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1 Introduction

Stochastic dominance plays an important role in reliability, life testing and various

branches of economics such as �nance and decision under risk. In those �elds both

�rst order and second order stochastic dominance are of interest. A real-valued

random quantity X dominates (or is equivalent to) a random quantity Y in the sense

of �rst order stochastic dominance if E(u(X)) � E(u(Y )) for every nondecreasing

function u where E denotes expectation. X dominates (or is equivalent to) Y in

the sense of second order stochastic dominance if E(u(X)) � E(u(Y )) for every

nondecreasing and concave function u. In an economic context u denotes a utility

function and an agent having a nondecreasing and concave utility function is called

risk avers. For a recent survey on stochastic dominance and its applications see e.g.

Levy (1992).

If the distribution functions F and G of X and Y , respectively, are known it is

straightforward to investigate analytically whether stochastic dominance occurs or

not. In general, however, the distribution functions are unknown and have to be

inferred from observed realizations ofX and Y , be it in a parametric or nonparametric

setting. Hence statistical procedures concerning �rst and second order stochastic

dominance are called for.

Developing statistical tests in a parametric setting is standard; in the nonparametric

framework there are some well-known tests of �rst order stochastic dominance such

as the Kolmogorov-Smirnov test. However, the literature on nonparametric testing

of second order dominance is fairly sparse. Deshpande and Singh (1985) suggest an

asymptotic test in the framework of the one sample problem (i.e., G is assumed to

be known and observations are from X whose distribution function is unknown).

Contributions in the framework of the two sample problem (both F and G are un-

known) are Eubank, Schechtman and Yitzhaki (1993), Kaur, Rao and Singh (1994)

and Xu, Fisher and Willson (1994). These authors present large sample tests which

are based on the asymptotic distribution of various test criteria. A di�erent approach

was taken by McFadden (1989) and Klecan, McFadden and McFadden (1991) who

suggest tests based on the bootstrap principle which are applicable even for small

samples.

This paper is organized as follows. Section 2 introduces the notation and states some

basic relations which are used throughout the paper. Section 3 is concerned with

point estimation. Section 4 is concerned with nonparametric con�dence estimation.

We describe a method for constructing simultaneous con�dence intervals which is
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based on the asymptotic normality of point estimators. As a method for obtaining

con�dence bands we suggest a bootstrap procedure which can easily be carried out.

Section 5 is the core part of this paper being concerned with testing for second

order stochastic dominance. Tests based on the asymptotic normality of estimators

(from section 4) are brie
y described. However, we recommend tests based on the

permutation principle which are easy to perform. It is shown by simulations that the

latter tests keep the prescribed level � even at very low sample sizes. For selected

families of alternatives the power of the permutation tests is investigated. We show

that tests for second order stochastic dominance can also be used for testing �rst

order stochastic dominance. This may even result in an increase of power. Section

6 summarizes our �ndings and discusses issues relevant for practical applications |

including the e�ect of possible dependencies.

2 De�nitions and Assumptions

Let F denote the set of continuous distribution functions F on the real line and let

Fk � F denote the subset of distribution functions having a �nite k-th moment. For

F 2 F1 let

�F :=

Z 1

�1

xdF (x)

denote the mean. The existence of the mean �F of F implies limx!�1 xF (x) = 0

and limx!1 x(1� F (x)) = 0, see Ser
ing (1980).

For F 2 F1 de�ne

IF (t) :=

Z t

�1

F (x)dx

=

Z t

�1

(t� x)dF (x)

= E((t�X)1ft�Xg):

IF is continuous, nondecreasing and convex and we have limt!�1 IF (t) = 0 and

limt!1 IF (t) = 1. IF is not a proper distribution function but it might be called a

second order distribution function.

For distribution functions F;G 2 F1 let

ID(t) := IF (t)�GI (t)
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for t 2 IR. Obviously,

lim
t!�1

ID(t) = 0:

Further

lim
t!1

ID(t) = lim
t!1

�Z t

�1

(t� x)dF (x)�
Z t

�1

(t� x)dG(x)

�

= lim
t!1

t(F (t)�G(t))�
Z t

�1

xdF (x) +

Z t

�1

xdG(x)

= �G � �F :

It can be shown that

jID(t)j � C t 2 IR

for F;G 2 F1 where C may depend on F and G.

Let U1 denote the set of nondecreasing functions u : IR �! IR. The following

equivalence concerning �rst order stochastic dominance is well known (see e.g. Levy

(1992))

(i) E(u(X)) � E(u(Y )) for u 2 U1 whenever the expectations exist and are �nite.

(ii) F (x) � G(x) for x 2 IR.

An analogous relation holds for second order stochastic dominance. Let U2 denote

the set of nondecreasing and concave functions and F;G 2 F1, then the following

statements are equivalent

(i) E(u(X)) � E(u(Y )) for every u 2 U2.

(ii) IF (t) � GI (t) for t 2 IR.

Obviously �rst order stochastic dominance implies second order stochastic domi-

nance. Further, it is easy to see that �rst order stochastic dominance is invariant

with respect to strictly increasing and continuous transformations of X and Y , while

second order stochastic dominance is invariant only with respect to the much smaller

group of a�ne transformations x 7! ax+ b where a > 0; b 2 IR.

The statistical inference for second order stochastic dominance in this paper refers

to the function t 7! ID(t) and is performed within the framework of the two sample

problem for independent observations (see section 6 for a discussion of more general
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dependence structures). Therefore, for F;G 2 F1 let (Xi)i2IN and (Yj)j2IN denote

two sequences of i.i.d. random variables de�ned on an appropriate probability space

where Xi � F and Yj � G. Further, let (Xi) and (Yj) be independent. Statistical

inference is based on �nite samples X1; . . . ;Xn and Y1; . . . ; Ym.

3 Nonparametric Point Estimation

Let

F̂n(x) =
1

n

nX
i=1

1fx�Xi�0g

Ĝm(y) =
1

m

mX
j=1

1fy�Yj�0g

denote the empirical distribution function based on the sample X1; . . . ;Xn and

Y1; . . . ; Ym. Let

ÎFn(t) =

Z t

�1

(t� x)dF̂n(x) =
1

n

nX
i=1

(t�Xi)1ft�Xi�0g

ĜI m(t) =

Z t

�1

(x� y)dĜm(y) =
1

m

mX
j=1

(t� Yj)1ft�Yj�0g:

The natural point estimator for ID(t) is

ÎDn;m(t) := ÎFn(t)� ĜI m(t):

It is easy to see that t 7! IDn;m(t) is continuous and piecewise linear between Z(i) and

Z(i+1) where Z(i) is the i-th order statistic of the combined sample (Z1; . . . ; Zn+m) =

(X1; . . . ;Xn; Y1; . . . ; Ym).

Further, for n;m �xed,

lim
t!�1

ÎDn;m(t) = 0

lim
t!1

ÎDn;m(t) = �Y � �X =
1

m

mX
j=1

Yj � 1

n

nX
i=1

Xi:

Letting n;m!1 we obtain the following
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Proposition 1 For F;G 2 F1 and �xed t 2 IR we have

P

�
lim

min(n;m)!1
ÎDn;m(t) = ID(t)

�
= 1:

The proof of proposition 1 follows from the strong law of large numbers. One can

further show that the convergence stated in proposition 1 is uniform on compact

intervals [a; b]. We therefore have

Proposition 2 For F;G 2 F1 and �1 < a < b <1 we have

P

 
lim

min(n;m)!1
sup
t2[a;b]

jÎDn;m(t)� ID(t)j = 0

!
= 1:

The proof of proposition 2 can be carried out using the technique which is also applied

for the proof of the Glivenko-Cantelli theorem.

4 Nonparametric Con�dence Estimation

In order to assess the reliability of the point estimation ÎDn;m(t) one has to compute

con�dence intervals. There are two di�erent ways to obtain the range in which

the true curve ID(t) is likely to be. First, one might compute con�dence intervals

at a single speci�ed point t0 or at K prescribed points t1; . . . ; tK. To do so, the

distributional properties of ÎDn;m(t) have to be used. This approach is followed in

section 4.1. Second, and more interestingly, a con�dence band for the entire function

t 7! ID(t) can be derived. This will be done by resampling techniques (section 4.2).

4.1 Simultaneous Con�dence Intervals

To obtain simultaneous con�dence intervals one has to establish the asymptotic joint

normality of (ÎDn;m(t1); . . . ; ÎDn;m(tK))
0. It is easy to see that for F;G 2 F1 we have

E(ÎDn;m(t)) = ID(t) = IF (t)�GI (t):

For F;G 2 F2 we have

Var(ÎDn;m(t)) =
1

n
Var((t�X)1ft�X�0g)

+
1

m
Var((t� Y )1ft�Y �0g):
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ForK �xed points t1 < . . . < tK one can apply a Multivariate Central Limit Theorem

to (ÎDn;m(t1); . . . ; ÎDn;m(tK))
0 and obtain2

64
ÎDn;m(t1)

...

ÎDn;m(tK)

3
75 appr:� N(�(t1; . . . ; tK);�(t1; . . . ; tK))

where

�(t1; . . . ; tK) = (ID(t1); . . . ; ID(tK))
0

and the element �kl of � = �(t1; . . . ; tK) is

�kl =
Cov((tk �X)1ftk�X�0g; (tl �X)1ftl�X�0g)

n

+
Cov((tk � Y )1ftk�Y �0g; (tl � Y )1ftl�Y�0g)

m
:

�kl can be estimated by

�̂kl =
1

n

"
1

n

nX
i=1

(tk �Xi)(tl �Xi)1ftk�Xi�0g1ftl�Xi�0g

�
 
1

n

nX
i=1

(tk �Xi)1ftk�Xi�0g

! 
1

n

nX
i=1

(tl �Xi)1ftl�Xi�0g

!#

+
1

m

"
1

m

mX
j=1

(tk � Yj)(tl � Yj)1ftk�Yj�0g1ftl�Yj�0g

�
 
1

m

mX
j=1

(tk � Yj)1ftk�Yj�0g

! 
1

m

mX
j=1

(tl � Yj)1ftl�Yj�0g

!#
:

The simplest method to derive simultaneous con�dence intervals is to apply Bon-

ferroni's approach. Let c denote the (1 � �=(2K))-quantile of the standard normal

distribution. Then

P (ÎDn;m(ti)� c
p
�ii � ID(ti) � ÎDn;m(ti) + c

p
�ii) = 1� �

K

for i = 1; . . . ;K. Applying Bonferroni's inequality gives

P (ÎDn;m(ti)� c
p
�ii � ID(ti) � ÎDn;m(ti) + c

p
�ii for i = 1; . . . ;K) � 1 � �

and therefore a set of simultaneous (1 � �) con�dence intervals. In practical appli-

cations �ii has to be substituted by �̂ii.
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The Bonferroni simultaneous con�dence intervals are usually unnecessarily wide since

they do not take into account the correlation between the ÎDn;m(ti); i = 1; . . . ;K.

The same is true if we use Sidak's inequality

P (ÎDn;m(ti) � ~c
p
�ii � ID(ti) � ÎDn;m(ti) + ~c

p
�ii for i = 1; . . . ;K)

�
KY
i=1

P (ÎDn;m(ti)� ~c
p
�ii � ID(ti) � ÎDn;m(ti) + ~c

p
�ii) (1)

which is valid for arbitrarily correlated normal variables. Setting

~c = ��1

 
1 + (1� �)

1

K

2

!
= ��1

 
1� 1 � (1 � �)

1

K

2

!

the righthand side of (1) becomes

KY
i=1

(1� �)
1

K = 1 � �:

There is practically no di�erence between Bonferroni's and Sidak's intervals since for

usual values of � and K

c = ��1
�
1� �

2K

�
� ��1

 
1 + (1 � �)

1

K

2

!
= ~c:

4.2 Con�dence Bands

For practical purposes derivation of a con�dence band for t 7! ID(t) is more important

than simultaneous con�dence intervals at isolated points t1; t2; . . . ; tK. If we could

derive the distribution of

sup
t2IR

jID(t) � ÎDn;m(t)j

and the corresponding quantiles a (1 � �) con�dence band for t 7! ID(t) would be

given by

t 7! ÎDn;m(t)� cn;m

where cn;m is the (1� �)-quantile of supt2IR jID(t)� ÎD(t)n;mj because

P (ÎDn;m(t)� c � ID(t) � ÎDn;m(t) + c for every t 2 IR)

= P (sup
t2IR

jID(t) � ÎDn;m(t)j � c) � 1 � �:
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It is, however, impossible to derive this distribution analytically for arbitrary F;G 2
F1. A possible remedy is to derive the distribution and the (1��)-quantile approx-

imately by bootstrapping. We therefore obtain a bootstrap approximation c�n;m;B

which depends on n and m and the number of bootstrap replications B.

Figures 1 and 2 depict the point estimates ÎDn;m(t) and their 95 %-con�dence bands of

two particular examples. Figure 1 is constructed by drawing two samples, one from

X � N(0; 1) and one from Y � N(0; 1=25). These samples have been used both

for calculating ÎDn;m(t) and for deriving the 0:975-quantile c�25;25;500 with B = 500

bootstrap replications. Literally, one may only conclude that judging solely from the

data the true but unknown curve ID(t) is likely to lie entirely inside the con�dence

bands. Therefore, since ÎDn;m(t) � c�25;25;500 crosses the horizontal axis from below,

the con�dence bands give evidence that either Y stochastically dominates X (which

is actually correct) or that there is no stochastic dominance at all. Of course, other

realizations of the samples result in di�erent curves, and it is not always the case

that the con�dence bands intersect the horizontal axis.

Figure 2 is built on two samples from the same distribution, namely the standard

normal N(0; 1). This time the con�dence bands enclose the ID(t) = 0 line as well.

Looking at these con�dence bands not much can be said. There might be stochastic

dominance in either direction or none at all.

Figure 1: ÎDn;m(t) with bootstrapped 95 %-con�dence band (F (x) = �(x), G(x) =

�(5x), n = m = 25, B = 500)
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Figure 2: ÎDn;m(t) with bootstrapped 95 %-con�dence band (F (x) = G(x) = �(x),

n = m = 25, B = 500)

5 Nonparametric Testing

This section is devoted to testing for stochastic dominance, i.e., a null hypothesis is

formulated and we are looking for a test (given by a test statistic and a rejection

region) which keeps a prescribed level � for the error probability of the �rst kind.

The null hypothesis we are dealing with is one-sided:

H0: ID(t) � 0 for t 2 IR

H1: not H0

H0 implies ID(t) = IF (t)� GI (t) � 0 for t 2 IR, i.e., X second order stochastically

dominates (or is equivalent to) Y . H1 implies that either Y second order dominates

X or that there is no dominance at all.

5.1 Tests Based on the Asymptotic Normality of ÎDn;m

For K prescribed points t1 < t2 < . . . < tK the random vector

ÎDn;m = (ÎDn;m(t1); . . . ; ÎDn;m(tK))
0
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is asymptotically normally distributed with expectation ID and covariance matrix �

(see section 3). It is, therefore, natural to replace the testing problem

H0: ID(t) � 0 for t 2 IR

H1: not H0

by

H�
0 : ID(ti) � 0 for i = 1; . . . ;K

H�
1 : not H

�
0

and to reject H�
0 if

ÎDn;m(ti)p
�ii

> c

for at least one i 2 f1; . . . ;Kg.
The error probability of the �rst kind is given by

sup
H0

P (H0 rejectedjjH0 true) = P (H0 rejectedjjF = G)

= P

 
ÎDn;m(ti)p

�ii

> c for at least one ijjF = G

!

�
KX
i=1

P

 
ÎDn;m(ti)p

�ii

> cjjF = G

!
:

Choosing c = ��1(1 � �=K) the error probability of the �rst kind is � �, in fact it

will be much less than � in most cases.

Another method for determining the critical level c is the following.

P (H0 rejectedjjF = G) = P

 
ÎDn;m(ti)p

�ii

> c for at least one ijjF = G

!

= 1 � P

 
ÎDn;m(ti)p

�ii

� c for i = 1; . . . ;KjjF = G

!

� 1 � �(c; c; . . . ; cjj�)

where �(x1; . . . ; xKjj�) denotes the joint distribution function ofK correlatedN(0; 1)

variables with correlation matrix � = (�ij) where

�ij =
�ijp

�ii

p
�jj

:
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If we can solve

1� � = �(c; . . . ; cjj�)
with respect to c we arrive at a test whose error probability of the �rst kind is

approximately �. The solution of this equation is, however, extremely di�cult for

larger values of K. Besides we have to replace the �ij by their estimates �̂ij which

will introduce further sampling errors. We therefore do not recommend this approach

to testing for practical applications.

5.2 Permutation Tests

The permutation principle for testing dates back to Fisher (1935). An application

oriented exposition is given e.g. in Efron and Tibshirani (1993) and Good (1993). It

can easily be applied to the one-sided testing problem

H0: ID(t) � 0, t 2 IR

H1: not H0

under study. As test statistics we consider the sup-statistic

T1 = sup
t2IR

ÎDn;m(t)

= sup
t2IR

(ÎFn(t)� ĜI m(t))

= max
i=1;...;n+m

ÎDn;m(z(i))

where z(i) is the i-th order statistic of the pooled sample (z1; . . . ; zn+m) = (x1; . . . ; xn;

y1; . . . ; ym). T1 can be viewed as the second order analog of the one-sided Kolmogorov-

Smirnov statistic.

Another suitable statistic is the integral statistic

T2 =

Z 1

�1

(ÎFn(t)� ĜI m(t))d(F̂n(t) + Ĝm(t))

=

Z 1

�1

 
1

n

nX
i=1

(t� xi)1ft�xi�0g �
1

m

mX
j=1

(t� yj)1ft�yj�0g

!
d(F̂n(t) + Ĝm(t))

=
1

n2

nX
k=1

nX
i=1

(xk � xi)1fxk�xi�0g �
1

m2

mX
k=1

mX
j=1

(yk � yj)1fyk�yj�0g

+
1

nm

mX
j=1

nX
i=1

(yk � xi)1fyj�xi�0g �
1

nm

nX
i=1

mX
j=1

(xk � yj)1fxi�yj�0g:
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T2 can be viewed as the second order analog of the Wilcoxon statistic.

H0 is rejected, of course, if the test statistics are too large. It should be stressed,

however, that the distributions of T1 and T2 depend on F and G even if F = G. It

is therefore not possible to prepare a table with critical values for T1 and T2.

Figure 3 displays the distribution functions of T1 and T2 for the particular case where

n = m = 25 and F = G = �. The distribution of T1 has a point mass on 0. This is

due to the fact that ÎDn;m(t) = 0 for t � z(1). The remaining part of the distribution

is continuous. The distribution of T2 is of continuous type for F;G 2 F1 and F = G.

Figure 3: Distribution functions of T1 and T2 for F = G = � and n = m = 25

Application of the permutation principle results in a test which keeps exactly the

prescribed level � (even for very small values of n and m) if we draw all of the
�
n+m

n

�
di�erent subsets of order n from the vector z = (z(1); . . . ; z(n+m)) and randomize.

Randomization, however, is unusual in practical applications and selection of all

subsets of z becomes quickly intractable. Therefore, the determination of the number

B of subsets to be taken becomes a crucial point for the applicability and validity of

the method. A small Monte Carlo experiment sheds some light on this issue.

In what follows H0 is rejected if T > c where c is determined by c = T(B(1��)) where

T(1) � T(2) � . . . � T(B) is the ordered sequence of values of the test statistic for

B randomly drawn subsets of size n of z. Table 1 shows error probabilities of the

�rst kind | obtained for B = 500 in the case of n = m = 10; 15; 20; 25; 30 and
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� = 0:01; 0:05; 0:1 with F = G = �. Table 2 is related to F = G = U for U(x) = x

for 0 � x � 1, i.e., U is the distribution function of a uniform distribution on [0; 1].

Table 1: Error probabilities of the �rst kind of the test statistics T1 and T2 under

F = G = �

Test statistic T1 Test statistic T2
n = m 0.1 0.05 0.01 0.1 0.05 0.01

10 0.1024 0.0516 0.0126 0.1008 0.0504 0.0124

15 0.1028 0.0514 0.0120 0.1070 0.0510 0.0116

20 0.0994 0.0542 0.0134 0.0992 0.0536 0.0132

25 0.1018 0.0466 0.0106 0.0986 0.0480 0.0100

30 0.1038 0.0522 0.0146 0.0932 0.0536 0.0138

Table 2: Error probabilities of the �rst kind of the test statistics T1 and T2 under

F = G = U

Test statistic T1 Test statistic T2
n = m 0.1 0.05 0.01 0.1 0.05 0.01

10 0.1078 0.0572 0.0130 0.1062 0.0574 0.0118

15 0.1006 0.0474 0.0094 0.1000 0.0500 0.0090

20 0.1058 0.0532 0.0124 0.1050 0.0542 0.0122

25 0.1008 0.0512 0.0124 0.1054 0.0514 0.0114

30 0.1004 0.0486 0.0120 0.1000 0.0480 0.0124

Our conclusion from the results of tables 1 and 2 is thatB = 500 results in satisfactory

agreement of prescribed and attained error probability of the �rst kind. A similar

simulation for B = 100 gave a far less satisfactory picture. We are going to use

B = 500 in what follows.

The permutation principle determines the critical value c conditioned on F = G. This

is the boundary of the null hypothesis H0 : IF (t)� GI (t) � 0 since IF (t)� GI (t) = 0

for t 2 IR if and only if F (x) = G(x) for x 2 IR. It should be stressed, however, that

the null hypothesis contains pairs of distribution functions (F;G) where F 6= G. We

do not yet have a formal proof that

sup
(F;G)2H0

P (H0 is rejectedjj(F;G)) � �;

but the construction of the tests as well as our simulation results suggest that the

overall level of the tests is indeed � �. Nevertheless, some care concerning the overall
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error probability of the �rst kind should be taken.

5.3 Power of the Tests

Though the tests described in section 5.2 are nonparametric it is useful to investigate

their power within parametric families of alternative distributions. Power can then

be displayed graphically as a function of the parameter, resulting in a power curve.

We consider the following two families of alternative distributions:

� Type I:

F (x) = �(x) x 2 IR

Gc(x) = �(cx) x 2 IR and 0 < c <1
where � denotes the distribution function of the standard normal distribution.

(F;Gc) belongs to H0 for c � 1 and to H1 for c > 1.

� Type II:

F (x) = x 0 � x � 1

G�(x) =

�
(2x)�=2

1� (2(1 � x))�=2

0 � x � 0:5

0:5 < x � 1
and 0 < � <1

(F;G�) belongs to H0 for � � 1 and to H1 for � > 1.

Note that there is no �rst order stochastic dominance for families I and II on the set

of alternatives.

The power of the tests is determined by Monte Carlo simulation for the case n =

m = 25 and � = 0:05. Samples from F and G are generated and the permutation

tests (with T1 and T2) are carried out as described above for B = 500. The number

of Monte Carlo replications is N = 5000.

This procedure is performed for some ten di�erent values of the parameters of families

I and II. Fitting cubic splines to the estimated points yields the power curves shown

in �gures 4 and 5. The inlaid �gures depict the underlying distribution functions:

the one giving more weight to the tails is the null distribution while the other one is

an example of the alternative distributions.

Concerning power the test based on the integral statistic T2 obviously dominates the

second order Kolmogorov test based on T1. The error probability of the �rst kind of
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Figure 4: Power curves of the tests based on T1 and T2 for alternative distributions

of Type I (with n = m = 25 and B = 500)

Figure 5: Power curves of the tests based on T1 and T2 for alternative distributions

of Type II (with n = m = 25 and B = 500)
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the test based on T2 tends to zero for c! 0 (Type I distributions) and �! 0 (Type

II distributions) whereas it remains approximately constant for T1.

It should be pointed out that the tests suggested in section 5.2, though being de-

signed for testing second order stochastic dominance, can also be applied for testing

�rst order stochastic dominance. First order stochastic dominance implies second

order stochastic dominance and if we can reject the null hypothesis of second order

stochastic dominance, the null hypothesis of �rst order stochastic dominance must

also be rejected. Therefore, instead of testing

H0: F (x) � G(x), x 2 IR

H1: not H0

we may test

H�
0 : IF (t) � GI (t), t 2 IR

H�
1 : not H

�
0

with one of the tests described above and reject H0 if H
�
0 is rejected. It is interesting

to note that this procedure may result in a considerable increase in power. This will

be demonstrated by two examples based on the following alternatives.

� Type III:

F (x) = �(x) x 2 IR

G�(x) = �(x� �) x 2 IR and � 2 IR

For � > 0 we have F (x) > G�(x) for x 2 IR. Hence the null hypothesis is

violated and there is �rst order stochastic dominance of Y over X.

� Type IV:

F (x) = 1� e�x x > 0

Ga(x) = 1� e�ax for x > 0 and a > 0

For a < 1 we have F (x) > G(x) for x 2 IR and thus again there is �rst order

stochastic dominance of Y over X.

Figures 6 and 7 show the power curves of the second order tests and of the (�rst

order) Kolmogorov{Smirnov test and the Wilcoxon{Mann{Whitney test. Again, the
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inlaid �gures display the null distribution as well as an example of the alternative

distributions. The distribution functions being more on the right belong to the

alternative distributions.

For both types of alternatives the second order Kolmogorov test (based on T1) dom-

inates the familiar �rst order Kolmogorov test. This might be due to the fact that

T1 is smoother than the original Kolmogorov statistic. Power curves for T2 and the

Wilcoxon statistic are very close together.

Figure 6: Power curves of various tests for alternative distributions of Type III

6 Concluding Remarks

This paper is concerned with nonparametric statistical inference for second order

stochastic dominance. Procedures for point and con�dence estimation as well as

testing procedures have been proposed. Concerning tests for second order stochas-

tic dominance we recommend the application of the permutation principle for the

determination of the critical values of the test statistics.

The corresponding tests are easy to perform and are reliable even for very small

sample sizes | which is an advantage over asymptotic tests suggested in 5.1 and

elsewhere. The power of the two permutation tests described in this paper is com-

pared for a number of alternative distributions but more alternatives have to be
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Figure 7: Power curves of various tests for alternative distributions of Type IV

taken into account in order to identify those instances where one test is superior to

the other.

Another and probably more serious question concerns the robustness of the per-

mutation tests with respect to dependencies in the data X1; . . . ;Xn and Y1; . . . ; Ym

which may occur in economic applications. Though we have assumed for the ease

of exposition that Z = (Z1; . . . ; Zn+m) = (X1; . . . ;Xn; Y1; . . . ; Ym) are i.i.d. under

F = G the permutation principle is still applicable if (Z1; . . . ; Zn+m) are only ex-

changeable, i.e., if (Z1; . . . ; Zn+m) and (Z�(1); . . . ; Z�(n+m)) are identically distributed

for every permutation � of the numbers 1; . . . ; n +m. Exchangeability of Z can be

interpreted in the following setting. There are (under F = G) i.i.d. random variables

Z 0 = (X 0
1; . . . ;X

0
n; Y

0
1 ; . . . ; Y

0
m) and a random variable U (being independent of Z 0)

with

Xi = X 0
i + U i = 1; . . . ; n

Yj = Y 0
j + U j = 1; . . . ;m:

In an economic contextXi and Yj could be seen as returns on two assets. It is assumed

that there are individual determinantsX 0
i and Y

0
j as well as a general additive market

shock U in
uencing all returns in the same way. The in
uence of exchangeability on

the power of the tests is a problem which deserves investigation.

Though exchangeability is more general than independence it often will not be the
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suitable model for the data. An alternative which will be reasonable in some instances

is to assume that (Xi; Yi), i = 1; . . . ; n are matched pairs, i.e., (Xi; Yi) are jointly

determined and may show arbitrary dependencies. Testing with matched pairs is

well developed in the framework of �rst order stochastic dominance. Tests for second

order stochastic dominance still have to be developed but it is easy to see that the

application of the permutation principle is still possible (see e.g. Good (1993)). This

will be the subject of a forthcoming paper.
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