
Non-life Insurance 0.019 0.000 4.444 -5.006 0.626 -0.059 10.814 9353.620a 25.121a 334.981a -59.1077a 0.097a 
Life Insurance 0.007 0.000 4.348 -6.180 0.713 -0.261 8.387 4486.891a 42.326a 1091.425a -56.4558a 0.079a 
Real Estate 0.012 0.000 3.220 -2.877 0.444 0.019 8.072 3939.813a 40.964a 768.491a -58.6488a 0.151a 
General Financials 0.018 0.000 4.345 -7.467 0.730 -0.729 12.942 15464.370a 100.671a 1397.325a -52.8560a 0.158a 
Equity Investment Instrument 0.014 0.000 15.856 -5.293 0.682 3.004 88.458 1124110.000a 74.275a 74.142a -35.8700a 0.079a 
Health Care             
Health Care 0.017 0.000 4.827 -6.248 0.621 -0.289 9.691 6908.040a 42.751a 607.636a -55.8723a 0.178a 
Health Care Equipment & Services 0.031 0.000 5.828 -4.706 0.791 0.236 7.271 2828.572a 41.621a 449.131a -55.9678a 0.169a 
Pharmaceuticals & Biotechnology 0.034 0.000 9.925 -4.454 0.856 1.154 15.706 25543.140a 34.267a 49.6813a -56.8247a 0.139a 
Industrials             
Industrials 0.019 0.012 3.338 -5.913 0.566 -0.578 10.453 8712.553a 35.181a 692.371a -55.6854a 0.110a 
Construction & Materials 0.013 0.000 4.550 -5.238 0.650 -0.153 8.704 4997.495a 109.471a 587.283a -52.1896a 0.579a 
General Industrials 0.023 0.000 4.011 -6.446 0.637 -0.374 9.559 6674.509a 18.223c 608.825a -57.5262a 0.094a 
Electronic & Electrical Equipment 0.012 0.000 3.234 -4.504 0.620 -0.422 8.442 4644.961a 82.881a 1464.514a -54.5328a 0.134a 
Industrials Engineering 0.010 0.000 10.430 -14.364 0.674 -1.820 78.482 874697.500a 46.713a 587.3589a -26.9095a 0.507a 
Industrials Transport 0.003 0.000 4.037 -5.942 0.639 -0.626 9.554 6820.250a 48.315a 970.2861a -55.3287a 0.138a 
Support Services 0.010 0.000 3.883 -4.491 0.675 -0.285 7.192 2741.752a 22.919b 918.923a -61.0217a 0.091a 
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Source: Author's own estimates 
Notes: 
The critical value for the ADF test at 1% critical value is -2.565592 and the KPSS 1% critical value is 0.739000. Thus a denotes rejection of a unit root/non-stationarity for both tests. 
The lag order was determined by the SIC and the spectral estimation method is the Bartlett Kennel for ADF and KPSS respectively. 
LB(12) and LB2(12) are Ljung-Box statistics for 12 lags calculated for returns and squared returns respectively. 
 
 
 

Table 2: Serial Correlation Tests for the Mean Equations  
 DW: C B-G:C DW: AR(1) B-G :AR(1) ARCH LM:C ARCH LM:AR(1) 
Basic Materials             
Basic Materials 1.801 8.771a 2.005 4.344 40.275a 17.475a 
Chemicals 1.751 33.117a 2.012 5.292 65.114a 10.565a 
Forestry & Paper 1.803 17.980a 2.000 1.838 35.641a 13.675a 
Industrial Metals 1.803 18.947a 2.004 2.183 37.537a 14.366a 
General Mining 1.860 9.277a 2.001 0.597 18.475a 10.913a 
Mining 1.827 15.410a 2.003 5.392 30.589a 10.765a 
Platinum & Precious Metals 1.725 39.370a 1.985 7.346c 77.151a 22.577a 
Consumer Goods             
Consumer Goods 1.934 2.138 1.999 0.309 4.275 15.619a 
Automobile & Parts 2.696 305.709a 2.109 8.067c 524.592a 97.582 a 
Beverages 1.915 4.662 1.997 4.011 9.308a 9.010 b 
Food Producers 1.848 10.938a 2.002 1.508 21.764a 13.017b 
Personal Goods 2.164 0.109 1.997 1.357 6.502b 8.218b 
Household Goods 1.865 12.295a 1.975 6.241 24.034a 20.133a 
Consumer Services             
Consumer Services 1.706 40.873a 2.003 0.427 80.032a 10.854a 
Media 1.761 26.712 2.001 0.303 52.697a 12.606a 
Travel and Leisure 1.738 33.917a 1.992 2.402 66.659a 4.802c 
Food & Drug Retailers 1.885 6.086a 1.995 0.593 12.141a 11.186a 

Oil and Gas             
Oil & Gas 0.023 0.000 4.966 -5.155 0.832 0.033 7.530 3144.142a 50.888a 2311.191a -56.2555a 0.060a 
Oil & Gas Producers 0.026 0.000 6.239 -6.987 1.038 -0.038 6.802 2214.917a 55.235a 1078.338a -37.0337a 0.052a 
Technology             
Technology 0.010 0.000 6.373 -9.033 0.927 -0.685 12.356 13695.310a 74.333a 827.625a -38.4416a 0.357a 
Software Computer & Services 0.012 0.000 6.869 -9.176 0.976 -0.555 11.724 11845.730a 68.679a 751.747a -54.5991a 0.408a 
Telecommunications             
Telecommunications 0.030 0.004 8.534 -8.115 0.950 0.057 9.154 5803.355a 35.145a 754.347a -56.0250a 0.074a 
Fixed Line Telecommunications 0.020 0.000 9.392 -8.387 1.028 -0.008 9.034 5577.457a 44.728a 563.616a -55.1629a 0.072a 
Mobile Telecommunications 0.032 0.000 6.933 -5.315 1.194 0.328 5.666 293.459a 37.458a 198.941a -24.4286a 0.116a 
Benchmark             
All Share 0.019 0.009 3.224 -5.511 0.568 -0.502 9.512 6649.647a 49.692a 1371.736a -56.0599a 0.063a 
Mid Cap 0.021 0.023 2.058 -4.453 0.408 -1.153 13.013 16172.900a 223.421a 920.071a -36.2782a 0.092a 
Small Cap 0.018 0.029 1.723 -3.393 0.313 -1.824 17.201 32928.850a 630.672a 942.031a -26.8487a 0.202a 
Secondary Markets             
ALT X -0.015 0.000 2.188 -3.171 0.573 -0.918 6.825 652.646a 37.279a 160.368a -29.6414a 0.315a 
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General Retailers 1.632 66.044a 2.010 2.467 127.607a 14.932a 
Financials             
Financials 1.723 35.821a 1.998 0.844 70.327a 11.688a 
Banks 1.753 31.737a 1.989 5.894 62.447a 11.762a 
Non-life Insurance 1.952 3.033c 1.999 2.154 6.060a 14.307a 
Life Insurance 1.858 9.848a 1.997 2.153 19.607a 14.306a 
Real Estate 1.936 5.743a 2.003 4.028 11.459a 8.046b 
General Financials 1.729 34.431a 2.002 0.481 67.649a 10.963a 
Equity Investment Instrument 1.814 19.183a 2.008 14.379 38.001a 28.566a 
Health Care             
Health Care 1.839 12.314 1.998 0.652 24.484a 9.313a 
Health Care Equipment & Services 1.844 13.481a 1.995 2.082 26.787a 14.165a 
Pharmaceuticals & Biotechnology 1.874 7.406a 1.999 0.196 14.764a 14.996a 
Industrials             
Industrials 1.832 12.844 1.999 0.422 25.531a 10.844a 
Construction & Materials 1.704 41.143a 1.998 0.755 80.549a 11.511a 
General Industrials 1.897 4.744a 1.999 0.268 9.472a 10.537a 
Electronic & Electrical Equipment 1.790 21.111a 2.004 1.084 41.777a 12.169a 
Industrials Engineering 2.097 6.581a 1.997 4.218 13.124a 18.427a 
Industrials Transport 1.818 17.396c 2.004 2.598 34.494a 15.195a 
Support Services 2.014 0.545 2.000 0.464 1.0901 10.929a 
Oil and Gas             
Oil & Gas 1.852 10.229a 2.000 1.789 20.362a 13.579a 
Oil & Gas Producers 1.849 11.526a 1.996 3.78 22.927a 17.553a 
Technology             
Technology 1.783 26.751a 2.011 5.903 52.775a 11.781b 
Software Computer & Services 1.792 23.956a 2.009 5.155 47.333a 10.292a 
Telecommunications             
Telecommunications 1.845 12.447 1.995 2.519 24.746a 15.347c 
Fixed Line Telecommunications 1.813 16.271 2.001 1.854 32.283a 13.708a 
Mobile Telecommunications 1.994 7.522a 2.000 0.002 14.852a 14.882a 
Benchmark             
All Share 1.846 12.288a 2.003 2.423 40.180a 17.102b 
Mid Cap 1.592 83.900a 2.018 4.197 160.604a 8.384 b 
Small Cap 1.466 153.174a 2.042 8.361c 282.996a 52.033 
Secondary Markets             
ALT X 2.013 0.364 2.000 0.579 0.731 11.162 
Source: Author's own estimates 
Notes: 
a,b,c implies coefficient is significant at 1%, 5% and 10% respectively. 
DW:C, B-G:C: ARCH LM:C: denote Durbin-Watson, Breusch-Godfrey Serial Correlation, and Heteroscedasticity Test respectively for mean equation with a constant only. 
DW:AR(1), B-G:AR(1): ARCH LM:AR(1): denote Durbin-Watson, Breusch-Godfrey Serial Correlation, and Heteroscedasticity Tests  for mean equation with a constant and  
an autoregressive term. 
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Table 3: Estimated GARCH models 
 GARCH-M EGARCH-M TARCH-M 
  δ α+β γ F-LM SIC δ α+β γ F-LM SIC δ α+β γ F-LM SIC 

Basic Materials                
Basic Materials                
Gaussian Distribution 0.055 0.999+  8.773a 1.949 0.038 1.139+ -0.021a 21.397a 1.952 0.046 0.956 0.074a 2.157 1.949 
Student -t Distribution 0.041 1.002+  8.325a 1.893 0.027 1.142+ -0.030a 25.284a 1.892 0.025 0.938 0.107a 2.231 1.893 
Generalised Error Distribution 0.009 1.000+  7.879a 1.886 0.001 1.143+ -0.026a 22.518a 1.886 0.015 0.938 0.102a 2.273 1.887* 

Chemicals                
Gaussian Distribution -0.005 0.997  0.028 1.435 -0.019 1.015 -0.021a 0.258 1.447 0.006 0.970 0.033a 5.974 1.444 
Student -t Distribution 0.019 0.997  0.892 1.335 -0.037 1.144 -0.036a 2.966 1.341 0.011 0.981 0.028a 1.147 1.335 
Generalised Error Distribution 0.013 0.997  0.852 1.324 -0.033 1.122 -0.035a 3.477 1.331 0.016 0.983 0.023a 1.122 1.324* 

Forestry & Paper                
Gaussian Distribution 0.076 0.996  1.166 2.893 0.012 1.117 -0.040a 1.343 2.893 0.065 0.981 0.031a 1.052 2.873 
Student -t Distribution 0.051 0.994  1.152 2.719 0.011 1.117 -0.043a 1.481 2.748 0.045 0.972 0.026a 1.049 2.755 
Generalised Error Distribution 0.001 1.004  0.368 2.724 0.015 1.134 -0.037a 0.694 2.721 0.031 0.958 0.079a 1.884 2.723* 

Industrial Metals                
Gaussian Distribution 0.027 0.993  1.909 2.789 -0.011 1.094 -0.010a 1.719 2.811 0.025 0.990 0.005a 2.096 2.791 
Student -t Distribution 0.015 0.996  1.816 2.479 -0.001 1.283 -0.003a 0.109 2.559 0.031 0.992 0.024a 2.231 2.565 
Generalised Error Distribution 0.001 1.021  0.111 2.482 -0.003 1.236 -0.002a 0.242 2.476 0.001 0.991 0.018a 0.118 2.488* 

General Mining                
Gaussian Distribution 0.083 0.998  2.236 2.813 0.093c 1.128+ -0.032a 13.647a 2.813 0.063 0.977+ 0.043a 3.475b 2.805 
Student -t Distribution 0.017 1.002  0.154 2.737 0.071c 1.134+ -0.025a 18.211a 2.733 0.011 0.975 0.055a 0.447 2.735 
Generalised Error Distribution 0.000 0.999  0.447 2.726 0.059 1.132+ -0.027a 15.399a 2.724 0.002 0.975 0.938a 0.929 2.724* 

Mining                
Gaussian Distribution 0.094c 0.935+  8.089a 2.168 0.093c 1.128+ -0.032a 13.647a 2.168 0.071 0.978+ 0.037a 5.873a 2.167 
Student -t Distribution 0.074c 0.931+  6.521a 2.120* 0.071c 1.134+ -0.025a 18.211a 2.120 0.066 0.984+ 0.032a 5.231a 2.123 
Generalised Error Distribution 0.062 0.933+  7.001a 2.124 0.059 1.132+ -0.027a 15.399a 2.124 0.052 0.982+ 0.033a 5.495a 2.126 

Platinum & Precious Metals                
Gaussian Distribution 0.090c 0.997+  4.016b 2.551 0.110b 1.124+ -0.035a 7.826a 2.556 0.066 0.978+ 0.036a 3.790b 2.55 
Student -t Distribution 0.105b 1.002+  3.336b 2.510 0.111a 1.136+ -0.024b 7.680a 2.513 0.097b 0.989+ 0.024c 3.126b 2.512 
Generalised Error Distribution 0.110a 1.000+  6.659a 2.508 0.127a 1.132+ -0.028c 6.953 a 2.511 0.108b 0.986+ 0.027c 2.999c 2.509* 

Consumer Goods                

Consumer Goods                
Gaussian Distribution 0.026 0.990  1.619 2.347 0.016 1.141+ -0.059a 2.937c 2.119 0.004 0.956 0.077a 1.291 2.121 
Student -t Distribution -0.005 0.990  1.246 2.072 -0.009 1.137+ -0.062a 2.530c 2.065 -0.009 0.950 0.088a 2.513 2.068 
Generalised Error Distribution -0.005 0.989  1.108 2.063 -0.01 1.137+ -0.064a 2.441c 2.056 -0.011 0.949 0.092a 2.149 2.059* 

Automobile & Parts                
Gaussian Distribution 0.310c 0.680  0.081 3.041 0.148b 1.212 0.164a 0.007 2.987 0.161c 1.311 -0.568a 0.052 3.017 
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Student -t Distribution 0.000 908.436  0.003 1.770 -0.007 1.563 0.061 0.002 1.761 0.001 630.984 596.149 0.003 1.77 
Generalised Error Distribution 0.000 1.714  0.002 1.329 0.618a -0.104 0.055a 0.269 2.138 0.002 0.476 0.273 0.003 1.695* 

Beverages                
Gaussian Distribution -0.059 0.994  0.379 2.152 -0.071 1.076+ -0.028a 2.845c 2.164 -0.06 0.982 0.026 a 0.984 2.151 
Student -t Distribution -0.046 0.992  1.539 2.092 -0.058 1.101 -0.037a 1.636 2.089 -0.034 0.966 0.054 a 1.417 2.09 
Generalised Error Distribution -0.016 0.990  1.964 2.084 -0.015 1.086 -0.036a 1.973 2.083 -0.009 0.965 0.052 a 1.863 2.082* 

Food Producers                
Gaussian Distribution -0.065 0.984+  4.365b 1.378 -0.138b 1.084+ -0.037a 9.944a 1.395 -0.087 0.945 0.060a 9.395 1.378 
Student -t Distribution -0.038 0.986  1.435 1.306 -0.063 1.112+ -0.035a 5.950a 1.308 -0.058 0.945 0.064a 4.038 1.304 
Generalised Error Distribution -0.027 0.984  2.185 1.302 -0.045 1.098+ -0.034a 7.143a 1.307 -0.043 0.942 0.062a 5.142 1.301* 

Personal Goods                
Gaussian Distribution -0.074 1.030  0.322 2.560 -0.024 1.358 -0.035a 0.111 2.535 0.214b 0.889 0.211a 0.057 2.551 
Student -t Distribution 0.043 0.968  0.188 2.401 0.001 1.349 -0.024b 0.006 2.357 0.136 0.875 0.189a 0.054 2.397 
Generalised Error Distribution 0.015 0.973  0.228 2.382 0.002 1.261 -0.028c 0.061 2.342 0.008 0.857 0.260a 0.054 2.378* 

Household Goods                
Gaussian Distribution 0.073 0.957  0.149 2.967 0.085 1.206 -0.101a 1.215 2.968 0.092 0.874 0.155a 0.641 2.965 
Student -t Distribution 0.043 0.960  0.262 2.960 0.069 1.225 -0.104a 1.151 2.963 0.071 0.880 0.160b 0.693 2.959 
Generalised Error Distribution 0.019 0.963  0.267 2.948 0.031 1.224 -0.101a 1.122 2.951 0.031 0.884 0.160b 0.691 2.948* 

Consumer Services                

Consumer Services                
Gaussian Distribution -0.063 0.991  1.385 1.170 -0.153 1.136+ -0.056a 2.419c 1.163 -0.131 0.944 0.087a 0.689 1.162 
Student -t Distribution -0.055 0.993  1.616 1.112 -0.123a 1.152+ -0.044a 3.422b 1.108 -0.094c 0.962 0.052a 1.569 1.109* 
Generalised Error Distribution -0.063 0.992  1.987 1.116 -0.120a 1.146+ -0.049a 2.625c 1.114 -0.097b 0.956 0.064a 1.114 1.114 

Media                
Gaussian Distribution -0.068 0.986  1.755 2.290 -0.046 1.099 -0.016a 0.393 2.294 -0.083 0.968 0.032a 1.654 2.291 
Student -t Distribution -0.071 1.016  0.597 2.161 -0.085a 1.165 -0.025b 1.999 2.153 -0.081 0.993 0.038b 0.246 2.161 
Generalised Error Distribution -0.072 1.001  0.984 2.150 -0.066b 1.120 -0.019b 0.042 2.147 -0.079 0.982 0.037a 0.931 2.151* 

Travel and Leisure                
Gaussian Distribution -0.113c 0.998  0.086 1.622 -0.154a 1.049 -0.026a 0.057 1.747 -0.161b 0.977 0.035a 13.853 1.75 
Student -t Distribution -0.050 1.000  0.572 1.632 -0.064 1.067 -0.022a 0.326 1.639 -0.064 0.977 0.038a 10.861 1.643 
Generalised Error Distribution 0.001 0.998  0.483 1.622 -0.016 1.057 -0.023a 0.172 1.628 -0.004 0.978 0.025a 0.498 1.630* 

Food & Drug Retailers                
Gaussian Distribution -0.084 0.985  1.677 2.010 -0.126 1.122+ -0.019a 4.891 a 2.014 -0.088 0.973 0.018b 1.454 2.011 
Student -t Distribution -0.056 0.987  1.555 1.896 -0.162 1.153+ -0.006a 4.009 a 1.914 -0.057 0.959 -0.001 2.996 1.924 
Generalised Error Distribution -0.002 0.986  0.592 1.898 -0.013 1.137+ -0.016a 3.579 b 1.897 0.003 0.978 0.015 0.429 1.900* 

General Retailers                
Gaussian Distribution -0.112 0.971  2.275 1.440 -0.174a 1.117+ -0.041a 3.841 b 1.440 -0.134 a 0.971 0.035a 2.579c 1.436 
Student -t Distribution -0.052 0.991  1.735 1.388 -0.126b 1.142+ -0.037a 2.900 c 1.388 -0.103 c 0.969 0.042a 1.629 1.386 
Generalised Error Distribution -0.068 0.977  2.054 1.382 -0.118b 1.137+ -0.038a 2.881 c 1.382 -0.098 c 0.966 0.042a 1.653 1.380* 

Financials                

Financials                
Gaussian Distribution 0.012 0.994  2.242 1.428 -0.041 1.167+ -0.069a 3.701 b 1.413 -0.034 0.959+ 0.077a 3.329b 1.417 
Student -t Distribution 0.000 0.996  1.671 1.376 -0.036 1.177+ -0.066a 3.506 b 1.366 -0.035 0.944 0.101a 1.987 1.370* 
Generalised Error Distribution 0.002 0.993  1.639 1.380 -0.031 1.172+ -0.067a 3.254 b 1.370 -0.032 0.945 0.097a 2.141 1.374 

Banks                
Gaussian Distribution 0.065 0.980  1.953 2.085 0.041 1.141+ -0.060a 2.453 c 2.078 0.046 0.956 0.074a 2.157 2.074 
Student -t Distribution 0.036 0.990  1.967 2.035 0.019 1.170 -0.065a 1.049 2.027 0.025 0.938 0.107a 2.231 2.03 



25 
 

Generalised Error Distribution 0.031 0.986  1.841 2.034 0.013 1.161 -0.063a 1.205 2.027 0.015 0.938 0.102a 2.273 2.030* 

Non-life Insurance                
Gaussian Distribution -0.021 0.991  0.031 1.642 -0.103 b 1.201 -0.034a 1.521 1.646 -0.079 0.960 0.061a 0.131 1.623 
Student -t Distribution -0.035 0.995  1.873 1.465 -0.056 c 1.187 -0.048a 7.214 1.463 -0.068c 0.974 0.081a 0.697 1.464 
Generalised Error Distribution 0.001 0.967  1.972 1.432 -0.067b 1.138 -0.033a 12.284 1.418 -0.001 0.890 0.131a 2.202 1.436* 

Life Insurance                
Gaussian Distribution 0.001 0.996+  2.646c 1.889 -0.027 1.138 -0.037a 4.804 1.886 -0.034 0.973+ 0.042a 2.345c 1.886 
Student -t Distribution -0.021 0.997+  3.508b 1.823 -0.041 1.147+ -0.031a 5.782a 1.821 -0.042 0.972 0.046a 2.087 1.823 
Generalised Error Distribution -0.022 0.996  2.072 1.822 -0.045 1.145+ -0.034a 4.814a 1.820 -0.041 0.969 0.050a 2.141 1.822* 

Real Estate                
Gaussian Distribution -0.013 1.000  1.322 0.965 -0.016 1.100 0.992a 1.981 0.972 -0.032 0.990 0.021 1.078 0.964 
Student -t Distribution -0.029 1.002  1.359 0.852 -0.019 1.108 -0.015c 1.399 0.884 -0.016 0.995 0.016a 2.504 0.882 
Generalised Error Distribution -0.025 1.000  1.392 0.870 -0.017 1.103 -0.017b 1.222 0.874 -0.029 0.991 0.019a 1.209 0.871* 

General Financials                
Gaussian Distribution 0.084 0.943  0.346 1.893 0.004 1.205+ -0.054a 2.730c 1.899 0.029 0.897 0.088a 0.337 1.891 
Student -t Distribution 0.039 0.980  0.222 1.813 -0.006 1.218+ -0.036a 4.502b 1.811 0.016 0.941 0.071a 0.151 1.814 
Generalised Error Distribution 0.015 0.966  0.214 1.802 0.012 1.213+ -0.041a 3.432b 1.800 -0.003 0.926 0.078a 0.138 1.802* 

Equity Investment Instruments                
Gaussian Distribution 0.001 0.989  0.142 1.638 -0.052 1.162 -0.045a 0.377 1.633 -0.130b 0.954 0.052a 1.757 1.633 
Student -t Distribution -0.036 0.993  0.159 1.513 -0.051 1.117 -0.032a 0.912 1.502 -0.101c 0.950 0.062a 1.467 1.511 
Generalised Error Distribution -0.001 0.989  0.029 1.500 -0.004 1.129 -0.038a 0.758 1.492 -0.090c 0.949 0.060a 1.477 1.498* 

Health Care                

Health Care                
Gaussian Distribution -0.065 0.993  9.702 1.679 -0.086 1.085+ -0.026a 4.304a 1.687 -0.084 0.983 0.019a 1.682 1.67 
Student -t Distribution -0.043 0.965  0.178 1.599 -0.068 1.105+ -0.034a 2.306c 1.600 -0.053 0.975 0.035a 0.378 1.597 
Generalised Error Distribution -0.054 0.992  0.548 1.596 -0.057 1.096+ -0.030a 2.774c 1.598 -0.056 0.978 0.028b 0.745 1.593* 

Health Care Equipment & Services                
Gaussian Distribution -0.079 0.983  2.233 2.206 -0.131b 1.108 -0.019a 0.374 2.208 -0.082 0.979 0.025a 0.369 2.204 
Student -t Distribution -0.099 0.991  1.694 2.125 -0.117b 1.125 -0.021b 0.174 2.122 -0.103c 0.973 0.037 a 1.627 2.126 
Generalised Error Distribution -0.001 0.982  0.803 2.094 0.006 1.133 -0.023a 0.061 2.091 -0.002 0.964 0.048c 0.943 2.095* 

Pharmaceutical & Biotechnology                
Gaussian Distribution -0.103 0.934  0.035 2.422 -0.114c 1.131 -0.064a 0.134 2.420 -0.114 0.922 0.075a 0.042 2.419 
Student -t Distribution -0.019 1.256  0.042 2.128 -0.011 1.369 -0.138a 0.022 2.114 -0.005 0.988 0.180a 2.435 2.110* 
Generalised Error Distribution -0.011 0.991  0.091 1.975 0.051 1.600 -0.252a 0.919 1.142 0.001a 2.804 1.331a 0.286 0.19 

Industrials                

Industrials                
Gaussian Distribution -0.024 0.981  2.001 1.467 -0.104c 1.130 -0.068a 1.957 1.458 -0.079 0.928 0.101a 1.415 1.455 
Student -t Distribution -0.049 0.981  1.621 1.412 -0.105c 1.149+ -0.059a 3.114b 1.408 -0.079 0.936 0.082a 1.465 1.408 
Generalised Error Distribution -0.057 0.979  2.167 1.413 -0.094b 1.143 -0.064a 2.155 1.408 -0.079 0.931 0.091a 1.286 1.407* 

Construction & Materials                
Gaussian Distribution -0.159a 0.999  1.253 1.747 -0.172a 1.041 -0.008a 2.234 1.766 -0.164 0.997 0.004c 1.072 1.749 
Student -t Distribution -0.157b 0.991  0.183 1.660 -0.170a 1.154 -0.011a 0.338 1.659 -0.162 0.982 0.017a 0.18 1.661 
Generalised Error Distribution -0.118b 0.992  1.127 1.662 -0.136a 1.115 -0.014a 1.761 1.663 -0.129 0.995 0.004a 0.745 1.659* 

General Industrials                
Gaussian Distribution -0.010 0.988  0.732 1.765 -0.054 1.100+ -0.059a 2.625c 1.757 -0.046 0.930 0.093a 2.251 1.755 
Student -t Distribution -0.032 0.985  1.232 1.704 -0.043 1.118+ -0.049a 3.307b 1.701 -0.048 0.942+ 0.069a 2.652b 1.702 
Generalised Error Distribution -0.036 0.985  0.881 1.704 -0.048 1.114+ -0.054a 2.408c 1.700 -0.055 0.936 0.080a 2.171 1.700* 
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Electronic & Electrical Equipment                
Gaussian Distribution -0.096 0.980  2.276 1.625 -0.191 1.100 -0.038a 0.044 1.620 -0.130b 0.954 0.052a 1.757 1.621 
Student -t Distribution -0.080 0.982  1.839 1.554 -0.146 1.104 -0.040a 0.446 1.548 -0.101c 0.950 0.062a 1.467 1.552 
Generalised Error Distribution -0.075 0.980  1.934 1.545 -0.135 1.100 -0.039a 0.262 1.540 -0.090c 0.949 0.060a 1.477 1.543* 

Industrial Engineering                
Gaussian Distribution -0.012 0.981  0.489 1.735 -0.069 1.209 -0.065a 0.358 1.727 -0.061 0.916 0.119a 0.388 1.725 
Student -t Distribution 0.003 1.240  0.765 1.470 -0.008 1.384 -0.097a 0.465 1.461 -0.011 1.056 0.322b 0.816 1.468 
Generalised Error Distribution 0.000 2.245  1.418 1.130 0.141 0.061 -0.086a 11.935 1.378* 0.001a 1.812 1.073c 6.926 1.378 

Industrial Transport                
Gaussian Distribution -0.020 0.966  1.564 1.735 -0.081 1.124 -0.054a 1.495 1.727 -0.062 0.925 0.081a 1.674 1.728 
Student -t Distribution 0.027 0.982  0.165 1.628 -0.022 1.221 -0.059a 0.593 1.625 0.152 0.926 0.0875 1.685 1.695 
Generalised Error Distribution 0.031 0.969  0.225 1.619 -0.012 1.195 -0.059a 0.953 1.617 0.007 0.920 0.093a 0.342 1.617* 

Support Services                
Gaussian Distribution -0.024 0.984  2.759 1.858 -0.046 1.107+ -0.048a 3.531b 1.855 -0.046 0.951 0.061a 2.296 1.854 
Student -t Distribution -0.010 0.992  0.285 1.809 -0.029 1.113+ -0.044a 3.749b 1.811 -0.058 0.965 0.045a 0.404 1.809 
Generalised Error Distribution -0.019 0.991  0.392 1.799 -0.031 1.110+ -0.046a 3.549b 1.800 -0.022 0.966 0.046a 0.223 1.798* 

Oil and Gas                

Oil & Gas                
Gaussian Distribution 0.072 0.999+  12.765 a 2.163 0.069 1.122+ -0.024a 21.021a 2.167 0.054 0.984+ 0.028a 10.299a 2.163 
Student -t Distribution 0.050 1.002+  9.371a 2.107 0.046 1.132+ -0.024a 21.786a 2.107 0.043 0.987 0.030b 8.001 2.110* 
Generalised Error Distribution 0.044 1.000+  10.052 a 2.109 0.046 1.128+ -0.023a 20.154a 2.111 0.038 0.985 0.028a 8.568 2.111 

Oil & Gas Producers                
Gaussian Distribution -0.022 0.978+  7.526a 2.716 -0.019 1.083 -0.020a 6.962 2.721 -0.043 0.986 0.022a 1.483 2.707 
Student -t Distribution -0.017 0.980+  9.104a 2.673 -0.009 1.091 -0.025a 7.086 2.673 -0.019 0.981 0.028b 1.205 2.672 
Generalised Error Distribution -0.007 0.976+  6.212a 2.658* -0.004 1.087 -0.024a 5.436 2.660 -0.018 0.982 0.026b 0.812 2.657 

Technology                

Technology                
Gaussian Distribution -0.150a 0.995  0.145 2.353 -0.222 1.094 -0.032a 1.641 2.365 -0.172a 0.984 0.022a 0.127 2.352 
Student -t Distribution -0.075c 0.993  1.277 2.237 -0.108a 1.243 -0.035b 1.826 2.232 -0.091b 0.967 0.053b 1.552 2.237 
Generalised Error Distribution -0.023 0.986  1.563 2.234 -0.067 1.136 -0.032a 0.255 2.231 -0.036 0.961 0.050b 1.846 2.235* 

Software Computer & Services                
Gaussian Distribution -0.116b 0.992  0.029 2.510 -0.189a 1.110 -0.030a 1.249 2.490 -0.140a 0.980 0.024 0.029 2.498 
Student -t Distribution -0.078c 0.993  0.796 2.365 -0.109 1.262 -0.039a 0.777 2.359 -0.093b 0.961 0.066 0.933 2.366 
Generalised Error Distribution -0.018 0.981  0.923 2.362 -0.045 1.244 -0.036b 1.084 2.362 -0.026 0.951 0.065 1.084 2.362* 

Telecommunications                

Telecommunications                
Gaussian Distribution -0.023 0.994  1.025 2.467 -0.044 1.154+ -0.032a 3.030b 2.462 -0.038 0.976 0.033a 1.104 2.467 
Student -t Distribution -0.044 1.003  0.848 2.402 -0.054 1.189 -0.027b 1.876 2.397 -0.051 0.984 0.037a 0.701 2.403 
Generalised Error Distribution -0.039 0.997  1.445 2.393 -0.043 1.174 -0.031b 2.176 2.389 -0.042 0.978 0.038b 1.236 2.394* 

Fixed Line Telecommunications                
Gaussian Distribution 0.013 0.974  0.761 2.693 -0.075 1.163 -0.034a 1.843 2.687 0.001 0.955 0.040a 1.028 2.693 
Student -t Distribution 0.007 0.993  0.124 2.592 0.007 1.215 -0.014a 0.232 2.585 0.005 0.986 0.013 0.109 2.594 
Generalised Error Distribution 0.002 0.983  0.181 2.565 0.024 1.191 -0.024a 0.483 2.558 0.001 0.969 0.027 0.117 2.567* 

Mobile Telecommunications                
Gaussian Distribution -0.043 0.990+  3.507 b 3.093 0.137 1.020 -0.093a 6.515 3.076 0.042 0.935 0.097a 2.853 3.086 
Student -t Distribution -0.139 0.988+  2.898c 3.074 0.054 1.032 -0.094a 4.974 3.066 -0.012 0.921 0.120a 1.474 3.071 
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Generalised Error Distribution -0.128 0.973+  2.811c 3.065 0.029 1.027+ -0.094a 5.004a 3.055 -0.011 0.927 0.113a 1.875 3.054* 

Benchmark                

All Share                
Gaussian Distribution 0.047 0.995+  3.167b 1.383 -0.009 1.162+ -0.072a 4.970a 1.381 0.001 0.949 0.084a 2.243 1.372 
Student -t Distribution 0.036 0.994  2.012 1.337 -0.001 1.160+ -0.060a 7.900a 1.335 0.015 0.954 0.072a 2.091 1.332* 
Generalised Error Distribution 0.031 0.994  2.121 1.344 -0.007 1.162+ -0.066a 3.036b 1.342 0.011 0.951 0.078a 2.076 1.337 

Mid Cap                
Gaussian Distribution -0.044 0.982  1.465 0.670 -0.136 b 1.204+ -0.073a 2.855c 0.669 -0.126c 0.925 0.103a 0.627 0.662 
Student -t Distribution -0.024 0.985+  3.925b 0.606 -0.085 1.168+ -0.978a 7.129a 0.607 -0.074 0.947+ 0.063a 2.359c 0.605* 
Generalised Error Distribution -0.044 0.985+  2.817c 0.611 -0.108 b 1.178 -0.056a 5.117 0.651 -0.046 0.940 0.072a 1.368 0.606 

Small Cap                
Gaussian Distribution -0.159 0.978  0.537 0.120 -0.314a 1.235 -0.101a 0.631 0.101 -0.298a 0.882 0.173a 0.462 0.104 
Student -t Distribution -0.119 0.978  1.334 0.008 -0.233a 1.185 -0.053a 2.851 0.003 -0.195a 0.936 0.065a 0.937 0.007* 
Generalised Error Distribution -0.092 0.972  0.611 0.024 -0.233a 1.196 -0.068a 1.521 0.018 -0.187a 0.915 0.094a 0.332 0.022 

Secondary Markets                

ALT X                
Gaussian Distribution -0.141 0.969  0.939 1.597 -0.181 1.222 -0.046a 1.244 1.593 -0.254c 0.919 0.088a 0.925 1.608 
Student -t Distribution 0.087 0.952  0.865 1.531 -0.005 1.200 -0.035a 1.129 1.530 0.949a 0.918 0.097a 0.316 1.601 
Generalised Error Distribution 0.039 0.955  0.862 1.526 0.019 1.217 -0.034a 1.134 1.529 0.018 0.924 0.044a 0.913 1.540* 
Source: Author's own estimates 
Notes: a,b,c implies coefficient is significant at 1%, 5% and 10% respectively. 
* next to the SIC coefficient represents the selected model. 
δ is the coefficient which shows the risk-return relationship, α+β<0 is the condition for stationarity of the models, γ is the Coefficient of asymmetry. Note this only applies to EGARCH-M and TARCH-M  
models, F-LM represents the test for ARCH effects, SIC represents the Schwarz information criterion. 
 
 
 
  Table 4: Further Diagnostic Checks for the Selected Models 

  Raw Returns series 
Standardised Residuals from 

Selected Models 
 Mean Std.Dev Skewness Kurtosis LB(12) Mean Std.Dev Skewness Kurtosis LB(12) 
Basic Materials                     
Basic Materials 0.017 0.768 -0.020 8.263 67.886a -0.002 1.000 -0.070 4.964 21.928 
Chemicals 0.016 0.529 -0.040 7.706 93.168a 0.018 1.000 0.009 6.247 10.002 
Forestry & Paper -0.004 1.140 0.146 9.426 50.861a -0.008 0.983 -0.067 7.193 17.585 
Industrial Metals 0.025 1.087 0.104 12.173 49.731a 0.033 1.030 0.918 17.540 5.8267 
General Mining 0.015 1.120 0.398 7.320 49.749a 0.013 0.995 0.343 6.227 9.3587 
Mining 0.024 0.823 -0.017 7.537 63.187a -0.001 1.001 0.015 4.883 19.715 
Platinum & Precious Metals 0.032 0.998 -0.332 6.830 106.642a -0.031 0.990 -0.267 6.801 22.132c 
Consumer Goods                     
Consumer Goods 0.026 0.781 0.336 8.175 23.827b 0.028 0.997 0.223 4.957 17.638 
Automobile & Parts -0.020 1.372 -0.192 429.033 483.882a -0.071 1.938 -20.808 717.794 0.045 
Beverages 0.016 0.778 0.040 7.269 30.482a 0.007 0.999 0.030 6.142 18.635 
Food Producers 0.018 0.548 -0.579 14.581 40.174a 0.013 1.004 0.005 5.777 15.922 
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Personal Goods 0.031 0.981 3.477 59.314 27.085a 0.030 1.000 1.106 15.036 2.798 
Household Goods -0.002 1.155 0.020 4.724 54.525a -0.004 0.997 0.008 3.621 13.374 
Consumer Services                     
Consumer Services 0.014 0.513 -0.752 9.792 124.98a 0.005 1.008 -0.521 6.508 9.661 
Media 0.022 0.888 -0.525 9.657 75.833a 0.037 1.008 -0.147 9.592 8.7367 
Travel and Leisure 0.007 0.640 -0.253 8.529 88.877a 0.016 1.001 0.213 7.478 17.229 
Food & Drug Retailers 0.032 0.718 -0.146 12.631 21.113b 0.053 0.979 -0.328 6.414 16.675 
General Retailers 0.014 0.562 -0.392 6.706 202.86a 0.008 1.003 -0.266 5.176 9.7553 
Financials                     
Financials 0.015 0.596 -0.428 10.000 85.993a 0.006 1.005 -0.180 5.431 11.059 
Banks 0.021 0.785 -0.052 7.009 90.755a 0.008 1.002 0.023 5.313 11.802 
Non-life Insurance 0.019 0.626 -0.059 10.814 25.121a 0.046 0.997 0.131 7.564 10.864 
Life Insurance 0.007 0.713 -0.261 8.387 42.326a -0.002 1.002 -0.171 5.379 17.508 
Real Estate 0.012 0.444 0.019 8.072 40.964a 0.021 1.000 0.002 5.560 6.723 
General Financials 0.018 0.730 -0.729 12.942 100.671a 0.021 0.998 -0.103 5.492 8.419 
Equity Investment Instrument 0.014 0.682 3.004 88.458 74.275a 0.030 0.998 0.161 7.699 19.773 
Health Care                     
Health Care 0.017 0.621 -0.289 9.691 42.751a 0.012 1.003 -0.021 5.832 18.293 
Health Care Equipment & Services 0.031 0.791 0.236 7.271 41.621a 0.056 0.975 0.361 5.610 10.044 
Pharmaceuticals & Biotechnology 0.034 0.856 1.154 15.706 34.267a 0.003 0.069 -0.733 59.129 14.837 
Industrials                     
Industrials 0.019 0.566 -0.578 10.453 35.181a 0.005 1.004 -0.226 5.355 16.658 
Construction & Materials 0.013 0.650 -0.153 8.704 109.471a 0.033 1.008 0.139 6.893 4.6533 
General Industrials 0.023 0.637 -0.374 9.559 18.223c 0.010 1.002 -0.177 5.442 20.115 
Electronic & Electrical Equipment 0.012 0.620 -0.422 8.442 82.881a 0.024 1.000 -0.117 5.240 17.581 
Industrials Engineering 0.010 0.674 -1.820 78.482 46.713a 0.003 0.100 -2.125 43.059 18.591 
Industrials Transport 0.003 0.639 -0.626 9.554 48.315a -0.001 1.002 -0.222 6.549 10.341 
Support Services 0.010 0.675 -0.285 7.192 22.919b 0.005 0.997 -0.209 5.256 11.244 
Oil and Gas                     
Oil & Gas 0.023 0.832 0.033 7.530 50.888a 0.013 1.035 -0.015 6.805 19.151 
Oil & Gas Producers 0.026 1.038 -0.038 6.802 55.235a 0.013 1.035 -0.015 6.796 23.113c 
Technology                     
Technology 0.010 0.927 -0.685 12.356 74.333a 0.026 1.014 0.524 13.947 7.997 
Software Computer & Services 0.012 0.976 -0.555 11.724 68.679a 0.030 1.014 0.452 14.571 6.582 
Telecommunications                     
Telecommunications 0.030 0.950 0.057 9.154 35.145a 0.015 0.998 0.045 5.339 17.029 
Fixed Line Telecommunications 0.020 1.028 -0.008 9.034 44.728a 0.024 0.985 -0.006 6.225 15.311 
Mobile Telecommunications 0.032 1.194 0.328 5.666 37.458a 0.020 0.998 0.251 3.885 11.032 
Benchmark                     
All Share 0.019 0.568 -0.502 9.512 49.692a -0.014 1.002 -0.296 5.003 13.429 
Mid Cap 0.021 0.408 -1.153 13.013 223.421a 0.012 1.008 -0.325 5.441 6.728 
Small Cap 0.018 0.313 -1.824 17.201 630.672a 0.031 1.021 -0.818 7.693 6.9424 
Secondary Markets                     
ALT X -0.015 0.573 -0.918 6.825 37.279a -0.020 1.003 -0.582 5.990 8.238 
Source: Author's own estimates 
Notes: a,b,c implies coefficient is significant at 1%, 5% and 10% respectively. 
LB(12) and LB2(12) are Ljung-Box statistics for 12 lags calculated for returns and squared returns respectively. 
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Table 5: Trend in volatility and effects of political and financial shocks   

 Constant Trend Dum1 Dum2 Dum3 
Basic Materials      
Basic Materials 0.117a 0.00013a 0.453a 0.297a 2.002a 
Chemicals 0.334a -0.00002a 0.383a 0.013 0.234a 
Forestry & Paper 1.356a -0.00008a 2.056a 0.561a 3.328a 
Industrial Metals 0.803a 0.00008a 0.746a 1.901a 2.858a 
General Mining 1.072 a -0.00003a 1.108a 0.015 2.938a 
Mining 0.130a 0.00018a 0.544a 0.507a 1.971a 
Platinum & Precious Metals 0.203 a 0.00033a 0.864a 0.082 2.360a 

Consumer Goods      
Consumer Goods 0.658a 0.00003a 0.658a 0.701a 0.217a 
Automobile & Parts -0.471 0.00089a 0.502 -0.396 0.198 
Beverages 0.634a 0.00002a 1.030a 0.308a 0.609a 
Food Producers 0.387a 0.00003 0.788a 0.003 0.178a 
Personal Goods 0.531a 0.00049a n/a n/a 0.292a 
Household Goods 0.656a 0.00086a n/a n/a 0.648a 

Consumer Services      
Consumer Services 0.236a 0.00003a 0.513a 0.074a 0.263a 
Media 0.755a 0.00005a 1.204a 0.343a 0.707a 
Travel and Leisure 0.517a -0.00003a 0.747a 0.365a 0.244a 
Food & Drug Retailers 0.707a -0.00003a 0.760a 0.001 0.187a 
General Retailers 0.233a 0.00004a 0.301a 0.113a 0.329a 

Financials      
Financials 0.303a 0.00006a 0.916a 0.114a 0.511a 
Banks 0.468a 0.00011a 1.229a 0.220a 0.859a 
Nonlife Insurance 0.319a 0.00006a 0.580a 0.109b 0.498a 
Life Insurance 0.256a 0.00009a 0.624a 0.279a 0.977a 
Real Estate 0.173a 0.00003a 0.347a 0.129a 0.216a 
General Financials 0.390a 0.00008a 0.955a 0.132c 0.762a 
Equity Investment Instrument 0.541a -0.00003b 1.272a 0.112b 0.944a 

Health Care      
Health Care 0.412a 0.00004a 0.832a 0.114a 0.207a 
Health Care Equipment & Services 0.828a -0.00001 1.173a -0.097b 0.219a 
Pharmaceuticals & Biotechnology 0.709a 0.01130a 122.758a 84.039a 124.686a 

Industrials      
Industrials 0.349a 0.00001b 0.625a 0.107a 0.287a 
Construction & Materials 0.329a 0.00002a 0.504a -0.070a 0.751a 
General Industrials 0.440a 0.00002b 0.699a 0.162a 0.301a 
Electronic & Electrical Equipment 0.343a 0.00002 0.648a -0.001 0.843a 
Industrials Engineering 0.505a 0.00079 70.330a -5.104 188.713a 
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Industrials Transport 0.351a 0.00003a 0.619a 0.125a 0.700a 
Support Services 0.393a 0.00005a 0.616a 0.188a 0.476a 

Oil and Gas      
Oil & Gas 0.058b 0.00022a 0.607a 0.453a 2.077a 
Oil & Gas Producers 0.868a 0.00013a 1.942a 0.499a 1.733a 

Technology      
Technology 1.098a -0.00011a 0.841a 0.986a 0.892a 
Software Computer & Services 1.254a -0.00013a 0.857a 1.067a 0.826a 

Telecommunications      
Telecommunications 0.807a 0.00008a 1.111a 0.132 1.009a 
Fixed Line Telecommunications 1.209a -0.00005a 1.184a 0.283 0.681a 
Mobile Telecommunications 0.777a 0.00055a n/a n/a 0.760a 

Benchmark      
All Share 0.185a 0.00007a 0.598a 0.206a 0.694a 
Mid Cap 0.177a 0.00000a 0.360a 0.04 0.215a 
Small Cap 0.118a 0.00003 0.244a 0.042a 0.057a 

Secondary Markets      
ALT X 0.251a -0.00039a n/a n/a 0.463a 
Source: Author's own estimates 
Notes: a,b,c implies coefficient is significant at 1%, 5% and 10% respectively. 
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