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Abstract

Existing economic theories of the evolution of altruism between kinship mem-

bers usually emphasize the role that altruism can play in facilitating coor-

dination among kin to achieve an otherwise unachievable efficient (in terms

of fitness) equilibrium. In this paper, we explore the background environ-

ment against which backward altruism was likely to appear. The instinct

of sustaining one’s own life drives one to save for one’s old age. However,

since social mechanisms were not sophisticated in a primitive society, the

rate of return on savings was not high. As a consequence, the resources that

remain for the children might be limited. Suppose a cultural menchanism or

a mutation caused an individual to become backward-altruistic. She would

then expect her children to adopt the same attitude as herself, and take care

of her in her old age. With this expectation in mind, she would avoid inef-

ficient savings voluntarily so that her children could obtain more resources.

Thus, backward altruism in our model does not play a role of coordination,

but helps parents to avoid inefficient resource disposition. We analyze the

possible appearance of backward altruism as the rate of return on savings

changes.
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1 Introduction

Biologist W. D. Hamilton made two distinct lines of contribution to the

theory of evolution of human behavior.1 The first (1966) concerns the evolu-

tionary impact of changes in age-specific mortality; in particular, it is proved

that the if a mutation decreases the mortality of post-reproduction ages,

then it should not have any positive selection effect. Hamilton’s second line

of contribution (1964 a,b) concerns the evolution of altruism among close

relatives; it explains when and why certain altruistic behavior can arise as

an outcome of evolutionary dynamics among kinship members.2

One subtle tension between these two lines of contribution by Hamilton

is related to the existence of “backward altruism,” by which we mean the

altruism (filial piety) from reproductive children to their post-reproductive

parent. Specifically, transferring goods from the young child to the old parent

obviously increases the former’s mortality while reducing that of the latter.

Since the young child is still reproductive and the old parent is not, according

to Hamilton (1966), such an altruism-supported backward transfer is unlikely

to be selected. This is the subtle tension we just referred to.

There have been several hypotheses in the literature that try to explain

the appearance of kinship altruism. Bergstrom (1995) shows that in a prison-

ers’ dilemma game, as long as the average payoff of being cooperative is large

(relative to the payoff corresponding to the selfish strategy), then a cooper-

ative mutant can survive or even dominate when these games are repeatedly
1The contribution itself is not restricted to the human species, but here we only em-

phasize its implications for human beings.
2Several economists have also contributed to the literature on the evolution of human

preferences. See for instance Jack Hirshleifer (1978), Robert Frank (1988), Alan R. Rogers

(1994), Ted Bergstrom (1995), and Oded Stark (1995); we shall come back to some of them

later. Ingeman Hansson and Charles Stuart (1990) and Arthur Robson (1992) had some

discussion concerning the evolution of emotion and risk attitude.
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played by siblings. Oded Stark (1995) shows that if a young person’s filial

attitude toward her old parents can influence her own children’s attitude

toward herself in the future, then she will have an incentive to provide back-

ward transfers, just to demonstrate to her kids how they are expected to

behave when they grow up.3 The common role of altruism in such litera-

ture is to coordinate or facilitate kin agents to adopt a mutually-beneficial

strategy combination, which would not have been chosen otherwise.

If the existence of post-reproductive parents can benefit the children di-

rectly or indirectly, then it is not at all surprising to observe the appearance

of backward altruism, as was shown in Lee (2003). But strictly speaking,

being nice to people who can potentially help us is not really altruistic; al-

truism is better captured by the scenario of being nice to people who are

unable to help us back. In human history and in this day and age, indeed

we observe much backward altruism toward weak and post-reproductive par-

ents, who are unable to assist their children in various aspects, and appear

to be “useless” in terms of selection. The purpose of this paper is to investi-

gate the possible appearance of backward altruism when parents are neither

productive nor reproductive. It may not be appropriate to dichotomize the

old parents into useless and useful types, but it is theoretically important

to explore the possible appearance of backward altruism when parents are

unable to provide downward service or transfer to their children.

There is a difference between the case of parents who are assumed useful
3There are also some economic theories of kinship transfers instead of kinship altruism.

Gary Becker (1976) argues that, as long as the parent provides net transfers to her chil-

dren, the children’s backward transfers may actually be a strategic move of showing their

superficial obedience, with the expectation that their parent will eventually leave them

more net bequests. This is known as “the rotten kid hypothesis”. Hillard Kaplan (1994)

and Ronald Lee (2003) show that if old parents, although at their post-reproductive ages,

can provide familial support such as helping take care of the grandchildren, then backward

transfers may still be consistent with a positive selection.
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and the case of those who are assumed useless. When parents are useful in

terms of selection, their survival is a desirable status. The only reason that

their children may not support them is some kind of coordination failure,

either due to obstacles imbedded in a prisoners’ dilemma (Bergstrom 1995),

or due to the lack of commitment by future generations (Stark 1995). In

either case, backward altruism often serves the purpose of enhancing the

(subjective) reward of adopting the cooperative strategy. But when parents

are useless, supporting the old no longer seems to be a desirable thing worth

coordinating. Then the question is: might backward altruism arise for other

reasons? Analyzing this scenario helps us derive the objective environment

against which backward altruism is likely to appear. These conditions then

may help historians or anthropologists infer the transfer structure of a given

ancient society.

To make our discussion compatible with the conceptual scenario of Hamil-

ton’s, we consider an age-specific life structure with a condensed two-age life

periods: young and old. Suppose people can produce goods and reproduce

offspring only in their young age. If a young person has the instinct to sur-

vive to old age, then she has to save for her old age. In a primitive society,

however, there were no efficient ways of savings. These ineffective savings

crowded out the consumption of children, which in turn diminished their sur-

vival probability. If, however, an individual expected her children to support

her old age’s necessary consumption, then she did not have to save as much,

and as a result the the resources that would otherwise have gone into sav-

ings could be used instead to support more of the children’s survival, which

obviously would improve selection. In short, out theory predicts that the

appearance of backward altruism may be related to the rate of return or effi-

ciency of the saving mechanism. Evidently, the coordination between kinship

members, be it softwired culturally or hardwired genetically, was still impor-

tant for the appearance of backward altruism in a primitive society. Thus,
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the theory proposed here is complementary to that in Bergstrom (1995) or

Stark (1995).

The remainder of this paper is arranged as follows. In section 2 we intro-

duce the formal model, and derive the dynamic decision specifications of in-

dividuals and the corresponding selection criterion. Sections 3 interprets the

literature of backward transfers using our model, and explains the distinction

embodied in our approach. Sections 4 and 5 present the main propositions

and explain under what conditions backward altruism is likely to appear.

Section 6 uses some numerical evidence to provide us with a more specific

understanding of the advantage of backward altruism. The seventh section

relaxes our assumptions and generalizes the analysis along some directions.

The final section concludes.

2 The Model

Let us consider a one-sex overlapping generation model, in which each person

lives either 1 or 2 periods. The first period is called young, and the second is

coined old.4 To facilitate our presentation, we always write “she” and “her”

as the subject and object.

2.1 A Simplified Life Structure

At the beginning of a person’s young age, she has a natural fertility of bearing

n̄ children. For a typical individual, the number of her children that can

survive to the beginning of their own young life period may be any non-

negative integer (ñ) less than or equal to n̄. For technical convenience, we

assume that there are only two possible realizations of ñ, low and high,
4Note that since there is only one overlapping life period, the grandparent, parent and

child never coexist in the same period, and hence in our model the preference-shaping

mechanism of Stark (1995) cannot be operative by assumption.
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respectively denoted as ñ = nl and ñ = nh. To avoid notational complexity,

we simply assume nl = 0 and nh ≡ n.

The probability of having n (instead of zero) children surviving to their

young age, denoted p(.), depends on their nutrition condition as well as their

parent’s possible support to the young. We assume that

p =
{

p(c), if the old parent is dead;

µp(c), if the old parent is alive,
(1)

where µ ≥ 1 characterizes the possible help of old parents toward the sur-

vival of children, and p(c) is an increasing and concave function of family

consumption c, satisfying

Assumption 1: p(0) = 0, p(c) ≤ 1 for all c, p′(c) > 0, and p′′(c) < 0.

Clearly, if µ = 1 in (1), then the post-reproductive old parent is “useless”.

We shall come back to its discussion later.

The parent may keep some savings for the consumption of her old age. If

co is available for her old-age consumption, then the probability that she sur-

vives her old (second) period of life is p2(co). Because all concavity needed for

an interior maximization has been provided by p(c) according to Assumption

1, to simplify our analysis we shall assume that p2 is linear in the relevant

range:

Assumption 2: p2(co) = 0 if co ≤ 0; p2(co) = aco if 0 < co ≤ b/a; and

p2(co) = b if b/a < co.

2.2 Two Kinds of Dynastic Utility Functions

As with all species, people are assumed to have forward altruism toward their

offspring, in the sense that they care about the survival of their offspring.

We therefore have a lineage “dynasty” similar to the one described in Laitner

(1979) and Chu (1991). Suppose every person attaches a constant utility k to
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all current and future surviving offspring in the lineage. Because we have an

overlapping generation structure, in each period there are family members of

two different ages. We assume that the old are relatively weak to make any

resource allocation decisions; hence all allocations are dictated by the young.

For a young individual with forward altruism, her dynasty utility in period

0 is assumed to have the following form:

U = k + δp2(co)k +
∞
∑

t=1
δtNtPr(Nt)[k + δp2(ct)k], (2)

where k is the utility of surviving, δ < 1 is the discount rate, co is the

consumption she prepares for her own old age, p2(ct) is the probability that

the individual can survive her own old age given the period-t consumption ct,

and Pr(Nt) is the probability that the individual has Nt young-age surviving

descendants in period t.5 In the above expression, the first two terms are the

utility of the decision maker herself, and the summation term captures the

utility from the survival of all future descendants.6

An alternative preference structure is that, other than the natural forward

altruism specified in (2), each young individual also has “backward altruism”,
5Since our purpose is to “explain” the origin of backward altruism, it is better that we

do not “assume” other unreasonable preferences to start with. It seems then necessary

for us to explain why in (2) there is a time preference δ < 1. Fortunately, the literature

has done some of the work. Rogers (1994) argues that if preferences have been shaped

by natural selection, then individuals should be indifferent to choices that have the same

fitness index. He shows that a time preference factor consistent with biological theories is

about 2 percent per year. See also Hansson and Stuart (1990).
6Here we do not assume any utility of consumption for the following three reasons:

First, it increases notation complexity without providing additional insight. Second, for

most periods in the primitive environment, as the Malthusian theory describes, human

beings were indeed fighting for their survival. Third, if we allow variable consumptions,

then there will be variable savings, which in turn imply variable initial incomes for children.

In that case we will have income as a continuous state variable. The corresponding Euler-

Lotka equation will then be integrated, in addition to age, over variable incomes, which is

unnecessarily complicated for our purpose.

6



in the sense that she cares about the survival of her old parent. In this case,

the utility structure specified in (2) should be revised as

U = βp2(m)k + k + δp2(co)k +
∞
∑

t=1
δtNtPr(Nt)[βp2(mt)k + k + δp2(ct)k], (3)

where the first term indicates her utility from seeing her parent surviving

her second period of life, m is the consumption of the currently old parent,

mt is the consumption of the period-t decision maker’s parent, and β is the

backward-altruism parameter assigned to the parent. Other terms in (3) are

the same as those in (2). Evidently, if β = 0, then (3) degenerates to (2).7

2.3 Budget Constraint and Income Dynamics

As mentioned above, the young individual is the one who makes the resource

allocation decision. If she has y amount of income to start with, then she

has to divide it into consumption by family members (c), savings for her

own future (s), and filial support (m) due to possible backward altruism. In

general, the more family consumption there is, the better nutrition children

will have, and hence the larger the survival probability the children face.

This is why we propose Assumption 1 and write p(.) as p(c).

Suppose that for every unit of food saved, there will be η units for next-

period consumption. For a young decision maker, her budget constraint is

c + s + m ≤ y. (4)

The young individual should maximize (2) or (3) subject to the constraint

(4).8

7Suppose a child and a parent are mutually altruistic toward each other. Let the

former’s utility be U = u + a1V and the latter’s utility be V = v + a2U . The reduced

form looks like U = (u + a1v)/(1− a1a2). In our equation (3), the parameter of backward

altruism, β, can be treated as a1/(1− a1a2). See Bergstrom (1997) for more details of the

discussion.
8In reality, food consumption for the young and the old may be chosen differently, and
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We now follow Lee (2003) and specify how the income dynamics are

determined. Suppose the land size is A and the young population in the

society during period t is Pt. The total output in the primitive society is

f(Pt, A). Assume that all young workers share the output equally, then each

of them gets wt = f(Pt, A)/Pt of return. In a stationary state the population

size is fixed,9 so that wt will be a constant w. We shall first concentrate on

this stationary state, and then later come back to the more general case with

variable wt.

2.4 The Euler-Lotka Selection Parameter

Since there are only two life periods in our model, we have a simple discrete

version of birth identity:

Bt =
2

∑

a=1
Bt−alama,

where la is the probability an individual can survive to age a, and ma is the

average number of births for a person of age a. Because we assume that

people are reproductive only in their first period of life and that the number

of surviving children is n with probability p(c), the above equation can be

further simplified as

Bt = Bt−1np(c).

Substituting Bt = B0ert into the expression above presents the following

Euler-Lotka equation:

er = np(c). (5)

According to Hamilton (1966) and Rose (1991), a behavior or a mutation

is said to be positively selected if it corresponds to a larger parameter r.
hence the young may have a wider decision domain. However, this concern complicates the

analytical structure without warranting any further insight of inter-dependent utilities.
9There was nearly no population growth in the primitive society over a long period of

human history. See Robson and Kaplan (2003).
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Equation (5) clearly says that this positive selection can happen only if the

corresponding c is larger.

3 An Interpretation of the Literature

As we mentioned in the previous section, if µ is significantly larger than one

in (1), then the old parent’s survival may help the selection. But even in

this case, the children might not want to support their helpful old parents

for various reasons. Below we shall provide a typical cause and relate it to

the existing literature.

Suppose the parent needs z amount of resource to survive, which renders

each child an extra burden z/n ≡ ∆x. When each child contributes this

resource, her optimization problem specified in section 2 changes. Suppose it

costs her c ≡ ∆r/∆x in terms of fitness, where r is the Euler-Lotka parameter

in (5). The survival of the parent increases the probability (by ∆µ ≡ µ−1) of

live births, which is assumed to correspond to a benefit b ≡ ∆r/∆µ in terms

of fitness. If parents are helpful, we know that b > c. However, some of the

parent’s help to her n children may be in the form of wisdom or experience,

which is a public good. Any individual child may have an incentive to free-

ride on her siblings by not-supporting the parent while “overhearing” the

wisdom told. This defection strategy benefits the child herself at the cost of

her siblings.

As such, the problem among siblings reduces to the problem of coordi-

nation failure in a prisoners’ dilemma game played by siblings, just like the

one described in Bergstrom (1995). He showed that as long as the average

payoff of being coorperative is large (relative to the payoff corresponding

to the selfish strategy), a coorperative mutant can survive or even domi-

nate. Intuitively, what backward altruism can do in this case is to raise the

subjective payoffs corresponding to the “support-the-parent” (coorperative)
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strategy, and hence facilitate the realization of the cooperative equilibrium.

Since parents’ survival is beneficial to selection by assumption (b > c), the

backward altruism in the context of being cooperative will be selected.

An implicit feature in the above example is the presumption that old

parents are “useful” to selection and should be supported, but it may not

be the case in general. If the ancient environment was so tough that most

species die before the end of their reproductive ages, then they all have to

fight for their survival to be selected. A long enough evolution would breed

in nearly all species the tendency of fighting for their survival. After the

exogenous environment gradually improves, even when the survival of the

post-reproductive old may not be helpful to selection, the instinct of fight-

ing for survival does not seem to disappear easily, as borne out by human

experience and the experience of other species. This is consistent with the

evolutionary pattern described in Charlesworth (1994 p.187).10 But when

“useless” people fight to survive, they crowd out resources of other individ-

uals. We shall argue that, other than facilitating the coordination between

siblings or across generations, backward altruism may also help avoid the

adoption of inefficient strategies by the old. To highlight our point, in what

follows we shall consider the extreme case where old parents are completely

useless in the sense that they are not only post-reproductive but also no

longer provide any downward transfers to their children. As such, we force

ourselves to find out the possible objective causes that may push the children

to support their old parents.
10For economists, it is not surprising to have a preference structure not entirely consis-

tent with genetic fitness. Indeed, when people are assumed to maximize their “utility”

function, almost by definition the utility index does not have to be related to genetic fit-

ness. When demographic economists talk about “quantity-quality tradeoffs” of children,

there seems to be little reason to believe that the quality improvement in children can

compensate, in terms of the Euler-Lotka parameter, the drop in the quantity of children.
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4 Should One Save for One’s Old Age?

From now on we shall consider the case with µ = 1 in (1), meaning that

post-reproductive old parents are useless to their children. In this section we

shall separate our discussion into two cases: without backward altruism and

with backward altruism. Our strategy is to derive conditions under which

parents’ optimal savings are zero in the latter case and positive in the former

case. Under these conditions, the role of children as “refrigerators” (efficient

means of preserving resources other than savings) in the case with backward

altruism is most evident, and the potential advantage of backward altruism

is intuitively clear. Later we shall derive the exact parameter range that

supports the selection of backward altruism.

4.1 Without Backward Altruism: Shall Save

For the preference structure with only forward altruism, as described in (2),

it can be easily seen that the young individual’s problem is characterized by

the following Bellman equation:11

v(w) = max
c+s≤w

k + δp2(ηs)k + δ{n · p(c) + 0 · [1− p(c)]}v(w)

= max
0≤s≤w

k + δp2(ηs)k + δnp(w − s)v(w) ≡ max
0≤s≤w

φ(s), (6)

where φ is the maximand on the right-hand side of (6). The meaning of the

above expression is clear: the decision maker takes whatever her children can

achieve [v(w)] as given and then maximizes the sum of her own utility and

the expected utility from all her surviving children. For (6) to be well defined,

economists often make the following assumption, of which the interpretation

is given below.

Assumption 3: δn < 1.
11Concerning the logic behind the Bellman principle, see for instance Sheldon Ross

(1992) for details.
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Because the random variable n is discrete (countable) and the v(.) func-

tion is independent of n, the measurability of the product set spanned by c,

s, and n is trivially true. Furthermore, k + βp2(ηs)k is evidently positive,

bounded, and continuous in s, and Assumption 3 warrants the boundedness

of the value function. Applying Theorem 9.2 of Stokey and Lucas (1989 pp.

246-7), we know that expression (6) does characterize the optimal solution

of the agent under Assumptions 1-3. Note that although v is not affected by

the decision variables c and s, it is indeed a function of parameters such as

η and δ. We shall use this property in our proof in the Appendix.

Now we can establish our first Proposition:

Proposition 1: Suppose Assumptions 1-3 hold. As long as co has not

reached the upper bound b/a in Assumption 1, the young individual’s op-

timal savings are positive in the scenario without backward altruism if and

only if
(

aη − np′(w)
1− δnp(w)

)

> 0.

The proof is given in Appendix 1. Intuitively, the larger aη is, the more

effective it will be for the individual to save for her own old-age support. The

larger np′/[1− δp(w)] is, the more valuable will be the expenditure on family

consumption. Proposition 1 simply spells out the exact relationship of the

above tradeoff.

4.2 With Backward Altruism: Shall Not Save

We next come to the case where the preference structure has forward as well

as backward altruism, as described in (3). The young individual’s problem,

given that her old parent has s0 savings, is characterized by the Bellman

equation below:

v(w, s0) = max
c+s+m≤w

k + βp2(ηs0 + nm)k + δnp(c)v(w, s) + δ[1− p(c)]p2(ηs)k
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= max
c,s

k + βp2(ηs0 + n(w − c− s))k

+δnp(c)v(w, s) + δ[1− p(c)]p2(ηs)k ≡ max
c,s

ζ(s, c). (7)

In the above expression, the first term is the utility of the young decision

maker for her being able to survive, and the second term is her utility of seeing

her old parent survive, of which the probability is p2(ηs+nm). The argument

in p2(.) has a term nm other than the old parent’s remaining savings ηs, if

each of the n now-surviving children donates m to the parent due to their

backward altruism. The third term is the utility from future offspring; the v

function has a second argument s because the state variable now includes the

savings kept by the surviving parent.12 If the decision maker has n surviving

children in the next period, which has probability p(c), then she will enjoy

indirect utility δnv(w, s).13 The final term will be realized only if the decision

maker does not have any surviving children, which has probability [1− p(c)].

In that case, she will count on her own savings in her old age and have p2(ηs)

probability of survival. From (7), we can establish:

Proposition 2: Suppose Assumptions 1-3 hold. As long as co has not

reached the upper bound b/a in Assumption 1, s and m cannot be positive

at the same time. Furthermore, if δη < min{nβ, 1}, then the optimal saving

(filial support) of an agent with backward altruism is equal to (larger than)

zero. If δη > max{nβ, 1}, then the optimal saving (filial support) is larger

than (equal to) zero.

The proof of proposition 2 is given in Appendix 2. Because we have

assumed a linear function for p2(.), it is not surprising that m and s, which

are both means of preparing old-age consumption, cannot coexist, for one of
12Term s does not enter the indirect utility v of (6) in the case without backward altruism

because children do not care how much the surviving parents save.
13Note that m ≥ 0 warrants that the parent will do better by relying on her children

(than living alone), hence (7) indeed characterizes her optimal solution in terms of residing

status.
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the two must have a larger marginal return. The second part of Proposition 2

tells us that if backward altruism (β) is strong enough, or if the return rate on

savings (η) is small enough, then individuals would rather replace savings by

other spendings. Intuitively, with strong backward altruism, people’s old-age

support is expected to be supplied by children, and hence it is unnecessary

to use the means of ineffective savings to secure their old age. The only case

of being insecure is when the person has no surviving children, which is an

event with probability p(c). And that is why we vary the values of p(c) in

our calculation in Appendix 2 to obtain our final parameter condition.

4.3 The Critical Range of η

Combining Propositions 1 and 2, we obtain a range of parameters in which

an individual will save without backward altruism and will not save with

backward altruism. The range [ω1, ω2] is denoted R:

ω1 ≡
np′(w)

a[1− δnp(w)]
< η <

min{1, nβ}
δ

≡ ω2. [R] (8)

Expression (8) is important for our later analytical discussion, because when

η is in range R, the unsaved resources under backward altruism can be used to

feed the young children in order to increase the number of future descendants.

In this sense, children become the refrigerator for their parents, which helps

the latter “preserve” the food.

In (8), if η is very small, then the rate of return to savings is so low that

the individual will not save anyway, even if there is no backward altruism. In

this case, children will have no incentive to support the parents who would

not dispose their resources inefficiently. Thus, backward altruism cannot be

supported in this scenario. If η is very large, then savings are so rewarding

that the individual will never want to give up this channel of resource dispo-

sition, even if there is backward altruism. In this case, the strategy of using

14



children as refrigerators is no longer efficient, the optimal filial feedback (m)

is zero, and backward altruism cannot be supported either. Expression (8)

says that when the rate of return on savings is somewhere in between the

two extremes, backward altruism is more likely to appear.

5 Comparing the Two Regimes in [R]

We showed in the previous discussion that expression (8) characterizes a

possible region for backward altruism to be sustained. Now we propose to

study when backward altruism will really arise.

Suppose expression (8) holds. As we showed in section 4, the optimal

savings in (7) are always zero, so that the variable s and s0 in the value

function can be dropped. As such, since p2(0) = 0 by Assumption 2, we can

rewrite (7) as

v(w) = max
c+m≤w

k + βp2(nm)k + δnp(c)v(w). (9)

Comparing (9) with (6), we find that they are extremely similar: if we rede-

fine the control variable m in (9) as s, and let parameter β equal δ and n in

p2(.) equal η, then (6) and (9) are exactly the same. The similarity between

(6) and (9) allows us to compare the size of optimal consumptions derived.

Specifically, we write an auxiliary equation which is a variation of (6) and

(9):

v(w) = max
m≤w

{

k + αp2(qm)k + δnp(w −m)v(w)
}

≡ max
m≤w

ψ(m). (10)

It is easy to see that (9) can be approached from (10) by letting α go to β and

q go to n. Alternatively, if α = δ and q = η, then we have the original state

of (6). As α and q increase, we want to establish the comparative statics

with respect to the optimal consumption c.
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The first-order condition of (10) is

∂ψ
∂m

= αaqk − δnp′∗v(w) ≡ ∆m = 0, (11)

where p′∗ is the short-hand writing of p′(w −m∗). Assumption 1 guarantees

that the second-order condition of maximizing ψ is satisfied. We prove in

Appendix 3 the following two Propositions.

Proposition 3: Suppose Assumptions 1-3 hold. If expression (8) is satisfied

and (10) has an interior solution, then the sign of ∂m
∂α is positive, meaning

that the optimal consumption (w −m∗) decreases as α increases.

Proposition 4: Suppose Assumptions 1-3 hold. If expression (8) is satisfied

and (10) has an interior solution, then the sign of ∂m
∂q is positive, meaning

that the optimal consumption (w −m∗) decreases as q increases.

Proposition 3 is intuitively clear: an increase in the backward altruism

parameter increases a person’s intention to leave more to the old parent,

and hence the remaining consumption must be reduced. The interpretation

of proposition 4 is similar, and is therefore omitted. Propositions 3 and 4

combined tell us that the optimal c∗ decreases when α or q increases. As such,

we can draw an iso-consumption line, as shown by l1 in Figure 1, which must

be negatively-sloped according to Propositions 3 and 4. To the northeast

(southwest) of l1, the consumption will decrease (increase).

Suppose the original (α0, q0) = (δ, η) combination is at point A in Figure

1. If we consider a new scenario with (α1, q1) = (β, n), we want to know

where the location of (β, n) is that may allow itself to be selected. Let the

hyperbola passing through A be line l2. From (8) we know that δη < nβ

must hold in range R, so that the (β, n) point should be on the northeast

direction of the hyperbola l2. Expression (8) also implies ω1 < η, which

defines an upper bound for n, denoted n∗, in Figure 1.

There are two possible cases for the shape of l1, depending on whether or
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not line l1 is steeper than the tangent line of l2 at A. If l1 is steeper (flatter),

then case a (b) of Figure 1 applies. Combining the above, we know that for

(β, n) to be selected, it can only be located in the lined area in either case.

Note that the actual region for (β, n) to be selected is larger than the shaded

area because η < ω2 characterizes the sufficient condition of zero-saving in

the scenario with backward altruism; it is not a necessary condition.

Suppose, for instance, we are in a primitive society, so that η may be less

that 1. Since n > 1 > η, we know that backward altruism can be selected

only in case a of Figure 1. In this case, the parameter of backward altruism

should be less than the discount rate δ. Another interesting contemporary

case is when there is a high interest rate across periods so that η may be

larger than n. In this situation, (β, n) may be selected only in case b of

Figure 1, in which β is larger than δ.

6 Numerical Analysis

In section 5 we discussed extensively the change of c∗ with respect to changes

in (α, q). In this section we use a simulation to demonstrate the advantage of

backward altruism when the rate of return on savings η and other parameters

change.

We consider the functional form p(c) = [c/(w + z)]θ, and specify the

following parameter values: n = 2, β = .4, w = 1, a = b = .7, δ = .45, k =

1, z = .001, and θ = .01. It turns out that the critical values of η are

np′(w)
a[1− δnp(w)]

= .2857,
1
δ

= 2.2222,
nβ
δ

= 1.7778.

According to Propositions 1 and 2, we know that in the case without back-

ward altruism the optimal savings amount is zero (so that the optimal con-

sumption is 1) if and only if η is smaller than .2857. In the case with backward
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altruism, the optimal savings is positive if η is larger than 2.2222. Both these

are confirmed in our simulation, as shown in Figure 2.

We now compare the consumption paths derived under different cases.

For the case without backward altruism, our Proposition 4 says that the

optimal consumption is a decreasing function of η, as long as a corner solution

in p2(.) is not reached. When η reaches roughly 1.25, as one can see from

Figure 2, this corner solution is reached, and savings (consumption) begin

to decrease (increase). For the case with backward altruism, when η is less

than 2.2222, the optimal savings are zero, so that the optimal consumption

does not change with η, the rate of return on savings. When η is larger than

2.2222, the agent begins to take advantage of this good return and save. This

helps to make her optimal consumption increase. In this case, savings become

the main means of old-age support, and the role of children is not important.

Thus, the two optimal consumption lines with or without backward altruism

merge in this range. This is what we see in Figure 2.

Under the numerical values chosen, we see that the two optimal con-

sumption lines cross each other. This means that there is a critical range

of η∗ (roughly [.6, 2.0]) such that only for η in this range, the optimal con-

sumption corresponding to the case with backward altruism is larger, and

hence backward altruism will be selected. Note that backward altruism will

not be selected if the rate of return on savings is too low or too high, when

the advantage of children acting as refrigerators is not revealed. Thus, in

a gatherer-hunter society when most resources can only sustain for several

days, or in our times where savings are likely to generate a rate of return

much larger than rearing children, our theory as well as simulation suggest

that such environment is not suitable to develop or to sustain backward al-

truism.

Now we consider the case of varying β. We choose η = 1.25 and reset

a = .5; all other parameters are the same as before. As one can see from
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Figure 3, the optimal consumption path with backward altruism is higher

only when β is not very large. When β is larger than 0.28 in Figure 3, we

see that backward altruism is no longer selected. This is consistent with

what we described in previous sections: since old parents in our setup is not

“useful” by assumption, a strong backward altruism cannot be selected, for

it pays too much attention to the useless group. Useless parents by definition

cannot provide much support to children; but even people who cannot provide

help may still be less “harmful”, if they can avoid disposing resources in an

inefficient way.

7 Relaxing Some Assumptions

We have made some simplifying assumptions in order to derive the analytical

results in previous sections. In this section we shall see how the structure

should be modified if these assumptions are weakened. Here, we only point

out the directions of possible extensions; analytical or simulation details are

not specified here.

7.1 Useful Parents

In the previous few sections we have assumed, mainly for the purpose of ar-

gument, that µ = 1 in (1), so that post-reproductive parents are not “useful”

to their children. But as Lee (2003) pointed out, there are various forms of

downward transfers, such as cooking and other household work that post-

reproductive old folks can help their adult children. It can be seen that in

this case, adult children will have some incentives to support their parents.

Specifically, with µ > 1, equation (6) should be rewritten as

v(w, so) = max
m,s,c

[

k + δp̃2k + δnp(c) · [p2oµv(w, s) + (1− p2o)v(w, s)]
]

(12)

m̃ = argm max
m,s,c

[

k + δp̃2k + δnp(c) · [p2oµv(w, s) + (1− p2o)v(w, s)]
]
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where p̃2 = p2(ηs + nm̃), p2o = p2(ηso + nm), and the second argument in v

characterizes the initial savings of the old parent. Individuals now know that

their parents’ survival is helpful to increasing p1, and may have incentives to

choose m > 0, as one can easily see from (12). In a steady state equilibrium,

the optimal m chosen by a child must be the same as the one chosen by her

mother, as shown by the second equation of (12). For the case with backward

altruism, a similar formulation can be written. It is clear that attaching a

positive term of backward altruism to the objective function helps increase

the individual’s incentive of backward transfers. When µ is large, backward

altruism is certainly more likely to be selected.

7.2 More General Behavior Rules

Implicit in equation (7) was the assumption that once there is a change in

period t that makes individual A carry the altruistic parameter β, the same

attitude will be held for all future offspring of A. However, we know that this

is not true, especially when the society is comprised of a variety of people

and the reproduction of children involves parents from different origins. How

should the analysis be revised under this situation?

Let v(w, b) be the value function of an individual when the parameter of

backward altruism she has is b. Suppose that b = 0 originally, and a change

makes b = β > 0. Suppose there is a probability u that her children will

have b = β and (1− u) probability that her children will have b = 0. In this

case, the individual should solve the following system of equations:

v(w, s0; β) = max
c+s+m≤w

k + βp2(ηs0 + nm)k +

δnp(c)[u · v(w, s; β) + (1− u) · v(w, s; 0)] + δ[1− p(c)]p2(ηs)k

v(w, s0; 0) = max
c+s≤w

k + u ·
[

δnp(c)v(w, s; β) + δ[1− p(c)]p2(ηs)k
]

+

(1− u) · [δnp(c)v(w, s; 0) + δp2(ηs)]. (13)

20



We shall skip the interpretation of the above equations.

An analysis of (13) will be difficult in general. However, it is not hard

to see that if u → 1, then v(w, s0; 0) is not relevant, the equation system in

(13) actually degenerates to (7), and our original result remains true. The

more complicated case is when u is variable according to the population

composition in the society. The analytics along this line will have to rely on

some simplified assumptions.14

7.3 Variable Number of Children

In our set-up in sections 3 and 4, there are only two possible realizations of

the number of children: nl = 0 and nh = n. If, as it is in general, any positive

integer n < n̄ may be realized, then each decision maker may face a different

number of siblings, which in turn involves a change in our setting. For an

altruistic individual, the existing number of her siblings affects how the filial-

support expenses are to be shared. The more surviving siblings there are,

the less burden an individual will have from supporting her parent. Thus,

other than the wage, the number of siblings will also become a state variable.

When there are many possible realizations of n, the Bellman equation in

(7) should be rewritten as

v(w, s0, n0) = max
c+s+m≤w

k + βp2(ηs0 + n0m)k +

n̄
∑

n=1

[

δnp(n|c)v(w, s, n)
]

+ δ[1−
n̄

∑

n=1
p(n|c)]p2(ηs)k. (14)

In the above expression, p(n|c) is the probability of having n surviving chil-

dren when the family consumption is c, n is the number of her children, and

n0 is the size of surviving siblings of the decision maker. The meaning of

(14) should be clear and hence we skip its interpretation.
14See for instance Juang (2001) and the references therein for more details.
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As the reader can see, when we relax our assumption of fixed number of

children, the space of state variables will become complicated. Conceptually,

it may be the case that individuals with few surviving siblings tend not to

support their parents, because the cost-sharing is less efficient. The analyti-

cal comparative statics seem to become difficult, but complications like this

should not interfere with the simulation analysis.

8 Conclusions

As Hamilton (1966) pointed out, a well-known principle in biology is that a

change in behavior which reduces the mortality rate of post-reproductive ages

will not be selected. A corollary of the above proposition is that species are

unlikely to develop backward altruism, because any resource distributed to

an old parent must imply a reduction of resources to the children. Economists

have made some contributions in justifying the existence of kinship altruism.

It has been argued that if kinship altruism can facilitate the coordination

between kins and promote the realization of an efficient outcome, then it will

be selected.

In this paper we propose a theory of the evolution of backward altruism

complementary to the existing ones. We assume that in a primitive economy,

there are few goods or capital stocks that the old parent can save efficiently,

although the instinct desire of sustaining one’s own life induces the parent to

save for her old age. Hence, the resources remaining for the children would

be limited. Suppose cultural pressure or a mutation causes an individual

become backward-altruistic. She then expects that her children may have

the same attitude as hers, and therefore they may take care of her when she

is old. With this expectation in mind, this individual can avoid inefficient

savings and hence her children may obtain more food. Thus, the backward

altruism serves the purpose of avoiding an inefficient way of disposing re-
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sources. Parents do not have to be useful to their children in order for the

latter to support the former; in fact, backward altruism renders the parents

“less harmful”.

The altruistic support for the old in our model is somewhat like a pay-as-

you-go pension system. These transfers can be rationalized if the young are

likely to prepare their old-age support and dispose resources in an inefficient

way. This is more likely to happen in ancient times when social mechanisms

are primitive. Our expression (8) proposes a range of rate of return to savings

in which backward altruism is likely to arise. It may be worthwhile for

historians to study and verify whether such an inequality helps explain the

origin of backward altruism in a human society.
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Appendix 1: Proof of Proposition 1

Differentiating φ with respect to s and using Assumption 2 yield

∂φ
∂s

= δakη − δnp′(c)v(w) ≡ Ωs. (A1)

We want to see when we will have an interior solution for s, and hence we

should evaluate expression (A1) at s = 0. If savings are set to be s = 0,

then c must be c = w. Assumption 2 implies that the corresponding value

function v(.) from (6) should satisfy

v(w)|s=0 = k + δnp(w)v(w)|s=0,

which gives us the solution v(w)|s=0 = k/[1 − δnp(w)]. Evaluating (A1) at

s = 0 and substituting the above v(w)|s=0 result back into (A1), we have

∂φ
∂s |s=0

= δk
(

aη − np′(w)
1− δnp(w)

)

. (A2)

Since ∂2φ/∂s2 < 0 by Assumption 1, we obtain Proposition 1.

Appendix 2: Proof of Proposition 2

We want to study when the optimal savings s will be zero in the scenario

with backward altruism. Differentiating ζ in (7) with respect to s, we have

∂ζ
∂s

= −βakn + δnp(c)
∂v(w, s)

∂s
+ δ[1− p(c)]akη. (A3)

Using the envelop theorem, we see from (7) that ∂v/∂s0 = βaηk for all s0 in

the relevant range. Substituting this result back into (A3), we have

∂ζ
∂s

= ak{δη[p(c)(nβ − 1) + 1]− nβ]. (A4)

Note that the right-hand-side of (A4) is independent of s, and only depends

on c. This means that for any given s, unless the upper bound of co = b/a

of p2(.) is reached, ∂ζ/∂s is either positive or negative, and hence m and s

cannot be positive at the same time.
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Concerning the sign of (A4), we separate our discussion into two cases.

If nβ ≥ 1, then the right-hand side of (A4) attains its maximum at p(c) = 1.

In this case we see that ∂ψ/∂s < aknβ(δη − 1), which is negative if δη < 1.

If nβ < 1, then the right-hand side of (A4) attains its maximum at p(c) = 0.

In this case we see that ∂ψ/∂s < ak(δη − nβ), which is negative if δη < nβ.

Thus, the optimal saving is zero if δη < min{1, nβ}.
Note that the optimal saving will be positive if the right-hand-side of (A4)

is positive. We can follow the same logic and see that δη > max{nβ, 1} is a

sufficient condition for s to be positive. In summary, we have Proposition 2.

Appendix 3: Proof of Propositions 3 and 4

Because the comparative static analysis of the Bellman equation is not

conventional, in what follows we shall be more detail in our derivation steps.

Equation (10) tells us that v(w) = k(1 + αaqm∗)/(1− δnp∗), where p∗ ≡
p(w −m∗). Substituting this result back into the first-order condition (11),

we have
∂ψ
∂m

=
αaqk(1− δnp∗ − δnp′∗m∗)− δnp′∗k

1− δnp∗
= 0. (A5)

By Assumption 3, 1− δnp∗ > 0. It is clear from the numerator of (A5) that

1− δnp∗ − δnp′∗m∗ > 0 (A6)

must hold in order for (A5) to have any interior solution.

Totally differentiating ∆m = 0 in (11) yields

∆mmdm + ∆mαdα = 0.

We know that ∆mm < 0 by the second-order condition. As for ∆mα, we have

∆mα = aqk − δnp′∗
∂v
∂α

.

From (10) we have ∂v/∂α = am∗qk+δnp∗(∂v/∂α). Thus, ∂v/∂α = am∗qk/(1−
δnp∗). Substituting this formula back into ∆mα, we get

∆mα = aqk
[1− δnp∗ − δnp′∗m∗

1− δnp∗
]

.
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Inequality (A6) tells us that the numerator in the above square brackets is

positive. Hence, we have Proposition 3.

Totally differentiating (11) we have ∆mmdm + ∆mqdq = 0. The sign of

∆mm is negative by the second-order condition. Concerning ∆mq, we have

∆mq = αak − αnp′∗(∂v/∂q). Differentiating (10) with respect to q yields

∂v
∂q

=
αakm∗

1− δnp∗
.

Using this result, we see that

∆mq =
αak[1− δnp∗ − δnp′∗m∗]

1− δnp∗
.

Similar to what we did to derive (A6), we see that (1−δnp∗−δnp′∗m∗) must

be positive in order to have an interior solution of c∗. Thus, ∆mq > 0 and

we have Proposition 4.
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Figure 1a: The Parameter Range of(β, n) for Positive Selection, Case a.



Figure 1b: The Parameter Range of(β, n) for Positive Selection, Case b.



Figure 2: The correspondence betweenη and the optimal consumption.



Figure 3: The correspondence betweenβ and the optimal consumption.
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