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Abstract

We study the pricing problem of a durable-goods monopolist. With network
effects, consumption externalities among heterogeneous groups of consumers gen-
erate a discontinuous demand function. Consequently, the lessor has to offer a low
price in order to reach the mass market, whereas the seller has the option to build
a customer base by setting a lower initial price and raise the price later in the
mass market, which explains the practice of introductory pricing. Contrary to the
existing literature, we show that profits from selling network goods may be higher
than from leasing. Further, the seller in fact over-invests in R&D and makes the
product more durable than necessary.
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1. INTRODUCTION

In this paper, we shall consider the dynamic problem of a monopolist who produces
durable goods with network effects. For instance, the goods in question may be a new
computer software or an operating system. The network effect involved is in the sense
of Rohlfs (1974), that the more total buyers there are in the market, the higher each
individual’s willingness to pay is.

Suppose, as it is intuitively appealing, that a new high-tech product has several
periods of durability, and that the adoption of high-tech goods takes time. Normally the
better-informed professional group adopts it first; and then the information spreads out
gradually, leading to the adoption by less-informed, less professional groups, etc. Thus,
in each period, the monopolist faces a new group of potential buyers, who just begin
to be interested by this product. In general, as time goes, the total market demand
increases.1 This is different from the traditional durable-goods analysis where the total
demand size is fixed, which in turn leads to the implication (as in Bulow (1982)) that
current demand crowds out future demand.

Since the product in question has a network effect, it is natural to assume that the
monopolist would exercise introductory pricing by setting a low price initially.2 This
strategy is in sharp contrast to Coasian dynamics that suggest nonincreasing prices
for durable goods. Evidently, the key to reconcile the two seemingly contradictory
propositions is to analyze the network effect explicitly in the dynamic pricing problem.
Several papers approach this problem, but most of them cannot characterize the practice
of introductory pricing by a monopolist with perfect information.3 We shall provide
a simple and tractable model that incorporates network effects for a durable-goods
monopolist. By analyzing the dynamic pricing problem in this model, we are able to
establish that introductory pricing is indeed optimal in the selling scenario. We will also
demonstrate how network externalities would affect the monopolist’s other strategies.

Our model differs from the previous work due to the selection of the market equilib-
rium. As pointed out in Katz and Shapiro (1986), consumer heterogeneity gives rise to
the possibility of multiple equilibria. In other words, the potential buyers’ expectations
might sustain different network sizes for the same price. In the presence of multiple
equilibria, which equilibrium would emerge determines the market demand, and hence
the monopolist’s pricing strategy. By assuming that consumers are able to coordinate
their actions, the conventional approach is to select the equilibrium that maximizes
consumers’ total surplus. In this paper, we envision a situation where coordination
is difficult and consumers are more conservative about their expectations of network
growth. Accordingly, we select the stable equilibrium with the smallest network size.
Our selection criterion results in a discontinuous demand function—a small decrease in
price at the critical point generates a big jump in sales. Therefore, when the market
expands, the monopolist should exercise penetration pricing by “offering a low price to

1Although Waldman (1993) considered a similar setup with different groups of consumers joining
the market sequentially, consumers’ willingness to pay in his model is assumed to be identical within
each group. Therefore, pricing strategy is irrelevant in the monopolist’s decision.

2For instance, when releasing MS-DOS, Microsoft briefly reduced the license fees by half. See Cabral
et al. (1999) for other examples in computer software.

3For example, Katz and Shapiro (1985, 1986) studied a duopoly market and showed that introduc-
tory pricing emerges from the duopolists’ competition to establish a network of users ahead of their
opponents. For a monopolist model, Cabral et al. (1999) found introductory pricing in equilibrium. But
their result derives from the presence of either imperfect information about consumers’ valuations, or
“large” consumers who have strategic interactions with each other.
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invade another market” (Shapiro and Varian (1999), p. 288).4 In effect, the demand
discontinuity places a restriction on the monopolist’s choice of quantities—she can ei-
ther access the elite market (small quantity) with a high price, or reach the mass market
(large quantity) with a low price. We shall call it the penetration-pricing constraint
henceforth.

The constraint applies in both leasing and selling scenarios. However, unlike the
monopolist lessor, the seller has the option to establish a large customer base, which
changes the residual demand and enables the seller to raise the price and take full
advantage of the network growth. Essentially, the seller’s optimal strategy is to sacrifice
her profits in the early stage in order to capitalize the gains later. Our model here
explains the practice of introductory pricing. We show that sometimes a selling scenario
may generate higher profits than leasing, in contrast to the previous results.

Furthermore, the fact that the market willingness to pay expands over time suggests
a positive incentive to attract new buyers. This incentive countervails the inertia of
devoting R&D expenses that has been argued by Bulow (1982). In general, the R&D
activity has two effects on the monopolist’s profits. It helps to curtail production costs
but also reduces the revenue as the consumers expect a lower price. The net effect can
be over-investment or under-investment in R&D. The presence of network externalities
further mitigates the disincentive from the price-reduction effect. Indeed, we show that
if R&D efforts are directed at improving product durability instead of reducing costs
directly, then the monopolist seller always over-invests so that the product will be more
durable than necessary, a conclusion contrary to the existing literature. It is important
to reiterate that all of these implications hold only when the monopolist is constrained
by the penetration-pricing restriction.

The rest of this paper is arranged as follows. In Section 2, we present the basic model
that characterizes network effects. By employing this model, we provide a theoretical
foundation for inverted-U shaped demands that are commonly seen in network-effect
literature. In Section 3, we provide a numerical example of dynamic pricing to illustrate
our point. In Section 4, we formulate and solve the general dynamic-pricing problems
faced by a monopolist. When the monopolist has to take into account the restrictions
placed by penetration pricing, we derive the optimal pricing strategies and the corre-
sponding implications. In Section 5, we discuss the monopolist’s incentive of devoting
R&D expenses to reduce production costs. Although R&D is motivated to save costs,
it also hurts the monopolist’s profits when the early adopters expect a lower price due
to the lower cost. In equilibrium, the monopolist seller may over-invest or under-invest
in R&D, depending on which effect dominates. In Section 6, we consider the problem of
endogenous obsolescence, in which the monopolist can choose how much durability to
build in the product. We show that the monopolist seller always over-invests to make
the product too durable. Section 7 discusses the results and concludes.

2. NETWORK EFFECT: A CHARACTERIZATION

2.1. Consumer preferences

Following Rohlfs (2001, p. 209), we assume that an individual’s value for the good
in question is composed of two parts: one is the generic value and the other is the

4We make a distinction between introductory and penetration pricing so that the former characterizes
the change of prices between periods, while the latter identifies one’s pricing strategy at a given time.
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magnification of the network size. We further assume that heterogeneous groups of
consumers comprise the economy. Consumer preferences for members of group g are
represented by a willingness-to-pay function

pg(x, n) = qg(x)fg(n), g ∈ {1, 2, ..., G},

where G is the number of groups; n is the size of total consumption in the economy; and
x is the index for an individual in group g.5 Leaving aside the network effect, qg(x) is
the generic valuation by consumer x in group g; and fg is the network effect perceived by
group-g members. By construction, individuals in each group are ordered decreasingly
in terms of their generic willingness to pay, so that q′g(·) ≤ 0 ∀g. We also assume that
f ′

g(·) > 0 ∀g, which characterizes the underlying network effect.
To simplify our dynamic analysis, in what follows we shall assume that there are

only two groups: g = 1, 2. The product is durable and never depreciates. There are
two periods, and the discount rate is assumed to be zero. Following Bulow (1982), we
assume that a perfect secondhand market exists.6 It eliminates the possibility of price
discrimination.

We shall consider the simplest form of generic demand: for the first and second
groups, suppose q1(x) = A1 − a1x and q2(x) = A2 − a2x.7 To simplify the algebra,
we assume that the network effects for both groups are the same: f1(n) = f2(n) = n.
Assuming there is no income effect for any individual, we shall focus on the equilibrium
analysis of the market in the presence of network effects.

2.2. Inverted U-shaped Demands and the Critical Mass

In the conventional analysis, a demand function associates any given price with a
desired quantity of the commodity. Nonetheless, with network effects, a price might
correspond to multiple quantities. To derive the demand correspondences in our model,
note that if a consumer indexed xg is willing to buy the object, anyone in the same
group with a lower index x < xg will also demand it. Consequently, the total demand
in the economy is determined by the marginal consumers from both groups:

p = (A1 − a1x1)(x1 + x2) = (A2 − a2x2)(x1 + x2). (1)

In period 1, we assume that only the first group of people are informed. In that case,
the inverse demand is simply

p1(x) = (A1 − a1x)x. (2)

The maximum sustainable price is A2
1

4a1
(= max p1(x)). For any price p ∈ (0,

A2
1

4a1
), p

associates with three possible equilibria: x = 0 or the roots for the quadratic function
(A1−a1x)x = p (see Figure 1).8 As is well known, the larger root xmax in the downward-
sloping part of the parabola is a stable equilibrium (see the Appendix of Rohlfs (2001)),

5As in Rohlfs (2001, p. 205), each individual is assumed to make a simple yes-no decision about
whether to buy a unit, therefore the index x of individuals also characterizes the demand size of the
commodity. The assumption is not restrictive, because the same individual is allowed to make repetitive
yes-no decisions.

6For instance, internet marketplaces such as Half.com or Amazon.com allow people to trade used
computer software.

7 An alternative interpretation for the generic demand functions is to assume that a member of
group-g draws her generic value from [0, Ag ] uniformly, and the size of group-g population is Ag/ag .

8Since the network effect is multiplicative, the willingness to pay by any consumer would be zero if
she expects no one else to buy the product. Therefore, x = 0 is an equilibrium.
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Figure 1: Single-hump Demand Curve in the First Period

and so is x = 0. Meanwhile, the smaller root xmin on the upward slope is an unstable
equilibrium. The unstable equilibrium is usually called a critical mass, which the seller
has to overcome in order to reach the stable and more profitable equilibrium.

In period 2, both groups are aware of the product. The aggregate demand corre-
spondence is thus determined by equation (1). Alternatively, one can first derive the
aggregate inverse generic demand as q̃(x). The aggregate inverse demand is then given
by p̃(x) = q̃(x)x. In Figure 2, q̃(x) is the dashed line, which is obtained by summing
q1(x) and q2(x) horizontally; while p̃(x) is the double-hump shaped curve.

2.3. The Penetration Pricing Constraint

Specifically, p̃(x) is equal to A1x− a1x
2 if x ≤ x̂1, otherwise

p̃(x) = Ãx− ãx2 =
a2A1 + a1A2

a1 + a2
x− a1a2

a1 + a2
x2, (3)

where Ã and ã denote the coefficients a2A1+a1A2
a1+a2

and a1a2
a1+a2

, respectively. From Figure 2,
one observes that q̃(x) = q1(x) for x ≤ x̂1, where the critical value x̂1 ≡ A1−A2

a1
is

determined by q1(x̂1) = q2(0). The aggregate generic demand therefore has a flatter
slope when x > x̂1. As such, the corresponding p̃(x) has two humps if and only if
A1
2a1

< x̂1 < Ã
2ã .9 The double-hump shape of demand is similar to the one drawn in

Rohlfs (2001, p. 219), except that we provide a theoretical justification for it here.10

9Specifically, a hump is a local maximum of the p̃(·) curve. In Figure 2, p̃(x) reaches local maxima
A2

1
4a1

and Ã2

4ã
at x = A1

2a1
and Ã

2ã
, respectively. However, if x̂1 ≤ A1

2a1
, p̃(x) is increasing ∀x ∈ [0, x̂1], and

thus has only one local maximum at x = Ã
2ã

. The argument for the case with x̂1 ≥ Ã
2ã

is analogous.

Note that A1
2a1

< Ã
2ã

= A1
2a1

+ A2
2a2

.
10Rohlfs (2001, p. 215) assumed q(x) = cxβ and f(n) = kn. However, this is not going to generate

the inverted-U figure he suggested. For under his specification, p(x) = q(x)f(x) = ckxβ+1, which
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Figure 2: Double-hump Demand Curve in the Second Period

According to Rohlfs (2001) and Shapiro and Varian (1999), the monopolist can penetrate
the section of p̃(x) beyond x̂1 in the second period only if the price is set lower than or
equal to p̂. This is the penetration pricing constraint referred to in the literature.

Due to the double-hump shape of demand, for any price p between p̂ ≡ p̃(x̂1) and
Ã2

4ã , p associates with five equilibria (see the bullets in Figure 2), two (the third and
the fifth from the left) of which are stable with positive quantities. In the presence of
multiple stable equilibria, the criterion for equilibrium selection proves to be critical in
our analysis of a monopolist’s market strategy, as we will show in the next few sections.

3. DYNAMIC PRICING: A NUMERICAL EXAMPLE

Consider a monopolist who invents a new operating system and wants to release it
to the market. This operating system lasts for two periods. As assumed, in the first
period only group 1 (the professional engineers) access it, and in the second period, both
groups of potential consumers access the product. We want to see how the analysis is
different from the literature in various aspects. Let us look at the pricing strategy first.
The following numerical example illustrates our point.

Let xi` be the quantity produced by the monopolist lessor up to the ith period, and
xiS the quantity produced by the monopolist seller up to the ith period.11 Consider the
following example.

(depending on the size of β) is either increasing or decreasing in x. Thus, the willingness to pay by the
marginal consumer would be increasing or decreasing in the whole range of x; there would never be any
inverted-U shaped curve.

11We adopt the notations so that x2` or x2S represents the total number of units on the period-2
market. Period-2 production is therefore x2j − x1j for j = ` or S.
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Figure 3: Penetration Pricing (Example)

Example: Suppose A1 = 4, a1 = 2, A2 = 1, and a2 = 1
4 . One obtains Ã = 4

3 and ã = 2
9 .

Assuming zero production costs, the monopolist lessor leases x1` = 4
3 in period 1, and

x2` = 9
2 in period 2. Meanwhile, the monopolist seller sells x1S = 3

2 and x2S −x1S ' 2.8
in periods 1 and 2, respectively. It can be seen that selling is more profitable than renting
for the monopolist.

If the monopolist wants to lease the product, she chooses x1` and x2` to maximize

π` = p1(x1`) · x1` + p̃(x2`) · x2`.

It is easy to see that, given our numerical specifications in the example, the first-best
prices are p1 = 16

9 (x1` = 4
3 ) and p2 = 16

9 (x2` = 4), as shown in Figure 3. Nonetheless,
as Rohlfs (2001) pointed out, the double-hump shaped demand in period 2 limits the
range of feasible x2`’s. In particular, (x2`, p2) =

(
4, 16

9

)
is not an achievable strategy

because the second-group demand cannot be “penetrated” by the price p2 = 16
9 . By

setting p2 = 16
9 , the lessor can only lease x2` = 4

3 rather than 4. In fact, any period-2
leasing amount beyond x2` = 3

2 is achievable only if the price is set lower than 3
2 .

The boldfaced curve in Figure 3 illustrates the demand curve faced by the lessor. It
indicates that the lessor can only select x2` from [1, 3

2 ) and [ 92 , 6]. When the monopolist’s
feasible actions in period 2 is constrained in this fashion, we say that the penetration-
pricing constraint is binding.

Imposition of this constraint is where we deviate from the conventional analysis.
From the game-theoretic viewpoint, the constraint follows from the way we select equi-
librium in the presence of multiple equilibria, as we will explain below. It has long
been recognized that a market price can associate with multiple network sizes in equi-
librium.12 Following Katz and Shapiro (1986), the conventional approach is to select
the equilibrium that is Pareto-preferred by consumers.13 Applying to our example, this
selection criterion implies a different demand curve faced by the lessor so that she can

12See, for example, Oren and Smith (1981), Oren et al. (1982), and Katz and Shapiro (1986).
13Other authors such as Oren et al. (1982) simply assumed a single-peaked willingness-to-pay function,

which eliminates the possibility of multiple equilibria.
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choose to lease any quantity from [3, 6] in period 2. In this paper, however, we follow
the literature of network effects and assume that consumers are more conservative in
terms of their expectations of network growth. Consequently, we focus on the stable
equilibrium with the smallest network size for any given price. The resulting demand
corresponding with the price range ( 3

2 , 2] is [1, 3
2 ) instead of [3, 9

2 ).14 One way to justify
our criterion for equilibrium selection is that it validates the dichotomy of pricing strate-
gies when marketing a new product, as proposed by Dean (1976). The first segment of
demand for x2` ∈ [1, 3

2 ) represents the strategy of skimming pricing with which the
monopolist targets the elite group of consumers; while the second segment of demand
for x2` ∈ [ 92 , 6] corresponds with the strategy of penetration pricing that directs at the
general public. In this paper, we focus on the situation under which penetration pricing
dominates skimming pricing.

With this constraint, the best strategy under leasing is to set p1 = 16
9 and p2 = 3

2
so that x1` = 4

3 and x2` = 9
2 . As such, the highest achievable two-period profits under

leasing are15

π` =
16
9
· 4
3

+
3
2
· 9
2
' 9.12.

Now consider the alternative of a selling strategy. The monopolist’s second-period
strategy is still restricted by the need to penetrate the market. However, being able
to build a customer base in the first period alleviates the constraint for the seller. In
our example, if x1S < 3

2 , the corresponding range for feasible x2S ’s is [x1S , 3
2 ) ∪ [ 92 , 6],

and the penetration-pricing constraint is similar to that in the leasing scenario. On the
contrary, if x1S ≥ 3

2 , the seller can select any x2S from [3, 6], as shown in Figure 3. In
other words, the seller is able to charge p2 higher than 3

2 while reaching the second-group
consumers if and only if period-1 sales are greater than the critical amount 3

2 .
When the installed base of users is large enough so that x1S ≥ 3

2 , the residual demand
faced by the seller is free of the problem of multiple equilibria. Consequently, any x2S

from [3, 6] is feasible so that the seller can fully capitalize the gains from the expanded
network. In the leasing scenario, however, those who rented in period 1 have to decide
whether they want to rent again in period 2. There is never an installed base of users
in this scenario, and hence the monopolist can reach the group-2 consumers only by
charging a price lower than 3

2 .
The total profits under the selling regime are

πS = (p1(x1S) + p̃(x2S)) · x1S + p̃(x2S)(x2S − x1S)
= p1(x1S) · x1S + p̃(x2S) · x2S .

Note that the seller charges period-1 buyers p1(x1S)+ p̃(x2S) so that the marginal buyer
is indifferent between buying in period 1 and waiting for the price cut.16 Besides the
penetration-pricing constraint, the seller also encounters a time-inconsistency problem,
i.e., she cannot commit to the first-best strategy maximizing πS . Instead, the seller
maximizes p̃(x2S)(x2S − x1S) in period 2 taking x1S as given (see Bulow (1982)). Let
xp

2(x1S) denote the solution to the last optimization problem subject to the penetration-
pricing constraint. It is easy to see that the constraint is binding when x1S < 3

2 ,

14According to our criterion, the critical price at p = 3
2

should have associated with x2 = 3
2
. However,

the monopolist is often better off by setting a price lower than but arbitrarily close to 3
2
, so that x2

approximates 9
2
. For convenience of exposition, we simply assume that x2 = 9

2
for p = 3

2
.

15Recall that the discount rate is assumed to be zero for simplicity.
16The marginal buyer in period 1 always purchases the product in period 2 because his generic value

is higher than any buyer’s in period 2.
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and non-binding otherwise. Therefore, xp
2(x1S) = 9

2 for x1S < 3
2 , while xp

2(x1S) =
arg maxx2S

p̃(x2S)(x2S − x1S) for x1S ≥ 3
2 . The seller’s problem in the example is then

given by

max
x1S ,x2S

(p1(x1S) + p̃(xp
2(x1S))) · x1S + p̃(x2S)(x2S − x1S),

s.t. x2S ∈ [x1S ,
3
2
) ∪ [

9
2
, 6] for x1S <

3
2
,

or x2S ∈ [3, 6] for x1S ≥
3
2
.

The optimal sales to solve the above problem are x1S = 3
2 and x2S ' 4.3. It follows that

the highest profits available to the seller are

π` '
3
2
· 3
2

+ 1.62 · 4.3 = 9.23,

which are greater than the leasing profits. The comparison can also be obtained from
the fact that the optimal leasing quantities

(
4
3 , 9

2

)
is a feasible pair of (x1S , x2S) for the

seller as xp
2

(
4
3

)
= 9

2 . In general, selling is always more profitable than leasing as long as
the penetration-pricing constraints are binding.17

4. THE GENERAL ANALYSIS

We shall present the general results for monopolist pricing in this section. To high-
light the implications from imposing the penetration-pricing constraint, we start with
the case where the monopolist is not bounded by the constraint. Specifically, the mo-
nopolist in period 2 is allowed to select any quantity on the inverse demand p̃(x2) to
maximize her profits.

4.1. The Case without Penetration-Pricing Constraints

The monopolist lessor’s aggregate profits are

π` = (p1(x1`)− c) · x1` + p̃(x2`) · x2` − c · (x2` − x1`),

where c is the marginal cost of production. The last term is due to the fact that
the monopolist does not incur the costs for what had been produced in the previous
period. By rearranging the terms on the right hand side, one observes that the firm

17In the framework considered in Bulow (1982), one can argue that leasing is more profitable than
selling because a lessor can duplicate any selling strategy. This argument does not work here due to the
penetration-pricing constraint. In particular, a seller can benefit from building the network gradually: a
large existing network (from previous sales) induces new consumers to pay more. However, any network
in the leasing scenario is temporary. Without assurance of an existing network, new consumers are
willing to rent the product only when the price is very low. Professor Hal Varian suggests that a lessor
can sign a contingent contract with period-1 consumers to circumvent the problem. For example, a lessor
offers the following commitment in period 1: the initial leasing price is 3

2
; if the technology succeeds

and the network expands beyond x2 = 4.3, the period-2 leasing price would be raised to 1.62; otherwise,
the price remains the same. Under this commitment, in effect the lessor is able to duplicate the seller’s
optimal strategy. In our following analysis we rule out this unlikely scenario that the monopolist not
only has to make commitments, but also price-discriminates in period 2.

9



maximizes p1(x1`)·x1` and (p̃(x2`)−c)x2`, respectively, in the two periods. An alternative
formulation of the lessor’s problem is18

max
x1`,x2`

π` = (p1(x1`) + p̃(x2`)− c) · x1` + (p̃(x2`)− c)(x2` − x1`). (4)

Let MR1(x1) and MR2(x2) denote the marginal revenue functions for period-1 and
aggregate production, respectively. We have

MR1(x1) ≡ p1(x1) + p′1(x1) · x1, MR2(x2) ≡ p̃(x2) + p̃′(x2) · x2.

The first order conditions for (4) can then be written in terms of MR′
is.

MR1(x1`) = 0, MR2(x2`) = c. (5)

By solving the first order conditions (5), one obtains the interior solution as follows.

x∗
1` =

2
3

A1

a1
, x∗

2` =
Ã

3ã
+

1
3

√(
Ã

ã

)2

− 3c

ã
. (6)

Assumption 1. c < Ã2

4ã
.

Assumption 2. p1(x∗
1`) · x∗

1` + (p̃(x∗
2`)− c) · x∗

2` ≥ maxx(2p1(x)− c) · x.

Assumption 1 ensures that x∗
2` is well-defined.19 It also implies x∗

2` > Ã
2ã and p̃(x∗

2`) >

c. To derive x∗
2` in (6), we implicitly assume that x2` ≥ Ã

2ã so that some of group-2
consumers will lease the product in period 2. Otherwise, the lessor can exclude group-2
consumers in period 2, and focus on leasing to group 1 in both periods. Assumption 2
makes sure that (x∗

1`, x
∗
2`) generates higher profits than the case of excluding group-2

consumers.20 Intuitively, the assumption holds when the addition of group-2 consumers
contributes significantly to the monopolist’s profits. Roughly speaking, it is true when
either their willingness to pay is high enough (A2 is high), or the population is large
enough (a2 is low).21 We discuss such specific conditions in Appendix.

Proposition 1. Given Assumptions 1 and 2, (x∗
1`, x

∗
2`) in (6) maximizes the mono-

poly lessor’s profits in absence of penetration-pricing constraints.

We now consider the seller’s problem. As illustrated in Section 3, the monopolist
seller encounters a time-inconsistency problem so that she cannot commit to the first-
best strategy adopted in the leasing scenario. Instead, the seller has to take what
happened in period 1 as given, and maximizes (p̃(x2S)− c)(x2S − x1S) in period 2. Let
x∗

2(x1S) denote the solution to the second-stage optimization problem.

x∗
2(x1S) ≡ arg max

x2S

(p̃(x2S)− c)(x2S − x1S).

18It is possible that x2` < x1`, in which case the last term of (4) becomes p̃(x2`)(x2` − x1`) so that
the lessor does not incur production costs in period 2. In equilibrium, x2` > x1`, and thus we adopt
the current formulation for π` for simplicity.

19An appendix that discusses the relationship, consistency, and intuition behind the assumptions in
this section is available from the authors.

20In Appendix, we show that the maximal profits attained by the alternative strategy are
maxx(2p1(x) − c) · x. That is, in absence of a growing market, the lessor’s optimal strategy is to
lease the same amount of product in both periods.

21Recall that the generic value for a group-2 member is drawn from a uniform distribution in [0, A2],

and the size of group-2 population is A2
a2

. See footnote 7.
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Realizing her own choice in period 1 restricts her action in period 2, the seller’s problem
becomes

max
x1S ,x2S

πS = (p1(x1S) + p̃(x∗
2(x1S))− c)x1S + (p̃(x2S)− c)(x2S − x1S). (7)

Program (7) is different from (4) in the term p̃(x∗
2(x1S)), which represents the consumers’

rational expectation. The first order conditions for (7) are

MR1(x1S) = −∂p̃(x∗
2(x1S))

∂x1S
x1S , (8)

MR2(x2S) = c + p̃′(x2S)x1S . (9)

Let (x∗
1S , x∗

2S) denote the solution to (7). The following assumption ensures that one
obtains (x∗

1S , x∗
2S) by solving the first order conditions.

Assumption 3. The profits attained by the solution to (8) and (9) are higher than
those attained by maximizing πS while excluding group-2 consumers.

The mathematical expression for Assumption 3 is provided in (A11). The right hand
side of (8) is positive and attests to the fact that increasing period-1 production reduces
the period-2 price, which in turn reduces the seller’s revenue in period 1. Given this
side effect of extra production in period 1, one concludes that x∗

1S < x∗
1`. As for (9),

the last term is due to the fact that the seller only loses p̃′(x2S)(x2S − x1S) rather
than p̃′(x2S) · x2S from price reduction. Since p̃′ is negative at stable equilibrium, the
right hand side is less than c. Comparing with (5), one obtains a higher aggregate
production in the selling scenario: x∗

2S > x∗
2`. The explicit formulation for (x∗

1S , x∗
2S) is

more complicated, but we can make the following comparison:

Proposition 2. Given Assumptions 1 and 3, the solution to (8) and (9) maximizes
the monopolist seller’s profits in absence of penetration-pricing constraints.

Proposition 3. Given Assumptions 1 to 3, the seller produces less than the lessor
does in period 1, but the total quantity up to period 2 is higher; that is, x∗

1S < x∗
1` and

x∗
2S > x∗

2`. Moreover, leasing is more profitable than selling.

In sum, when we incorporate network effects and a growing market into our theo-
retical framework, the patterns of pricing strategies are consistent with those in Bulow
(1982), so long as the penetration-pricing constraint is ignored.

4.2. The Case with a Penetration-Pricing Constraint

The monopolist’s pricing strategy will be much different when she takes into account
the penetration-pricing constraint. Recall that x̂1 is the critical value at which p1(x̂1) =
p̃(x̂1) ≡ p̂ (see Figure 2); x̂1 = A1−A2

a1
. A related critical value is x̂2 = A2

ã , which implies
the same price: p̃(x̂2) = p̂.

For the monopolist lessor, the range for feasible x′
2`s is [ A1

2a1
, x̂1) ∪ [x̂2,

Ã
ã ]. In other

words, the lessor cannot penetrate the period-2 market unless the price is lower than

11



p̂.22 Therefore, the lessor’s problem is

max
x1`,x2`

π` = (p1(x1`) + p̃(x2`)− c) · x1` + (p̃(x2`)− c)(x2` − x1`), (10)

s.t. x2` ∈ [
A1

2a1
, x̂1) ∪ [x̂2,

Ã

ã
]

Let (xp
1`, x

p
2`) denote the solution to (10).

Assumption 4. x∗
2` < x̂2.

Assumption 5. p1(x∗
1`) · x∗

1` + (p̃(x̂2)− c) · x̂2 ≥ maxx(2p1(x)− c) · x.

We are more interested in the case where the penetration-pricing constraint is bind-
ing, which requires the unconstrained solution x∗

2` be lower than x̂2. As in Section 4.1,
we further assume that some of the group-2 members lease the product in equilibrium so
that π` is maximized at x2` ∈ [x̂2,

Ã
ã ] rather than [ A1

2a1
, x̂1). Since Assumption 4 implies

that π` is decreasing in x2` for x2` ∈ [x̂2,
Ã
ã ], one concludes that π` is maximized at

xp
2` = x̂2.

Proposition 4. Given Assumptions 1, 4, and 5, the monopolist lessor’s optimal
strategy under the penetration-pricing constraint is (xp

1`, x
p
2`) = (x∗

1`, x̂2).

For the monopolist seller, the restrictions imposed by the penetration-pricing con-
straint depend on how much she sells in period 1. If x1S is lower than the critical amount
x̂1, the seller faces a similar constraint as in (10), so that the feasible x′

2Ss are limited
to [x1S , x̂1) ∪ [x̂2,

Ã
ã ]. In other words, when x1S < x̂1, the seller has two options: she

can either charge a high price (p2 > p̂) that only appeals to group-1 consumers, or a
low price (p2 ≤ p̂) that reaches group-2 consumers. These options correspond to the
intervals [x1S , x̂1) and [x̂2,

Ã
ã ], respectively. On the contrary, if x1S is greater than x̂1,

the seller has built a customer base large enough to penetrate the market in period 2,
so that she can select any x2S from [ Ã

2ã , Ã
ã ]. The penetration-pricing constraint has no

effect in this case. For the constraint to be binding in equilibrium, we assume

Assumption 6. x∗
1` < x̂1.

Assumption 7. x∗
2(x̂1) < x̂2.

Now we look at the seller’s problem. Given the time-consistency constraint, for any
x1S , the seller maximizes (p̃(x2S)−c)(x2S−x1S) subject to the penetration-pricing con-
straint corresponding to x1S . Let xp

2(x1S) denote the solution to the seller’s constrained
problem in period 2. Provided Proposition 3 (x∗

1S < x∗
1`), Assumption 6 implies that

x∗
1S < x̂1. As we know that x∗

2(·) is an increasing function, Assumption 7 implies
x∗

2(x1S) < x̂2 ∀x1S < x̂1. As such, one concludes that the unconstrained solution
x∗

2S(= x∗
2(x

∗
1S)) in Section 4.1 is lower than x̂2. In short, Assumptions 6 and 7 imply a

binding penetration-pricing constraint so that (x∗
1S , x∗

2S) is not achievable.
Given these assumptions, one obtains xp

2(x1S) as follows. For x1S < x̂1, the interior
solution x∗

2(x1S) is not achievable, and thus xp
2(x1S) = x̂2 or x′

2(x1S).23 For x1S ≥ x̂1,

22For the parameters assumed in the example, one can verify that A1
2a1

= 1, x̂1 = 3
2
, x̂2 = 9

2
, and

Ã
ã

= 6.
23x′

2(x1S) ≡ arg maxx2S (p1(x2S) − c)(x2S − x1S) maximizes the seller’s period-2 profits when she
excludes group-2 consumers; see (A10) in Appendix.

12



the seller is able to penetrate the market in period 2, and xp
2(x1S) = x∗

2(x1S). Given
xp

2(x1S), the seller’s optimization problem is

max
x1S ,x2S

πp
S = (p1(x1S) + p̃(xp

2(x1S))− c)x1S + (p̃(x2S)− c)(x2S − x1S),

s.t. x2S ∈ [x1S , x̂1) ∪ [x̂2,
Ã

ã
] for x1S < x̂1, (11)

or x2S ∈ [
Ã

2ã
,
Ã

ã
] for x1S ≥ x̂1.

To solve (11), we maximize πp
S separately over x1S < x̂1 and x1S ≥ x̂1. In the

former case, xp
2(x1S) = x̂2 or x′

2(x1S). It follows from Assumption 5 that (x∗
1`, x̂2)

maximizes πp
S . Note that this solution is identical to that in the leasing scenario in

Proposition 4. In the latter case, xp
2(x1S) = x∗

2(x1S). Given that the unconstrained
solution x∗

1S < x̂1 and that ∂2πS/∂x2
1S < 0, the objective function πp

S is decreasing
in x1S for the relevant range and therefore is maximized at x1S = x̂1. One compares
πp

S(x∗
1`, x̂2) against πp

S(x̂1, x
∗
2(x̂1)) to determine the solution to (11). In summary, we

have

Proposition 5. Given Assumptions 1, 5, 6, and 7, the monopolist seller’s opti-
mal strategy under the penetration-pricing constraint, (xp

1S , xp
2S), is either (x∗

1`, x̂2) or
(x̂1, x

∗
2(x̂1)).

When comparing (x∗
1`, x̂2) and (x̂1, x

∗
2(x̂1)), the seller trades off her profits in two

periods. In the former strategy, the seller is bounded in period 2 by the penetration-
pricing constraint, but she is able to maximize her period-1 profits. In the latter strategy,
the seller sacrifices her period-1 profits in order to penetrate the market and capture
bigger gains in period 2. If the period-2 market is lucrative enough, as we assume in
this paper, the latter strategy will be optimal.

As we show above, one derives very different implications when taking into account
the penetration-pricing constraint. First of all, leasing is no longer more profitable than
selling. The leasing profits are reduced because the lessor has to lower the period-2
price in order to reach group-2 consumers. In contrast, the seller’s loss occurs mostly in
period 1. Therefore, the constraint affects the lessor’s and the seller’s profits differently.

Corollary 6. Following Proposition 5, one obtains πp
` ≤ πp

S in equilibrium. There-
fore, selling is more profitable than leasing under the penetration-pricing constraint.

The assertion follows from the fact that the leasing solution (x∗
1`, x̂2) is feasible in

the selling regime, as xp
2(x

∗
1`) = x̂2. The inequality in the corollary holds strictly when

A2 is large enough or a2 is small enough. Recall that A2
2 is the average willingness to

pay by group-2 consumers, and a2 represents the size of population: the lower a2 is, the
larger population of group-2. Therefore, Corollary 6 implies that when the monopolist
expects a significant growth of the market, she will prefer selling rather than leasing the
product.

Another implication of Bulow (1982) is that in equilibrium x1S < x1` while x2S > x2`,
which is upheld when network effects are present but the penetration-pricing constraint
is ignored. However, when the monopolist is bounded by the constraint, the comparisons
are reversed.

Corollary 7. Proposition 5 implies that xp
1S ≥ xp

1` and xp
2S ≤ xp

2` in equilibrium.
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The economic intuition for Corollary 7 is as follows. When A2 is large or a2 is small,
the market in period 2 is lucrative. In absence of penetration-pricing constraints, both
the lessor and the seller would like to charge a relatively high price in period 2. However,
the constraint eliminates the feasibility of this strategy. Essentially, the seller is left with
two options: she can either lower p1 and sacrifice profits at the beginning in the hope
that she can capture the period-2 market later; or, she sets a very low p2 at p̂ but is
able to charge whatever she wants in period 1. With a large population for group 2,
the former option is more profitable. In contrast, the lessor does not have access to this
option so that she can only set her period-2 price at p̂. Therefore, the comparisons are
as indicated.

It is important to note that Corollary 7 implies a relatively high xp
1S , which results

in a low p1. Therefore, the equilibrium outcome in the presence of the penetration-
pricing constraint suggests the practice of introductory pricing. One often observes that
the firms in a market with network effects adopt an aggressive pricing strategy initially
in the hope to capture the market in the later stages. This commonly seen practice
is justified theoretically in our setting only when the monopolist is confined by the
penetration-pricing constraint.

5. THE OPTIMAL R&D DECISION

Another difficult problem faced by a monopolist, as Bulow (1982, pp. 321-323)
showed, is the inertia of devoting R&D expenses to reduce marginal production cost.
Here we discuss the issue taking into account the network effect. Suppose the monopolist
originally faces a constant marginal cost c in both periods. If she devotes additional y
resources to R&D in the first period, her marginal cost will reduce by g(y). Thus, for
the leasing scenario, the two-period total profits become

π` = −y + p1(x1`) · x1` + (p̃(x2`)− (c− g(y))) · x2`. (12)

The efficient R&D, denoted y∗, can be obtained by maximizing π` with respect to
x1`, x2`, and y. Bulow showed that this efficient y∗ cannot be obtained under a selling
scenario, because a lower second-period marginal cost implies a larger second-period
sale, which in turn suggests a lower second-period price. Foreseeing this, the first-period
buyers’ willingness to pay will be lower.24 Given this side effect of cost-reducing R&D,
the monopolist would have less incentive to devote R&D expenditure to reduce the cost
under the selling regime.

The situation would be very different under the scenario with network effects. Let
us first look at the ideal case under leasing without any constraints. The first order
conditions are

MR1(x1`) = 0, MR2(x2`) = c− g(y), and 1 = g′(y)x2`. (13)

The last condition implies that an extra dollar of investment reduces the total cost by
one dollar so that the monopolist breaks even at y∗.

The monopolist seller is bounded by the time-consistency constraint. Disregarding
24Recall that the first-period buyers pay the sum of p1(x1) and p̃(x2).
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the penetration-pricing constraint, the seller’s problem is

max
x1S ,x2S ,y

πS = −y + (p1(x1S) + p̃(x∗
2(x1S , y))− (c− g(y))) · x1S

+ (p̃(x2S)− (c− g(y)))(x2S − x1S), (14)

where x∗
2(x1S , y) ≡ arg maxx2S

(p̃(x2S)−(c−g(y)))(x2S−x1S) is obtained by maximizing
the seller’s period-2 profits, taking x1S and y as given. The first order conditions to (14)
are

MR1(x1S) = −∂p̃(x∗
2(x1S , y))
∂x1S

x1S ,

MR2(x2S) = c− g(y) + p̃′(x2S) · x1S , (15)

1 = g′(y)x2S +
∂p̃(x∗

2(x1S , y))
∂y

x1S .

The right hand side of the last condition consists of two different impacts from R&D
activities in the presence of the time-consistency constraint. The first is cost reduction,
represented by g′(y)x2S . Since the cost-saving function g is usually assumed concave, we
know that g′(·) is decreasing in y. Therefore, a higher aggregate quantity x2 associates
with a higher R&D investment level. As the seller will produce more in total (x∗

2S > x∗
2`),

the cost-reduction effect induces more R&D by the seller. The second effect is what has
been argued by Bulow (1982), and characterized here by ∂p̃(x∗

2(x1S , y))/∂y · x1S : more
intensive R&D implies lower willingness to pay in the first period (∂p̃/∂y < 0), and
thus the seller has less incentive for R&D input. With the two forces working in the
opposite directions, how much the seller will invest comparing to y∗ depends on which
effect dominates. Proposition 8 below shows that the cost saving induced by R&D is
not enough to compensate the loss from price reduction, and thus y∗S < y∗.25

When the penetration-pricing constraint is in force, the R&D investment y∗ is no
longer optimal under the leasing regime. Assuming the saving in production cost is only
marginal, the penetration-pricing constraint will still be binding, and thus R&D activ-
ities do not affect the total quantity: xp

2` is still equal to x̂2 even if the monopolist has
lowered the marginal cost by g(y). The first order condition, 1 = g′(y)x̂2, determines the
optimal level of investment in this scenario. One observes that only the cost-reduction
effect is present, and thus the lessor will over-invest in R&D because xp

2` > x∗
2`.

In the selling scenario, suppose the presumptions in Proposition 5 hold so that
(xp

1S , xp
2S) = (x̂1, x

∗
2(x̂1)). The impacts from R&D investment are both enhanced by the

penetration-pricing constraint, albeit in the opposite directions. That is, the seller saves
even more from cost reduction as the total sales are higher (xp

2S > x∗
2S). Meanwhile,

the seller loses more in period 1 as the first-period sales are also higher (xp
1S > x∗

1S).
Proposition 8 indicates that the net effect implies less incentive for R&D so that the
level of investment yp

S will be lower than y∗S .

Proposition 8. Given assumptions in Propositions 4 and 5, and further assuming
that xp

1S = x̂1, the levels of R&D investment are ranked as follows.

yp
S < y∗S < y∗ < yp

` .

25Note that Bulow (1982) did not mention the cost-reduction effect explicitly. Nonetheless, for lin-
ear demand considered in Bulow’s model or quadratic inverse demand in ours, one can show that
the incentive due to cost reduction is dominated by the disincentive from price reduction, assuming
penetration-pricing constraint is not in effect.
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Note that we derive yp
S in Proposition 8 by assuming that (xp

1S , xp
2S) = (x̂1, x

∗
2(x̂1)).

Depending on the demand parameters (A′
gs and a′gs), the seller’s optimal strategy could

be (x∗
1`, x̂2), which is identical to the lessor’s strategy (see Proposition 5). In this case,

yp
S = yp

` > y∗, and the seller will over -invest in R&D activities.
In sum, when determining the R&D investment, the monopolist seller has to take into

account the cost-reduction effect in addition to the disincentive caused by the rational
expectations of consumers. The concern of cost reduction encourages R&D input if and
only if the seller expects to produce more by the second period. The aggregate outcome
could be under-investment or over-investment by the seller, depending on which effect
dominates. In contrast, the lessor always over-invests.

6. PLANNED OBSOLESCENCE

In reality, two-period durable goods may become out of order after one period of
use. The probability of this obsolescence may be reduced if the monopolist devotes
more resources to improve the product quality. Let z be the amount devoted to qual-
ity improvement, c be the marginal cost of production, and h(z) be the probability of
sustaining a two-period product life, with h′(z) > 0 and h′′(z) < 0. Suppose x1 is the
period-1 production. Leaving aside consumers’ strategic concerns, an efficient invest-
ment on z is to minimize z + c(1 − h(z))x1, which generates the first order condition
1 − ch′(z)x1 = 0. The optimal z∗ so derived will correspond to the efficient rate of
obsolescence 1− h(z∗).

Taking into account the rational expectations of consumers, however, Bulow (1986)
showed that there is a factor that prevents the achievement of efficiency. Increasing
durability has the impact of increasing the number of commodity units in the second
period, which in turn implies a lower second-period price. This not only reduces the
second-period profits, but also reduces the willingness to pay by rational first-period
potential buyers. Thus, increasing durability has an extra negative effect of reducing
profits.

When the commodity in question has a network effect, let us look at the leasing
regime first. The lessor’s problem is

max
x1`,x2`,z

−z + (p1(x1`) + h(z)p̃(x2`)− c) · x1` + (p̃(x2`)− c)(x2` − h(z)x1`),

s.t. x2` ≤ x̂1 or x2` ≥ x̂2. (16)

The first order conditions to the unconstrained problem are

MR1(x1`) = c(1− h(z)), MR2(x2`) = c, 1 = ch′(z)x1`. (17)

We showed in Proposition 4 that the leasing scenario with the penetration-pricing con-
straint suggests xp

1` = x∗
1` and xp

2` = x̂2. Note that the second-period production is
xp

2` − h(z)xp
1`, where the last term being multiplied by h(z) is due to the obsolescence

loss of the first-period sales. When R&D investment z increases, h(z) increases, but the
second-period production is just to retain the total leasing amount x̂2; the second-period
price p̃(x̂2) = p̂ remains the same. Thus, commodity obsolescence does not affect the
pricing strategy in period 2 under the leasing regime. Furthermore, one observes that
the first and last conditions in (17) also determine the constrained solutions of x1 and z.
Therefore, the monopolist lessor can still achieve the first-best level of investment under
the penetration-pricing constraint, and hence zp

` = z∗.
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We now move to the selling scenario. The monopolist seller’s problem is

max
x1S ,x2S ,z

−z + (p1(x1S) + h(z)p̃(xp
2(x1S , z))− c)x1S + (p̃(x2S)− c)(x2S − h(z)x1S),

s.t. x2S ∈ [h(z)x1S , x̂1) ∪ [x̂2,
Ã

ã
] for h(z)x1S < x̂1, (18)

or x2S ∈ [
Ã

2ã
,
Ã

ã
] for h(z)x1S ≥ x̂1,

where xp
2(x1S , z) is the solution that maximizes (p̃(x2S)− c)(x2S − h(z)x1S) subject to

the same constraints. The first order conditions to the unconstrained problem are

MR1(x1S) = c(1− h(z))− h(z)
∂p̃(x∗

2(x1S , z))
∂x1S

x1S ,

MR2(x2S) = c + h(z)p̃′(x2S)x1S , (19)

1 = ch′(z)x1S + h(z)
∂p̃(x∗

2(x1S , z))
∂z

x1S ,

where x∗
2(x1S , z) ≡ arg maxx2S

(p̃(x2S) − c)(x2S − h(z)x1S). The last condition in (19)
suggests that the effort to enhance product durability has two consequences. The direct
effect is cost-saving, as characterized by ch′(z)x1S ; and the indirect effect is the loss
caused by the consumers’ rational expectations, which is the main theme of Bulow
(1982, 1986).

Unlike the case in Section 5 for R&D investment, both the direct and indirect effects
mentioned above work in the same direction to reduce the seller’s incentive to improve
durability. In the last section, the monopolist saves on every unit she produces due
to a lower marginal cost. In contrast, a lower obsolescence rate leaves less defective
units to replace in the beginning of period 2. In other words, the cost-saving effect here
only involves period-1 production. In the unconstrained equilibrium, the seller produces
less in period 1 and more in total comparing to the lessor (x∗

1S < x∗
1` and x∗

2S > x∗
2`).

Therefore, the cost-saving effect discourages the seller to improve durability. Combining
with consumers’ expectations of price reduction, one concludes that z∗S < z∗.

When considering the constrained problem in (18), one can see that the indirect
effect disappears, and the optimal level of z is given by 1 = ch′(z)x1S . Following
the argument for Proposition 5, the seller’s goal is to establish a customer base large
enough to penetrate the period-2 market. In particular, the first-period sale has to be
x̂1/h(z) so that the quantity after the obsolescence loss is x̂1. It is easy to see that
xp

2(x̂1/h(z), z) = x∗
2(x̂1), which implies ∂xp

2(x1S , z)/∂z = 0, and hence the condition
1 = ch′(z)x1S .

It follows that zp
S > z∗ if and only if xp

1S > x∗
1`, which is true under the presumptions

similar to those in Proposition 5 that ensure (x̂1/h(z), x∗
2(x̂1)) solves (18). In other

words, when the period-2 market is lucrative enough, the seller will over-invest to make
the product too durable.

Proposition 9. Given assumptions in Propositions 4 and 5, and further assuming
that xp

1S = x̂1/h(z), the efforts devoted to quality improvement are ranked as follows.

z∗S < zp
` = z∗ < zp

S .

The commodity obsolescence has one more implication that was not discussed in the
literature. Under the selling regime, if the second-period price is p̃(xp

2S), the first-period
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willingness to pay would be

p1(x
p
1S) + h(zp

S)p̃(xp
2S).

A higher obsolescence rate not only increases the production cost of the out-of-order
goods, it also reduces the proportion of price capitalization of all period-1 sales. Recall
that one reason we obtain the result that selling may be better than leasing in Section 4
is that, by setting the first-period production equal to the critical amount needed for
penetration pricing, the monopolist can capitalize a higher second-period price. How-
ever, with commodity obsolescence, this capitalization is shrunk by a proportion of h(z).
In fact, it can be seen that a higher rate of obsolescence makes the leasing regime more
attractive than the selling one, because the latter’s maximum profits decrease more as
h(z) reduces.

7. CONCLUSION

In this paper, we study the dynamic pricing problem of a monopolist who produces
durable goods with network effects. Assuming that the market grows over time, we derive
double-hump shaped demands that are commonly seen in network-effect literature. Due
to the shape of the demand, the monopolist encounters a penetration-pricing constraint.
Nevertheless, the constraint imposes different restrictions depending on whether the
monopolist leases or sells the product. In the leasing scenario, the lessor can only reach
the less-informed consumers by lowering the price. In contrast, the seller has the option
to flood the market early on, so that she can exercise her market power in the expanded
marketplace. Given the seller’s strategic flexibility, the profits from selling the product
are higher than from leasing, as long as the expanded market is lucrative enough.

The working of our model can also be understood from the concept of commitment.
The advantage of the seller derives from her ability to establish an installed base of users.
In contrast, the lessor cannot imitate the same strategy due to the lack of commitment
from the renters. Specifically, the renters in period 1 will have to make leasing decisions
once again in period 2. In other words, they cannot promise to stay in the network, and
thus undercut the network effects they generate. As a result, the lessor would be forced
to exercise penetration pricing unless he can conceive some commitment device that
“locks-in” his customers by raising switching costs or through contractual agreements,
etc.

From this perspective, we can better understand the different results between our
model and that of Coase-Bulow in which the time-inconsistency problem puts the seller
in a disadvantageous position. First, without network effects, the lack of commitment
power occurs only on the supply side (specifically, the seller) in the Coase-Bulow model,
whereas under the influence of network effects it arises on both the supply (the seller)
and demand (the renters) sides in our model. The supply-side commitment problem
affects the seller’s profitability, while the demand-side problem induces the penetration-
pricing constraint and reduces the lessor’s profits. In our model the latter effect can
dominate the former so that leasing is less profitable than selling. Second, as far as the
renters are concerned, their lack of commitment power actually benefits themselves as
the lessor has to choose a lower equilibrium price and a larger network in period 2. Thus,
the renters have no incentive to lock themselves in for a long term arrangement. The
same lack of commitment power, in contrast, will disadvantage the seller and compel
her to commit herself to a lower future production.
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Another important result of this paper is that we establish introductory pricing as
the monopolist seller’s optimal strategy. This practice can be identified in two parts.
First, a lower initial price. To achieve the building of an installed base, the seller adopts
an aggressive pricing strategy that makes a much larger sale in period 1 than imputed
by the first-best strategy. Second, the upward trend of prices. As we have repeatedly
shown, due to the penetration pricing constraints, only in the selling scenario will the
monopolist be able to take advantage of the growth with prices raised. The practice of
introductory pricing can be intuitively understood in that the monopolist seller follows
an aggressive strategy if and only if the potential of the expanded market is worthwhile
for her to sacrifice the profits in the early stage. Such trade-off, as we have shown, is
made necessary by the penetration-pricing constraint.

Furthermore, the monopolist’s incentive in R&D activities also displays a unique dy-
namic in our model. If the R&D expenses contribute to reduction of marginal production
cost, the lessor will over-invest in R&D, while the seller may under-invest or over-invest.
Note that the cost saving induced by R&D associates with the aggregate production.
Therefore, if the optimal aggregate production is very large, it may stimulate too much
R&D investment.

The implication becomes even more dramatic if the R&D efforts result in better
product durability. The costs saved by lowering the obsolescence rate associate only
with the first-period production. However, the penetration-pricing constraint restricts
the monopolist’s choice of equilibrium prices in the second period. Consequently, the
second-period prices are independent of the obsolescence rate, and the distortion from
the consumers’ expectation of overproduction disappears. Therefore, the monopolist
seller will make the product too durable because of her large first-period production.

In sum, by incorporating network effects into the model, this paper demonstrates the
crucial role played by the penetration-pricing constraint in the monopolist’s dynamic
pricing problem. Indeed, without the constraint, a growing market with network effects
alone does not warrant our conclusions. In doing so, we provide a simplistic and tractable
approach to model the market with network effects. It equips us for further studies of
network-effect economy.

Appendix

Proof of Proposition 1
As we only consider the stable equilibria, the effective demand faced by the mo-

nopolist is the downward-sloping part of p1(x) or p̃(x). Due to the double-hump shape
of p̃(x), in absence of penetration-pricing constraints, the effective inverse demand in
period 2 consists of

p = (Ãx2 − ãx2
2) · x2 for x2 ∈ [

Ã

2ã
,
Ã

ã
], (A1)

p = (A1x2 − a1x
2
2) · x2 for x2 ∈ [

A1

2a1
, x̃1), (A2)

where x̃1 is such that p1(x̃1) = max p̃(x) with x̃1 ≥ A1
2a1

.26 By solving the first order

26x̃1 is not well-defined if max p1(x) < max p̃(x), in which case (A2) vanishes and the effective demand
consists of only (A1).
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conditions as in (5),

MR1(x1`) = 2A1x1` − 3a1x
2
1` = 0, (A3)

MR2(x2`) = 2Ãx2` − 3ãx2
2` = c, (A4)

one obtains the solution in (6) as follows.

x∗
1` =

2
3

A1

a1
, x∗

2` =
Ã

3ã
+

1
3

√(
Ã

ã

)2

− 3c

ã
. (A5)

Note that the solution to (A4) only takes into account the segment of demand in (A1).
An alternative strategy for the lessor is to lease to group-1 consumers exclusively in both
periods so that the second-period demand is represented by (A2). To show that (A5)
indeed maximizes π`, we have to demonstrate (i) (A5) maximizes π` over x2` ∈ [ Ã

2ã , Ã
ã ],

and (ii) (A5) generates higher profits than the alternative strategy that excludes group-2
consumers.

The first statement is easily verified geometrically: the objective function (p̃(x2`)−
c) · x2` is a degree-three polynomial that has a root of zero and two positive roots. x∗

2`

in (A5) is the larger root to the quadratic equation (A4), and thus achieves the local
maximum. It remains to show that the maximum is positive. It is equivalent to showing
that p̃(x∗

2`)−c > 0. The inequality reduces to c < Ã2

4ã , which is assured by Assumption 1.
For the second part of the proof, we first derive the optimal strategy when the lessor

excludes group-2 consumers. In what follows, we will show that when the demand is
static, the lessor’s production in period 2 is zero so that x2` = x1`. For any leasing
quantity x1` in period 1, the subsequent optimal strategy in period 2 depends on x1`.
Thus, we will derive the optimum in two stages. Define x′

1 ≡ A1
3a1

+ 1
3

√
(A1

a1
)2 − 3c

a1
. We

consider the following three cases. For x1` ≤ x′
1, the optimal strategy corresponding with

x1` is x2` = x′
1. For x1` ≥ 2A1

3a1
, the optimal x2` is 2A1

3a1
. Finally, for x1` ∈ (x′

1,
2A1
3a1

), the
optimal x2` is equal to x1`. One observes that π` is maximized at x1` = x2` = x′

1 if x1`

is confined to be weakly lower than x′
1. Similarly, π` is maximized at x1` = x2` = 2A1

3a1
if

x1` ≥ 2A1
3a1

. One concludes that x1` = x2` is necessary to maximize π` when the demand
does not change over time. In short, the lessor’s problem in this scenario is to maximize
(2p1(x)− c) · x. Note that the solution lies between x′

1 and 2A1
3a1

. Comparing the profits
and π(x∗

1`, x
∗
2`), one requires

p1(x∗
1`) · x∗

1` + (p̃(x∗
2`)− c) · x∗

2` ≥ max
x

(2p1(x)− c) · x (A6)

for (A5) to be the solution.
Define x′

` ≡ arg maxx(2p1(x) − c) · x. A sufficient condition for (A6) to hold is to
assume that p1(x′

`) ≤ Ã2

4ã , or equivalently, x′
` ≥ x̃1. The left hand side is the price for the

alternative strategy, while the right hand side is the local maximum of the second hump
of p̃(x). Given this inequality, (A6) would hold because there exists a strategy that is
more profitable than (x′

`, x
′
`). Specifically, by choosing x′

2` such that p̃(x′
2`) = p1(x′

`),
(x′

`, x
′
2`) is more profitable than (x′

`, x
′
`). Note that x′

2` is well-defined if p1(x′
`) ≤ Ã2

4ã .
The condition (A6) involves the parameters such as A′

gs, a′gs, and c. In the special

case with zero marginal cost, it reduces to Ã3

ã2 ≥ A3
1

a2
1
. ‖

Proofs of Proposition 2 and Proposition 3
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The proof is analogous to the previous proof. We first derive (x∗
1S , x∗

2S) by maximiz-
ing πS over x2S ≥ Ã

2ã . Then we characterize the conditions under which this solution
dominates those that exclude group-2 consumers.

Given the time-consistency constraint, for any x1S , the seller has to maximize her
profits in period 2 as follows.

x∗
2(x1S) ≡ arg max

x2S

(Ãx2S − ãx2
2S − c)(x2S − x1S)

=
1
3

(
Ã

ã
+ x1S

)
+

1
3

√(
Ã

ã

)2

−
(

Ã

ã

)
x1S + x2

1S −
3c

ã
.

(A7)

Note that the above formulation for x∗
2(x1S) is the larger root to the quadratic first order

condition. For the above objective function, the coefficient of x3
2S is negative (−ã), and

thus (A7) achieves the local maximum. The period-2 profits attained by x∗
2(x1S) are

positive if and only if the objective function as a polynomial of x2S has three roots, or
equivalently, (Ãx2S − ãx2

2S − c) has two roots. Therefore, we require that Ã2 − 4ãc > 0
(or, Assumption 1: c < Ã2

4ã ), which implies p̃(x∗
2(x1S)) > c ∀x1S , and x∗

2(x1S) > Ã
2ã .

Given x∗
2(x1S), one derives (x∗

1S , x∗
2S) by solving the following first order conditions

(see (8) and (9)):

MR1(x1S) = 2A1x1S − 3a1x
2
1S = −∂(Ãx∗

2(x1S)− ãx∗
2(x1S)2)

∂x1S
x1S , (A8)

MR2(x2S) = 2Ãx2S − 3ãx2
2S = c + (Ã− 2ãx2S)x1S . (A9)

Note that the right hand side of (A8) is positive, given that x∗
2(x1S) > Ã

2ã and dx∗2(x1S)
dx1S

>
0. Comparing (A8) with (A3), one concludes that x∗

1S < x∗
1` since the marginal revenue

MR1 is decreasing for the relevant range. Similarly, the right hand side of (A9) is less
than c, and hence x∗

2S > x∗
2`.

Similar to the leasing scenario, an alternative strategy for the seller is to sell to
group-1 consumers exclusively. The following equation system is parallel to (A7)—(A9),
and characterizes the alternative solution.

x′
2(x1S) =

1
3

(
A1

a1
+ x1S

)
+

1
3

√(
A1

a1

)2

−
(

A1

a1

)
x1S + x2

1S −
3c

a1
,

2A1x1S − 3a1x
2
1S = −∂(A1x

′
2(x1S)− a1x

′
2(x1S)2)

∂x1S
x1S , (A10)

2A1x2S − 3a1x
2
2S = c + (A1 − 2a1x2S)x1S .

Let (x′
1S , x′

2S) denote the solution to (A10). For (x∗
1S , x∗

2S) to maximize the seller’s
profits, it is sufficient to require27

p1(x∗
1S) · x∗

1S + (p̃(x∗
2S)− c) · x∗

2S ≥ p1(x′
1S) · x′

1S + (p1(x′
2S)− c) · x′

2S . (A11)

The condition would hold if, for example, Ã2

4ã ≥ A2
1

4a1
.

The comparison of profits under different regimes is straightforward. Note that
(x∗

1S , x∗
2S) is feasible to the lessor, and thus the lessor’s profits must be higher than the

seller’s.
27It is possible that x′

2S is greater than x̃1, and hence not feasible according to (A2).
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4ã

�

MC

�
���

MR2S(·; x∗1S)

��
��

MR2S(·; x̂1)

s

��:
x∗1S

s

6
x∗1` = xp

1`

sp̂

Xy
xp
1S = x̂1

s
r

x∗2`

s
r
6

x∗2S

s
r
xp
2S

s
xp
2` = x̂2

Figure 4: Optimal Dynamic Pricing

A graphical solution is provided in Figure 4. One observes that MR1(x) (MR2(x))
intersects with p1(x) (p̃(x)) at x = A1

2a1

(
Ã
2ã

)
and 0,28 and that the marginal revenue

function for the seller, MR2S(x;x1) ≡ d(p̃(x)(x−x1))/dx, intersects with p̃(x) at x = Ã
2ã

and x1.29 To obtain the solution to (8) and (9), one first derives x∗
1S from (8), as the

condition depends only on x1S . Note that the marginal revenue MR1 evaluated at x∗
1S is

positive, as shown in Figure 4. Given x∗
1S , one can then plot the marginal revenue curve

MR2S(x;x∗
1S) for the second period. The first order condition (9) can be rewritten as

MR2S(x2S ;x1S) = c. Therefore, the intersection of the marginal revenue MR2S(·;x∗
1S)

and the marginal cost MC = c determines the aggregate sales x = x∗
2S . ‖

Proof of Proposition 4
Recall that π` = p1(x1`) ·x1`+(p̃(x2`)−c) ·x2` when x2` ≥ x1`. When the monopolist

lessor has to take into account the penetration-pricing constraint, x2` ∈ [ Ã
2ã , x̂2) is no

longer feasible. We are more interested in the case when the constraint is binding, and
thus we assume that x∗

2` < x̂2 as in Assumption 4. It follows that π` is decreasing over
x2` ∈ [x̂2,

Ã
ã ], and hence is maximized at x2` = x̂2 for x2` in that interval. Meanwhile, the

penetration-pricing constraint does not affect the lessor’s strategy in period 1. Hence,
(x∗

1`, x̂2) is a plausible solution if x2` is limited to [x̂2,
Ã
ã ].

The lessor’s alternative strategy is to exclude group-2 consumers in period 2 and
select x2` from [ A1

2a1
, x̂1). As shown in the proof of Proposition 1, one obtains another

candidate for the solution by maximizing (2p1(x)− c) · x. For (x∗
1`, x̂2) to maximize π`,

one requires
p1(x∗

1`) · x∗
1` + (p̃(x̂2)− c) · x̂2 ≥ max

x
(2p1(x)− c) · x, (A12)

which is specified in Assumption 5. In sum, Assumptions 4 and 5 ensure that (xp
1`, x

p
2`) =

(x∗
1`, x̂2) maximizes the lessor’s profits under the penetration-pricing constraint. ‖

Proof of Proposition 5

28MR1(x) = p1(x) implies p′1(x) · x = 0, which in turn implies either x = A1
2a1

or x = 0.

29MR2S(x; x1) = p̃(x) implies p̃′(x)(x− x1) = 0, which in turn implies either x = Ã
2ã

or x = x1.
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Recall that (x∗
1S , x∗

2S) maximizes πS in absence of penetration-pricing constraints,
and x∗

2(x1S) = arg maxx2S
(p̃(x2S)−c)(x2S−x1S). We want to characterize the conditions

under which (x̂1, x
∗
2(x̂1)) maximizes xp

S . Note that x∗
2(x1S) is increasing in x1S given

Assumption 1. Thus, Assumption 7 (x∗
2(x̂1) < x̂2) implies x∗

2(x1S) < x̂2, ∀x1S < x̂1.
Consequently, x∗

2(x1S) is not feasible for any x1S < x̂1. In particular, x∗
2S = x∗

2(x
∗
1S)

is not feasible as x∗
1S < x̂1, which is implied by Assumption 6 (x∗

1` < x̂1). In sum,
Assumptions 6 and 7 implies a binding penetration-pricing constraint.

To solve the maximization problem in (11), we first derive xp
2(x1S) that maximizes the

seller’s period-2 profits subject to the penetration-pricing constraint. For x1S ≥ x̂1, the
constraint is not binding, and hence xp

2(x1S) = x∗
2(x1S). Meanwhile, for x1S < x̂1, the

constraint limits the feasible x′
2Ss to either [x1S , x̂1) or [x̂2,

Ã
ã ]. For the latter interval, the

seller’s period-2 profits are maximized at x̂2 since x∗
2(x1S) < x̂2. For the former interval,

it is maximized at min(x′
2(x1S), x̂1), where x′

2(x1S) = arg max(p1(x2S)− c)(x2S − x1S)
maximizes period-2 profits when the seller excludes group-2 consumers (see the proof of
Proposition 2). Apparently, x2S = x̂1 is less profitable than x2S = x̂2 as the prices are
the same. One concludes that xp

2(x1S) is either x̂2 or x′
2(x1S) for x1S < x̂1.

Given xp
2(x1S), one obtains three candidates for (xp

1S , xp
2S) that maximizes πp

S . For
x1S ≥ x̂1, xp

2(x1S) = x∗
2(x1S). One can show that ∂2πp

S/∂x2
1S is negative. Therefore, πp

S

is decreasing over x1S ∈ [x̂1,
A1
a1

] as x̂1 > x∗
1S , and thus πp

S is maximized at (x̂1, x
∗
2(x̂1))

if x1S is limited to [x̂1,
A1
a1

].
For x1S < x̂1, xp

2(x1S) is equal to either x̂2 or x′
2(x1S). In the former case, πp

S is
maximized at (x∗

1`, x̂2) because xp
2(x1S) is a constant and independent of x1S . In the

latter case, πp
S is maximized at (x′

1S , x′
2S) that solves (A10). Assumption 5 implies

that (x∗
1`, x̂2) generates higher profits than (x′

`, x
′
`) (see (A12)), which in turn dominates

(x′
1S , x′

2S). In sum, (xp
1S , xp

2S) is either (x̂1, x
∗
2(x̂1)) or (x∗

1`, x̂2).
A graphical solution is illustrated in Figure 4. The monopolist lessor has to set the

period-2 price at p̂ due to the penetration-pricing constraint, and hence xp
2` = x̂2. For the

monopolist seller, xp
1S is equal to x̂1 in order to penetrate the market.30 Consequently,

xp
2S is determined by intersecting MC = c with the parabola that passes through (x̂1, p̂)

and ( Ã
2ã , Ã2

4ã ). ‖

Proof of Proposition 8
We first show that y∗S < y∗. Note that x∗

2(x1S , y) is given by

1
3

(
Ã

ã
+ x1S

)
+

1
3

√(
Ã

ã

)2

−
(

Ã

ã

)
x1S + x2

1S −
3(c− g(y))

ã
,

and one obtains ∂x∗
2(x1S , y)/∂y accordingly. The last condition of (15) can then be

reduced to the following.

1 = g′(y)

(
x2S +

( Ã
2ã − x2S)x1S√

( Ã
ã )2 − ( Ã

ã )x1S + x2
1S −

3(c−g(y))
ã

)
. (A13)

Substituting x2S with x∗
2(x1S , y) further simplifies the above condition. Comparing the

right hand side of (A13) with

g′(y)x∗
` = g′(y)

(
Ã

3ã
+

1
3

√(
Ã

ã

)2

− 3(c− g(y))
ã

)
,

30In Figure 4, we assume that πp
S(x̂1, x∗

2(x̂1)) > πp
S(x∗

1`, x̂2).
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one concludes that the former is less than the later, and hence y∗S < y∗.
To show that yp

S < y∗S , note that the right hand side of (A13) after substitution is a
function of x1S and y. Furthermore, the partial derivative of this function with respect
to x1S is negative. It follows that a higher first-period production corresponds to a lower
R&D investment. Since xp

1S = x̂1 is independent of y and greater than x∗
1S , one obtains

yp
S < y∗S . ‖
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