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Abstract

The “decoupled” liability system awards the plaintiff an amount that differs

from what the defendant pays. The previous approach to the optimal de-

coupling design is based on the assumption of complete information, which

results in an optimal liability for the defendant “as much as he can afford.”

This extreme conclusion may hinder the acceptability of the decoupling sys-

tem. This paper proposes an alternative design based on the assumption

that agents in the post-accident subgame have asymmetric information. Our

model indicates that the optimal penalty faced by the defendant is generally

greater than the optimal award to the plaintiff. When the potential harm

is sufficiently large, the optimal penalty can be approximated by a multiple

of the harm, but the plaintiff receives only a finite amount of the damages

regardless of the loss suffered. Such a decoupling scheme deters frivolous

lawsuits without reducing the defendants’ incentives to exercise care. Addi-

tionally, this paper derives comparative static results concerning how the trial

costs of the plaintiff and defendant affect the optimal design of decoupling.
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1 Introduction

In their seminal paper in this Journal, Polinsky and Che (1991) demonstrate

the efficiency of a “decoupled” liability regime. In that system, the plaintiff

is awarded an amount different from (and usually smaller than) what the

defendant pays.1 The original idea of decoupling liability was proposed by

Schwartz (1980) and Salop and White (1986), and was partly motivated to

reduce excessive liability, mainly due to punitive damages, faced by busi-

nesses. By reducing the portion received by the plaintiff without increasing

the payment by the defendant, the latter’s expected excessive liability may

be reduced.2 The contribution by Polinsky and Che demonstrates that a

properly employed decoupling regime can preserve the incentive for (poten-

tial) injurers to maintain care while reducing the legal costs of lawsuits, and

hence improve efficiency.

A key observation of Polinsky and Che’s argument is that the injurer’s

optimal level of care is an increasing function of both the award to the plaintiff

(Wp) and the payment by the defendant (Wd). This is the case because

both Wp and Wd contribute to the injurer’s expected cost of an accident,

and therefore increase the incentive to exercise care. As such, starting from

any coupled damages, one can raise Wd and reduce Wp at the same time,

rendering the effect of holding the injurer’s level of care unchanged while

reducing the plaintiff’s incentive to pursue the legal process, and thereby

reducing the litigation costs on both sides.

The purpose of this paper is to investigate the optimal decoupling design

by taking into account the effects of pretrial negotiation. As pointed out by
1In practice the difference is collected by the government.
2See Sharkey (2003) pp. 375-380 for an extensive review on legislative rationale for

various split-recovery statutes introduced in mid-1980s. These statutes represent a spe-

cial form of decoupling, as they require the plaintiffs to split punitive damages with the

government funds.

3



Nalebuff (1987), a key feature of the suit-settlement process is the information

asymmetry between the litigating parties. The lack of common knowledge

regarding a dispute’s prospects in court often causes the failure of pretrial

negotiation, and leads to jury trials that involve higher costs.3 In other

words, asymmetric information plays a crucial role in the litigating parties’

strategic interaction in both the settlement-phase and the trial-phase.

The credibility of the plaintiff’s threat of litigation is a central issue when

considering asymmetric information. Nalebuff (1987) showed that a weaker

plaintiff might actually demand a higher settlement in order to limit the bad

news conveyed by the defendant’s rejection of an offer. When applying this

result to Polinsky and Che’s model, we find a contradictory implication. In

the context of decoupled liability, a plaintiff is considered weak if the award in

court is set at a low level. In that event, if the plaintiff is further undermined

by an even lower award, her response is likely to act more aggressively due

to the credibility constraint. In other words, reducing the award may lead to

a higher probability of litigation and a higher level of care from the injurer.

Thus, the original argument of Polinsky and Che that an increase in the

penalty matched with a decrease in the award improves efficiency is only

valid when the plaintiff is not bound by the credibility concern. Accordingly,

the proposed scheme that makes the defendant pay as much as he can afford

is no longer optimal.

In light of this problem, our model provides a complete solution to the

post-accident suit-settlement negotiation and reaches an efficient decoupling

design without encouraging frivolous lawsuits or diminishing the exercise

of care. That is, in our optimal system, the payment by the defendant

is generally greater than the award to the plaintiff. This conclusion is in
3Without asymmetric information, as Rubinstein (1985) showed, all bargaining is ex-

pected to be settled immediately, and there should be no trials at all. This, of course, is

inconsistent with the emphasis of trial costs in the decoupling literature.
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sharp contrast with the literature such as with Polinsky and Che (1991) and

Choi and Sanchirico (2004), in which the relative magnitude of penalty and

award is ambiguous. We further show that the defendant’s penalty can be

approximated by a multiple of the harm caused. This result complements the

“multiplier” theory proposed by Polinsky and Shavell (1998).4 The amount

received by the plaintiff, however, is strictly bounded and does not grow

with the harm suffered. Such a decoupling scheme deters frivolous lawsuits

without reducing the injurers’ incentives to exercise care.

We also show that one of the goals in designing a decoupling system is

to balance the litigating parties’ bargaining positions in pretrial negotiation.

That is, for a weak plaintiff who incurs high cost in trial, she needs to be

motivated by a higher award. The extra incentive comes at the price of more

lawsuits, but the injurer will be more careful. On the other hand, in the

case where the plaintiff is strong and litigious, it is important to discourage

her with a lower award in court, even though it comes at the cost that the

injurer will be less careful.

There have been some efforts in the literature attempting to modify the

decoupling analysis. Kahan and Tuckman (1995) argue that both the de-

fendant and the plaintiff devote effort into the suit-settlement process. A

decoupling causes changes in the optimal effort of both parties, which in

turn yields some ambiguity in the results. Following the same approach, but

fully taking into account the effects on litigation effort, Choi and Sanchirico

(2004) showed that raising damages and lowering the award might not im-

prove efficiency. They also show that, when the harm is large, the optimal
4These authors suggest a multiplier approach to calculate the amount of punitive dam-

ages: “the proper level of total damages ... is the harm caused multiplied by the reciprocal

of the probability of being found liable.” See Polinsky and Shavell (1998), p. 874. As we

will show later, the multiplier in our model is higher than what they suggest due to the

fact that the opportunity of settlement reduces the defendant’s expected liability.
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award is greater than the optimal damages, which is opposite to our conclu-

sion. Lewis and Sappington (1999) studied another dimension of decoupling

and showed that it is sometimes desirable to design a liability scheme where

the defendant faces no penalty at all if the harm is small, and a very large

penalty when the harm is sufficiently large. They showed that under some

conditions a decoupling like this might be more efficient than a usual cou-

pled one. Daughety and Reinganum (2003) analyzed a special version of

decoupling that allows the state to share the punitive damages award. They

considered a settlement bargaining model with asymmetric information, and

showed that the split-award statutes leads to more frequent settlements at

lower amounts. None of these articles fully characterizes the optimal decou-

pling system under the asymmetric information framework.

The remainder of this paper is arranged as follows. The next section

introduces the basic model on which our analysis will be based. Section 3

characterizes the complete solution to our model, and shows the conditions

that can validate the conventional results. In Section 4, we explicitly derive

the optimal decoupling scheme and compare our results with the literature.

Section 5 considers variations of our basic model and shows that the main

conclusion is robust with respect to these extensions. The final section con-

cludes.

2 The Model

Consider a model of accident and litigation similar to the one in Polinsky

and Che (1991), except the information asymmetry we shall introduce later.

The potential injurer and victim are both risk neutral. The injurer chooses a

level of care that affects the probability of an accident. If an accident occurs,

a victim is harmed, and the size of the damage is common for all victims.

When a lawsuit is filed after the accident, the probability that the victim
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will prevail is q, depending on how the evidence is preserved and presented.

If the victim prevails, the defendant makes a payment to the authority, and

an award is given to the plaintiff. The following notations are adapted from

Polinsky and Che (1991) and Nalebuff (1987).

c = potential injurer’s level of care,

p(c) = probability of an accident (p′ < 0; p′′ > 0),

` = loss if an accident occurs,

Wp = award to the plaintiff,

Wd = payment by the defendant.

The fact that Wp and Wd can be different characterizes the system of decou-

pled liability.

Before a contingent trial, the plaintiff and the defendant may negotiate

to see if a settlement can be reached. We assume that the settlement costs

for the plaintiff and the defendant are negligible, and that the costs of trial

for both sides are respectively

Cp = potential victim’s (plaintiff’s) trial cost,

Cd = potential injurer’s (defendant’s) trial cost.

The innovation of this paper lies in the introduction of asymmetric in-

formation between the litigating parties as follows. Before the accident, the

parameter of liability, q, is supposed to be drawn from a distribution F (q),

which is common knowledge. When an accident occurs, the defendant learns

the true q by inspecting the evidence left behind, whereas the plaintiff still

knows only the distribution of q. The settlement/litigation game after an ac-

cident evolves like the one in Nalebuff (1987). Specifically, the plaintiff will

first make a take-it-or-leave-it settlement offer, S. If the defendant accepts

S, he pays S and the plaintiff receives S.5 If the defendant turns down S, the
5To simplify our analysis, we assume there is no decoupling in settlement.
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Figure 1: The game tree

plaintiff must decide whether to bring the case to court. The trial in court

can reveal the true q, while both parties have to bear litigation costs. Given

a decoupled liability regime, the payoffs following a trial would be qWp −Cp

for the plaintiff and −qWd−Cd for the defendant. The game tree in Figure 1

illustrates how the game proceeds.

In the subgame following an accident, the plaintiff’s strategy can be sum-

marized by (S, α(S)), where S is the settlement demand and α(S) is the

conditional probability of litigation if S is rejected. In response to (S, α(S)),

the defendant shall adopt a “cut-off” strategy as shown in Nalebuff (1987): if

the realized q is lower than a cut-off point q(S), the defendant has a relatively

good case so that he should reject S; if q is higher than q(S), the defendant

is better off settling.

Anticipating the outcome in the aforementioned subgame, the potential

injurer selects a care level c that minimizes his aggregate expected costs. The

injurer’s costs include the cost to take precaution and the expected costs of

accidents. Without loss of generality, we assume that the cost to implement

c is simply c. When an accident occurs, the injurer expects to settle the

case out of court with probability 1 − F (q(S)), while he will be sued with

probability α(S)F (q(S)). Thus, the injurer’s problem is to choose c so as to
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minimize

c + p(c) ·

(

[1− F (q(S))]S + α(S)F (q(S))
[

Wd

∫ q(S)

0

xdF (x)
F (q(S))

+ Cd

]

)

. (1)

Let c∗ denote the solution that minimizes (1). Since the settlement offer in

equilibrium (S∗) depends on the decoupling rates (Wp,Wd), the optimal care

level c∗ is also a function of (Wp,Wd). The social problem is thus to find the

optimal decoupling rates that minimize the sum of the injurer’s cost of care,

the victim’s expected harm, and both parties’ expected trial costs:

min
Wp,Wd

c∗ + p(c∗) · (` + α(S∗)F (q(S∗))(Cp + Cd)). (2)

The following section derives the complete solution to the settlement

game. Readers who are not interested in the bargaining analysis can move

to Proposition 3 directly.

3 The Settlement Subgame

A settlement subgame is one that follows an accident in Figure 1. In the

subgame, both parties are aware of the decoupled liability (Wp,Wd) as well

as the care level c. In this section, we will solve for the settlement subgame

equilibrium for every possible (Wp, Wd).6 To avoid the algebraic complication

of carrying higher-order differentiations of F (·) in our later analysis, we shall

assume that the prior of q is uniformly distributed in [0, b] with b ≤ 1, so

that F (q) = q/b.

Recall that q(S) represents the defendant’s cut-off strategy: given an

offer S, the defendant refuses to settle if and only if q ≤ q(S). The following

definition provides an important benchmark for q(S) in characterizing the

equilibrium.
6Since c does not affect the settlement/litigation payoffs, the subgame equilibrium is

solely determined by the decoupled liability.
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Definition 1. Let q′ be the critical value such that the plaintiff is indifferent

between litigating and not litigating when q(S) = q′; q′ solves the following

equation.

−Cp + Wp

∫ q′

0

xdF (x)
F (q′)

= 0.

With F (q) = q/b, q′ is well-defined and equal to 2Cp/Wp if and only if

2Cp/Wp ≤ b. In the terminology of Nalebuff (1987), the plaintiff’s case has

merit if this inequality holds. When the plaintiff’s case has no merit, the

equilibrium in the settlement subgame is trivial, as suggested in the following

proposition. It shows that the plaintiff will never sue if her reward from

winning the case in court is too low. Further, the plaintiff cannot extract

any payment from settlement since her threat to litigate is not credible.

Proposition 1. Suppose Wp < 2Cp/b. Then in any subgame perfect equilib-

rium, the defendant never accepts settlement offers (q(S) = b,∀S > 0), while

the plaintiff never goes to court (α(S) = 0, ∀S > 0).

Now we consider the scenario when the case has merit. We start with the

subgame in the last stage, and solve for the equilibrium strategies backwards.

Suppose a settlement offer S is rejected by the defendant, whose cut-off

strategy is q(S). The plaintiff must determine whether to bring the case to

court. The following decision rules characterize the plaintiff’s best response

to q(S): (i) if q(S) < q′, the plaintiff’s expected payoff of litigation is negative,

and thus α(S) = 0; (ii) if q(S) > q′, the expected payoff of litigation is

positive, and thus α(S) = 1; (iii) if q(S) = q′, the plaintiff is indifferent

whether to litigate so that α(S) ∈ [0, 1].

Next, consider the subgame where the defendant is presented with a set-

tlement offer. Suppose the plaintiff adopts the strategy (S, α(S)). The best
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response by the defendant is to accept S if and only if q > q(S),7 where

q(S) =

S
α(S)

− Cd

Wd
. (3)

Note that q > q(S) implies S < α(S)(qWd +Cd). Therefore, the defendant is

indeed better off accepting S if his realized q is greater than the cut-off value

q(S). Proposition 2 summarizes the equilibrium strategies in the subgame

after the plaintiff has made a settlement offer S.

Proposition 2 (Nalebuff (1987)). Assuming Wp > 2Cp/b, for any settle-

ment offer S > Cd, the continuation subgame has a unique Nash equilibrium

as follows.

(q(S), α(S)) =







(

S−Cd
Wd

, 1
)

if S ≥ q′Wd + Cd,
(

q′, S
q′Wd+Cd

)

if S < q′Wd + Cd.
(4)

Denote the threshold in (4) by S ′ ≡ q′Wd + Cd. The proposition states

that the plaintiff will go to court with probability one if the settlement offer

is high enough (S ≥ S′). In other words, a high settlement demand enables

the plaintiff to “limit the bad news”: the corresponding q(S) from (3) will be

high so that she still has a good case in court when S is rejected. Meanwhile,

when the plaintiff proposes an offer below S′, her threat of going to court

is no longer credible.8 Instead, the plaintiff has to reduce α(S) as well to

maintain q(S) = q′ for S < S′. The limitation placed by the credibility

consideration proves to be crucial in the settlement subgame, as shown in

Nalebuff (1987).
7The defendant with q = q(S) is indifferent between accepting and rejecting S. As long

as the distribution of q is non-atomic, the strategy for the type q(S) does not affect our

analysis.
8Otherwise, α(S) = 1 and S < S′ imply q(S) < q′ according to (3), which in turn

implies α(S) = 0, a contradiction.
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When the settlement offer is even lower (S ≤ Cd), there exist multiple

equilibria in the continuation subgame. Besides (q′, S
q′Wd+Cd

) as prescribed in

Proposition 2, (q(S), α(S)) = (0, 1) also constitutes an equilibrium. In the

latter equilibrium, the defendant always agrees to settle because S is very

low. If the defendant were to reject S, he believes that the plaintiff will sue

with probability one, which is a credible threat provided Wp > 2Cp/b. For the

convenience of exposition, we select (q(S), α(S)) = (0, 1) as the equilibrium

for S ≤ Cd. The selection is irrelevant because S ≤ Cd will never emerge in

the optimal decoupling, assuming that ` is large enough.

Foreseeing the equilibrium response (q(S), α(S)) that follows a settlement

offer S, the plaintiff can derive her expected payoff V (S) of proposing S.

The following formula defines V (S), which is comparable to the defendant’s

expected cost for an accident (cf. (1)), except that both parties bear their

own litigation costs, and the liabilities are decoupled.

V (S) ≡ (1− F (q(S)))S + α(S)F (q(S))

(

−Cp + Wp

∫ q(S)

0

xdF (x)
F (q(S))

)

. (5)

Assuming the case has merit and q is uniformly distributed, V (S) is given as

follows.

V (S) =



































S if S ≤ Cd,
(

1− q′

b

)

S if Cd < S ≤ S ′,
(

1− S−Cd
bWd

)

S + S−Cd
bWd

(

−Cp + S−Cd
bWd

bWp

2

)

if S ′ < S < S̄,

−Cp + bWp

2 if S ≥ S̄,

(6)

where S̄ ≡ bWd + Cd. For S ≤ Cd, one obtains V (S) = S by substituting

the selected equilibrium, (q(S), α(S)) = (0, 1), into (5). For the other three

cases, the equilibrium is unique from Proposition 2, and we simply apply

(4) to derive V (S). For Cd < S ≤ S ′, q(S) = q′ and thus the net payoff

of a lawsuit is zero by definition of q′. V (S) in this case reflects only the
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settlement income. In contrast, for S ≥ S̄ in the last case, q(S) ≥ b, which

means that no defendant will accept such a high settlement offer. V (S) here

reflects only the net payoff from litigation. Finally, for S ′ < S < S̄, q(S)

lies between q′ and b. The plaintiff derives her expected payoff from both

settlement and litigation.

Note that the value function V (S) is continuous except when S is equal

to Cd. In addition to the jump at Cd, V (S) also has two kinks at S = S′ and

S̄. The first kink is due to the credibility constraint: when S drops below

S′, the threat that α(S) = 1 is no longer credible. As for the second kink,

V (S) is constant for S ≥ S̄ because no defendant will agree to a settlement

demand higher than S̄.

Provided (6), the plaintiff’s optimization problem in the settlement sub-

game is to select an optimal settlement demand S∗ to maximize V (S). Let
̂V (S) denote the unconstrained value function (i.e., the segment of V (S) for

S ∈ (S ′, S̄)).

̂V (S) ≡
(

1− S − Cd

bWd

)

S +
S − Cd

bWd

(

−Cp +
S − Cd

bWd

bWp

2

)

. (7)

The following definition will be useful in characterizing S∗.

Definition 2. ̂S solves the equation d̂V (S)/dS = 0 while q̂ ≡ bS−Cd
Wd

.

In other words, ̂S maximizes V (S) if the credibility constraint is not bind-

ing and the second order condition holds. For uniformly distributed q, one

obtains q̂ = bWd−Cp−Cd
2Wd−Wp

.

From the above discussion, we know that the optimal S∗ must be either
̂S or one of the corner solutions (Cd, S′, or, S̄). Which of these solutions

maximizes V (S) depends on the decoupled liability (Wp,Wd). Proposition 3

shows that one can partition the set, ω ≡ {(Wp,Wd) : Wp > 2Cp/b, Wd > 0},
into four subsets such that each subset associates with a certain solution for

S∗.9

9The specific definitions of ω′s are delegated to (A1) in Appendix.
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Wp = Wd + Cp+Cd
b

ωi : S∗ = ̂S

(Cd−Cp)/b
Wd

+ 4Cp/b
Wp

= 1

ωiv : S∗ = S′

q qqqqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqq Cd/b
Wd

+ 2Cp/b
Wp

= 1

ωv : plaintiff’s case has no merit

Figure 2: Optimal settlement demand S∗

Proposition 3. Assuming Wp > 2Cp/b, the optimal settlement demand S∗

as a function of (Wp,Wd) is given by ̂S, S̄, Cd, or S′ if (Wp,Wd) ∈ ωi, ωii,

ωiii, or ωiv, respectively, where the regions ωi · · ·ωiv are as depicted in Figure

2.

Proof. See Appendix.

Note that the curve representing (Cd−Cp)/b
Wd

+ 4Cp/b
Wp

= 1 is a flat line as

shown in the diagram if Cd = Cp. It will be increasing (decreasing) and

concave (convex) if Cd < Cp (Cd > Cp).10

10On the boundaries between ω′s, the plaintiff is indifferent between various choices

of S∗. For instance, when Wp = 2(Cp+Cd)
b and Wd ≤ Cp+Cd

b , the plaintiff is indifferent

between proposing Cd or S̄. One can verify that ̂S = S̄ for (Wp, Wd) ∈ ωi∩ωii and ̂S = S′

for (Wp,Wd) ∈ ωi ∩ωiv. Therefore, S∗(Wp,Wd) as stated in Proposition 3 coincides along

these two boundaries. However, S̄ can never be equal to Cd (b cannot be zero), and thus

S∗ is discontinuous on the border between ωii and ωiii. Likewise, S′ can never be equal to

Cd (q′ cannot be zero), and thus S∗ is also discontinuous on the border between ωiii and
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Propositions 1 and 3 characterize the settlement subgame equilibria for

Wp < 2Cp/b and Wp > 2Cp/b, respectively. With similar arguments, one can

show that all of the subgame equilibria in Propositions 1 and 2 remain to

be equilibrium in the scenario with Wp = 2Cp/b. As we will show later, the

equilibria that associate with Wp = 2Cp/b will never emerge in the optimal

decoupling, assuming a sufficiently large `. Therefore, how we select the

equilibrium is irrelevant to our analysis.

4 The Optimal Decoupling

The previous section characterizes the optimal settlement demand S∗ for

any given decoupling rates, (Wp,Wd). Accordingly, the injurer derives his

expected payment for an accident (EPA) as a function of (Wp,Wd).

EPA ≡
(

1− q(S∗)
b

)

S∗ +
α(S∗)q(S∗)

b

(

q(S∗)
2

Wd + Cd

)

.

Before any accident occurs, the potential injurer chooses a care level c to

minimize his aggregate expected costs, c + p(c) · EPA. In view of (1), one

obtains the optimal c by solving the first order condition as follows.

1 + p′(c) · EPA = 0. (8)

The regularity assumptions of p′(c) < 0 and p′′(c) > 0 assure that a solution

to (8) indeed minimizes the injurer’s aggregate expected costs. In addition,

they imply that an increase in EPA induces a higher care level by the poten-

tial injurer.11 Let c∗(Wp,Wd) denote the solution to (8). The social problem

ωiv. For convenience of exposition, we define ωiii such that it is disjoint with the other

three subsets. Assuming a sufficiently large `, the way we select S∗ along these boundaries

does not affect our analysis because they never emerge as the optimal decoupling.
11That is, dc/dEPA = p′(c)2/p′′(c) > 0.
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is to select (Wp,Wd) that minimizes the social cost as described in (2):

min
Wp,Wd

c∗ + p(c∗) ·
(

` +
α(S∗)q(S∗)

b
(Cp + Cd)

)

. (9)

As we have shown in the last section, ω′s divide the liability space into

various regions, each of which corresponds with a particular solution of S∗.

By analyzing the optimization program in (9) separately for each region,

one concludes that a necessary condition for a liability system to achieve

efficiency is (Wp,Wd) ∈ ωi ∩ ωiv. We briefly discuss the properties of these

regions. The details can be found in Appendix.

• In ωi, the credibility constraint is not binding, and thus the interior

solution is feasible so that S∗ = ̂S. Proposition 4 below shows that

Polinsky and Che (1991)’s argument still applies in this region. It

follows that any interior point in ωi cannot be efficient (Lemma 2).

• In ωii, the award Wp is very high comparing to the penalty Wd. Con-

sequently, both parties prefer to resolve the case in court instead of

settlement. Lemma 1 shows that to decouple liabilities in this way can

never be optimal.

• In ωiii, the award is so low that the plaintiff would rather settle the

case out of court with S∗ = Cd. As we argue in Lemma 4, when the

harm caused is sufficiently large, this type of decoupled liability cannot

be efficient since it does not provide enough incentive for the injurer to

take adequate precautions.

• In ωiv, the credibility constraint is binding, and S∗ = S′. Proposition 4

shows that one can adapt Polinsky and Che (1991)’s argument by rais-

ing both Wd and Wp to enhance efficiency. Therefore, any interior point

in ωiv cannot be efficient (Lemma 2).

16



• Finally, the plaintiff’s case is meritless in ωv. One can verify that mak-

ing the case meritless cannot be efficient, provided ` > Cd (Lemma 3).

The reason is similar to that for the scenario ωiii: the injurer has no

incentive to be careful when causing an accident has no consequence.

Before we proceeds with solving the optimization program in (9), we

shall first explain why the argument and solution proposed in Polinsky and

Che (1991) are different when there is asymmetric information concerning q.

Polinsky and Che (1991) argue that the social planner can improve efficiency

of the coupled liability system by raising Wd and reducing Wp at the same

time. On the one hand, raising Wd increases the injurer’s expected costs

when an accident occurs, and thus encourages him to be more careful. On

the other hand, reducing Wp decreases the victim’s return from litigation and

hence her incentive to sue, which in turn induces less care from the injurer. If

one adjusts Wd and Wp in such a way that the injurer’s level of care remains

the same, the cost of care is not affected but the litigation costs can be saved,

which results in lower social cost.

The following proposition shows that the scheme proposed by Polinsky

and Che improves efficiency only when the credibility constraint is not bind-

ing. If the credibility constraint is binding, one could reduce the social cost

with an alternative scheme that raises both Wd and Wd.

Proposition 4. For any (Wp, Wd) in ωi \ ωiv, there exist 4p,4d > 0 such

that the new decoupled liability (Wp−4p,Wd +4d) is more efficient with the

same level of care but fewer lawsuits. In contrast, the efficiency-improving

scheme takes a different form when starting from ωiv: ∀ (Wp,Wd) ∈ ωiv \ ωi,

∃4p,4d > 0 such that (Wp + 4p, Wd + 4d) implements the same level of

care with fewer lawsuits.

Proof. See Appendix.
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Proposition 4 indicates that raising Wd and lowering Wp indeed reduce

the social cost if we start from (Wp, Wd) ∈ ωi. However, when Wd and Wp

keep moving in the prescribed directions, they eventually reach the quadrant

ωiv where S∗ = S ′ (see Figure 2). Nonetheless, ∂c∗
∂Wp

and ∂q(S∗)
∂Wp

are both

negative in this subset, and thus further reducing Wp does not render the

desired effects suggested by Polinsky and Che (1991).

The next proposition shows that an alternative system is more efficient

as long as the accident loss ` is sufficiently large. Before proceeding, we need

to introduce the following two assumptions.

Assumption 1. (1 − p(c)) is a probability distribution function. That is,

p(0) = 1 and limc→∞ p(c) = 0.

Assumption 2. The ratio, −p′(c)
p(c) , is an increasing function of c.

−p′(c)
p(c) can be interpreted as the hazard rate when Assumption 1 holds.

Note that the corresponding density function is −p′(c) so that the usual

definition of hazard rate applies.

Proposition 5. Suppose Assumptions 1 and 2 hold. There exists ` such that

for ` > `, the social planner’s optimization problem in (9) reduces to

min
Wd, q∗, c∗

c∗ + p(c∗) ·
(

` +
q∗

b
(Cp + Cd)

)

s.t. q∗ =
b
2
− Cd − Cp

2Wd
, (10)

and 1 + p′(c∗) ·
(

q∗
(

1− q∗

2b

)

Wd + Cd

)

= 0.

Proof. See Appendix.

The first constraint that determines q∗ is equivalent to the condition that

(Wp,Wd) ∈ ωi ∩ ωiv.12 Recall that the plaintiff’s credibility constraint is
12By substituting q∗ = 2Cp

Wp
into (Cd−Cp)/b

Wd
+ 4Cp/b

Wp
= 1 that defines ωi∩ωiv, one obtains

q∗ = b
2 −

Cd−Cp

2Wd
.
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binding in ωiv, and non-binding in ωi. Proposition 5 shows that for any de-

coupled liability to be efficient, the credibility constraint must be marginally

binding, provided ` large enough.

The solution to (10) depends on the functional form of p(c) as well as

other parameters like `, Cp, or Cd. In general, it is difficult to derive the

closed-form solution to the decoupling problem. Nonetheless, the optimal

decoupled liability takes a very simple form when Cp = Cd.

Example 1. Suppose Cp = Cd. The optimal decoupling that solves (10) is

(Wp,Wd) =
(

4Cd

b
,
8`
3b

)

.

By further assuming that p(c) = exp(−c), one obtains ` ≈ 2.146 · Cd. In

other words, the decoupling system that solves (10) is the most efficient one

if and only if ` > 2.146 · Cd.

Proof. See Appendix.

In the example, we find that the optimal award to the plaintiff is indepen-

dent of the loss suffered. In contrast, the optimal payment by the defendant

is greater than and proportional to `. The following corollaries generalize

these properties.

Corollary 6. In the optimal decoupling, the plaintiff’s award is confined to

an interval:

Wp ∈
[

2Cp + 2 min(Cp, Cd)
b

,
2Cp + 2 max(Cp, Cd)

b

]

. (11)

The upper and lower bounds of the interval are independent of `.

Proof. The corollary follows from the observation that the path of ωi ∩ ωiv

is bounded between Wp = 2(Cp+Cd)
b and the asymptotic line, Wp = 4Cp

b .
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An important policy implication from Corollary 6 is that the court should

abstain from awarding the plaintiff excessive damages. Even though a higher

Wp may impel the defendant to be more careful, the benefit is outweighed

by the increase of wasteful lawsuits.

Corollary 7. Suppose Assumption 2 holds. There exists `′ such that for

` > `′, the optimal Wd has a lower bound. In particular, Wd > 2`
b if Cd < Cp,

while Wd > 8(`−Cd)
3b if Cd > Cp.

Proof. See Appendix.

Combining the above characterizations of the optimal decoupling rates,

one concludes that, when the harm caused is sufficiently large,13 the optimal

penalty is greater than the optimal award since the latter is bounded while

the former grows with the harm caused.

Corollary 7 implies that sometimes the court should impose punitive dam-

ages in addition to compensatory damages (Wd > `).14 Moreover, the mag-

nitude of the total damages should be aligned with ` to achieve the optimal

deterrence. In fact, the following equation provides a simple formula to de-

termine the optimal penalty in the limiting case.

` +
q∗

b
(Cp + Cd) = q∗

(

1− q∗

2b

)

Wd + Cd, (12)

where q∗ = b
2 .

15 This result complements the multiplier theory proposed by

Polinsky and Shavell (1998).16 Assuming uniform distribution, the multiplier
13In Example 1, for instance, the inequality 4Cd

b < 8`
3b holds whenever ` > `. Thus, the

requirement that the harm caused be sufficiently large is not too stringent.
14Recall that b ≤ 1. See the first paragraph in section 3.
15Recall that the injurer solves 1 + p′(c∗) · EPA = 0 to obtain c∗, where EPA is given

by the right hand side in (12). Moreover, as ` →∞, q∗ converges to b
2 and dq∗

dWd
converges

to zero. Thus, the first order condition to (10) reduces to 1+ p′(c∗) · (`+ q∗

b (Cp +Cd)) = 0

(cf. (A3)). One obtains (12) by comparing these two conditions.
16See footnote 4.
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granted by their formula is 2, which is “the reciprocal of the probability of

being found liable.” In contrast, the multiplier obtained from (12) is 8
3 . The

discrepancy is due to the fact that the opportunity of settlement reduces the

defendant’s expected liability.17

The path of ωi ∩ ωiv in Figure 2 depicts the necessary condition that

regulates the optimal decoupling rates. For Cp > Cd, one observes that

an increase in Wd leads to a higher Wp and fewer lawsuits (i.e., ωi ∩ ωiv

has a positive slope). The intuition is that, with Cp > Cd, it is relatively

more difficult for the plaintiff to establish credibility to sue. The concern

of credibility forces the plaintiff to litigate excessively. Raising Wd improves

the plaintiff’s bargaining position and alleviates her credibility problem. As

a result, the plaintiff does not need to litigate as much as before. Conversely,

for Cp < Cd, a higher Wd associates with a lower Wp and more lawsuits

(ωi ∩ ωiv has a negative slope). The reason is that the plaintiff here is too

confident about her case in court due to her relatively low trial cost. Raising

Wd will only encourage her to act even more aggressively and hurt the chance

of settlement.

The previous discussion addresses the marginal effects of Wd on settlement

rates. Essentially, it depends on whether the plaintiff is “confident” about

her case: she is confident in court when Cp < Cd. The same condition

plays a significant role in characterizing the global properties of the optimal

decoupling system, as we will show in the next corollary.

Corollary 8. Suppose ` > `. The inequality Cp < Cd implies that the

settlement rate in equilibrium is higher than 1
2 , and that the care level is

lower than the socially optimal level.

Proof. See Appendix.
17Without possibility of settlement, the expected cost of an accident (EPA) for the

injurer is equal to b
2Wd + Cd, which is greater than the right hand side of (12).
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The first assertion indicates that a relatively stronger plaintiff (in terms of

trial costs) acts less aggressively and settle the case more often. The second

assertion characterizes the response from the defendant: when defending

against a less aggressive plaintiff, the injurer tends not to be motivated to

take adequate precautions.

5 Extension and Discussion

5.1 Comparative statics

This section studies the properties of the optimal decoupling system, assum-

ing the accident loss ` is sufficiently large so that Proposition 5 applies. We

will show that, with a small increase of `, the social planner should impose

a higher penalty payable by the defendant, that the injurer will be more

careful, and that the victim will make a higher settlement demand when

an accident occurs. Nonetheless, the impact on the amount awarded to the

victim and the chance of settlement depends on which party incurs a higher

litigation cost.

Proposition 9. Assuming ` > `, a small increase in ` leads to an increase

in the defendant’s liability Wd, a higher care level, and a higher settlement

demand. It also leads to an increase in the plaintiff’s award Wp, and a higher

probability of settlement if and only if Cd < Cp.

Proof. See Appendix.

The social costs comprise cost of care and expected costs of accidents.

When the damage caused by an accident is higher, the second type of cost

outweighs the first. From the society’s point of view, the chance of accident

needs to be lower to return to balance. In order to make sure that the
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potential injurer exercises extra care that reduces p(c), the social planner

shall raise Wd, which leads to a higher EPA and a higher level of care.

The impact of a higher ` on Wp and q∗ is not as straightforward. Even

though an increase in q∗ assures a higher level of care (see equation (A2)),

it also results in more litigation and thus higher trial costs. The tradeoff

between the chance and the costs of an accident is balanced according to

(10) so that the plaintiff’s credibility constraint is marginally binding.

It is important to note that changes in ` do not alter the diagram in

Figure 2. Therefore, the new optimal decoupling rates due to a higher ` must

stay at the same trajectory of ωi ∩ ωiv, and consequently, q∗ is determined

by the same equation as (10). In sum, a small increase in ` leads to a higher

Wd, which determines q∗ through (10).

In conclusion, when the damage from an accident is more severe, the

social planner’s goal is to induce a higher level of care from the injurer. In

addition to raising Wd to let the defendant internalize the damage, the social

planner also needs to encourage a weak plaintiff (with Cp > Cd) to settle by

providing a higher award in court, and urge a strong plaintiff to litigate by

reducing Wp.

5.2 Budget constraint

In their model with complete information, Polinsky and Che (1991) have

argued that the defendant should make the maximum possible payment in the

optimal decoupling. By incorporating their assumption of budget constraint,

we show that their conclusion can emerge in equilibrium as a special case of

our model.

Suppose the defendant’s payment cannot exceed an upper bound, m. The

social problem in this scenario is to find a solution to (10), with the additional

constraint that Wd ≤ m. Obviously, if the budget constraint is not binding
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(i.e., the optimal payment that solves (10) is below the upper bound, m), the

optimal decoupling will not be affected by the budget constraint. If, however,

the budget constraint is binding, the optimal decoupling under the constraint

is exactly the system that has been proposed by Polinsky and Che.

Proposition 10. If the budget constraint is binding so that the unconstrained

optimal payment is greater than m, the optimal decoupling with budget con-

straint should make the defendant’s payment as high as possible, i.e., the

optimal payment is equal to m.

The argument follows from Proposition 4. A decoupling system in ωi\ωiv

can always be improved upon by raising Wd and reducing Wp, while a system

in ωiv \ ωi can be improved upon by raising both Wd and Wp. Without the

budget constraint, the social planner can limit her search for the optimal

decoupling to the boundary, ωi ∩ ωiv, as we have shown in Proposition 5.

In the presence of the budget constraint, the social planner must extend her

search to include the vertical line, Wd = m, because the efficiency-improving

scheme (by reducing lawsuits while maintaining the care level) may reach

Wd = m first before it arrives at ωi ∩ ωiv. When the budget constraint is

binding, the social cost is decreasing in Wd along the path of ωi ∩ ωiv. In

that case, the optimal Wd is equal to m.

5.3 Endogenous distribution of q

We have assumed that the distribution of q is independent of the injurer’s

effort to take precaution. In this section, we will show that our conclusion is

robust to this assumption.

Suppose the injurer’s liability q follows a uniform distribution over [0, b(c)]

with b′(c) < 0, b′′(c) > 0. The upper bound b(c) (and thus the distribution of

q) is fixed after the injurer selects her care level. The subsequent settlement

subgame proceeds exactly as discussed in Section 3.
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A diagram similar to that in Figure 2 illustrates how the plaintiff selects

her optimal settlement demand. As we assume an endogenous distribution

of q, the subsets ω′s that characterize S∗ will be determined endogenously

as well. For instance, the plaintiff’s case has merit if Wp > 2Cp

b(0) . Term b in

the threshold is given by b(0) because the injurer will not exercise any care

at all when the victim’s case has no merit.

The following numeric example is analogous to Example 1 except that

the distribution of q is endogenous.

Example 2. Suppose Cp = Cd, p(c) = exp(−c), and b(c) = exp(−c). The

optimal decoupled liability is given as follows, provided ` > 2.146 · Cd.

(Wp,Wd) =
(

4Cd

b
,
2`
b

)

, b =
1

` + Cd
.

Proof. See Appendix.

It is interesting to note that in equilibrium the injurer’s care level as well

as the social costs are exactly the same as those in Example 1. However,

we have shown in the proof that under any decoupling system, the injurer is

more motivated to take precautions if it reduces his share of responsibility.

These contradictory facts are only superficial: note that the optimal Wd in

the current example is actually lower than before. In other words, when the

injurer is self-motivated, the social planner does not have to impose severe

punishment in court anymore.

5.4 Negligence rule

In the discussion so far, the parameter q represents the plaintiff’s chance of

winning the lawsuit. Alternatively, q can be interpreted as the defendant’s

share of responsibility in the accident. In the latter interpretation, the court

adopts a simple liability rule in which the defendant is always liable regardless
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of q, and the amount of damages he pays is the predetermined Wd, multiplied

by q. In practice, a certain negligence rule is often in place. In this section,

we shall study the impact of negligence rules on the injurer’s and the victim’s

behaviors, as well as the implication for the social planner’s policy choice.

Consider the original model in Section 2, except that the defendant is not

liable for any damages if his share of responsibility q in the accident is lower

than a threshold, qd. In other words, the defendant is deemed negligent and

pays qWd to the authority if and only if q revealed in court is higher than

the due-care standard, qd. Whatever the court judgment is, both parties pay

their own trial costs.

To solve for the equilibrium of the current settlement subgame, one adapts

the benchmark q′ in Definition 1 as follows.

−Cp + Wp

∫ q′

qd

xdF (x)
F (q′)

= 0.

The lower bound for the integration has changed from 0 to qd since the

plaintiff loses the case if q < qd due to the negligence rule. Assuming the

same uniform distribution for q, one obtains q′ = Cp

Wp
+

√

(

Cp

Wp

)2
+ q2

d. q′ is

higher than before because the plaintiff needs a better case to break even in

court under the new negligence rule. To put it differently, the threshold of

Wp for the case to have merit is higher than the previous threshold 2Cp/b.

Proposition 1 still applies, with an adapted presumption for meritless

cases.18 Proposition 2 holds as well, with the new q′. Nonetheless, for a

settlement offer lower than Cd, (q(S), α(S)) = (0, 1) can no longer constitute

an equilibrium. In fact, for any q(S) < q′, the plaintiff will abandon the

case in the last stage. The reason is that some defendants (with q < qd)

will never settle as they are certain that they are not at fault. Therefore, the

threat to litigate is always on the equilibrium path,19 and hence not credible if
18Specifically, the case does not have merit if Wp < 2bCp/(b2 − q2

d).
19In Section 3 without the negligence rule, the threat is off the path for (q(S), α(S)) =
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q(S) < q′. Consequently, there exists a unique equilibrium for S ≤ Cd, which

is the same as that prescribed in Proposition 2: (q(S), α(S)) =
(

q′, S
q′Wd+Cd

)

.

To determine the optimal settlement demand, the plaintiff maximizes her

expected value V (S) of proposing S:

V (S) ≡ (1− F (q(S)))S + α(S)F (q(S))

(

−Cp + Wp

∫ q(S)

qd

xdF (x)
F (q(S))

)

.

Once again, the only change in the formulation due to the negligence rule is

the lower bound of the integration.

There are three candidates for S that could maximize V (S): the interior

solution of S = ̂S and two corner solutions of S = S ′ or S̄.20 Figure 3 depicts

the partitions of the decoupling-rate space that characterize the equilibria in

the settlement subgame. With analogous argument that leads to Proposi-

tion 5, one can show that a necessary condition for the optimal decoupling

is given by q′ = q̂, which characterizes the border between the regions of

S∗ = S ′ and S∗ = ̂S in Figure 3.

The general impact of qd on the equilibrium is ambiguous. Nonetheless,

under the same decoupling rates, we know that the injurer will be less care-

ful for a small increase of qd when qd is close to zero.21 The reason is quite

obvious: the existence of a negligence rule partly relieves the injurer of his

responsibility. At the margin, the negligence rule alters the bargaining posi-

tions in the settlement subgame and favors the defendant. In response, the

plaintiff becomes more litigious, which leads to a higher social cost per acci-

dent. It follows that the social planner should raise Wd when implementing

the negligent rule so that the injurer will be more careful in the new system.

(0, 1), since every defendant accepts S with q(S) = 0.
20S = Cd is not eligible as (q(S), α(S)) = (0, 1) no longer constitutes an equilibrium.
21Specifically, ∂EPA

∂qd
converges to −Cd

b as qd approaches zero, and thus dc∗
dqd

< 0 in a

neighborhood of qd = 0.
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Figure 3: Optimal settlement demand with a negligence rule

6 Conclusion

In this paper, we have studied the optimal system of decoupled liability.

When asymmetric information between injurer and victim is present, the

concern of credibility plays a crucial role in the plaintiff’s pretrial settlement

strategy. In essence, if a plaintiff worries too much about her credibility in

court, she acts too aggressively in the settlement phase. Accordingly, the

injurer makes an excessive effort to prevent an accident from happening in

order to avoid an aggressive victim. Conversely, if a plaintiff is too confident

about her case, she would rather bring the case to court than settle it. In

either case, there will be too much litigation, leaving the system inefficient.

Thus, the first goal in designing a decoupled liability system is to balance

the bargaining positions for those involved in an accident.

The second goal of a liability system is to make sure that the injurer takes

adequate precautions. The tradeoff here is the cost of precautionary effort

and the benefit it creates by reducing the chance of future accidents. When
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there is no asymmetric information, it is easy to verify that Wd = 2(`−Cd)/b

implements the first-best liability system in which there is no litigation, and

the injurer selects a care level that internalizes future potential harm. The

presence of asymmetric information makes wasteful lawsuits unavoidable.

Otherwise, the injurer will never agree to settle. Consequently, the second-

best care level is distorted upward.

The design proposed by Polinsky and Che (1991) cannot accomplish the

above-mentioned goals when the plaintiff is uninformed about the strength

of her case. With the penalty raised and the award reduced, the plaintiff will

be undermined so that she has to establish her credibility through litigation.

Meanwhile, making the penalty as high as possible forces the injurer to take

excessive care that might be wasteful. Nonetheless, when the defendant in

our model cannot afford the optimal penalty, he should pay as much as he can.

In this scenario, our solution coincides with the optimal system suggested by

Polinsky and Che. That is, our model departs from that of Polinsky and Che

only when the defendant has deep pockets.

Presumably, the plaintiff can be awarded more than what the defendant

pays. Nonetheless, we show that it does not happen in equilibrium. The

assertion is most evident in the limiting case when the harm is sufficiently

large. In that scenario, we demonstrate that the optimal penalty can be ap-

proximated by a multiple of the actual harm (the multiplier is 8/3, assuming

uniform distribution). In contrast, the optimal award is always confined in

a range independent of the harm suffered by the plaintiff.

As we have demonstrated, to achieve the optimal deterrence, one must

balance the litigating parties’ bargaining positions in pretrial negotiation. We

show that a weaker plaintiff needs to be motivated through a higher award

in court, which leads to more lawsuits and higher care level in equilibrium.

Conversely, when the plaintiff is stronger in terms of trial costs, the award

should be set lower, which results in less litigation at the cost that the injurer
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now exerts less care. Similar arguments can be applied to the analysis of

various liability systems. For instance, a negligence rule essentially enhances

the defendant’s bargaining position. When the social planner adjusts the

decoupled liability accordingly, it results in a lower settlement rate, but fewer

accidents.

Appendix

Proof of Proposition 3

The following expressions define the subsets that correspond with various

S∗ when the case has merit.

ωi ≡
{

(Wp,Wd) ∈ ω :
(Cd − Cp)/b

Wd
+

4Cp/b
Wp

≤ 1, Wp ≤ Wd +
Cp + Cd

b

}

,

ωii ≡
{

(Wp,Wd) ∈ ω : Wp ≥ Wd +
Cp + Cd

b
, Wp ≥

2(Cp + Cd)
b

}

,

ωiii ≡
{

(Wp,Wd) ∈ ω : Wp <
2(Cp + Cd)

b
,

Cd/b
Wd

+
2Cp/b
Wp

> 1
}

,

ωiv ≡
{

(Wp,Wd) ∈ ω :
Cd/b
Wd

+
2Cp/b
Wp

≤ 1,
(Cd − Cp)/b

Wd
+

4Cp/b
Wp

≥ 1
}

.

(A1)

First, note that the boundaries of ω′s join at

(Wp,Wd) =
(

2(Cp + Cd)
b

,
Cp + Cd

b

)

.

Therefore, the following equations

Wp =
2(Cp + Cd)

b
,

Cd/b
Wd

+
2Cp/b
Wp

= 1,

Wp = Wd +
Cp + Cd

b
,

(Cd − Cp)/b
Wd

+
4Cp/b
Wp

= 1,

represent the boundaries of ω′s and separate ω into four quadrants. We want

to show that each quadrant associates with a particular S∗.
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Consider the case with Wp > 2Wd. From (7), ̂V (S) is a quadratic function

with a positive coefficient on S2. Moreover, ̂V (S) attains the same value as

V (S) at S = Cd. Therefore, V (S) is maximized at either S = Cd or S̄.

Comparing V (Cd) and V (S̄) implies that Wp = 2(Cp+Cd)
b separates the sets

of {S∗ = S̄} and {S∗ = Cd}.
When Wp = 2Wd, ̂V (S) is a linear function. The coefficient on S is

positive if and only if Wp > 2(Cp+Cd)
b , in which case S∗ = S̄. Otherwise, ̂V (S)

is decreasing, and S∗ = Cd.

With Wp < 2Wd, ̂V (S) is a quadratic function with a negative coefficient

on S2. Thus, V (S̄) is maximal if and only if ̂S ≥ S̄, which is equivalent to

Wp ≥ Wd + Cp+Cd
b . If the latter inequality does not hold, we must determine

whether the interior solution ̂S is feasible. If the answer is yes, S∗ = ̂S;

otherwise, we compare V (S′) against Cd. ̂S is feasible if and only if ̂S ≥
S ′, which reduces to (Cd−Cp)/b

Wd
+ 4Cp/b

Wp
≤ 1. Comparing V (S′) with Cd is

straightforward.

Proof of Proposition 4

Recall that the defendant’s expected payment for an accident, when

(Wp,Wd) ∈ ωi ∪ ωiv, is given as follows.

EPA = q∗
(

1− q∗

2b

)

Wd + Cd, (A2)

where q∗ = q̂ or q′ for (Wp,Wd) ∈ ωi or ωiv, respectively. EPA determines

the injurer’s care level according to the first order condition in (8).

For (Wp,Wd) ∈ ωi, q∗ = q̂ ≡ bWd−Cp−Cd
2Wd−Wp

. In view of (A2), the set

{(Wp,Wd) : EPA = constant)} defines an iso-cost curve. It is tedious but

straightforward to verify that the iso-cost curves in ωi have negative slope. It

follows that for any (Wp,Wd) ∈ ωi\ωiv, there exists4p,4d > 0 such that the

new decoupled liability (Wp−4p,Wd+4d) stays in the region ωi and belongs

to the same iso-cost curve as (Wp,Wd). To show that (Wp −4p,Wd +4d)
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implies a lower q∗, note that it corresponds with the same EPA as (Wp,Wd).

Since q∗(1 − q∗

2b ) is an increasing function of q∗, a higher Wd must associate

with a lower q∗ to keep EPA constant.

For (Wp,Wd) ∈ ωiv, q∗ = q′ ≡ 2Cp

Wp
. It is easier to see that the iso-

cost curves in this region have positive slope. The rest of the argument is

analogous to the previous scenario.

Proof of Proposition 5

The proof proceeds in four steps. Each step is summarized in a lemma.

The first lemma proves that any (Wp,Wd) ∈ ωii cannot solve (9). The second

lemma shows that (Wp,Wd) ∈ ωi ∪ ωiv \ ωi ∩ ωiv cannot be optimal either.

We further rule out ωv ≡ {(Wp, Wd) : Wp ≤ 2Cp/b,Wd > 0} in Lemma 3.

Finally, we show that S∗ = Cd is not optimal when ` is sufficiently large.

First of all, note that the EPA′s associated with S∗ = S̄ and Cd are both

constants (i.e., independent of (Wp,Wd)), and thus the corresponding social

costs are constants as well.22 Lemma 1 shows that any decoupling rates such

that S∗(Wp,Wd) = S̄ cannot be optimal.

Lemma 1. Any decoupled liability in the set, ωi ∩ ωii, can never attain the

minimal social cost.

Proof. From Figure 2, we see that the indicated set, ωi∩ωii, is the boundary

at which {(Wp,Wd) : S∗(Wp,Wd) = ̂S, S∗(Wp,Wd) = S̄}. Assuming S∗ = ̂S,

we want to show that the partial derivative of the social cost with respect to

Wp is positive. If the assertion is true, the social planner can lower Wp to

reduce the social cost.

The condition Wp = Wd + (Cp + Cd)/b implies that

q̂ = b,
∂EPA
∂Wp

= Wd

(

1− q̂
b

)

∂q̂
∂Wp

= 0, and
∂q̂

∂Wp
=

b
2Wd −Wp

.

22The EPA′s are Cd + bWd/2 and Cd for S∗ = S̄ and Cd, respectively. Solving (8)

implies the corresponding care levels, which then determine the social costs under these

scenarios.
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It follows that

∂
∂Wp

(

social cost
)

= p(c∗)
(Cp + Cd)

b
∂q̂

∂Wp
> 0,

which completes the proof.

The next lemma shows that in the optimal decoupling system, the plain-

tiff’s credibility constraint must be marginally binding so that q′ = q̂.

Lemma 2. For (Wp,Wd) ∈ ωi∪ωiv, the necessary condition for (Wp,Wd) to

solve (9) is that (Wp,Wd) ∈ ωi ∩ ωiv.

Proof. The lemma follows directly from Proposition 4. Essentially, one can

always improve efficiency of the decoupling system by maintaining the care

level while reducing the lawsuits, as long as (Wp,Wd) is not on the boundary,

ωi ∩ ωiv.

We have been focusing on the scenario of Wp > 2Cp/b in which the

plaintiff’s case has merit. If the plaintiff’s trial reward is so low that Wp <

2Cp/b, there will be no lawsuits at all (see Proposition 1). There is no

settlement either, since the plaintiff’s case has no merit. In this scenario,

the injurer will set his care level at zero. The corresponding social cost is

p(0) · `. In contrast, when S∗ = Cd, the case is always settled out of court.

The corresponding social cost is given by c1 +p(c1) ·` where c1 is the solution

to 1 + p′(c) · Cd = 0. We want to show that the social cost in the latter

scenario is lower than that in the former.

Lemma 3. Suppose Cd < `. Comparing the social costs in the two scenarios

in which there are no lawsuits, one obtains a lower social cost when the case

has merit than that when the case has no merit:

c1 + p(c1) · ` < p(0) · `.
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Proof. Let c̃ denote the first-best level of care that minimizes the social

cost without any lawsuits: c̃ ≡ arg minc c + p(c) · `. c̃ satisfies the first order

condition, 1+ p′(c̃) · ` = 0. Comparing this condition with 1+p′(c1) ·Cd = 0,

one concludes that c1 < c̃, provided Cd < `. Since c + p(c) · ` is a convex

function of c and minimized at c̃, the fact that 0 < c1 < c̃ implies c1+p(c1)·` <

p(0) · `.

It is now clear that the social planner must choose between two systems of

decoupled liability. In the first option, the social planner selects (Wp,Wd) ∈
ωiii to implement c1 so that S∗ = Cd, and the parties involved in an accident

always settle the case out of court. The corresponding social cost is c1 +

p(c1) · `. The chance of accidents in this case is higher than desired, but

there is no litigation cost. The second candidate is suggested by Lemma 2,

where (Wp,Wd) ∈ ωi ∩ωiv so that S∗ = ̂S = S ′. The probability of litigation

in this scenario is positive, but the potential injurer is more careful. The

next lemma shows that the second option is more efficient when the accident

loss ` is sufficiently large. This completes our proof of Proposition 5.

Lemma 4. Suppose Assumptions 1 and 2 hold. There exists ` such that for

` > `, the minimal social cost attained by (Wp,Wd) ∈ ωi ∩ ωiv is lower than

c1 + p(c1) · `.

Proof. Consider the optimization program in (10). The first order condition

can be rewritten as
(

1 + p′(c∗) ·
(

` +
q∗

b
(Cp + Cd)

))

dc∗

dWd
+ p(c∗) · Cp + Cd

b
· dq∗

dWd
= 0, (A3)

where q∗ and c∗ follows from the constraints in (10). The first-order deriva-

tives in (A3) are given by

dc∗

dWd
=

p′(c∗)2

p′′(c∗)
· b
2

(

1− q∗

b
+

(

q∗

b

)2
)

,
dq∗

dWd
=

Cd − Cp

2W 2
d

. (A4)
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From (A3), one observes that dWd
d` has the same sign as dc∗

dWd
, which is positive.

Furthermore, the optimal Wd has no upper bound when ` approaches infinity,

which implies limWd→∞
dq∗
dWd

= 0. Assuming otherwise, then EPA and hence

c∗ are bounded as well, which implies that both dc∗
dWd

and dq∗
dWd

are finite

and bounded away from zero. However, since p′(c∗) = − 1
EPA is bounded,

1 + p′(c∗) ·
(

` + q∗

b (Cp + Cd)
)

will diverge as ` goes to infinity, and therefore

(A3) cannot hold, a contradiction. In sum, the first order condition (A3)

reduces to 1+p′(c∗)·
(

` + 1
2(Cp + Cd)

)

= 0 in the limit, assuming that p′(c)2

p(c)p′′(c)

is bounded away from zero, which is implied by Assumption 2.

Let c2 be the care level that corresponds with the approximate solution:

c2 solves the first order condition 1 + p′(c2) · (` + 1
2(Cp + Cd)) = 0. The

imputed social cost is given by c2 +p(c2) · (`+ 1
2(Cp +Cd)). We want to show

that this cost is lower than c1 + p(c1) · `. The comparison reduces to

1
2
(Cp + Cd) · p(c2) < −p(c2)− p(c1)

c2 − c1
· `.

The left hand side converges to zero, provided Assumption 1. The right hand

side is greater than −p′(c2) · ` from the Mean-Value Theorem and the fact

that p′′(c) > 0. By the definition of c2, −p′(c2) · ` is equal to `
`+ 1

2 (Cp+Cd)
,

which converges to 1. Thus, the inequality holds when ` is large enough.

Proof of Corollary 7

From (A4), one observes that dc∗
dWd

is positive, while the sign of dq∗
dWd

de-

pends on that of Cd−Cp. Consider first the case of Cd < Cp. It follows that
dq∗
dWd

< 0, and hence 1 + p′(c∗) ·
(

` + q∗

b (Cp + Cd)
)

> 0 from (A3). Comparing

this inequality with the injurer’s first order condition, one obtains

` +
q∗

b
(Cp + Cd) < q∗

(

1− q∗

2b

)

Wd + Cd.

q∗

b (Cp +Cd)−Cd is positive since q∗ > b
2 and Cd < Cp. Moreover, q∗

(

1− q∗

2b

)

is bounded above by b
2 as q∗ ≤ b. Thus, Wd > 2`

b if Cd < Cp.
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Next, suppose Cd > Cp. Recall that c̃ is the first-best level of care:

1 + p′(c̃) · ` = 0 (see the proof of Lemma 3). Define W̃d and q̃ such that

they implement c̃ according to (8): q̃(1− q̃
2b)W̃d + Cd = ` and q̃ = b

2 −
Cd−Cp

2W̃d
.

The first equation implies that W̃d diverges as ` goes to infinity, and therefore

lim`→∞ q̃ = b
2 from the second equation. We want to show that the derivative

of the social cost evaluated at W̃d is negative, which will imply that the

optimal Wd is greater than W̃d. Substituting the equations that define W̃d

and q̃ into the left hand side of (A3), the desired inequality reduces to

(1− 2q̃
b )(1− q̃

2b)

1− q̃
b + ( q̃

b )
2

<
p′(c̃)2

p(c̃)p′′(c̃)
· `− Cd

`
.

The left hand side converges to zero when q̃ converges to b
2 , or, equivalently,

when ` approaches infinity. Provided Assumption 2, the limit of the right

hand side is greater than one, and hence the inequality holds. It follows that

the optimal Wd is greater than W̃d, which is equal to `−Cd
q̃(1−q̃/2b) . The last term

is bounded below by 8(`−Cd)
3b since q̃ is less than b

2 in the current scenario.

Proof of Corollary 8

From the first constraint in (10) (q∗ = b
2 −

Cd−Cp

2Wd
), one observes that

the settlement rate in equilibrium, 1 − q∗

b , is greater than 1
2 if and only if

Cp < Cd. Furthermore, Cp < Cd implies that dq∗
dWd

> 0 in view of (A4), and

therefore 1+p′(c∗) ·
(

` + q∗

b (Cp + Cd)
)

in (A3) is negative since dc∗
dWd

is always

positive. Comparing this inequality with the injurer’s first order condition,

1 + p′(c∗)EPA = 0, one obtains

−p′(c∗) ·
(

` +
q∗

b
(Cp + Cd)

)

> −p′(c∗) ·
(

q∗
(

1− q∗

2b

)

Wd + Cd

)

.

The inequality states that the injurer’s marginal benefit from exerting care

is lower than the marginal benefit for the society. It means that the injurer

should have raised his care level from the society’s point of view.

36



Proof of Proposition 9

In the proof of Lemma 4, we have shown that dWd
d` and dc∗

d` are both

positive. The settlement demand S∗ in equilibrium is equal to b
2Wd + Cp+Cd

2 ,

which is proportional to Wd. Hence, dS∗
d` is positive as well. Meanwhile, the

changes in Wp and q∗ induced by an increase of ` depend on the slope of the

boundary ωi ∩ ωiv, which is determined by the sign of Cd − Cp.

Proof of Example 1

With Cp = Cd, Wp is a constant on the path of ωi ∩ ωiv. The constraints

in (10) reduces to q∗ = b
2 and 1+p′(c∗)·

(

3b
8 Wd + Cd

)

= 0. The social problem

is to minimize c∗ + p(c∗) ·
(

` + 1
2(Cp + Cd)

)

, which implies (1 + p′(c∗) · (` +

Cd)) dc∗
dWd

= 0 as the first order condition. Comparing this condition with the

previous one, one obtains 3b
8 Wd + Cd = ` + Cd, and hence Wd = 8`

3b .

Assuming p(c) = exp(−c), the minimal social cost attained in (10) is

ln(` + Cd) + 1. Meanwhile, the social cost associated with S∗ = Cd is given

by ln Cd + `/Cd. The latter cost is greater than the former if `/Cd > 2.146.

Proof of Example 2

First of all, the social cost associated with S∗ = Cd is not affected by

endogeneity of F (q), and thus is given by lnCd + `/Cd.

Assuming (Wp,Wd) ∈ ωiv, with p(c) = b(c) = e−c, the first order condi-

tion to the injurer’s problem reduces to 1 + p′(c∗) · (q∗Wd + Cd) = 0, which

implies c∗ = ln(q∗Wd + Cd). The care level here is higher than the level

when F (q) is exogenous. In other words, given the same decoupling rates,

the injurer will take extra care if being more careful helps to reduce his share

of responsibility. Provided Cp = Cd, one obtains q∗ = b
2 from (10), and

thus the social planner’s problem is to minimize c∗+p(c∗) ·
(

` + 1
2(Cp + Cd)

)

.

The first order condition is (1 + p′(c∗) · (` + Cd)) dc∗
dWd

= 0. Comparing this

condition to the previous one, one concludes that Wd = `
q∗ = 2`

b , where
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b = exp(−c∗) = 1
`+Cd

.

References

1. Choi, Albert H. and Sanchirico, Chris William “Should Plaintiffs Win

What Defendants Lose? Litigation Stakes, Litigation Effort, and the

Benefits of Decoupling.” Journal of Legal Studies, Vol. 33 (2004), pp.

323-354.

2. Daughety, A. F. and Reinganum, J. F. “Found Money? Split-Award

Statutes and Settlement of Punitive Damages Cases.” American Law

and Economics Review, Vol. 5 (2003), pp. 134-164.

3. Kahan, Marcel and Tuckman, Bruce “Special Levies on Punitive Dam-

ages: Decoupling, Agency Problems, and Litigation Expenditure.” In-

ternational Review of Law and Economics, Vol. 15 (1995), pp. 175-185.

4. Lewis, R. Tracy and Sappington, David E. M. “Using Decoupling and

Deep Pockets to Mitigating Judgment-proof Problems.” International

Review of Law and Economics, Vol. 19 (1999), pp. 275-293.

5. Nalebuff, Barry “Credible Pretrial Negotiation.” Rand Journal of Eco-

nomics, Vol. 18 (1987), pp. 198-210.

6. Polinsky, A. Mitchell and Che, Yeon-Koo “Decoupling Liability: Opti-

mal Incentives for Care and Litigation.” Rand Journal of Economics,

Vol. 22 (1991), pp. 562-570.

7. Polinsky, A. Mitchell and Shavell, Steven M. “Punitive Damages: An

Economic Analysis.” Harvard Law Review, Vol. 111 (1998), pp. 869-

962.

38



8. Rubinstein, Ariel “A Bargaining Model with Incomplete Information

about Time Preferences.” Econometrica, Vol. 53 (1985), pp. 1151-

1172.

9. Salop, Steven C. and White, L. J. “Economic Analysis of Private An-

titrust Litigation.” Georgetown Law Journal, Vol. 74 (1986), pp. 1001-

1064.

10. Schwartz, W. F. “An Overview of the Economic Analysis of Private

Antitrust Litigation.” Georgetown Law Journal, Vol. 68 (1980), pp.

1075-1102.

11. Sharkey, Catherine M. “Punitive Damages as Societal Damages.” Yale

Law Journal, Vol. 113 (2003), pp. 347-453.

39



Number   Author(s)             Title                                                 Date 

05-A002   C. Y. Cyrus Chu      The Optimal Decoupled Liabilities: A General Analysis         02/05 

Hung-Ken Chien 

 

05-A001   Cyrus C.Y. Chu       Durable-Goods Monopolists, Network Effects and             02/05 

Hung-Ken Chien      Penetration Pricing 

 

04-A015   Been-Lon Chen       Multiple Equilibria in a Growth Model with Habit Persistence  11/04 
 

04-A014   C. Y. Cyrus Chu      A New Model for Family Resource Allocation Among         05/04 

R. R. Yu             Siblings: Competition, Forbearance, and Support    

Ruey S. Tsay 

 

04-A013   C. Y. Cyrus Chu      Transmission of Sex Preferences Across Generations:          05/04 

Ruey S. Tsay         The Allocation of Educational Resources Among Siblings 

Huoying Wu                        

 

04-A012  C. Y. Cyrus Chu       Children as Refrigerators:  When Would  Backward         05/04 

Altruism Appear? 

 

04-A011  Marcus Berliant        Welfare Analysis of Number and Locations of Local           05/04  

         Shin-Kun Peng         Public Facilities 

         Ping Wang 

 

04-A010  Daigee Shaw          Assessing Alternative Policies for Reducing Household         03/04 

         Yue-Mi Tsai           Waste in Taiwan  

 

04-A009  Daigee Shaw          A Probabilistic Risk Analysis for Taipei Seismic Hazards:       03/04 

         Chin-Hsiung Loh       An Application of HAZ-Taiwan with its Pre-processor and  

         Chin-Hsun Yeh         Post-processor     

         Wen-Yu Jean  

         Yen-lien Kuo 

 

04-A008  Yu-Lan Chien          A General Model of Starting Point Bias in Double-Bounded     03/04 

          Cliff J. Huang         Dichotomous Contingent Valuation Surveys 

          Daigee Shaw 

  

 

 1



04-A007   鍾經樊              財富在不同時期對台灣消費行為的影響：                 02/04      

詹維玲              多變量馬可夫結構轉換模型的應用     

          張光亮 

 

04-A006  Chun-chieh Huang     Working Hours Reduction and Endogenous Growth            02/04        

Ching-Chong Lai        

          Juin-Jen Chang        

 

04-A005  Juin-Jen Chang        On the Public Economics of Casino Gambling                 02/04           

          Ching-Chong Lai        

          Ping Wang   

 

04-A004  Ming-Fu Shaw         Interest Rate Rules, Target Policies, and Endogenous           02/04        

Shu-Hua Chen         Economic Growth in an Open Economy 

          Ching-Chong Lai 

          Juin-Jen Chang  

 

04-A003  Po-Hsuan Hsu         Re-Examining the Profitability of  Technical Analysis         02/04         

         Chung-Ming Kuan      with White’s Reality Check 

         

04-A002  Kamhon Kan          Obesity and Risk Knowledge                              01/04 

         Wei-Der Tsai 

 

04-A001  Chi-Chung Chen       Climate Change and Crop Yield Distribution: Some            01/04 

         Ching-Cheng Chang     New Evidence from Panel Data Models 

 

03-A009  Joseph Greenberg      Towering over Babel: Worlds Apart but Acting Together         12/03 

         Sudheer Gupta 

         Xiao Luo   

 

03-A008  Shin-Kun Peng        Sorting by Foot: Consumable Travel – for Local                12/03 

 Ping Wang            Public Good and Equilibrium Stratification 

 

03-A007  Been-Lon Chen        Economic Growth With Optimal Public Spending              12/03 

Compositional 

 

03-A006  Been-Lon Chen        Factor Taxation and Labor Supply In A Dynamic               12/03 

                              One-Sector Growth Model 

 2


	
	IEAS Working Paper
	A General Analysis
	INSTITUTE OF ECONOMICS, ACADEMIA SINICA
	TAIWAN




