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over the last decade, the microstructure approach to exchange rates has become very popular. The underlying idea of this 
approach is that the order flows at different levels of aggregation contain valuable information to explain exchange rate 
movements. The bulk of empirical literature has focused on evaluating this hypothesis in a linear framework. This paper 
analyzes nonlinearities in the relation between exchange rates and customer order flows. We show that the relationship 
evolves over time and that it is different under different market conditions defined by exchange rate volatility. Further, we 
found that the nonlinearity can be captured successfully by the Threshold regression and Markov Switching models, which 
provide substantial explanatory power beyond the constant coefficients approach.

JEL: C22, F31, G15.
Keywords: customer order flows, nonlinear models, microstructure, exchange rate.

A devizaárfolyamok alakulását a piaci mikrostruktúra alapján leíró modellek ez elmúlt évtizedben egyre nagyobb népsze-
rűségnek örvendenek. A mikrostruktúrán alapuló megközelítés alapfeltevése az, hogy a piaci szereplők order flow-ja az 
árfolyamok alakulására vonatkozó információt tartalmaz. Az empirikus irodalom nagy része ezt a feltevést lineáris model-
lek felhasználásával tesztelte. A jelen írás az ügyfél order flow és az árfolyam kapcsolatát nemlineáris modellkeretben 
vizsgálja. Megmutatjuk, hogy ez a kapcsolat időben változik, és függ attól, hogy az adott időszakban mekkora az árfolyam 
volatilitása. Ezen túl azt találtuk, hogy a nemlinearitás sikeresen megragadható Threshold Regression és Markov Switching 
modellek alkalmazásával. Az állandó együtthatós esethez képest a paraméterek időbeli változása jelentősen növeli a model-
lek magyarázó erejét.

Abstract

Összefoglalás
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1 Introduction

In standard macroeconomic models exchange rate is determined by fundamental factors, which are observed
by all agents in the economy and constitute public knowledge. In these models, there is no private informa-
tion and price determination is straightforward and immediate. Unfortunately, their empirical performance
is very poor. Meese & Rogoff (1983a) and Meese & Rogoff (1983b) show that the structural macro models
almost do not have power to explain exchange rate movements and cannot out-perform a naïve random walk
in out-of-sample fitting (see Isard (1995) or Taylor (1995) for a survey).

Inspired by Lyons (1995), the market microstructure approach has recently become popular. According to
this approach, the information on the market is asymmetric, i.e., some agents have private information.
When the market is not fully efficient, the informed agents can exploit this information to get profit. In the
classical framework (Evans & Lyons (2002)), market-makers get informed about local demand by observing
orders from their own customers (1st-round trading), and receive information about global demand by trad-
ing with other dealers in a 2nd-round. Consequently, market-makers can infer the private information from
the order flows, and adjust the quotes accordingly trying to close with zero net open positions. In this way,
the information is embedded into the market through the order flows.

A growing amount of empirical literature focuses on examining the relation between exchange rates and
order flows, mainly by estimating a linear regression of the price changes on the net order flows. The overall
conclusion is that order flows contain relevant information for exchange rate determination (see e.g. Evans &
Lyons (2002) for inter-dealer order flow or Bjønnes et al. (2005) and Marsh & O’Rourke (2005) for customer
order flows).

Although linearity has been a maintained assumption in the empirical literature, a time varying relation
between exchange rates and order flows is, a priory, more realistic: why should the relation be the same
under dramatically different market situations as crises or periods of growth? According to theoretical models
(Admati & Pfleiderer (1988), Subrahmanyan (1991) or Easley & O’Hara (1992)), exchange rate volatility is
one of the key variable identifying the portion of information embedded to the market. Since the order
flows are means of information transmission, the relationship between them and exchange rate is thought to
be different in periods of high and low volatility.

In this paper, we first conduct an intensive analysis of the linear relation between exchange rate and customer
order flow. Results of this analysis reveal that the relationship evolves over time and that it is different under
distinct market conditions defined by volatility. We provide further evidence of this result through the
estimation of two types of nonlinear models: Markov Switching (MS) and Threshold Models (TR). We use
data on the Hungarian forint (HUF) - euro (EUR) spot exchange rate and different types of spot customer
order flows: foreign participants and domestic non-banks. The data set was provided by the Magyar Nemzeti
Bank (Central Bank of Hungary). In this sense, our work is related to Gereben et al. (2006), who use a similar
data set to study the same relationship in a standard linear setting.

Although most of the empirical analysis has focused on the major currencies, the analysis of a CEEC cur-
rency is of major interest since the better understanding of the information transmission mechanism to the
foreign exchange market has strong policy implications for countries that (as Hungary) plan to join to Euro-
pean Monetary Union, and that, eventually, have to make use of foreign exchange intervention to keep the
currency into the prescribed bands.

Our main results include the following. First, we confirm that the customer order flows considered in this
paper contain valuable information to explain contemporaneous HUF/EUR exchange rate movements. Sec-
ond, the relationship between order flows and exchange rate is clearly nonlinear. Order flows have higher
impact to exchange rates and are more informative in periods of high volatility. This result is in line with
the information uncertainty model developed by Easley & O’Hara (1992), the conclusions obtained by Sub-
rahmanyan (1991). Third, the nonlinear relation between exchange rate and order flows can be successfully
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captured by nonlinear models. In particular, the nonlinear models, and specially the MS, provide substantial
explanatory power beyond the constant coefficient (OLS) approach.

Despite the amount of literature devoted to nonlinear exchange rate modeling over the last decade, the ques-
tion of the nonlinearity in the exchange rate – order flow relationship has still not received much attention.
Up to our knowledge, only Lyons (1996), and Berger et al. (2008) touch this issue slightly 1, although none of
them analyzes the nonlinearity intensively. A noticeable exception can be found in Luo (2001)2. The main
differences of this work with the existent literature and, in particular, with Luo (2001) are the following.
First, this is the first work which studies nonlinearity in the exchange rate - customer order flow relation.
The role of the customer order flows is central in the microstructure literature. They are the prime source
of the private information in the market and a catalyst for the inter-dealer market activity in all canonical
models (Kyle (1985), Glosten & Milgrom (1985) or Evans & Lyons (2006)), and therefore more important in
the determination of exchange returns than inter-dealer order flow.

Second, there are differences in the set of models employed. Initially, we remain a priory agnostic about the
sources driving the nonlinearities in the exchange rate - order flow relationship by estimating a MS model.
Since the seminal work of Boothe & Glassman (1987), there is increasingly strong evidence that the condi-
tional distribution of the nominal exchange rates is well described by a mixture of normal distributions, and
that MS models fit exchange rate data very well. However, in spite of the sizable attention that MS models
have currently received in the exchange rate literature, they still have never been employed for the exchange
rate - order flow analysis. Given that we find very high correlation between the estimated regime changes and
exchange rate volatility, we after consider several TR specifications using volatility as a threshold variable. In
this way, we evaluate if volatility by itself can direct regime changes. Since contemporaneous daily volatility
is potentially endogenous (that could be one of the main critics to Luo (2001)), we evaluate the severity of this
problem through the estimation of a Threshold Regression with Endogenous Threshold (THRET) model
recently proposed by Kourtellos et al. (2009) that controls for endogeneity of the threshold variable.

Finally, given that the statistical significance of the nonlinearities is a necessary but not sufficient condition
for model adequacy, we evaluate the ability of the nonlinear order flow specifications to explain in- and
out-of-sample exchange rate movements. Together with the estimation of a MS model, the capacity of the
nonlinear models to explain the data remained, up to our knowledge, unexplored.

The paper is organized as follows. Section 2 contains a description of the data set, describes the prelimi-
nary estimations and the nonlinearity testing. Section 3 makes a short description of the nonlinear models
employed in this work, presents their estimation results and discuss their fitting performance, both in- and
out-of-sample. Section 4 concludes.

1 Lyons (1996) tests weather the information content of the order flow increases with market intensity. He concludes that the order flow is more informative
when trading intensity is high. Berger et al. (2008) find evidence of nonlinearities by comparing the estimates of the OLS regression of exchange rates
on order flows with the ones obtained from a nonparametric regression.

2 Luo (2001) tests the equally information hypothesis of the exchange rate inter-dealer order flow relationship under different market conditions. The
author finds that the information contained in the order flow tends to increase with spread and volatility, and decrease with the volume of trade. He
also finds that an interaction model and a Logistic Smooth Threshold Regressive (LSTR), are able to capture this nonlinearities. However, the author
does not control for the potential endogeneity of contemporaneous volatility nor evaluates the ability of any of the nonlinear specifications to explain
exchange rate movements.
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2 Data description and Empirical Preliminaries

DATA DESCRIPTION

The data set consists from the HUF/EUR exchange rate and corresponding customer order flows data at
daily frequency covering the period from the 2nd January 2003 to the 15th July 2009. The exchange rate
contains quotes from the Reuters D2000-2 system. We use the midpoint of the best bid and ask quotes at
5:00 PM each day. We apply the logarithmic transformation to the exchange rate series to circumvent "Siegel
paradox". After, we take first difference and multiply it by 100 to create a series of daily returns. The data
on customer order flows is provided by the Central Bank of Hungary. The source of the data is the Daily
Foreign Exchange Report of the Bank, which contains all foreign exchange transactions of significant size
carried out by commercial banks residing in Hungary. In this sense, our order flows data set is not complete
because it does not cover transactions produced by the financial institutions located offshore. According to
the Central Bank of Hungary information, the offshore turnover is significant, although the most important
market-makers are said to be the locally based ones3. Additionally, we do not include the central bank order
flow into analysis because of confidentiality. Central bank order flow was relatively stable in our data span
with the only exception of the speculative attack on January 15 and 16, 2003, when the Bank was carrying
out large-scale Hungarian forint sales to defend the exchange rate band4. Consequently, we exclude first 11
observations from the sample.

It is important to remark that compared with the data sets used so far, this data set has important advantages.
First, our study focuses on customer (end-of-user) order flow data. Although the bulk of empirical literature
studies the intra-dealer order flow, customer order flows are consistently more important in exchange rate
determination than inter-dealer order flow according to the market microstructure literature (see e.g. Lyons
(1995), Lyons (1995), Evans & Lyons (2005) or Sager & Taylor (2008)). Moreover, the customer order flow
data is broken down according to the nature of customer: foreign participants and domestic non-banks, al-
lowing us to test different information content of each of these order flows. Different types of customers can
have different sources of private information and different aims, making the analysis particularly interesting.
Concentration by the consumer allows us to use highly aggregated data with information content5. Second,
the coverage of the data set is relatively high. Even taking into account that it does not contain informa-
tion on transactions produced by the institutions located offshore, it provides a more complete picture of
the market than the one offered by studies that use data from a single market-maker (Froot & Ramadoari
(2002), Carpenter & Wang (2003) and others). Finally, as opposite to commercial data sets, the data from the
MNB is not revealed to the market6, and is comparatively long for the standard microstructure literature7,
so it is particularly well suited to study of nonlinearities, since sample size is crucial to detect regime-change
dynamics in the data.

Figure 1 plots the log-HUF/EUR exchange rate returns (left axe) and two cumulated customer spot order
flows: foreign participants and domestic non-banks (right axe). Table 1 summarizes the descriptive statistics
of the series.

3 For more detailed data description look Gereben et al. (2006), Appendix 1.

4 The Hungarian forint’s exchange rate is allowed to fluctuate within +/- 15 per cent band relative to euro.

5 Completely aggregated over a trading day, total signed order flow of a bank is equal to zero, at least as an approximation. Therefore, aggregated over
all banks total order flow is only randomly different from zero and uncorrelated with exchange rate changes.

6 The power of commercial datasets to explain exchange returns has been recently questioned by Sager & Taylor (2008) .

7 Similar spans can only be found in Bjønnes et al. (2005) and Gereben et al. (2006) for the Swedish krona/euro and Hungarian forint/euro respectively.
Comparatively with last, our data set is more aggregated and contains 4 years (approximately) more of observations.
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PRELIMINARY ESTIMATIONS AND LINEARITY ANALYSIS

In this section we analyze the linearity assumption in the relationship between exchange rate and consumer
order flows. To do so, we start by computing the sample cross-correlations between the HUF/EUR returns
and the order flows. Results are presented in the Figure 2. The contemporaneous cross-correlations between
returns and foreign participants, domestic non-banks order flows, are in both cases statistically different from
zero at low lags, negative for the first series and positive for the second.

As a benchmark, we estimate a generic linear model for the exchange rate – order flow relationship. As in
Bjønnes et al. (2005), we perform separate regressions for each type of customers (foreign participants and
domestic non-banks):

yt = αi +βi Xi ,t + εi ,t (1)

where yt is the exchange rate returns and Xi ,t is the respective net customer order flow (in trillions forints) at
t . The results of this estimation are presented in the Table 28. The estimated slope coefficients associated to
the order flow is in both cases strongly significant and, as expected by the cross-correlation analysis, negative
for the foreign participants and positive for the domestic non-banks order flow. In this respect, our estima-
tions satisfy the notion of "push" and "pull" customers (see e.g. Bjønnes et al. (2005)) and can be interpreted
accordingly.

Push customers are though to provide information to the market that is not yet common knowledge, initi-
ating the orders and causing price changes (they are 1st-round traders according to the Evans & Lyons (2002)
setting). As a result, their trading will be positively correlated with price movements. Instead, pull customers
are assumed to provide liquidity to the market, absorbing the open positions of market-makers generated
when trading with push customers. Therefore, their buying order is likely to be negatively correlated with
currency appreciations9. Pull customers are attracted into the market by prices which suit them because they
wish to trade on a certain side of the market and decide to act now rather than postpone the trade in the hope
of achieving a better price. Motivated by the cross-correlation analysis and the results of the estimation of
the linear model (1), we identify the foreign participants push customers and the domestic non-banks as pull.
These was also the roll assigned to foreign participants and domestic non-banks in Gereben et al. (2006), who
study the standard linear model using a very similar data set 10.

As can also be seen in the table, the foreign participants appear to be the most informative order flow in
the linear setting, explaining a 37% of the variability in the returns, while domestic non-banks explains
only a 12%, which is consistent with the idea that foreign participants are the main drivers of the market.
We further test the estimated residuals for the presence of heteroscedasticity for all customers’ order flows
with the Breusch-Pagan and Cook-Weisberg tests. The null hypothesis of constant variance is rejected at
5% significance level in all estimations. We therefore impose a GARCH(2,1) structure for the conditional
variance, but it does not increase the fitting significantly. In general, the results obtained with the linear
model are in accordance with the ones obtained by Gereben et al. (2006).

Next, we proceed to question the linearity assumption in the relation given by (1). As a preliminary stage,
we apply a standard BDS test to detect lack of independence in the estimated residuals of the linear model.

8 We also performed the analysis plugging both order flows in the same equation yt = β0 +
∑

βi Xi t + et . However, as in Gereben et al. (2006),
in this case severe multicollinearity is detected. Although this problem does not affect the predictive power of the model, it affects the coefficient
estimates. Multicollinearity is easily explained when one takes into account that cumulated daily customer order flow should be equal to 0. It means
that two disaggregated flows should contain very similar information.

9 Note that the usual quotation of the currency pair is HUF/EUR, therefore an increase in the exchange rate corresponds to a depreciation of the forint.
Negative coefficient for the order flow in the regression (1) indicates buying orders that cause Forint appreciations, while positive coefficients indicate
a depreciating impact.

10 As the authors note, this definition is not completely in line with previous findings where the distinction that matters for determining the sign of the order
flows’ impact on the exchange rate is between financial and non-financial customers (Bjønnes et al. (2005) and Marsh & O’Rourke (2005)). A potential
explanation that the authors give to this results "stems from the fact that Hungary is an emerging market economy, relying heavily on foreign capital
flows. A large share of the economic fundamentals governing the forint’s exchange rate are dependent on external factors. As a result, it is likely that
foreign customers are more likely to convey non-public information about future fundamentals through their trades than domestic customers."
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The BDS is a fairly general linearity test that has power against most nonlinear dynamics, although the type
of nonlinearity can not be exactly determined. The null of independent and identically distributed errors is
rejected at 5% significance level for all estimations.

In order to inspect the linear relationship further, we implement a moving window regression to the equation
(1). This allows us to check how the coefficients associated with the order flows evolve over time. We choose
a window length equal to one hundred observations (five months approximately). The window regression
slope coefficients (βt

i ) and their confidence intervals are plotted in the Figure 3, together with the series of
returns. As can be seen in the figure, the slope coefficient for all the order flows changes significantly with
time, increasing (in magnitude) in periods when returns are more volatile.

To confirm this result, we proceed to test the stability of the estimated parameters under different volatility
states. We start by constructing a simple daily exchange rate volatility series zt as:

zt =

�

�log
�

pt
�

− log
�

pt−1
��

�

�

2/π
(2)

where pt is the exchange rate at t . After, we divide the sample into two sub-samples according to the volatility
regime: high volatility periods, when daily volatility at t is higher than its mean, and low volatility periods
otherwise. After estimating equation (1) by separately in the two sub-samples, we test for equality of the
estimates across sub-samples with Chow test. The results are presented in the Table 2. As can be seen in the
table, the equality hypothesis is strongly rejected for both order flows. The slope coefficients are much larger
(in absolute value) in high volatility periods. For example, an increase in the foreign participants order flow
by one trillion forints leads to a 17% decrease in the HUF/EUR exchange rate in high volatility periods,
whereas in low volatility periods the decrease is only of a 3.5%. Hence the price impact (sensitivity) of the
order flows increases with volatility. It is also interesting to note that the informativeness of both order
flows also increase with volatility. The foreign participants order flow explains a 47% of the returns variation
in periods of high volatility but only a 10% in periods of low volatility. For the domestic non-banks this
increase is even more dramatic. In low volatility periods this order flow explains less than 1% of the variation
of returns increasing up to a 20% in high volatility periods.

As stated in the introduction, the result that the impact and the informativeness of order flows vary with
volatility is not new in the economic literature. According to theoretical models (Admati & Pfleiderer (1988),
Subrahmanyan (1991) or Easley & O’Hara (1992)) exchange rate volatility is a key variable identifying the
portion of information embedded to the market. However, there is no clear consensus in the theoretical
models about when the order flow should be more informative, during high or during low volatility periods.

In the Easley & O’Hara (1992) model, abnormal high volume (over the expected liquidity trading) is in-
terpreted by the market maker as a signal of the presence of informed traders on the market. Since price
movements (in the sense of price converging to the new values) require the existence of new information and
abnormal volume, during the period when volume is high, volatility will also be high and order flow will be
more informative. The prediction that periods of high volume of trade are also periods of high volatility has
been documented in many studies (see e.g. Lamoreaux & Lastrapes (1990)), and tested by Diz & Finucane
(1993) who found that approximately two-third of volatility interventions can be explained by abnormal vol-
ume. In the Admati & Pfleiderer (1988) model, liquidity traders (uninformed customers) prefer to trade at the
same time, making trading concentrated. Informed traders also choose to trade during concentration in order
to camouflage their trading and minimize the price impact. Consequently, during concentration the volume
is higher because both types of trade occur at the same time and volatility is also higher because of the more
informed trade. Opposite to Easley & O’Hara (1992), the authors discuss the possibility that the order flow
is less informative during concentration because of the clump of liquidity trading. However, Subrahmanyan
(1991) argues that conclusions of Admati & Pfleiderer (1988) rely on the assumption of risk neutrality of in-
formed traders. Under risk aversion, the order flow become more informative during concentration because
number of informed traders trading on the market is higher. Despite their different implications concerning
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the informativeness of the order flow, all models state a connection between the episodes of high volatility
(which is a known characteristic of exchange rate data) and the new information’s assimilation by the market.

New information before its incorporation into prices constitutes private knowledge. The microstructure
literature identifies two types of private information. First, payoff related information, i.e. information
on fundamentals still not released by the central bank or government agencies (as in the model of Admati
& Pfleiderer (1988))11. The second type is payoff unrelated information obtained by market makers by
observing the interim states of the market only. In both cases the new information is incorporated to prices
when the market maker, observing his order flows, changes quotes accordingly to match opened positions.

Our inspection of the linear relationship between exchange returns and customer order flow given by (1),
provides substantial evidence that there exist important nonlinearities in the data not captured by the generic
model. Further, we find that volatility is strongly related to these nonlinearities, increasing both the price
impact of the order flows to returns and their informativeness, which is consistent with the theoretical im-
plications of Subrahmanyan (1991) and Easley & O’Hara (1992).

11 It is found that surprising realizations of fundamentals do have impact to exchange rate and thus contribute to exchange rate volatility (see e.g. Frömmel
et al. (2008)). However, if the released information on fundamentals is not different from expected, it is already incorporated into prices and does not
influence exchange rate.
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3 Non-linear Estimation and Model Fitting

MODELING NON-LINEARITY

In the following section we provide further evidence of the results obtained through the estimation of several
nonlinear specifications. To start we describe briefly two types of nonlinear models that are used in this
paper: Markov switching and Threshold Regression.

Markov Switching Model

Markov Switching Models (MS) became popular for exchange rate modeling since seminal work of Engel &
Hamilton (1990) and Engel (1994). Several studies relate exchange rates and macroeconomic fundamentals in
a MS context (see e.g. Marsh (2000), Bessec (2003), Sarno et al. (2004) or Frömmel et al. (2005)) or analyze
spot and forward exchange rates comovements (see e.g. Clarida et al. (2003)). Up to our knowledge, this is
the first attempt to model the relation between exchange rates and order flows in a MS framework.

Allowing for two regimes in the coefficients, the relationship between yt and Xt can be written in a MS as :

yt = αst
+βst

Xt + et , t = 1...T , (3)

where yt denotes exchange rate returns, Xt is a net order flow at t and et is a disturbance with zero mean and
variance σ2.

The unobserved state variable st = {1,2} follows a two-state, first order Markov process with the following
transition probability matrix:

P =
�

Pr
�

st = 1|st−1 = 1
�

Pr
�

st = 1|st−1 = 2
�

Pr
�

st = 2|st−1 = 1
�

Pr
�

st = 2|st−1 = 2
�

�

=
�

p11 1− p22
1− p11 p22

�

where the transition probabilities ph h give the probability that state h will be followed by another state
h = {1,2}. These transition probabilities are assumed to remain constant between successive periods. With
the additional assumption that et in (3) are normally distributed (conditional to the information available at
time t, Ωt ), the conditional density of yt is normal.

The model can be estimated applying the Expectation Maximization algorithm (see e.g. Hamilton (1994) for
further details). We will refer to the probability to be in state h based on information of the whole sample
ΩT as smoothed probability (Pr

�

st = h|ΩT
�

).

Threshold Model

Threshold regressive (TR) models were first proposed by Tong (1978), Tong & Lim (1980) and Tong (1983),
and a comprehensive statistical analysis was made by Hansen (2000). The main idea is that the evolution
of the process, governing the dependent variable at any point of time, depends on the value of an observed
threshold variable zt−d relative to a threshold value c .

Formally, the Threshold Model can be written as:

yt = b ′1Xt + b ′2Xt F
�

zt−d ,γ , c
�

+ et (4)

where Xt is a vector of explicative variables, which may contain lags of the endogenous variable, et is a
martingale difference sequence with constant variance σ2 and F

�

zt−d ,γ , c
�

is known up to parameters vector
γ and scalar c . In standard autoregressive specifications (Threshold Autoregressive or TAR) , the threshold



MNB WorkING PAPErS • 2010/10 13

NoN-LINEAr ESTIMATIoN AND MoDEL FITTING

variable zt−d is usually chosen to be a lagged value of the dependent variable (yt−d ), although it could be any
other exogenous variable. The transaction function F

�

zt ,γ , c
�

can be either continuous logistic

F
�

zt−d ,γ , c
�

=
�

1+ exp
�

−γ
�

zt−d − c
���−1

or exponential
F
�

zt−d ,γ , c
�

= 1− exp
�

−γ
�

zt−d − c
�2�

or discontinuous with γ →∞, giving back 1 if zt−d ≤ c and 0 otherwise. In the first case the model is logistic
or exponential smooth TR (LSTR or ESTR), in the second, a standard TR.

Since we are interested in analyzing the contemporaneous relationship between exchange rate and customer
order flow, as before we define yt to be the exchange rate returns and Xt - a particular customer net order flow.
According to theoretical models, regime changes depend on the contemporaneous (d = 0) market conditions
defined by the threshold variable zt .

One of the crucial assumptions of the TR model is that the threshold variable is exogenous. If correlation
between the threshold variable with the contemporaneous error et is suspected, the exogeneity assumption
cannot be insured. To overcome this problem a recent model developed by Kourtellos et al. (2009) can be
employed: the Threshold Regression with Endogenous Threshold variable (THRET)12. The model and the
estimation method proposed by the authors (THRET-C2SLS) are detailed below.

The model is the following:
yt =β

′
1Xt + e1t , if zt ≤ c (5)

yt =β
′
2Xt + e2t , if zt > c (6)

zt = qtπ+ vt (7)

Two first equations describe the relationship between the variables of interest in each of the two regimes, zt
is the threshold variable with c being the sample threshold value. The third equation is the selection equation
that determines the regime that applies. The matrix qt is T × l , qt =

�

q1t , q2t
�

, where q1t is T × l −1 matrix
of instruments for the threshold variable and the vector q2t contains Xt . The variance covariance matrix of
the errors
�

e1t , e2t , vt
�

has the following properties: E(e1t , e2t ) = 0, E(ei t , vt ) = σvei
> 0, E(e2

i t ) = σ
2
i > 0,

i = 1,2, and E(v2
t ) = σ

2
v = 1 due to a normalization. Notice that if σ2

vei = 0, i = 1,2, the Threshold variable
is exogenous.

We can also rewrite the THRET model (5), (6) and (7) in a single equation:

yt =β
′
2Xt + (β1−β2)

′X1t (c)+κ2λt
�

c − qtπ
�

+ (κ1−κ2) �λ1t
�

c − qtπ
�

+ εt , (8)

where X1t (c) = Xt I
�

zt ≤ c
�

, λt
�

c − qtπ
�

= I
�

zt ≤ c
�

λ1t + I
�

zt > c
�

λ2t . The terms λ1t = −
φ(c−qtπ)
Φ(c−qtπ)

and λ2t =
φ(c−qtπ)

1−Φ(c−qtπ)
are inverse Mills bias correction terms, where φ and Φ represent the pdf and cdf

of a standard Normal. In the above equation we have also defined �λ1t
�

c − qtπ
�

= I
�

zt ≤ c
�

λ1t , and re-
named the covariance between error vt and ei t as κi = σvei

for i = 1,2. The error term in (8) is given
by εt = I
�

zt ≤ c
��

e1t −κ1vt
�

+ I
�

zt > c
��

e2t −κ2vt
�

. It can be easily seen that if the threshold vari-
able is exogenous, or κ1 = κ2 = 0, the expression (4) is equivalent to (8) with b1 = β2, b2 = β1 − β2,
F
�

zt ,γ , c
�

= I
�

zt ≤ c ,γ →∞
�

and et = εt .

12 Caner & Hansen (2004) developed a generalized method of the model estimation for Threshold Regression models with endogenous regressors.
Kourtellos et al. (2009) extended the model of Caner & Hansen (2004) to allow for endogeneity of the threshold variable.
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The estimation procedure has three steps. First, we estimate the parameter vectorπ in the threshold equation
(7) by Least Squares (LS). Second, we estimate the threshold parameter by minimizing a concentrated two
stage least squares (THRET-C2SLS) criterion using the estimates of �π from the first stage:

�c = argmin
c

Sn (c)

where
Sn (c) =
�

yt −Xtβ2+X1t (c) (β1−β2)+κ2λt
�

c − qt �π
�

+ (κ1−κ2) �λ1t
�

c − qt �π
�

�2

Third, we estimate the parameters in (5) and (6) based on the split samples implied by �c by LS. For detailed
description of the model, estimated procedure and its asymptotic properties see Kourtellos et al. (2009). The
advantage of the THRET model is that it controls for the endogeneity of the threshold, but from another
side this model restricts the transaction function to be zero or one. In this sense STR models are more
flexible allowing the transaction function to be a function of the difference between threshold variable and
the threshold parameter. Unfortunately, the IV estimation has still not been extended to STR models with
endogenous threshold variable (but is a promising field of potential econometric research).

ESTIMATION RESULTS: MS AND TR

The previous analysis of the linear regression (1) provided us evidence that, although the intercepts α appear
to be not significant, the coefficients associated with the order flows evolve with time β =βt . We remain a
priory agnostic about the sources driving this nonlinearities by the estimation of a fairly standard MS model.
Testing linearity against MS-type nonlinearity is not straightforward, since transition probabilities are not
identified under the null, and conventional statistics does not follow asymptotic χ 2 distribution. Formal tests
have been proposed by Hansen (1992), Hamilton (1996), Garcia (1998), and Sanzo (2009) and Carrasco et al.
(2009). Last authors derive an optimal test against the alternative of Markov switching that requires only the
estimation of the model under the null. Motivated by our previous findings, we follow here the approach of
Carrasco et al. (2009) for the special case where the alternative is a model with MS in the coefficient associated
to the net order flow (see e.g. Hamilton (2005) for more details about this test):

yt = α+βst
Xt + et , t = 1...T .

Results of this test can be found in the Table 3. Empirical critical values are computed by parametric boot-
strap from 1000 iterations for a sample size equal to the size of the original data. As can be seen in the table,
the test rejects strongly the null of a linear model versus a Markov-switching alternative, suggesting that, at
least, a model with two regimes in the coefficients associated to the order flows should be used to fit the data.

We then proceed to estimate a more general MS model allowing for additional regime shifts in the intercepts,
as in (3). Results of the MS estimation are presented in the Table 4. In line with the results obtained in the
previous section, the intercepts are small and usually not significant. Opposite, the coefficients associated
with the order flows (βst

), are always significant and very different from one state to another. For both
order flows, the slope coefficients have always the same sign as in the OLS estimation (negative for foreign
participants and positive for domestic non banks) but the magnitudes are larger in the state 2 (high sensitivity
state) and smaller in the state 1 (low sensitivity state): |β1| ≤

�

�

�βOLS
�

�

�≤ |β2|.

We then test the hypothesis of equality of the intercepts in both states using a likelihood ratio (LR) in addition
to constructing another LR for the null of equal slope coefficients (see Krolzig (1997)). As can be seen in the
Table 4, the null of no regime dependence in the intercept can not be rejected for the foreign participants
order flow at usual significance levels. However, the test strongly rejects the null of equal slope coefficient
across states for both order flows. In general, the results of this testing procedure indicate that regime switches
in the exchange rate - order flow relationship are characterized by different impact of the order flow on
returns.
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From the estimated transition probabilities p11 and p22, we can calculate the duration of being in each
regime13. Since p22 < p11 for both order flows, the high sensitivity periods have shorter duration than
low sensitivity periods. For instance, in the case of the foreign participants order flow, the transition prob-
abilities are estimated 94.2% and 75% (Table 4); this indicates that the average expected duration of being in
the low sensibility regime (state l) is about 17 days compared to 4 days in the high sensitivity (regime 2).

Our analysis of the linear relationship pointed out that the impact of the order flows to the exchange returns
was larger in high volatility periods. Since the results of the MS estimation indicate a higher impact of order
flow during the regime 2 (high sensitivity), a natural question arises: how much is related the probability of
being in the high sensitive state to volatility? Figure 4 (right column) depicts the smoothed probabilities of
being in the high sensitive state (right axe) together with the exchange returns (left axe). Visual inspection
of the two series shows that higher values of the smoothed probabilities correspond to periods of higher
volatility. In fact, the correlation among the volatility and the smoothed probability series is positive and
very high (0.64 and 0.69 for the foreign participants and domestic non-banks order flows, respectively). Note
that, this result is not a trivial implication of the MS model. The regime changes are not driven by observed
volatility, but by an unobserved random variable St , which it is only assumed to follow an ergodic Markov
Chain 14.

We then proceed to check if exchange rate volatility by itself can direct regime changes through the estimation
of a threshold model (TR) using contemporaneous daily volatility defined as in (2) as a threshold variable zt

15.

When the threshold variable is lagged (as in standard autoregressive specifications), it is relatively easy to
assume that it is uncorrelated with contemporaneous noises as long as the model is dynamically complete.
This assumption is a priory more difficult to hold, if the relationships appear between contemporaneous
variables. Note, however, that exchange rate returns are well-known to be unconditionally symmetric and
highly leptokurtic. If the distribution of exchange returns yt is symmetric, the dependent variable yt is com-
pletely uncorrelated with contemporaneous volatility zt

16. In fact, the empirical correlation coefficient is
very small (� 0.1) making us suspect that endogeneity cannot be strong. In order to evaluate the severity of
endogeneity, we estimate a THRET model as in (8) using lagged values of volatility as instruments, together
with a standard TR model (without instrument the threshold variable). Results of these estimations are re-
ported in the Table 4. For all the order flows, all the estimated parameters (including estimated threshold and
variance) are statistically identical17 in both TR and THRET models. This result suggests that, if endogeneity
exists, it is very small and does not cause parameters to be biased18. As can be seen in the table, the estimated
intercepts are again often not significant while the estimated slope parameters are statistically significant and
different across regimes. The sign of the slope coefficients are the same in OLS and MS estimation and, as
expected, their magnitudes are larger during the high volatility regime.

After optimal thresholds have been identified, a conventional Chow test can be conducted to test the null
of linearity against the Threshold Regression specification. Since threshold parameters are not identified
under the null, the test statistic has nonstandard distribution. Following Hansen (1997), we employ 200

13 The average duration of each state can be calculated as (see e.g. Hamilton 1994):
∑∞

i=1 i p i−1
h h

�

1− ph h

�

=
�

1− ph h

�−1

14 In addition, the empirical correlation between the smoothed probabilities of the two order flows (FP, DNB) regressions is also quite high (approx. 0.7),
indicating a common underlying process. This last result also suggests that a joint estimation of the two equations (system MS) may be helpful to
improve regime detection. We however proceed in a different way testing directly weather volatility is precisely the common process driving the regime
changes in both equations.

15 We also find that lagged values of volatility are not able to correctly detect regime changes. The simple volatility estimator also performs better than
other measures of intraday volatility as the Parkinson’s High-Low or the bid-ask spread.

16 Let yt ∼ �t

�

0,σ2
t

�

where � denotes the cumulative distribution function. If the distribution is symmetric: C ov
�

yt , |yt |
�

= E
�

yt |yt |
�

=

−
∫ 0
−∞ y2

t
f (x)

1−F (0) d x +
∫ 0
−∞ y2

t
f (x)
F (0) d x = 0, leading to the result.

17 The results of the TR model belong to the 95% confidence of the estimated THRET.

18 Additionally, we test κ1 = κ2 = 0 in (8) and we cannot reject H0 at any standard significance level. This result suggests exogeneity of the threshold
variable.
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parametric bootstrap replicas, and a modified grid search to find critical values. For both order flows the
linearity hypothesis is strongly rejected (Table 3).

As commented before, the TR (and THRET) models impose strong restrictions to the shape of the trans-
action function that may reduce the ability of the model to track the data. Motivated first by the small
correlation between volatility and exchange rate returns, later by the similar estimation results of the TR
and THRET and the results of the exogeneity testing of the threshold, we proceed to estimate a standard
STR model, which allows for flexibility in the transaction function. The ability of this last model to explain
in-and-out exchange rate movements is presented together with the results of the MS and THRET models
in the next section. In this way, we have a better picture of how regime changes directed by volatility can
explain exchange rate returns, which is one of the main purposes of this work. The results of the estimation
and testing of the standard STR models can be found in the Appendix II.

As an overall, the results of the estimation of nonlinear models confirm that the conclusions obtained in the
last section are robust. The relationship between order flows and exchange rate is not linear, and the price
impact of the order flows increases with volatility, which is consistent with the implications of the theoretical
models of Subrahmanyan (1991) and Easley & O’Hara (1992).

IN-SAMPLE FITTING

To asses the ability of the nonlinear models to explain in-sample exchange rate movements, we compare their
fitting performance with the usual linear (OLS) model. As a benchmark, we also include a Random Walk
(RW). In order to evaluate fitting performance, we compute two standard measures: the Mean Absolute
Errors (MAE) and the Root Mean Squared Errors (RMSE). Results are presented in the Table 5. The values
in the first colum are the MAE (up) and RMSE (down) of the RW. The following four columns (from two
to five) report the same error measures for the competing order flow model relative to the ones of the RW.
Last three columns present the relative performance of nonlinear specifications with respect to the OLS. In
both cases, a number smaller than one indicates better fitting of the competing model. Percentage gain can
be obtained by subtracting those numbers from one.

In general, the OLS fits the data better than the RW, especially for the foreign participants order flow. For the
domestic non-banks order flow, however the gain is rather small. When considering the nonlinear specifica-
tions, the fitting increases substantially for both order flows. For the MS, which is the model that performs
better, the fitting gain ranges between a 18− 35% better than the RW and a 15− 20% better than the OLS,
depending on the order flow considered and the measure employed. The threshold models perform in gen-
eral a bit worse than the MS, although the results are very similar once we allow the transaction function to
have enough flexibility (STR).

To asses how the fitting changes with volatility, we also check the performance of all models relative to the
RW in a particular period inside the sample characterized by a relatively high volatility. The period runs
from 04/02/09 to 15/07/09 and corresponds to the last five months in our sample. It is worth to note that it
lies in the middle of the current crisis and the average volatility in this period is about two times larger than
in the whole sample. Results are reported in second part of the Table 5. The fitting performance relative
to the RW in this period is higher than in whole sample for all the order flow specifications, both linear
and nonlinear. This result is very intuitive taking into account that the RW predicts ”no changes” and in
the high volatility period the changes are huge. Thus, whatever model that can predict at least direction of
the change will bit the RW easily. Even though, the increase of the relative fitting performance for the OLS
specification is rather modest, reflecting the fact that the linear specification is clearly better than the RW,
but still not flexible enough to catch fast and strong exchange rate movements in high volatility period. The
relative performance of the nonlinear specifications with respect to the RW is 10-15% higher in the period
of high volatility than in whole sample, depending on measure employed and specification considered. The
relative performance of the nonlinear specifications with respect to the OLS is a 5-10% higher in period of
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high volatility than in the whole sample and the resulting percentage gain of fitting nonlinear specifications
in the high volatility period is around 15-25%.

Figure 5 plots the fitted exchange rate returns by the MS and the two threshold models considered (THRET
and STR) respectively (in green) together with the OLS results (in red) in this particular period. As can be
observed in the figures, the nonlinear versions are able to track the data better than OLS capturing the peaks
and dips presented in exchange rate returns.

When evaluating the order flow models by the type of customer, the foreign participants is the order flow
that fits the data better. This result holds for all the models and is robust to evaluating the fitting performance
in the high volatility period only. However, the explanation power of the domestic non-banks order flow
increases substantially when considering the nonlinear specifications. In particular note that, according to the
OLS, the domestic non-banks order flow has almost no additional power to explain exchange rate returns
movements than consider ”no changes” at all (RW). However, with the nonlinear specifications, the same
order flow outperforms the RW by a 15% according to the same measure.

MEESE-ROGOFF TEST

In order to evaluate out-of-sample fitting, we employ a Meese & Rogoff (1983b) type exercise 19. The Meese-
Rogoff test has become the standard tool of model evaluation in the FX microstructure literature. In fact,
microstructure oriented models are often able to beat the RW benchmark in out-of-sample fitting, even at
short horizons. This result contrasts with the poor out-of-sample fitting of the structural macroeconomic
models that are usually unable to outperform a RW at horizons shorter than a year.

Our evaluation period runs from 04/12/07 to 15/07/09 (last four hundreds observations). We estimate the
models recursively by adding one observation each time, and we compute the predicted exchange rate returns.
Table 6 gives detailed results for one day and one week ahead horizons using the MAE and RMSE as measures
of accuracy. As before, the results of the RW can be found in the first column, and the following report the
prediction errors of the competing specifications relative to the RW (from two to five) and the OLS (last
three). Thus, again, numbers smaller than one indicate better performance of the competing specification.
For model comparisons, we make use of the Diebold & Mariano (1995) test statistic. We employ a data
dependent truncation lag to estimate the spectral density at zero frequency as described by Andrews (1991).
The results are in line with the ones obtained in the in-sample fitting and indicate a clear superiority of the
nonlinear specifications.

For one day ahead forecasting, all the order flows models (linear and nonlinear) perform much better than
the RW according to both measures, although the gains of the OLS with the domestic non-bank order flow
are rather modest. For one week ahead predictions, the relative performance of all the order flows models
to the RW increases a lot. This last result is not surprising since, by construction, the Meese-Rogoff exercise
penalizes the RW as the horizon increases. The nonlinear versions of the models substantially outperform
the linear OLS at both time horizons. The improvements range between 20− 25% for the MS, which again
is the model that shows better overall performance. As before, the Threshold Specifications almost catch up
the MS once enough flexibility in the transaction function (STR) is provided.

We also perform the Meese-Rogoff test in the relatively high volatility sub-sample described in the previous
section (Table 6). The relative prediction accuracy measures for all order flow models are substantially smaller
in periods of high volatility. As before, the performance of the nonlinear versus the linear specification also
increases in the high volatility period. Finally, when evaluating the different order flow specifications by
group of customers, the foreign participants is again the order flow that performs better for all specifications,
as in the in-sample fitting analysis.
19 The Meese-Rogoff test relies on ex-ante data to estimate parameters but makes use of contemporaneous independent variables to produce the

exchange rate ‘forecasts’. Note that the Meese-Rogoff test cannot be consider as true out-of-sample forecasting exercise, since future information
(except the estimated parameters) is used to produce forecasts. Rather, it should be considered as an out-of-sample fitting test, a test of stability of
the estimated parameters or as a "weak" forecasting.
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4 Conclusions

In this work we have questioned the linearity of the relationship between exchange rates and order flows that
has been a maintained assumption in the empirical literature. We have employed a long database on customer
order flows, which are the cornerstone of the microstructure literature. A first examination of the linearity
hypothesis has revealed that the relationship evolves over time and that it is different under different market
conditions defined by volatility. We have provided further evidence of this result through the estimation of a
Markov Switching and two Threshold Models with volatility as a threshold variable (THRET and STR). The
Markov Switching has received a lot of attention in the recent exchange rate literature, but has never been
employed for the order flow analysis. Our main findings are, first, that the price impact and the information
transmitted by the order flows increase with volatility, which is in line with the uncertainty model developed
by Easley & O’Hara (1992) and the conclusions of Subrahmanyan (1991). The second finding is that the
nonlinearity can be captured successfully by the Threshold Models and, specially, Markov Switching, which
provide substantial power to explain exchange rate movements beyond the constant coefficient approach. In
particular, explicitly modeling nonlinearities is crucial to understand the information content of the order
flow from determinate groups of customers.

In this research we have been primarily concerned with providing evidence that the relation between ex-
change rates and order flows is not linear, and that nonlinear models can explain exchange rate movements
better than linear specifications. Future research might, consequently, analyze the source of these nonlinear-
ities further and involve the nonlinear models into real exchange rate forecasting. In fact, order flows have
already demonstrated their potential to explain future exchange rate movements (Evans & Lyons (2005)). In
the light of our results, the increase in efficiency provided by the nonlinear specifications may lead to an
improvement of forecast accuracy. However, one might be a priory cautious about the obtained results given
that, although the models perform quite well conditional to be in a determined regime, the forecast of the
regime changes may be wrought with difficulty. A reliable forecast of exchange rate volatility may help to
this purpose. An appealing line of future research could include the use of cointegration between exchange
rates and order flows (as in Bjønnes et al. (2005)) together with nonlinear specifications.
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Appendices

A Tables and figures

Table 1

Summary statistics

Variable T Mean Std Min Max
100∆log(Exchange rate) 1635 0.0091 0.6521 −3.3205 5.9372
Foreign participants (FP) 1635 −0.0024 0.0363 −0.2144 0.9023
Domestic non-banks (DNB) 1635 −0.0008 0.0141 −0.1020 0.1087
Volatility 1635 0.4120 0.47 0 5.9372

Notes: a) T - number of observations available, Mean and Std - mean and standard
deviation of a series, Min and Max - minimum and maximum values. b) Volatility is
defined as absolute value of the first difference of natural logarithms of the HUF/EUR
exchange rate. c) Order flows are NET order flows = ∆ Cumulated order flows, in
trillion forints.

Table 2

Results of estimation of the generic model under different volatility conditions

α β R2 F stat
FP OLS −0.0330∗∗ −13.30383∗∗∗ 0.3661 −

OLS by Volatility:
Volatility(t)=L −0.0163∗∗ −3.5481∗∗∗ 0.102 −
Volatility(t)=H −0.0511∗ −17.31∗∗∗ 0.4694 157.31

DNB OLS 0.0197 15.1743∗∗∗ 0.1184 −
OLS by Volatility:

Volatility(t)=L −0.0099 1.2252∗∗ 0.0045 −
Volatility(t)=H 0.0517 24.93∗∗∗ 0.2024 65.15

Notes: a) FP and DNB indicate Foreign Participants and Domestic Non-bank spot
customer order flow respectively. b) Volatility is defined as the absolute value of the
first difference of natural logarithms of the HUF/EUR exchange rate. c) F stat is F
statistics for the H0 : α(L) = α(H ) and β(L) =β(H ). d) ∗, ∗∗, ∗∗∗ indicate significance
at 10%, 5%, and 1% respectively.
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Table 3

Carrasco et al. (2009) test statistics (MS) and Hansen (1997) Chow-type test (THRET) for the null of linearity against
the respective nonlinear model

Order flow Carrasco et al. (2009), MS Hansen (1997), THRET
FP 16.410∗∗∗ 158.866∗∗∗

DNB 9.993∗∗∗ 214.444∗∗∗

Notes: a) FP and DNB indicate Foreign Participants and Domestic Non-bank
spot customer order flow resp. b) The numbers in the columns are F-statistics.
c) ∗, ∗∗, ∗∗∗ indicate significance at 10%, 5%, and 1% respectively.

Table 4

Estimation Results, MS, TR and THRET

(a) MS

Order flow α1 β1 α2 β2 σ2 p11 p12
FP −0.042∗ −9.090∗∗∗ 0.019 −31.427∗∗∗ 0.184∗∗∗ 0.942∗∗ 0.750∗∗∗

DNB −0.023 6.381∗∗∗ 0.307∗ 64.700∗∗∗ 0.249∗∗∗ 0.901∗∗∗ 0.301∗∗∗

(b) TR

Order flow α1 β1 α2 β2 σ2 c
FP −0.024∗ −6.752∗∗∗ −0.028 −20.932∗∗∗ 0.208∗∗∗ 0.768∗∗∗

DNB −0.005 5.6316∗∗∗ 0.024 52.925∗∗∗ 0.257∗∗∗ 1.003∗∗∗

(c) THREAT

Order flow α1 β1 α2 β2 σ2(A) c (A)

FP −0.014∗∗ −5.234∗∗∗ −0.013 −19.618∗∗∗ 0.212 0.626
DNB −0.004 5.635∗∗∗ 0.011 53.134∗∗∗ 0.272 0.998

Notes: a) FP and DNB indicate Foreign Participants and Domestic Non-bank spot customer order flow resp.
b) ∗, ∗∗, ∗∗∗ indicate significance at 10%, 5%, and 1% respectively. (A) The THRET-C2SLS procedure does not allow
to test the significance of the estimated σ2 and c .
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Table 5

In-sample Fitting Results: MAE, RMSE

(a) Whole period

RW Model/RW Model/OLS
OLS MS THRET STR MS THRET STR

FP mae 0.812 0.689 0.747 0.709 0.848 0.919 0.873
rmse 0.414 0.796 0.650 0.727 0.684 0.816 0.913 0.859

DNB mae 0.625 0.971 0.823 0.878 0.847 0.847 0.903 0.872
rmse 0.939 0.755 0.835 0.811 0.804 0.889 0.864

(b) High volatility period

RW Model/RW Model/OLS
OLS MS THRET STR MS THRET STR

FP mae 0.800 0.630 0.678 0.625 0.788 0.844 0.781
rmse 0.818 0.763 0.602 0.684 0.636 0.789 0.896 0.834

DNB mae 1.0349 0.902 0.698 0.740 0.694 0.773 0.810 0.770
rmse 0.884 0.666 0.740 0.698 0.753 0.828 0.790

Notes: a) The numbers in the cells indicate the MAE and RMSE of the competing model relative
to RW (first 3 columns) or to OLS (last 2). A number smaller than 1 indicate better performance
of the competing model. % Fitting gain can be obtained by subtracting the number in the cell
from 1. b) FP and DNB indicate Foreign Participants and Domestic Non-bank spot customer
order flow resp. c) Whole period: 01/02/2003 – 15/07/2009, High volatility period: 04/02/2009 –
15/07/09. d) STR is Logistic-STR.
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Table 6

Out-Sample Fitting Results (Meese-Rogoff): MAE, RMSE

(a) Whole period, 1 day

RW Model/RW Model/OLS
OLS MS THRET STR MS THRET STR

FP mae 0.767∗∗∗ 0.625∗∗∗ 0.6961∗∗∗ 0.633∗∗∗ 0.815∗∗∗ 0.904∗∗∗ 0.825∗∗∗

rmse 0.687 0.766∗∗∗ 0.617∗∗∗ 0.6908∗∗∗ 0.631∗∗∗ 0.806∗∗∗ 0.900∗∗∗ 0.824∗∗∗

DNB mae 0.955 0.938∗∗∗ 0.720∗∗∗ 0.7981∗∗∗ 0.735∗∗∗ 0.767∗∗∗ 0.848∗∗∗ 0.784∗∗∗

rmse 0.920∗∗∗ 0.745∗∗∗ 0.7819∗∗∗ 0.771∗∗∗ 0.810∗∗∗ 0.848∗∗∗ 0.838∗∗∗

(b) Whole period, 1 week

RW Model/RW Model/OLS
OLS MS THRET STR MS THRET STR

FP mae 0.322∗∗∗ 0.267∗∗∗ 0.2923∗∗∗ 0.271∗∗∗ 0.828∗∗∗ 0.904∗∗∗ 0.842∗∗∗

rmse 1.622 0.340∗∗∗ 0.288∗∗∗ 0.3075∗∗∗ 0.300∗∗∗ 0.848∗∗∗ 0.900∗∗∗ 0.882∗∗∗

DNB mae 2.145 0.394∗∗∗ 0.307∗∗∗ 0.3355∗∗∗ 0.314∗∗∗ 0.778∗∗∗ 0.848∗∗∗ 0.797∗∗∗

rmse 0.408∗∗∗ 0.340∗∗∗ 0.3482∗∗∗ 0.348∗∗∗ 0.832∗∗∗ 0.849∗∗∗ 0.853∗∗∗

(c) High volatility period, 1 day

RW Model/RW Model/OLS
OLS MS THRET STR MS THRET STR

FP mae 0.810∗∗ 0.631∗∗∗ 0.7046∗∗∗ 0.631∗∗∗ 0.779∗∗∗ 0.846∗∗∗ 0.779∗∗∗

rmse 0.818 0.771∗∗∗ 0.604∗∗∗ 0.6962∗∗∗ 0.644∗∗∗ 0.783∗∗∗ 0.898∗∗∗ 0.835 ∗ ∗
DNB mae 1.0349 0.915∗∗∗ 0.696∗∗∗ 0.7548∗∗∗ 0.706∗∗∗ 0.761∗∗∗ 0.806∗∗∗ 0.772∗∗∗

rmse 0.894∗∗∗ 0.666∗∗∗ 0.7359∗∗∗ 0.711∗∗∗ 0.745∗∗∗ 0.820∗∗∗ 0.796∗∗∗

(d) High volatility period, 1 week

RW Model/RW Model/OLS
OLS MS THRET STR MS THRET STR

FP mae 0.317∗∗∗ 0.248∗∗∗ 0.2674∗∗∗ 0.249∗∗∗ 0.781∗∗∗ 0.842∗∗∗ 0.786∗∗∗

rmse 1.986 0.327∗∗∗ 0.256∗∗∗ 0.2950∗∗∗ 0.277∗∗∗ 0.784∗∗∗ 0.902∗∗∗ 0.847∗∗

DNB mae 2.370 0.356∗∗∗ 0.265∗∗∗ 0.2875∗∗∗ 0.275∗∗∗ 0.746∗∗∗ 0.808∗∗∗ 0.774∗∗∗

rmse 0.375∗∗∗ 0.277∗∗∗ 0.3122∗∗∗ 0.303∗∗∗ 0.738∗∗∗ 0.831∗∗∗ 0.806∗∗∗

Notes: a) The numbers in the cells indicate the MAE and RMSE of the competing model relative to RW (first 3
columns) or to OLS (last 2). A number smaller than 1 indicate better performance of the competing model. % Fitting
gain can be obtained by subtracting the number in the cell from 1. b) FP and DNB indicate Foreign Participants and
Domestic Non-bank spot customer order flow resp. c) Whole period: 01/02/2003 – 15/07/2009, High volatility
period: 04/02/2009 – 15/07/09. d) STR is Logistic-STR. e) ∗, ∗∗, ∗∗∗ indicate statistical significance at 10%, 5%, 1%
resp., according to the pDM statistic.
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Figure 1
The data: log-exchange rate and cumulated order flow
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Figure 2
Sample Cross Correlation: Returns, net Order flows
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Figure 3
Results of the Moving Window regression
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Figure 4
Returns, Values of transaction function (THRET) and Smoothed probabilities (MS)
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Notes: a) Left Scale: Returns = dlog(HUF/EUR) x 100 (% change in exchange rates).
b) Left Column - Smoothed probability of high sensitivity state (MS) Right Scale: Right
column -Values of transaction function (THRET).
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Figure 5
In-sample Fitting: High volatility sub-sample MS, THRET, LSTR and OLS
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(b) Domestic non-banks
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(d) Domestic non-banks
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B STR estimation

Testing linearity against STR-type nonlinearity implies testing the joint null hypothesis H0 : α1 = α2 and β1 =
β2 in (2). However, under the null, parameters γ and c are not identified. To overcome the difficulties with
testing, we use the method based on an auxiliary regression proposed by Escribano & Jorda (2001) devel-
oped on the basis of the testing procedure proposed by Saikkonen & Luukkonen (1988), Terasvirta (1994),
Terasvirta et al. (1994). Additionally, this procedure allows us to test model specification for the STR: logistic
(LSTR) against exponential (ESTR). The method involves the following steps:

First, we run an auxiliary regression of the type:

yt = α+βXt +δ1Xt zt +δ2Xt z2
t +δ3Xt z3

t +δ4Xt z4
t + et , (9)

where as before, yt is the returns, Xt is the consumer order flow, and zt is the observed threshold variable
(volatility). The linearity hypothesis has as null: H0 : δ1 = δ2 = δ3 = δ4 = 0. Second, if linearity is rejected,
we can proceed to select the specification of the model by computing usual F-statistics for the following null
hypothesis: H0 : δ2 = δ4 = 0 and H0 : δ1 = δ3 = 0 in (9). If the F-statistic associated to the first hypothesis is
higher than the one associated to the second the resulting specification is Exponential (ESTR), and if opposite,
the resulting specification is logarithmic (LSTR).

Table 7

Escribano-Jorda Procedure

Escribano-Jorda pro-
cedure

p-values (F -statistics) Resulting specification

H0 δ1 = δ2 = δ3 = δ4 = 0 δ2 = δ4 = 0 δ1 = δ3 = 0
FP 157.37∗∗∗ 10.40 33.22 LSTR
DNB 126.95∗∗∗ 2.11 19.20 LSTR

Notes: a) FP and DNB indicate Foreign Participants and Domestic Non-bank spot customer order flow resp. b) The
numbers in the columns are F-statistics. c) FL and FE are the values of the F-statistic for each of the hypothesis. d) ∗, ∗∗, ∗∗∗

indicate significance at 10%, 5%, and 1%, respectively.

For all order flows the hypothesis of linearity is rejected at all reasonable significance levels. The testing pro-
cedure suggests the Logistic STR for all the specification. To estimate the model, we maximize the likelihood
function, assuming that the errors are normally distributed. To get the starting values for the estimation we
apply the methods described in Frances & van Dijk (2000), p.91. The smoothness parameter γ is restricted
to be positive (γ > 0) and the threshold value c is estimated internally. The results of the estimation of the
standard TR and LSTR models are presented in Table 8.

Table 8

Estimation results, LSTR

LSTR
Order flow α1 β1 α2 β2 σ2 γ c
FP 0.0132 14.7672∗ −0.0943 −48.958∗∗∗ 0.1832∗∗ 1.2489∗∗∗ 0.6081∗∗

DNB −0.0320∗ −2.5431∗ 0.2662∗∗∗ 70.8212∗∗∗ 0.2575∗∗∗ 3.0752∗∗∗ 1.1485∗∗∗

The estimated threshold coefficients are positive and statistically significant. Estimates of smoothness pa-
rameters are significant and quite high. It means that the coefficients change fast when the latent variable is
around the threshold. The estimated intercepts are often not statistically different from zero. Opposite, the
slope coefficients β are always strongly significant and statistically different in each regime. The signs of the
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resulting estimated slope coefficients for period t , βt =β1+β2F (zt ,γ , c) are always as in the OLS, MS and
THRET/TR estimation (negative for spot foreign participants, and positive for domestic non banks), and
increasing, in magnitude, with volatility.

The ability of the Logistic-STR model to explain in and out of sample exchange rate movements is presented
together with the one of MS and THRET models in Tables 5, 6.
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