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1 Missing Data 

 1

1 Missing Data 

Almost all surveys that are based on voluntarily participation are affected by nonresponse. 

Whether or on should compensate for the missing values when analyzing an uncompletely 

observed data set, depends on the assumed mechanism that led to the missing data (e.g., Little 

and Rubin, 2002). If the missing data are missing completely at random (MCAR) or at ran-

dom (MAR) then compensation is possible based on information available from the observed 

part of the data set and some additional weak assumptions. On the other hand, if the missing 

data are not missing at random (NMAR), then compensation is usually only possible under 

external information and strong assumptions. Hence, methods to compensate for missing 

values, like those adopted in the SOEP, are usually based on the MAR assumption. 

Generally, a distinction is made between unit and item nonresponse. The former indicates the 

situation where units (e.g., households or individuals) are not observed at all, whereas item 

nonresponse refers to the situation where units that are otherwise willing to respond are not 

completely observed, i.e. do not answer all survey questions. In panel data sets, a specific  

type of unit-nonresponse is attrition which denotes the situation where units observed at least 

once drop off the survey in a later wave. Traditionally, researchers deal differently with both 

kinds of nonresponse: weighting is a technique usually adopted to compensate for unit non-

response and attrition, whereas some imputation strategy is often chosen to compensate for 

item nonresponse. However, looking more closely at the distinction between unit and item 

nonresponse reveals that it is rather artificial: unit nonresponse is simply an extreme form of 

item nonresponse. On the other hand, up to now there is no unifying approach available to 

satisfactorily deal with both problems simultaneously.  

2 Compensating for Unit Nonresponse in the SOEP  

To compensate for unit nonresponse, the SOEP supports weighting strategies by delivering 

various weights together with the SOEP data. Weighting as a strategy to compensate for 

known sampling probabilities is standard in design-based statistics (e.g. Horvitz and Thomp-

son, 1952; Särndal, Swensson and Wretman, 1992). With unit nonresponse, an additional 

selection stage, from the gross sample to the observed sample, is introduced where the “selec-

tion” probabilities are,  however, unknown and must be estimated. Weighting in this context 
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2 Compensating for Unit Nonresponse in the SOEP 

is standard under the assumption that missingness depends on observed variables only and 

response probabilities can consistently be estimated, although the fact that the weights are in 

part based on estimates, is usually ignored. In model-based approaches, weighting as a means 

to compensate for differing sampling and response probabilities has only been dealt with for 

approximately 10 to 15 years. Up to then the problem was largely ignored.  

The work of  Robins and colleagues (e.g. Robins, Rotnitzky and Zhao, 1994, 1995) and by 

Wooldridge (2002a, 2002b, 2004) goes far beyond what has been discussed in the design-

based literature. For example, in the papers of Robins and colleagues, strategies to compensa-

te for first wave nonresponse, attrition and missing items in the context of semi-parametric 

estimation of panel data models are developed. Wooldridge (2002a, 2002b, 2004) discusses 

weighting as a strategy to compensate for different selection probabilities as well as unit non-

response in the context of extremum estimators for cross sectional and a certain class of panel 

models.  

Important results from this line of thinking and research imply that as many information as 

possible should be incorporated into the models to estimate response probabilities (“kitchen 

sink” approach). In fact, it can be shown that including many variables does not increase the 

(asymptotic) variance of the resulting estimators of a wide class of estimators of interest. 

Furthermore, ignoring the fact that weights are based on estimated probabilities, leads to an, 

usually only minor, overestimation of the standard errors and thus to conservative inferences, 

which is seen as being less problematic than anti-conservative inferences. Unfortunately, with 

standard  software, it is not possible at present to use information that allows to compensate 

for the uncertainty in the estimated weights, even if this information were delivered with a 

data set. On the other hand, weighted estimation leads to larger standard errors than unweigh-

ted estimation (if both strategies are valid), weighted estimators based on estimated weights 

nevertheless have smaller variances than estimators based on known weights. An interesting 

and important discussion on when to weight (or not to weight) in model-based approaches, 

can be found in Wooldridge (2004). 

The strategy adopted for the SOEP in 1984—almost 25 years ago (cf. Galler, 1987)—to use 

as much information as possible to estimate response probabilities and to base the weights on 

a sequence of estimated response probabilities is in line with this literature. Further, by provi-

ding various weights (design weights, the inverse of estimated attrition probabilities, denoted 

as “staying factors”, and cross sectional weights; cf. Rendtel, 1995; Spiess, 2005)  researchers 
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3 Compensation for Missing Items in the SOEP 

may derive their own weights according to their assumptions and needs to account for diffe-

rent sampling probabilities, observation probabilities possibly adjusted for various sampling 

probabilities as well as different versions of longitudinal weights to estimate panel data mo-

dels. Although most standard software is not yet able to deal with, e.g., time varying weights, 

such weights are already available with the SOEP.  

 

3 Compensation for Missing Items in the SOEP 

A theoretically sound approach that became applicable through corresponding software with 

increasing computing power within the last years to compensate for missing items is the 

method of multiple imputation (e.g. Rubin, 1987, 1996). However, up to now, available tech-

niques and statistical software does neither allow the (proper) imputation of complex surveys 

nor does it allow the substitution of weights by imputations (but see Spiess 2006 for the impu-

tation of missing items and dropouts in a longitudinal analysis). First experiences with impu-

tations are gathered in the SOEP by generating predictions for missing wealth and household 

income values. 

As for the weighting strategy, of course, not any imputation procedure allows the generation 

of imputations that lead to valid inferences in the design-based or model-based analyses of 

interest. If the imputation procedure is proper in the sense of Rubin (1987, 1996), then the 

inferences of interest based on a multiply imputed data set should be valid as well, if the ana-

lysis method applied to the complete data set would lead to valid inferences. According to 

Rubin, a multiple imputation procedure tends to be “proper” if the imputations are (indepen-

dent) draws from the corresponding predictive posterior distribution of all variables with 

missing values (for details see Rubin, 1987, 1996). However, in complex data sets with diffe-

rent types of variables (continuous, binary, truncated, ordered categorical etc.) this is compli-

cated and may even not be practical. And in fact, available software does not allow to draw 

imputations from such distributions. Furthermore, although necessary in complex data sets, 

most of the available software packages do not allow to generate imputations under restricti-

ons, e.g. on the range of the variables to be imputed or under other logical constraints. There 

does  exist software (e.g. IVEware, MICE) that allows researchers to generate imputations 

based on univariate marginal distributions for some simple data structures (e.g. assuming that 

 3
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4 Discussion and Prospective 

the data are not clustered) and univariate parametric models. Adopting such an approach it 

may happen that a common posterior distribution for all variables with missing values does 

not exist. Although a few results are available that imply that this might have only negligible 

consequences for the inferences of substantive interest, there is still need for further research.  

Other problems with software currently available are that the imputation models usually are 

not able to adequately deal with clustered data structures, e.g. individuals within households, 

within geographical units etc., different types of variables and restrictions in a minimal 

restrictive way (e.g. semi- or nonparametric models) at the same time. Further, the imputation 

models adopted are usually parametric models, and although multiple imputation can be ‘self-

correcting’ in the sense of multiple imputations (at least) being ‘confidence proper’ (Rubin, 

1996, 2003), there still is lack on research with respect to the consequences of misspecified 

imputation models.  

 

4 Discussion and Prospective 

To further improve the weighting procedure as well as to be able to generate proper multiple 

imputations for a complex data set like the SOEP, and thus to support users to draw valid 

inferences even in the presence of missing data for a wide range of situations, future projects 

involve the implementation of fast and stable estimation procedures for (preferably) very 

flexible models with arbitrary variables to be imputed. Further, since theoretical and empirical 

results in the statistical literature imply that as much information as possible should be used to 

generate weights as well as imputations, the estimation procedures must be augmented, e.g., 

by additional techniques to prevent the estimation of the large models to abort due to high 

multicollinearity. Further, much more research is needed with respect to the consequences of 

misspecified models to generate weights and imputations.  

However, the basic decision which was taken a quarter of a century ago to generate weights  

for the SOEP based on a sequence of detailed attrition analyses is again justified by the latest 

model-based research on weighting.  
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