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Abstract 

In this paper, we examine conditional, forecast-based dynamic pest management in 

agricultural crop production given stochastic pest infestations and stochastic climate 

dynamics throughout the growing season. Using stochastic optimal control we show 

that correlation between forecast error for climate prediction and forecast error for 

pest outbreaks can be used to improve pesticide application efficiency. In the general 

setting, we apply modified Hamiltonian approach to discuss the steady state 

equilibrium. Given specific functional forms, a closed form solution can be found for 

the stochastic optimal control problem. Moreover, we find conditions for model 

parameters so that the optimal pesticide usage path will be monotonically increasing 

or decreasing in the correlation coefficient between climate forecast errors and pest 

growth disturbances. 
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Introduction 

The purpose of this paper is to examine conditional, forecast-based dynamic pest 

management in agricultural crop production given stochastic pest infestations and 

stochastic climate dynamics throughout the growing season.  Forecasts of pest 

outbreaks in conjunction with forecasts of climatic conditions can be used to improve 

effectiveness of pest management decisions.  Producers can adjust pesticide 

application rates depending on the forecasts of pest outbreaks.  In this paper we 

consider that given potential association between pest infestation and climatic 

conditions and the effects of both of these variables on yields (Elbakidze, Lu and 

Eigenbrode, 2011; Cobourn et al. 2011), forecasts of both, climatic conditions and 

pest outbreaks, can be used to optimize applications of pesticides.  Furthermore we 

argue that the prediction errors from climate and pest outbreak forecasts and their 

correlations can be used to optimize pest management strategies.  Using stochastic 

optimal control we show that correlation between forecast error for climate prediction 

and forecast error for pest outbreaks can be used to improve pesticide application 

efficiency.    

The literature on pest management typically specifies the pest management 

problem in terms of damage control inputs within damage (or damage abatement) 

function in conjunction with the production function (Lichtenberg and Zilberman, 

1986; Fox and Weersink, 1995; Saha, Shumway and Havenner, 1997; Carpentier and 

Weaver, 1997).  The advantage of such formulation is that it allows the modeler to 

separate the effects of direct production inputs from the effectiveness of pest control 
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inputs via damage function specification.  While earlier studies focused on static and 

deterministic specifications, several later studies have extended this approach to 

dynamic examinations (Zivin, Hueth and Zilberman 2000; Marsh, Huffaker, and long, 

2000; Olson and Roy 2002, Zhang and Swinton (2009)).  As Olson (2006) pointed 

out, dynamic models provide more insight than static models in that the value of 

pesticide application in such models includes not only the benefits of removing the 

pests in the current period but also the discounted sum of benefits from precluding 

future pests.  Following this logic, we construct a dynamic model corresponding to a 

planning horizon lasting from planting to harvesting.  We assume that the decision 

on crop acreage has been made, but the decisions about pesticide use remains to be 

made throughout the growing season.  

Another important aspect of pest management problem is uncertainty associated 

with pest infestation.  The dynamics of pest populations can be characterized as a 

combination of a deterministic population growth pattern and a stochastic fluctuation 

as a result of unexplained factors that may cause the population of the pest to increase 

or decrease.  In stochastic pest management studies a typical assumption is that the 

dynamics of pest infestation follows a diffusion process based on Weiner process type 

of formulation (Saphores 2000; Sunding and Zilvin, 2000; Saphores and Shogren, 

2005; Richards et al. 2005).  Hertzler (1991) uses stochastic optimal control and Ito 

stochastic calculus to study dynamic agricultural decisions under risk.  He suggests 

that diffusion process based stochastic dynamic models and Ito calculus can be used 

for economic studies of pest control in agricultural production.  Olson and Roy 
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(2002) approaches the problem of managing biological invasions in terms of 

minimizing expected value of discounted sum of costs and damages subject to pest 

growth dynamics. They solve the minimization problem using stochastic dynamic 

programming and provide conditions for when it is optimal to eradicate the invasive 

species.  Cobourn (2009) also uses stochastic dynamic programming to study pest 

management options when activities of heterogeneous producers can influence 

effectiveness of pesticide use.  Kim et al. (2006) study optimal allocation of 

resources between prevention and control for invasive species management using 

dynamic formulation of stochastic invasion and subsequent discovery.  We extend 

the previous formulations by incorporating two relevant and related stochastic 

variables in our optimal control model: climatic conditions and pest invasion.  

Furthermore, we examine how potential correlation between these stochastic variables 

may affect optimal pesticide use.   

The roles of climate conditions in agriculture (Costello, Adams and Polasky, 1998; 

Rubas et al 2008; Chen, McCarl and Schimmelpfennig, 2004, Kim and McCarl 2004) 

as well as the role of climatic condition in pest management (Chen and McCarl 2001, 

Cobourn et al., 2011) have been addressed by economists.  However, the economists 

have given little attention to optimal dynamic pest management when climatic 

conditions affect crop growth as well as pest populations simultaneously.  Olson and 

Roy (2002) formulated their model by assuming pest growth is affected by 

environmental disturbances.  Elbakidze, Lu and Eigenbrode (2011) examined the 

effects of climate and pests on agricultural productivity in a simultaneous fashion 
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taking into account that pest infestations maybe affected by climatic conditions. Their 

analysis is done in a static context.  Cobourn et al. (2011) have also examined how 

climatic variables may positively affect crop yields which in turn can attract more 

pests via improved habitat.  In this paper we combine the effects of climatic 

conditions on pest infestations and on crop yields in a stochastic optimal control 

setting. 

The rest of this paper is organized as follows: In the next section, we provide 

general stochastic optimal control analysis of pest management in the context of 

stochastic climate and stochastic pest outbreaks.  Optimality conditions are discussed 

and a representative phase diagram is presented.  The formulation showing 

dependence of optimal pest management on correlation between stochastic climate 

and stochastic pest population is provided.  Subsequently, we examine a specific 

analytical case with specific functional forms.  We provide conditions for optimal 

pesticide use path as a function of the correlation coefficient between pest and climate 

forecast errors. 

 

The general case 

Our framework is based on minimization of total expected costs associated with pests 

and pest management.  Given that crop growth depends on stochastic pest infestation 

and stochastic climatic conditions, which can be correlated, we formulate dynamic 

crop growth losses associated pest populations and climate as 

         ( ) ( )1 , ,L LY Y A tθ=  
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where θ  denotes a climate index (for example temperature or precipitation), A is the 

pest population, and t denotes time. We assume that crop losses, LY , is differentiable 

with respect to all of its arguments and is increasing in A.   

Climate index is assumed to be following a diffusion process (Mraoua and Bari, 

2005) 

   ( ) ( ) ( )2 , ,d t dt t dθ θθ µ θ σ θ θ= + 

 

where θµ  and θσ  are representing expected changes in the climate index over time 

and standard deviation respectively. θ is the standard wiener process. θµ  can be 

interpreted as the predictable change of climate index with standard error θσ . 

Pest population is given by the function: 

( ) ( )( )3 , , ,A A u t t Aθ= 

 

where u denotes pesticide use, A  represents another Wiener process which can be 

interpreted as all other uncontrolled factors that affect pest population. 

By Ito’s Lemma (Hertzler, 1991; Kamien and Schwartz; 2003), we have 

( ) ( ) ( )

( ) ( )

21 14 ,
2 2

, , , ,

A
t AA A A

A
A

dA A A A A A dt A t d A dA

u A t dt A t d A dA

θ θ θ θ θ
θ θθ θθ

θ
θ

µ σ ρ σ σ θ θ

µ θ σ θ θ

 = + + + + + + 
 

+ +

 

   



 

 



 

Then A is also following a diffusion process which is similar to Mbah et al. (2010). 

Here, Aµ  denotes the drift for pest growth, or expected change in pest population. 

Aµ includes the intrinsic deterministic pest growth rate, the deterministic effect of 

climate on pest growth, and the second order terms by Ito’s Lemma.  We assume that 

Aµ  is decreasing in the control variable, u.  It is clear that the change in pest 

population will have two sources of uncertainty, one associated with climate 
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uncertainty and the other coming from other unaccounted random environmental and 

ecological factors.  Reflecting a possibility of interaction between climatic index and 

pest population (Elbakidze, Lu, and Eigenbrode, 2011; Cobourn et al. 2011) beyond 

deterministic context we assume that Ad dA dtθθ ρ=  

  , where Aθρ   denotes the 

correlation between A  and θ .  Non zero Aθρ  

 implies that deviations from 

expected (or predicted) levels of pest populations and climate index can be correlated.   

Again by Ito’s lemma, the crop growth dynamics can be expressed as1: 

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( )( )

2 21 15
2 2

, ,

, , , , , ,

L A A A A
t A AA A

A A A

Y L
A A A

dY Y Y Y Y Y Y Y dt

Y t Y A t d Y A dA

u A Y t dt Y t Y A t d Y A dA

θ

θ θ θ θ
θ θθ θ

θ θ
θ

θ θ θ
θ

µ µ σ σ ρ σ σ

σ θ σ θ θ

µ θ σ θ σ θ θ

 = + + + + + 
 

+ + +

+ + +

 





 

 



  

Where  

Yµ  is assumed to be decreasing in u; and variance of LdY  can be expressed as 

( ) ( ) ( )
( ) ( )

2 2

2
2

Y
A A A AA A

A A
A A A A

Y Y A Y A Y Y A Y A

Y Y Y Y A Y A

θ θ θ θ θ θ
θ θ

θ θ θ θ θ
θ θ

σ σ σ ρ σ σ

σ σ σ σ ρ

= + + + + =

= + + +

 

 



 

The farmer’s problem than is to minimize losses and costs associated with pest 

infestation and management, which can be expressed as the following stochastic 

optimal control problem: 

( ) ( ){ }0
min

TrT L rtE e pY T e wu t dt− −+ ∫  

subject to (4) and (5) 

where T  is the terminal crop harvest period, r is discount rate, ( )u t denotes the path 

of pesticide usage, and p and w denote the prices of harvested crops and costs of 

                                                             
1 We use subscripts to denote derivatives throughout the text 

( ) ( )( ) ( )2 2 2
,A A

A AA t A A Aθ θ θ
θ θσ σ θ ρ σ= + +  

 
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pesticide use respectively.  

Hamiltionian-Jacobian-Bellman equation is given by: 

( ) ( ) ( )2 21 16 min
2 2

Y A Y A Y A
t Y A YY AA AYu

J wu J J J J Jmm  σ σ σ σ − = + + + + + 
   

Define the following matrices 

[ ]1 ,A YJ J=J      

2 AA AY

AY YY

J J
J J
 

=  
 

J
 

( )
( )

, , ,

, , ,
L

A

Y L

u A t

Y A t

µ θ

µ θ

 
 =
  

μ  

( )
( )

2

2

A A Y AY

A Y AY Y

σ σ σ ρ

σ σ ρ σ

 
 =
 
  

Σ  

Then (6) can be rewritten as: 

( ) ( )1 217 min
2t u

J wu trace − = + + 
 

J Jm Σ
 

To formulate the Hamiltonian version of the problem, let ( ) ( )1 1 2, , ,L LA Y A Yλ λ =  λ  

denote the vector of co-state variables for the pest and yield loss state equations 

respectively, and 

1 1
2

2 2
A Y

A Y

λ λ
λ λ
 

=  
 

λ
 

The Hamiltonian then can be expressed as  

( )1 21(8)
2

H wu trace= + +λ μ λ Σ

 

By maximum principle,  
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1 21(9) 0
2

H w trace
u u u

∂ ∂ ∂ = + + = ∂ ∂ ∂ 
μ Σλ λ  

Notice that neglect of the stochastic components of the pest and crop growth will 

remove 21
2

trace
u
∂ 

 ∂ 
Σλ  from the Hamiltonian. Consequently, the optimal decision 

rule will be biased. 

let 
( )

( ) ( )( )
,

, ,
A

L L L
A A A

A t A

Y t Y A t Y A

θ
θ

θ θ θ
θ

σ θ

σ θ σ θ

 
L =  

+  





 

dd
dA
θ 

=  
 

z




 

Then the optimaliy of the Hamiltonian implies:
 

1 2

2
L

H
d Ar dt d
d H

Y

λ
λ

 ∂  
    ∂ = − + L   ∂    
  ∂  

Τ1λ λ z
 

Suppose *u  exists, then the expected steady state can be shown by the following 

conditions where control variable is a function of co-state variables (Xepapadeas 

1997): 

( ) ( )( )1 210 * , , , , , 0
L

L
Y LdEY u A Y t

dt
µ λ λ θ= =  

( ) ( )( )1 211 * , , , , 0AdEA u A t
dt

µ λ λ θ= =  

( ) ( )1 21
1

*, , , ,
12 0

LH u A YdE rE E
dt A

λ λλ λ
∂

= − =
∂  

( ) ( )1 22
2

*, , , ,
13 0

L

L

H u A YdE rE E
dt Y

λ λλ λ
∂

= − =
∂

 

Proposition 1：  

Suppose the expected steady state equilibrium exists, then it is unique if the following 
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conditions are satisfied: 

1. ( )1 2* ,u λ λ  is monotonically increasing in both of its arguments.  This condition 

implies that given an increase in the constraint (either more expected yield loss or pest 

growth), the optimal decision will always be to use more pesticide. 

2. Both 
LYµ  and Aµ  are monotonic in A and Y,   

3.
 

H
A

∂
∂

and L

H
Y
∂
∂

are positive implying that the value function is well behaved and 

increasing in the population of pest and yield loss. 

4. The signs of second order partial derivatives of H are fixed. 

To prove the above proposition notice that the steady state equilibrium is unique when 

the intersection of (10) through (13) is unique.  Monotonicity of equations (10)-(13) 

implies that the intersection of (10) through (13) is unique. 

Using (10), based on implicit function theorem we have  

1

1

*
*

Y

L

Y

L

u
dY u
d

Y

µ
λ

µλ

∂ ∂
∂ ∂= −
∂
∂  

The sign of this expression is uniquely identified by the signs of components on the 

right hand side.  Similarly, one can examine the signs of the implicit function in (10) 

in other subspaces. Each of those relationships will be uniquely signed given fixed 

signs of factors in on the right hand side.  This implies that as long as the signs of 

components on the RHS don’t change, as assumed in conditions 1 through 4 above, 

the left hand side signs will not change either.  Similar logic can be applied to 

implicit functions defined by (11), (12), and (13).  Therefore equations (10) through 

(13) are monotonic, implying uniqueness of the solution.
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Phase diagram 

We can examine the ( )1,LY λ  subspace of hyper-surface in ( )1 2, , ,LA Y λ λ  for 

graphical illustration of the FOC conditions (10-13).   This phase (Figure 1) diagram 

corresponds to given shapes of 
LYµ , Aµ , 1λ , 2λ .  Alternative convexity 

assumptions will change the appearance of the diagram.  However, the principle 

relationships pertinent to this discussion will remain unchanged.   

Using (12), we have  

( )1 2
1

*, , , ,1(15) 0
LE H u A Y

E
r A

λ λ
λ

∂
= >

∂  

Therefore, expected 
1λ  is positive 

Then the slope of 0
LdEY

dt
=  is determined by the Implicit function defined by (10), 

1

1

*
*(16) 0

L

L

Y

L

Y

L

u
dY u
d

Y

µ
λ

λ µ

∂ ∂
∂ ∂= − <
∂
∂  

Assuming that 0
LY

LY
µ∂

<
∂

 and given that 0
*

LY

u
µ∂

<
∂  

and
 1

* 0u
λ

∂
>

∂
, we get 1 0

LdY
dλ

<
 

The direction of 
1

0dE
dt
λ

=  is determined by the Implicit function defined by (12),

 2 2

1 1

21

*
*(17)

L

L

H u HrdY A u A
Hd

A Y

λ λ
λ

∂ ∂ ∂
− −
∂ ∂ ∂ ∂ ∂= −

∂
∂ ∂

 

Assuming that 
2

0L

H
A Y
∂

<
∂ ∂

, 
2

0
*

H
A u
∂

<
∂ ∂

, 
2

1 0H
A λ
∂

>
∂ ∂

, we get 1 0
LdY

dλ
>  

From (10) and 0
*

LY

u
µ∂

<
∂

, 1

* 0u
λ

∂
>

∂
, we have that for any 1Eλ  on the right of  the 
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0
LdEY

dt
= curve, it must be the case that  0

LdEY
dt

< . 

Similarly, one can show that for any LEY  below the 
1

0dE
dt
λ

= curve, 

It must be the case that  
1

0dE
dt
λ

>  

Figure 1 give a summary for the analysis above. 

 

Figure 1 Phase Diagram 

 

The steady state equilibrium is locally stable if and only if, in the neighborhood of the 

steady state, the Jacobian matrix (M) corresponding to FOCs in (10) to (13) is 

negative definite (See Lewis and Syrmos, 1995 for reference). 
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( )

1 2

1 2
1 2

2 2 2 2 2 2

1 1 2 2 2

2 2 2 2

1 1 2 2

* *
* *

* *
* *

, , , * *
* *

* *
* *

L L L LY Y Y Y

L

A A A A

L
L

L

u u
u u A Y

u u
u u A Y

A Y H H u H H u H Hr
A A u A A u A A Y
H H u H H ur

A A u A A u

µ µ µ µ
λ λ

µ µ µ µ
λ λ

λ λ

λ λ λ λ

λ λ λ λ

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

− − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

M

( )
2 2

2L L

H H
A Y Y

 
 
 
 
 
 
 
 
 
 ∂ ∂

− − ∂ ∂ ∂  

 

To examine the relationship between optimal pesticide use u* and Aθρ    – the 

correlation between climate and pest prediction (expectation) errors – we need to 

evaluate *
A

du
d θρ  

. Since optimal path of the control variable is a function of co state 

variables (Xepapadeas 1997), ( )1 2* ,u λ λ , we can use traditional comparative statics 

approach applied for (10) through (13) to get
1

A

d
d θ

λ
ρ  

 and 
2

A

d
d θ

λ
ρ  

.  Then 

1 2

1 2

* * *(18)
A A A

du u d u d
d d dθ θ θ

λ λ
λ λρ ρ ρ

∂ ∂
= +
∂ ∂     

 

Using traditional comparative statics approach and defining implicit functions (10) to 

(13) as ( )1 1 2, , , LF A Yλ λ  through ( )4 1 2, , , LF A Yλ λ  we get: 

( ) 1 2
1 219
i i i i i

L A
L A

F F F F Fd d dA dY d
A Y

θ
θ

λ λ ρ
λ λ ρ
∂ ∂ ∂ ∂ ∂

+ + + = −
∂ ∂ ∂ ∂ ∂

 

 

 

for 1, 2,3, 4i = . 

Using Cramer’s rule and putting the partial derivatives of the implicit functions in 

matrix form, we have
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1

2

2

2 2 2 2
1 2

2 2 2

2 2
1 2

2 2

*
*

*
*

1 *
2 *

1 *
2 *

L L L LY Y Y Y

LA

A A A A

LA

LA

A

u
u A Y

u
u A Y

H H u H Htrace
A A u A A Y

H H utrace r
A A u

θ

θ
rλ

θ

θ

µ µ µ µ
λr

µ µ µ µ
λr

r λ λr

r λ λr

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

=
 ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ − − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  
 ∂ ∂ ∂ ∂ ∂ ∂

+ − − − ∂ ∂ ∂ ∂ ∂ ∂∂  

M
μ Σλ λ

μ Σλ λ

 

 

 

  ( )
2 2

2L L

H H
A Y Y

 
 
 
 
 
 
 
 
 
 

∂ − ∂ ∂ ∂  

 

and  

2

1

1

2 2 2 2
1 2

1 1 2

2 2
1 2

1 1

*
*

*
*

* 1
* 2

* 1
* 2

L L L LY Y Y Y

LA

A A A A

LA

LA

A

u
u A Y

u
u A Y

H H u H Hr trace
A A u A A Y

H H u trace
A A u

θ

θ

rλ

θ

θ

µ µ µ µ
λ r

µ µ µ µ
λ r

λ λ r r

λ λ r r

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

=  ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − + − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ 

 ∂ ∂ ∂ ∂ ∂ ∂
− − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

M
μ Σλ λ

μ Σλ λ

 

 

 

  ( )
2 2

2L L

H H
A Y Y

 
 
 
 
 
 
 
 
 
 
 ∂

− ∂ ∂ ∂  

 

1

1d
d

ρλ
λ
ρ
=

M

M
and 

2

2d
d

ρλ
λ
ρ
=

M

M
 

Therefore, we have  

( )
1 2

1 2

* * *20 du u u
d

ρλ ρλ

ρ λ λ
∂ ∂

= +
∂ ∂

M M

M M  

This identity describes the relationship between optimal control variable level and 

correlation between climate and pest prediction errors. 

 

The transversality condition for the problem is implied by that ( )L LTY T Y≤ where YLT 



16 
 

is the maximum attainable yield at the end of the growing season.   

*
2 ( ) 0 ( )L LTT if Y T Yλ = <  

*
2 ( ) 0 ( )L LTT if Y T Yλ > =  

The first of these conditions implies that if, in the terminal period, the yield loss is less 

than the maximum yield then the shadow price, or value of higher maximum yield, is 

zero. The second condition says that if the final yield loss equals maximum yield (all 

yield is lost to pests) then shadow price equals the value of having higher maximum 

yields and is positive. This can arise when low crop prices and high pesticide prices 

lead to disuse of pesticides resulting in loss of all yield. 

 

The Specific Case 

Following Lichtenberg and Zilberman (1986), crop growth losses due to pests can be 

expressed as 

( ) ( ) ( )21 LY f D Aθ=  

where ( )f θ  is maximum yield as a function of climate index, and ( )D A denotes 

the proportional damage function which is assumed to have the following properties: 

1. ( )0 0D =  

2. ( )lim 1
A

D A
→∞

=  

3. ( )D A is non-decreasing in A 

Suppose ( )D A is linear2, and there exists a maxA such that ( )max 1D A = . 

                                                             
2 Notice that ( )D A could be interpreted as a cumulative distribution function.  
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Consequently,  

( ) ( )
max

22 AD A
A

=
 

Assuming ( )f αθ θ=  and max0 A A≤ < we can express yield loss as  

( )
max

23 L AY
A

aθ=
 

A specific functional form has to be assigned for the climate index dynamics, and we 

use geometric Brownian motion for the stochastic differential equation: 

d dt dθ θθ µ θ σ θ θ= +   

And similarly, we assume that the pest growth dynamics is following 

( ) ( ), , , , , ,A AdA A u t Adt A u t AdAµ θ σ θ= + 

 
Assuming the standard deviation of pest population growth is constant, 

( ), , ,A AA u tσ θ σ= , it can be shown (see appendix a1) that the general case becomes:  

( )

( ) ( )( )2

24

2 1L A A A L A L LdY Y dt Y dA Y dθ θ θ θ θαµ µ ασ σ ρ α α σ σ ασ θ = + + + − + +  
 

   

Solving for u requires a functional form for ( ), ,A u Aµ θ .  Assume a simple functional 

form reflecting decreasing pest population as a function of u  

( ) ( )
1

25 , ,A Au A u Aγ βαµ θ µ θ= −  

Hamilton-Jacob-Bellman equation for stochastic optimal control problem (Kamien 

and Schwartz; 2003) can then be given by (See appendix a2) 

( )
( )

( )( )
( )2max

2

2
26 min

2
1

LL L

A L

rt L Y LY Y
t Yu

A A

u A Y J
J e wu J Y Y

β β
θ γ a a

θ θ θ

amm
σ

aσ σ raa   σ

−

   
+ − +     − = + +  

  + −    
 

 

where 
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( ) ( ) ( )
2 2 2

2
LY A A Aθ θ θσ σ ασ ασ σ ρ= + +  

 

The minimizing u is given by (see uppendix): 

( )
( )

1
1

max
227

2 L

rt

L
Y

e wAu
J Y

γ

γ

−− 
 =
 
   

Therefore, the HJB becomes (See appendix): 

( )

( )
( )

( ) ( ) ( ) ( )( ) ( )
1

1
1 22

1 1 1

max

28

1 2 2 2 1
2

LL L

L

rt L A A A Y LY Y
t Y

L
Y

J
J e w J Y Y

J Y A

γ
γ γ

θ θ θ θγ γ γ
ββ
aa

γ γ amma  σ σ raa   σ σ

−
− −

− − − −

 
     − = − + + + + − +        
 

 

The carefully “guessed” value function that satisfies the above equation is given by 

(see appendix): 

 

( )

( ) ( ) ( ) ( )( )

29

,L rt L rT L rT LJ Y t Ce Y e pY T Ce Y T
β β

αγ αγ
− −

− − −= + −  

 
Where 

( ) ( )

( ) ( )( ) ( )

1
1

11
1 1

max

22

2 2

2 1
2

LA A A Y

A
C w

r

γ
γ

β γγ
a γ γ

θ θ θ θ

γ
a
β β β aγγ amma  σ σ raa   σ σ

aa γ

−

− −−−
− −

 
    − − −         =     −    + + + + − −          

 

 

 

This solution holds under the condition that 

( ) ( )

( )( ) ( )( )
1 130

0

rT L

rT L L

Ce Y Tw
p e Y T Yγ γ

−

− −−

≤
−

 

In such case pesticide usage is given by 
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( )

( )

( ) ( ) ( )( )
( )

1

max

2 22

31

2 1 2

2 1
L

L

Y A A A

A
u Y

r

γ
β
a

β
aγ

θ θ θ θ

γ

β β aγ βσ γ amma  σ σ raa   σ
aaa 

−

−

−

  
+  

  =  −     − − + + + −            

 

if the condition in equation (30) does not hold, then the pesticide use will be equal to 

zero.
 

 

See appendix a3 and a4. 

 

Proposition 2: Given ( )3 0αγ β αβ− > , the optimal pesticide use is monotonically 

increasing in the correlation coefficient, i.e. 0
A

u
θρ

∂
>

∂  

 

Given ( )3 0αγ β αβ− < , the optimal pesticide usage is monotonically decreasing in 

the correlation coefficient, i.e. 0
A

u
θρ

∂
<

∂  

 

Proof: See appendix a5. 

Given the above we can discuss the cases for optimal pesticide use path to be 

monotonically increasing or decreasing in the correlation coefficient. 

Case 1: 0α > , 0β > , 3 0αγ β− > , then 0
A

u
θρ

∂
>

∂  

 

Case 2: 0α < , 0β < , 3 0αγ β− > , then 0
A

u
θρ

∂
>

∂  

 

Case 3: 0α < , 0β > , then 0
A

u
θρ

∂
>

∂  
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Case 4: 0α > , 0β < , then 0
A

u
θρ

∂
<

∂  

 

Case 5: 0α > , 0β > , 3 0αγ β− < , then 0
A

u
θρ

∂
<

∂  

 

Case 6: 0α < , 0β < , 3 0αγ β− < , then 0
A

u
θρ

∂
<

∂  

 

Case 7: 0α < , 0β > , 3 0αγ β− > , which is impossible. 

Case 8: 0α > , 0β < , 3 0αγ β− < , which is impossible. 

 

Corrolary: Ifα and β are opposite in sign, the monotonicity of optimal pesticide use 

path in the correlation coefficient is unambiguous without any further relative 

magnitude assumptions. 

Proof: The statement is trivially true by looking at the sign of the term ( )3αγ β− . 

 

Conclusion/Discussion 

 

In this paper, we examine stochastic dynamic pest management in agricultural crop 

production under two stochastic factors that influence agricultural productivity: 

climate and pest populations.  Predictions, or expected values, of climatic variables 

and pest populations can be used to improve pest management practices.  We extend 

this idea by explicitly showing that the pest management practices can be further 

improved by taking into account potential correlation between prediction errors for 

climatic variables and pest population.  

We first set up a general discounted cost minimization problem with stochastic 



21 
 

climate and pest population variables.  We provide necessary condition for optimal 

pesticide use path and discuss properties of the solution. Choosing functional forms 

that allow for mathematic tractability we find a closed form solution for pesticide use 

as a function of the correlation coefficient between pest and climate forecast errors.  

Moreover, we provide conditions for when pesticide use is monotonically increasing, 

and when it is decreasing in the correlation coefficient. 

The model analytically shows the importance of information of stochastic correlation 

between climate and pest infestation. For instance, if the true correlation coefficient is 

negative and growers who don’t have the information take the correlation coefficient 

as zero, then over application or inadequate application of pesticide may occur. 

For future research we suggest application of these theoretical analyses in an 

empirical context.  For example, one could use data from Elbakidze, Lu and 

Eigenbrode (2011) and from Clement and Eigenbrode (2007) to simulate crop and 

pest outbreak predictions with associated prediction errors.  These simulations can 

be combined with pesticide use data to examine how applications of pesticides like 

dimatoate can be optimized by taking into account correlation between prediction 

errors for climate and pest population forecasts. 
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Appendix A1 

Derivation for (24), LY dynamics 

the components of 3.1.4 can be derived as follows 

( ) ( )

1

max max

max max

.1.1

L

A A L

Y A A
t t A A t

A A Y A
A A

aa

aa
θ θ

θ θ θa

θ θammamm  

−∂ ∂ ∂
= +

∂ ∂ ∂

= + = +
 

( ) ( )
max

1 .1.2L A A A L A L
AY dA Adt AdA Y dt Y dA A

A
aθ m σ m σ= + = +   

( ) ( )
1

max

.1.3L L LAY d dt d Y dt Y d A
A

a
θ θ θ θ

θ
θθ am  θ σ θ θ ama σ θ

−

= + = +   

( )
max

.1.4
A A

L A A A A L
A

AY A dt dt Y dt A
A

θ θ a
θ θ θ θ

θ
σ σ ρ θσ σ ρ θ aa σ σ ρ= =

 

     

0L
AAY =  and ( ) ( ) ( )2

max

11 1L LY dt A Y dt
A

θ a
θθ σ θ aa  θ aa = − = −  

Therefore,  we get 

( ) ( )( )2
2 1L A A A L A L LdY Y dt Y dA Y dθ θ θ θ θαµ µ ασ σ ρ α α σ σ ασ θ = + + + − + +  

 

   

 

A2 the minimizing u formula (28) and (29) 

 

Given (26) and (27) first order condition for minimizing u is: 

( ) ( )1
max2 0 .2.1L

rt L
Y

e w J Y u A A
βa β

γ aaγ
+

− −− =
 

Solving A2.1 gives 

( )
( )1

max

.2.2
2 L

rt

L
Y

e wu A
J Y A

γ
βa β
aaγ

−
−

+=  

which is equivalent to (28). 
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Putting (28) into(26), we have: 

( )
( )

( )

( )( )

( )

( )

11
1

max 2

max

max
2

2
2 22

1

.2.3

L L

L

L

rt
A L

rt
rt L Y LY YLt Y

YL
Y

A A

e w A Y Je wJ e w J Y YJ Y A
J Y A

A

γ
γ

β βγ θ a a
βa β
aaβa β

aa

θ θ θ

amm
σγ

γ

aσ σ raa   σ

−
−

−
−

+−
+

  
   
     + −      − = + +             

+ + −  
 

Then, we simplify the right hand side expression of (A.2.3) 

( )
( ) ( ) ( )

( ) ( )( ) ( )

1 1
1 1 1

1 1
1 1

max max max

2 2

1 1

2 2

2 1
2

L L L

rt
rt

L L L
Y Y Y

L A A A Y LYY
Y

e we w
J Y A J Y A J Y A

JJ Y Y

γ γ
γ γ γ

γ
γ γ

β β βa β a β a β
aaa  aaa 

θ θ θ θ

γ γ

amma  σ σ raa   σ σ

−
−

− − −
− −+− − −

+ + +

     
     

= −     
     
     

 + + + + − +  
 

 

( )
( ) ( )

( ) ( )

( ) ( )( ) ( )

1 1
1 1

1 1 1

max max

2 2

1 1 2
2

2 1
2

L L

L L

rt rt

L L
Y Y

L A A A Y LY Y
Y

e w e w
J Y A J Y A

J
J Y Y

γ γ
γ γ γ
γ γ γ

β βa β a β
aa aa

θ θ θ θ

γ
γ

amma  σ σ raa   σ σ

− −
−

− −− − −
+ +

   
   

= −   
   
   

 + + + + − +  
 

( )
( )

( ) ( ) ( ) ( )( ) ( )

1
1

1 2 2
1 1 1

max

1 2 2 2 1
2
L L

L

L

rt L A A A Y LY Y
Y

L
Y

J
e w J Y Y

J Y A

γ
γ γ

θ θ θ θγ γ γ
βa β
aa

γ γ amma  σ σ raa   σ σ

−
− −

− − − −
+

 
     = − + + + + − +        
 

 

 which is the same as in (29) 

 

A3 the solution formula (30) and final solution for u 

We first conjecture that the value function should have the form: 

( ) ( ) ( )0, .3.1L rt LJ Y t Ce Y C A
β

αγ
−

−= +  

Then it follows that 

( ) ( )1
.3.2L

rt L
Y

CJ e Y A
β

αγβ
αγ

−
−−= −  

( ) ( )2
.3.3L L

rt L
Y Y

CJ e Y A
β

αγβ β αγ
αγ αγ

−
−− −

=  
   
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( ) ( ).3.4rt L
tJ rCe Y A

β
αγ
−

−= −
 

Putting equations (A.3.2) to (A.3.4) into (29), we have: 

( )rt L
tJ rCe Y

β
αγ
−

−− =  

Putting into the first term on the right hand side of 29 gives: 

( )
( ) ( )

( ) ( )

1
1

1
1 1 1

1

max

1 2 2rt

rt L L

e w
C e Y Y A

γ

γ γ
γ γ γ

ββ a β
aaγ a

γ γ
β

aγ

−

− −
− − − −

− +
−−

 
     −    − 
 

 

( ) ( ) ( )
( )

( ) ( ) ( )

1
1 1

11 1 1 1
1 1 1 1 1

max

1 2 2rt rt Le w e Y
CA

γ

β γγ γ γ
γ γ aγ γ γ γ

β
a

γ γ γ
β
a

−

−− − − −−− −− − − − −

 
     =   − −        
 

 

( ) ( ) ( ) ( )

1
1

1
1 1 1

max

1 12 2rt Le Y w
CA

γ

β γ γ
aγ γ γ γ

β
a γβ

a

−

− − −
− − − −

 
   

=   − − − 
    
 

 

The second term on the right hand side becomes: 

( ) ( )( )2
2 1L

L A A A
Y

J Y θ θ θ θαµ µ ασ σ ρ α α σ + + + −  
   

( ) ( ) ( )( )1 2
2 1rt L L A A AC e Y Y

β
θ θ θ θαγβ αµ µ ασ σ r α α σ

αγ

−
−−  = − + + + −  

   

( ) ( ) ( )( )2
2 1rt L A A ACe Y

β
θ θ θ θαγ β αµ µ ασ σ r α α σ

αγ

−
−    = − + + + −     

   

The third term on the right hand side becomes: 

( )
( ) ( )

2

2

2

2

LL L Y LY Y

rt L Y

J
Y

C e Y
β

αγ

σ

β β αγ σ
αγ αγ

−
− −

=  
 

 

Then, the equation (29) becomes: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )

1
1

1
1 1 1

max

2

2

1 12 2

2 1

( .3.5)
2

L

rt L rt L

rt L A A A

rt L Y

rCe Y e Y w
CA

Ce Y

C e Y A

γ

β β γ γ
aγ aγ γ γ γ

β
a

β
θ θ θ θaγ

β
aγ

γβ
a

β amma  σ σ raa   σ
aγ

β β aγ σ
aγ aγ

−

− − − −
− − − − −

−
−

−
−

 
   

=   − − − + 
    
 

   − + + + − +     
 −
 
 

 

 

Dividing ( )rt LCe Y
β

αγ
−

−  on both sides, (A.3.5) becomes: 

( ) ( ) ( )

( ) ( )( ) ( )

1
11 1

1 1 1
max

2 2

12 2

2 1 ( .3.6)
2

A A A Y

Cr w A

A

γ
βγ γγ γ
aγ γ γ

θ θ θ θ

β
a γ

β β β aγamma  σ σ raa   σ σ
aγ aγ aγ

− − −− −−
− − −
    = − − − +         

   − − + + + − +        

 

 

Now, in order to solve for C, we rewrite (A.3.6) as: 

( ) ( ) ( ) ( ) ( )( )

( )

1
11 1 2

1 1 1
max

2

12 2 2 1

2

A A A

Y

Cw A r
γ

βγ γγ γ θ θ θ θaγ γ γ
β β amma  σ σ raa   σ
a γ aγ

β β aγ σ
aγ aγ

− − −− −−
− − −
        − − − = + + + + −               

 −
−  

 

 

 

( ) ( ) ( )

( ) ( )( ) ( )

1
11

1 1 1
max

1

1
1 1 2 2

2 2

2 1
2

A A A Y

w A
C

r

βγ γγ
aγ γ γ

γ
γ

γ γ
γ γ θ θ θ θ

γ

β β β aγγ amma  σ σ raa   σ σ
aaa  γ

− −−−
− − −

−

+
− −

   − − −     =
  −   + + + + − −            

 

 

Which is the desired constant.
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Notice that the value function has to satisfy the end point condition: 

( )( ) ( ), −=L rT LJ Y T T e pY T  and  

( )( ) ( )( ) 0,L rT LJ Y T T Ce Y T C
β

αγ
−

−= +   

Then ( ) ( )( )0
rT L rT LC e pY T Ce Y T

β
αγ
−

− −= −
 

In sum, ( ) ( ) ( ) ( )( ),L rt L rT L rT LJ Y t Ce Y e pY T Ce Y T
β β

αγ αγ
− −

− − −= + −
 

Moreover, J has to be nonnegative: 

( )( ) ( )( ) ( ) ( )( )0 ,0 0 0L L rT L rT LJ Y C Y e pY T Ce Y T
β β

αγ αγ
− −

− −= + − ≥  

Then, the parameter C has to satisfy: 

( )( ) ( )( ) ( )0rT L L rT LCe Y T C Y e pY T
β β

αγ αγ
− −

− −− ≤  

( )( ) ( )( ) ( )0rT L L rT LC e Y T Y e pY T
β β

αγ αγ
− −

− − 
− ≤ 

 
 

Then ( )

( )( ) ( )( )0

rT L

rT L L

e pY T
C

e Y T Y
β β

αγ αγ

−

− −
−

≤
−

 

Since  

( ) ( )

( ) ( )( ) ( )

1
1

11
1 1

max

22

2 2

2 1
2

LA A A Y

A
C w

r

γ
γ

β γγ
a γ γ

θ θ θ θ

γ
a
β β β aγγ amma  σ σ raa   σ σ

aa γ

−

− −−−
− −

 
    − − −         =     −    + + + + − −          

 

 

 

The condition can be stated as  
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( )

( )( ) ( )( )

( ) ( )

( ) ( )( ) ( )

1 1

1
1

11
1 1

max

22

0

2 2

2 1
2

L

rT L

rT L L

A A A Y

e Y Tw
p e Y T Y

A

r

γ γ

γ
γ

β γγ
a γ γ

θ θ θ θ

γ
a
β β β aγγ amma  σ σ raa   σ σ

aa γ

−

− −−

−

− −−−
− −

≤
−

 
    − − −         ×     −    + + + + − −          

 

 

 

Which can be interpreted as the factor cost cannot be too much or the output price 

cannot be too low. 

When the condition does not hold,  

( ) 0, =LJ Y t C
 

will be the solution to the PDE.
 

By (A.2.2) 

( )
1

max2 L

rt

L
Y

e wu
J Y A

γ
βa β
aaγ

−
−

+=

 

Then  

( )
( )

1
1

max2

rt

rt L

e wu
CA e Y

γ
β γβ

a aγβγ
aγ

−
−

−
−

=
−

 

( )

( ) ( )( ) ( )
( )

( )

1

max

22

2 1 2

2 1
2

.3.7

L

L

A A A Y

A
Y

r

A

γ
β
a

β
aγ

θ θ θ θ

γ

β β aγγ amma  σ σ raa   σ σ
aa γ

−

−

−

  
+  

  =    −  + + + + − −          

 

 

A5 Proof for proposition 2 
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( )

( ) ( )( ) ( )
( )

1

max

22

2 1 2

2 1
2

L

L

A A A Y

A
u Y

r

γ
β
a

β
aγ

θ θ θ θ

γ

β β aγγ amma  σ σ raa   σ σ
aa γ

−

−

−

  
+  

  =    −  + + + + − −          

 

( )

( ) ( )( ) ( )
( )

( ) ( )

1 1

max

2 2

2
2

2 1 2
1

2 1
2

2 2
2

2
L

L
A

A A A Y

A A

Y A A A

A
u Y

r

r

γ
β
a

β
aγ

θ
θ θ θ θ

θ θ

θ θ θ

γ

γr β β aγγ amma  σ σ raa   σ σ
aa γ

β β aγaσ σ aσ σ
aa γ

β β aγ βγσ γ amma  σ σ r
aaa 

− −

−

−

  
+  

∂   = − ×  ∂  −  + + + + − −          
  −

−  
  

−   − − + + +   
   

 

 

  ( )( )
2

2
1 θaa  σ  −    

 

( )

( )

( ) ( ) ( )( )
( )

( )

( )

( ) ( )

1 1

1 1

2 22

2

1 1

2
2
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2 1 2

2 1

3

2 1 2

2

L

L

A

L

Y A A A

A

Y A A A

Y

r

r

γ

θ

βγ
αγ

θ θ θ θ

θ

γ

θ θ θ

αγ ββ σ σ
γ α γ

γ

β β αγ βγσ γ αµ µ ασ σ r α α σ
α α α

β αγ β σ σ
αγ

γ

β β αγ βγσ γ αµ µ ασ σ r α α
α α α

− +

− −
−

− −

− 
= − × 

 

+  

 −      − − + + + −           
−

= − ×

+  

−   − − + + + −   
   

 

  ( )( )
( )1 1

2
1

LY
γ

β
αγ

θσ

− +

−

      
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