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An argument in favor of the development of genetically modified (GM) 

hybrids is that their presence is considered to be risk decreasing. On this 

basis, insurance premiums for corn growers in the United States who plant 
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approved hybrids have been reduced. In this study we investigate, using a 

large dataset of experimental data compiled from reports of results from 

experimental field trials of corn hybrids by the State Agricultural Extension 

Services of ten universities over 20 years, whether the presence in a corn 

hybrid of a GM trait, or a combination of these traits, is likely to increase or 

decrease risk. The effects of input use on production uncertainty can be 

quantified through the specification and estimation of heteroskedastic 

production functions that allow for the variance of yield to change with the 

level of inputs, and we follow this approach in this study. We also use the 

flexible moments approach of Antle (1983) to estimate skewness of yield. 

We estimate a production function for the whole sample, and for three ERS 

regions represented in the dataset. For each model we use the residuals of the 

mean function to estimate the marginal effect of each input on variance and 

skewness of yield. The results show that there is not a systematic relationship 

between the presence of GM traits and variance and skewness of yield, and 

the results are not entirely consistent between ERS regions.  

Key words: Production functions,  yield, risk, skewness, corn, genetically 

modified traits. 

         JEL codes: C2, Q12, Q16 

An important characteristic of yield risk is that its level can be influenced by the 

level of input use: while some inputs increase the level of yield risk, others will 

reduce it (Tveterås and Wan 2000). One argument in favor of the development of 

genetically modified (GM) hybrids is that the presence of the GM traits is 

considered to be risk decreasing. On this basis, the Risk Management Agency 

(RMA), which manages crop insurance in the United States through the Federal 

Crop Insurance Corporation (FCIC), has agreed to the reduction, by between 14 

per cent (for yield risk programs) and 20 per cent (for revenue programs), of 

insurance premiums for corn growers  who plant approved hybrids. The Biotech 

Yield Endorsement (BYE) was implemented in 2008, and followed by the Pilot 

Biotechnology Endorsement for the 2009-2011 crop years. The endorsement is 

available in counties in twelve states in which an eligible policy and plan of 

insurance is offered.2 Qualifying hybrids are at least triple-stacked and are state-

specific. The new endorsement was approved on the basis of actuarial reports 

from field trials from one company (Monsanto). We investigate (using trial data 

from the top ten corn-producing states in the US) the effect of the introduction of 

                                                 
2 In 2010, this reduction was in place in Colorado, Illinois, Indiana, Iowa, Kansas, Michigan, 
Minnesota, Missouri, Nebraska, Ohio, South Dakota and Wisconsin. 
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the GM traits over a wider area and a longer time frame. We particularly focus on 

the Bt corn borer and rootworm resistant traits and focus on yield in this paper, 

since the presence of GM traits has direct implications for yield rather than for 

revenue.  

There is a very large literature which discusses multiple aspects of 

uncertainty and crop insurance. Much of this work dates from the 1990s or 

earlier. While there is a literature (for example, Rejesus et al. 2006) which 

discusses the implications of reducing premiums for producers with good records, 

we are not aware of any studies which investigate whether risk premium 

reduction is justified on the basis of the mean and variance of a particular input, 

in this case the GM characteristics of the corn hybrid. We use the approach 

developed by Just and Pope (1978) to estimate the variance of corn yield 

conditional on inputs, including the combinations of GM traits. Because it is 

likely that mean yields at the national level are skewed, since yield cannot exceed 

the biological potential of the plant, but can approach zero under attack by pests, 

or adverse weather conditions or natural disasters (Gallagher 1987), we also 

investigate the effect of GM traits on skewness. For this purpose we follow the 

approach suggested by Antle (1983), who himself builds on Just and Pope (1978), 

and who shows how to estimate an arbitrarily large number of conditional 

moments of a distribution.  

Background 

Production uncertainty has implications for the implementation of crop insurance, 

for which there is a latent demand, given the susceptibility of crop yields to 

weather fluctuations, and to other events such as pest infestations. The 

availability of crop insurance in the USA has depended on ongoing government 

support, at high cost. The role of the Federal Crop Insurance Corporation (FCIC), 

created in 1938, is to encourage the sale of crop insurance. While the crop 

insurance programs, administered since 1996 by the Risk Management Agency 

(RMA), have traditionally been based on protection and indemnities for yield 

alone new products designed to provide revenue insurance were introduced from 

1996.  

Crop insurance 
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Contracts are developed by the FCIC, and by private sector insurance providers. 

FCIC provides subsidized reinsurance to approved commercial insurers. In 

addition to subsidizing premiums, the FCIC also absorbs the administrative costs.  

Since 1998, all Multiple Peril Crop Insurance (MPCI) authorized under the 

Federal Crop Insurance Act has been sold by the private insurance companies 

(Risk Management Agency 2008).  

The insurance provider agrees to indemnify the insured farmer against 

losses due to unavoidable perils beyond a farmer’s control, such as unusual 

climate, insects and disease, inability to plant or excessive loss of quality due to 

adverse weather during the crop year.  Actual Production History (APH) 

insurance covers between 50 and 85 per cent of the individual grower’s yield 

history (Barnaby 2009). The producer insures between 55 and 100 per cent of the 

predicted price. If the harvested amount less any appraised production is less than 

the yield insured, the producer is paid an indemnity based on the difference (Risk 

Management Agency 2010). Other products pay indemnities on the basis of low 

prices, low yields, or both. Growers may also select catastrophic (CAT) coverage. 

The coverage is “free” but subject to a processing fee (Barnaby 2009). Multiple 

peril or all-risk agricultural insurance contracts are generally specified in terms of 

“result states” (eg yield) rather than the underlying state of nature (Chambers 

1989). This has the practical advantage that adjusters need only determine total 

loss, and not loss caused by specific risk factors.  

Premium rates vary according to insurance yield, and a grower with a top 

yield average typically pays a premium rate of about one-third that paid by a 

grower with a below average yield history (Barnaby 2009). In addition, the FCIC 

is introducing a Good Performance Refund (GPR) for producers who have 

demonstrated favorable crop insurance performance evidenced by a very limited 

number of claims over a specified number of years of participation in Federal 

crop insurance programs (USDA Office of Communications 2011). Its purpose is 

to encourage producers to use best available management practices, and rewards 

good performance by returning a portion of the costs paid into the program by 

those who have had limited or no losses (USDA Office of Communications 

2011). 

One of the original aims of the crop insurance program was to avoid the 

need to pay disaster relief. The 1994 Act made participation mandatory for 
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farmers to be eligible for deficiency payments under price support schemes. In 

1996 mandatory participation was repealed, but farmers who accepted other 

benefits were required to waive their eligibility for any disaster benefits that were 

available.  

For unsubsidized insurance to be viable, loss ratios (ratio of indemnities to 

premium payments) need to be no more than 0.7 (Wright and Hewitt 1994). 

However, to encourage participation, the Federal Crop Insurance Act of 1980 

authorized a subsidy of 30% of the crop insurance premium limited to the dollar 

amount of 65% coverage. Hence, Congress has given the RMA an objective of 

charging farmers a total premium (pre-subsidy) that would generate a loss ratio of 

1.075 (Babcock, Hart and Hayes 2004).  

Table 1. Insurance Statistics for Corn Compared with Total Crops 

Total Crop Year Statistics as of 31 January 2011   Corn Year Statistics as of 31 January 2011 
Item 1990 1999 2009 Item 1990 1999 2009 

Policies 
Number ('000) 

Policies 
Number ('000) 

895 1288 1171 295 451 504
Net acres insured 101361 196918 264621 Net acres insured 26304 52472 71893

Percent 
Insured acres as percentage 
of total acres planted to 
corn 35 67 83

Farmer paid premium 
Billion dollars 

Farmer paid premium 
Billion dollars 

0.62 1.35 3.52 0.16 0.4 1.36
Premium subsidies 0.22 0.95 3.82 Premium subsidies 0.05 0.2 2.04
Total premium 0.84 2.3 8.95 Total premium 0.21 0.6 3.4
Indemnities 0.97 2.43 5.43 Indemnities 0.12 0.36 1.18
Insurance protection 12.83 30.94 79.5 Insurance protection 4.04 8.6 31.1

Loss ratio 

Percent 

Loss ratio 

Percent 

116 105 58   55 60 35 
Loss ratio excluding 
subsidy 156 180 154 

Loss ratio excluding 
subsidy 75 90 87 

Sources: USDA NASS (2011); Risk Management Agency (2011) 

 
The actuarial performance of the program has depended on the variability 

of the weather and other events, and the ability of the program to control adverse 

selection and moral hazard problems. Over the 1980s and early 1990s the 

actuarial performance was poor. Since the introduction of coverage based on 

individual expected yields, participation rates have improved, mitigating adverse 

selection problems (Horowitz and Lichtenberg 1993). From 1994-2003 the 

aggregate loss ratio was 98% (compared with a ratio that exceeded 1.5 over 1981-
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1993) (Glauber 2004), and it has continued to improve, particularly for corn. 

However if premiums are reduced, and risk can be shown to have increased, the 

loss ratio could be expected to increase. 

Table 2. Insurance Statistics for Corn for Crop Years 1990-2010 

Year

Number 
of 

policies 
('000)

Net 
acres 

insured 
('000)

Total 
corn 

acreage 
('000)

% 
planted 

corn 
acres 

insured

Farmer 
paid 

premium 
($m)

Premium 
subsidies 

($m)

Total 
premium 

($m)
Indemnities 

($m)

Insurance 
protection 

($m)

Loss ratio: 
Indemnities as 
percentage of 

total 
premiums 

Loss ratio: 
Indemnities as 
percentage of 
farmer paid 
premiums 

1990 296 26304 74166 35 160 54 214 117 4041 55 73

1991 231 20836 75957 27 131 45 176 211 3284 120 161

1992 218 22378 79311 28 146 50 196 159 3614 81 109

1993 218 22397 73239 31 137 48 185 604 3484 326 441

1994 290 29444 78921 37 199 70 269 52 4586 19 26

1995 609 59564 71479 83 167 205 372 350 6762 94 210

1996 501 47258 79229 60 189 218 407 216 6625 53 114

1997 463 49383 79537 62 255 206 461 152 7670 33 60

1998 441 51137 80165 64 302 233 535 357 8949 67 118

1999 451 52473 77386 68 403 200 603 364 8577 60 90

2000 488 56867 79551 71 546 194 740 403 10184 54 74

2001 480 55848 75702 74 374 492 866 566 10702 65 151

2002 475 58699 78894 74 399 511 910 1260 11424 138 316

2003 481 59494 78603 76 475 621 1096 700 12608 64 147

2004 493 62089 80929 77 614 793 1407 814 15544 58 133

2005 486 63053 81779 77 553 713 1266 698 14086 55 126

2006 486 62150 78327 79 690 871 1561 808 16774 52 117

2007 487 74969 93527 80 1371 1739 3110 1095 31444 35 80

2008 495 69325 85982 81 1688 2116 3804 3065 37534 81 182

2009 504 71893 86382 83 1358 2039 3397 1177 31073 35 87

2010 504 73514 88192 83 1106 1748 2854 1530 31665 54 138

 

Even though actuarial performance has become more acceptable, there is 

still concern about the large underwriting gains that private insurance companies 

earn under the program (Glauber 2004; LaFrance, Pope and Tack 2011: in press), 

and the average annual cost to government of the whole program which, for the 

crop years 2002-2010, and excluding premiums, was $4.12 billion (Risk 

Management Agency 2011). There has also been concern about the heavy costs 

of subsidies, and the distorting effects of crop insurance on production. From 

table 1 it can be seen that in 1990, liability (value of insurance in force) was 

$12.8 billion ($4.04 billion for corn), and total premium, including subsidy, was 

$840 million ($210 million for corn). By 2009, total liability was $79.5 billion 
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($31.1 billion for corn), and total premium $8.95 billion ($3.4 billion for corn). 

The loss ratios have historically been lower for corn than for the total crops 

insured. In 1990 35% of planted corn acreage was insured. In 1999 the figure was 

67%, and in 2009 83% (Risk Management Agency 2011, USDA NASS 2011). 

More detailed statistics for corn can be found in table 2.  

Given the already high costs of operating the MPCI scheme, it would 

appear that care should be taken in any move to reduce premiums. Since 

Goodwin, Vandeveer and Deal (2004) find a negative relationship between 

premium rates and level of participation, lower premiums are likely to lead to 

increased participation. In that context, an understanding of the marginal effects 

of input use on output variability is crucial to the understanding of the 

relationship between input use, including the use of GM traits, risk and the 

decision to participate in insurance programs.  If GM traits have led to an 

increase, rather than a decrease, in variability of corn yield, it is possible that the 

already substantial costs of the program may increase.  

Inputs, yield variability and skewness 

Production risk is a well documented aspect of most types of biological 

production. Because stochastic production shocks are realized after input 

quantities have been chosen, the input choice also influences the level of risk to 

which producers are exposed, as some inputs increase the level of risk, while 

others reduce it. A producer’s choice of variable inputs affects not only the mean 

level of output but also the shape of the statistical distribution of output 

(Babcock, Chalfant and Collender 1987). 

Input use is also dependent on preferences towards risk. Risk averse 

producers choose input levels which differ from optimal input choices of risk-

neutral producers (Tveterås and Wan 2000). A risk averse firm will use more 

(less) of a production factor than will a risk-neutral firm  if the input decreases 

(increases) output variance (Babcock, Chalfant and Collender 1987). Ramaswami 

(1992) has shown that for all risk averse producers, the marginal risk premium is 

positive (negative) if and only if the input is risk increasing (decreasing). This 

implies that it is sufficient to obtain information on the marginal risk of an input 

in order to determine whether a risk averse producer uses less of the input than a 

risk neutral producer (Tveterås and Wan 2000).   
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Empirical studies have found evidence of risk reducing inputs. Some 

inputs (e.g. investment in improving environmental conditions,  irrigation, frost 

protection, disease-resistant seed varieties, and over-capitalization) may be 

negatively related to the variance of crop outputs attributable to weather, insects 

and crop diseases, whereas it has been suggested that a positive relationship may 

exist between other inputs (such as land size and  fertilizer) and output variability 

(Just and Pope 1978; Wan, Griffiths and Anderson 1992).  In some cases the 

effect on yield variability is reasonably clear.  Feder, Just and Zilberman (1985) 

found that irrigation both increases average production and reduces variability of 

output, agreeing with the arguments advanced earlier by Just and Pope (1979).3 

An input such as frost protection is also likely to reduce variability since survival 

of the crop becomes more probable and marginal product tends in probability 

towards zero as input use increases.  

However the effect on variability is less certain for some other inputs, 

particularly agrochemical inputs such as fertilizer and pesticides. Interestingly for 

the objective of this paper, this question has been analysed in an indirect way by a 

number of authors, including Ramaswami (1993), who analyse the effect of 

insurance on input use and interpret any change as a result of input 

characteristics. Ramaswami found that if an input is risk-decreasing the effect of 

actuarially fair crop insurance is to reduce input use, however the effect on use of 

a risk-increasing input could not be theoretically established.  

Various studies have used the positive (negative) relationship between use 

of an input and participation in MPCI as an indication of whether an input is risk-

increasing (decreasing) for a risk-averse farmer. However, even this approach has 

not produced unanimous results. For example, while Horowitz and Lichtenberg 

(1993) conclude that MPCI participation induces increased use of fertilizer, 

insecticides, herbicides and total pesticides implicitly suggesting that these inputs 

are risk increasing, Babcock and Hennessy (1996) concluded that farmers who 

took out insurance reduced spending on nitrogen fertilizer, that is, used less 

                                                 
3 Irrigation may also reduce the skewness of a distribution, in that it provides a means of 
mitigating the effects of severe climatic variation. Harri et al. (2009), using 50 years of continuous 
data from 1956-2005 found that yield data for corn in counties in Corn Belt states, which are less 
subject to severe weather fluctuations, were non-normally distributed and consistently negatively 
skewed, while counties where normality is not rejected are mostly found in the predominantly 
irrigated plains region of Kansas and Nebraska, and parts of Mississippi,  Pennsylvania and New 
York. 
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fertilizer than those who did not insure, suggesting that increased inputs reduced 

risk. Quiggin, Karagiannis and Stanton (1993) found that MPCI participation 

meant lower expenditures on inputs such as fertilizer, pesticides, labor and 

energy. They found that fertilizer and chemical expenditures exhibit a negative 

effect on yield variability for corn.  

An interesting study is that of Smith and Goodwin (1996) who found that 

MPCI participation had a significant negative effect on total chemical input but 

argue that this result should not be taken as evidence that growers think that the 

inputs are risk reducing. Instead, they interpret their result as evidence for the 

presence of moral hazard: producers with insurance have different production 

practices from those who do not insure and growers who insure use less of some 

inputs because they will get payouts if their yield is lower4. An additional 

consequence of the presence of moral hazard may be that, as Smith and Goodwin 

(1996) also suggest, producers respond to increased yield variability by buying 

more insurance (holding expected returns constant).   

The role of pesticides in increasing or decreasing yield variability is also 

unclear. Where the mean and variance have the same sign, a reduction in 

pesticide use would imply a reduction in variability of output, whereas, in reality, 

a reduction in pesticide use may or may not lead to more variable production. 

Pannell (1991) notes that there is general consensus in the literature that risk 

considerations influence pesticide use. Feder (1979) is considered to have 

established the theoretical relationship for the presumed negative relationship 

between degree of risk and level of pesticide usage. The farmer can affect the 

number of pests (or its distribution) within a given time period by using 

pesticides, thus eliminating a proportion of the pest population. A major 

motivation for pesticide application is the provision of some insurance against 

damage: that is the existence of uncertainty in the pest-pesticide system by itself 

leads to a higher and more frequent use of chemicals (Feder 1979). An increase in 

the degree of uncertainty regarding the damage per pest will cause an increase in 

the volume of pesticide application for any given degree of pest numbers and 

cost, even though the mean value of the average rate of damage is unchanged. By 

increasing the pesticide level farmers will reduce the level of risk at the margin 

                                                 
4 See also Goodwin, Vandeveer and Deal (2004) 
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(Feder 1979). Turpin and Maxwell (1976) show that farmers use soil pesticides as 

insurance against production uncertainty, suggesting that they perceive that that 

increasing input does not increase risk. Smith and Goodwin (1996) find that crop 

insurance and pesticides are substitutes, so that an increase in the use of 

pesticides reduces the requirement for crop insurance.  

While Pannell (1991) agrees that uncertainty about some variables, such 

as pest density and pest mortality, does lead to higher pesticide use under risk 

aversion, he suggests that the reputation of pesticides as risk reducing inputs 

appears to be mainly based on analyses which only consider uncertainty about the 

level of pest infestation or chemical efficacy, and does not consider the many 

other sources, such as uncertainty about output price and yield, in the 

pest/pesticide/crop system which may or may not result in reduced risk as 

pesticide use is increased. The conclusions of Pannell (1991) and Horowitz and 

Lichtenberg (1993) differ from the conventional wisdom because they consider 

output uncertainty rather than concentrating solely on pest infestation. Pesticides 

are likely to be risk increasing rather than decreasing when output uncertainty is 

the dominant source of randomness (Pannell 1991). Specific pesticides only have 

a major effect on output when there is an incidence of the pest.  

Horowitz and Lichtenberg (1993) argue that, intuitively, an input reduces 

risk if it adds more to output in bad states of nature than in good states of nature, 

since this makes output in each state of nature more uniform and decreases yield 

variability. An input increases risk if it adds relatively more to output in good 

states than in bad ones, since that increases the discrepancy between states of 

nature. In crops where high pest infestations occur primarily when crop growth 

conditions are good, pesticides work by increasing output in good states of nature 

and marginal variance is likely to be positive (Horowitz and Lichtenberg 1993).  

Finally, and also related to the topic of this paper, Traxler et al. (1995) 

concluded that early varietal research emphasized increasing mean yield, while 

the emphasis later shifted to the reduction of yield variance. We now turn to a 

discussion of the literature on the effect of the latest generation of varietal 

changes and yield variability.  

Pesticides, GM traits and variability 
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Bt corn is genetically engineered to produce a protein found in the soil bacterium 

Bacillus thuringiensis. The protein is toxic to lepidopterous insects (Hurley, 

Mitchell and Rice 2004). The Bt traits offer nearly complete protection against 

the European corn borer (Ortman et al. 2001) and the western rootworm, and are 

much more effective than conventional chemical controls.  

Applications of foliar insecticide used to control corn borer infestations in 

non Bt corn are less effective than Bt traits because of the difficulty in scouting 

and timing treatments to control the larvae before they bore into the plant 

(Ortman et al. 2001). Corn rootworm is probably the most economically 

important pest in the United States, and was managed historically by rotating 

crops or with soil insecticide. Some species of rootworm have evolved to reduce 

the effectiveness of crop rotation in some areas, and if rotation is not effective, 

soil insecticide is the only form of control available. However, as insecticide is 

applied in the soil, it is difficult to ensure that each plant is protected, while with 

rootworm resistant Bt seed technology each individual plant is protected. Yields 

will increase relative to non-Bt fields where infestations occur (Payne, 

Fernandez-Cornejo and Daberkow 2003).  

A non-zero pest infestation causes some pest damage. Maximal potential 

supply adjusts downward. However if the GM trait is present, the control of the 

pest could be considered to be close to 100%. The Bt traits in corn hybrids can 

therefore be classified as a kind of “super pesticide”, and are likely to have a 

positive effect on expected yield. They may also have an effect on variability, and 

according to the differing views expressed by, for example, Feder (1979) and 

others on one hand and Horowitz and Lichtenberg (1993) and Pannell (1991) on 

the other, the marginal effect on yield variability for these inputs (the traits 

incorporated in the seeds) could be expected to be negative or positive, 

respectively. The present policy of reducing premiums is based on an implicit 

assumption that triple-stacked corn hybrids have a negative effect on yield 

variability – which, as is clear from the literature, is not a priori unanimously 

accepted.  If pesticides (or GM traits) increase variance, then premium reductions 

may not be justifiable.  

Theoretical framework 
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An understanding of the marginal effects of input use on the distribution of 

output is crucial to the understanding of the relationship between input use, risk 

and insurance uptake under the assumption of risk aversion. Just and Pope (1978, 

1979) suggest that popular formulations of stochastic production functions are 

limited in this analysis, in that the functions impose a risk-increasing effect 

because the error term interacts multiplicatively with the deterministic part, 

whereas, as discussed above, there are cases where increasing inputs may have a 

risk reducing effect on output. They show (Just and Pope 1978) that these 

different relationships cannot be correctly handled by the commonly used 

functions, no matter whether the function has an additive or multiplicative error, 

and no matter whether the function is linear or non-linear (Wan, Griffiths and 

Anderson 1992). 

Just and Pope (1978, 1979) propose that a useful production function 

should have sufficient flexibility so that the effect of inputs on the deterministic 

component of production is different from the effect of inputs on the stochastic 

component, and suggest the introduction of some function of the inputs, h(X), 

which perturbs the effects of the disturbances in such a way that the  relationships 

of the inputs with risk are not determined solely by the relationships of inputs 

with expected output. Their model, with interdependent heteroskedastic 

disturbances that condition the mean and variance of the dependent variable on 

independent variables, uses the heteroskedastic error structure proposed by 

Harvey (1976). In the proposed production functions, the disturbance h(X)ε could 

be  multiplicative, or additive. The multiplicative case, y=f(X)h(X)ε constrains the 

sign of the change in variance of marginal product with respect to a factor change 

without consideration of  the nature of the input. The general additive case, which 

does not constrain the sign, and allows the possibility of increasing, decreasing or 

constant marginal risk (Just and Pope 1978), can be expressed as follows: 

  Yit = f(Xit) + uit = f(Xit) + h1/2(Zit) εit  

 where Yit is output and we assume that E(εit)=0, var(εit) = 1. The functions f(Xit) 

and h(Zit) determine the conditional mean and variance, respectively, of Y.  The 

component f(.) is the deterministic component of production (representing the 

mean of production) as a function of the independent variables and uit is the 

stochastic component (representing its variance). The variance of yield from the 
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non-measurable inputs (that is the variance of the stochastic disturbance term 

from the expected yield function) is then also estimated as a function of the 

independent variables (Rosegrant and Roumasset 1985). The suggested approach 

is quite flexible in that the set of inputs used to estimate the stochastic component 

of the production function (Zit), need not be the same as the set of inputs in the 

deterministic part of the production function (Xit), and the functional form of h(.), 

may or may not be identical to that of f(.). 

In addition to concerns about variance, empirical evidence suggests that 

farmers exhibit decreasing absolute risk aversion, which implies that farmers are 

averse to ‘downside risk’ (Antle 1987; Kim and Chavas 2003), in that they are 

especially averse to being exposed to unexpectedly low returns, and that their 

welfare is positively (negatively) affected by an increase (decrease) in skewness 

of returns (Kim and Chavas 2003). Such considerations may matter both with 

regard to input use and insurance uptake, raising the need to estimate the impact 

of input use on the skewness of the conditional distribution.  

It is likely that mean yields at the national level are skewed. Yield on 

individual farms may also be skewed, and skewness may, for example, be 

affected by chemical applications which may reduce a farmer’s risk of extremely 

low yields (Gallagher 1987).  While the Just and Pope (1978) production function 

allows input levels to affect risk, defined by the variance of output, independently 

of their effect on the expected level of output, later studies have suggested other 

methods of linking higher moments of output distributions to variable inputs 

(Babcock, Chalfant and Collender 1987).  There is empirical evidence (for 

example, Anderson 1973; Antle and Goodger 1984; Day 1965; Just and Pope 

1979) that second, third and fourth moments of output may be functions of inputs 

(Antle 1983). Nelson and Preckel (1989) identified the need for a flexible 

approach to estimating yield distributions when skewness is important, and Antle 

and Goodger (1984) found that input-conditioned mean and variance are not 

sufficient for a description of a stochastic production. Gallagher (1987) among 

others has observed negative skewness for crop yields. 

Hence, Antle (1983) suggested the need for an econometric production 

model which would provide a general representation of the probability 

distribution of output without imposing arbitrary restriction on the moments. He 

proposed a model which expresses the moments of the probability distribution, 
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including skewness, as explicit functions of inputs, and showed that consistent 

estimates of all central moments can be obtained econometrically. His method 

allows the investigation of the mean, variance, and the skewness associated with 

downside risk exposure (Kim and Chavas 2003).  

Following Kim and Chavas (2003), E[yit - E(yit)]
j  is the jth central 

moment of yit.. If εyit(X,t)=Eyit (X,t,e) denotes the mean, or first moment, of yield 

per acre, εyit(X,t) =E[(yit(X,t,e) - εyit(X,t)j]  is the jth moment of yit, j=2........m, 

conditional on input decisions X, and a time trend, t. The skewness is therefore 

the cube of the residuals of yield, and the marginal skewness conditional on the 

input is the cube of the residuals regressed on the inputs, and, because of the 

presence of heteroskedasticity, the functions for the moments need to be 

estimated so that the standard errors of the parameters are consistent. 

Data 

In this study we use a large dataset of results from experimental field trials to 

investigate the effects on yield variability due to the presence in a corn hybrid of 

a GM trait, or a combination of GM traits.  

Our data was compiled from reports of actual yield results from experimental 

field trials of corn hybrids submitted by corn breeders to the State Agricultural 

Extension Services of ten universities over 20 years, in the ten most important 

corn-producing states in the United States (Illinois, Indiana, Iowa, Kansas, 

Minnesota, Missouri, Nebraska, Ohio, South Dakota and Wisconsin), largely 

corresponding to ERS Farm Resource Region 1, the “Heartland”. Wisconsin and 

Minnesota belong largely to Farm Resource Region 2, the “Northern Crescent”, 

and Kansas and parts of Nebraska to Region 4, the “Prairie Gateway”.  

 

 



14 
 

 

Figure 1. Number of trials by year and GM category 

The dataset reports on yield in bushels per acre for 226,918 individual 

trials, of 20,508 hybrids, at 335 locations, submitted by 430 companies and, in 

addition to the genetic make-up of the hybrid (including the traits present in each 

hybrid and the degree of stacking), the dataset includes rich detail on agronomic 

practices (yield, seeding rate, nitrogen application), climatic conditions (rainfall 

and average minimum and maximum temperatures for each of the months April 

to September) as well as other variables that potentially influence yield and its 

variability (soil type, cultivation type, previous crop, whether the trial is early or 

late, and whether or not irrigation water was applied). We only included 

observations for hybrids for which we have at least seven trials, leaving us with a 

sample of 189,840 observations. We have followed this practice in the separate 

regions; hence the sum of the number of observations in the regions is less than 

the number in the total sample. 

A detailed description of the data, its sources and the way we have dealt 

with missing data can be found in the Appendix. Summary statistics are provided 

in table 3. Figure 1 summarizes the relative importance of GM versus non GM 

varieties under trial. The breakdown of data by year and state of trial, and by year 

and GM attributes, can also be found in tables 5 and 6 in the Appendix. 
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Table 3. Summary Statistics 

Variable Definition Mean 
Std. 

Dev. Min Max 

Yield 
Bushels per acre of shelled grain (56lb/bu)adjusted to a moisture content of 
15.5% 174.28 41.57 1.00 317 

Seeding rate  Seeding rate in thousands of kernels per acre 28.52 38.22 10.14 43.5 

No or min till Dummy variable indicating no or minimum till  0.09 0.28 0.00 1 

Conventional Conventional soil preparation methods (base case) 0.91 0.28 0.00 1 

Irrigated Dummy variable indicating crop grown with irrigation 0.16 0.36 0.00 1 

Dryland Crop grown without irrigation (base case) 0.84 0.36 0.00 1 

Early Dummy variable indicating an early trial 0.21 0.41 0.00 1 

Late Dummy variable indicating a late trial (base case) 0.79 0.41 0.00 1 

Soybean 
Dummy variable indicating that soybean was the previous crop in the rotation 
(base case) 0.78 0.42 0.00 1 

Corn Dummy variable to indicating that corn was the previous crop in the rotation 0.11 0.32 0.00 1 

Wheat Dummy variable to indicating that wheat was the previous crop in the rotation 0.06 0.23 0.00 1 

Alfalfa Dummy variable to indicating that alfalfa was the previous crop in the rotation 0.02 0.13 0.00 1 

Other 
Dummy variable to indicating that a crop other than those mentioned above 
was the previous crop in the rotation 0.04 0.19 0.00 1 

Silt loam Dummy variable indicating  silt loam soil (base case) 0.59 0.49 0.00 1 

Clay Dummy variable indicating  clay soil 0.02 0.15 0.00 1 
Silty clay 
loam Dummy variable indicating  Silty clay loam soil 0.16 0.37 0.00 1 

Clay loam Dummy variable indicating Clay loam soil 0.09 0.29 0.00 1 

Loam Dummy variable indicating Loam 0.06 0.25 0.00 1 

Sandy loam Dummy variable indicating  Sandy loam soil 0.06 0.24 0.00 1 

Sand Dummy variable indicating Sand 0.004 0.06 0.00 1 

N in lbs/ac Nitrogen application in lbs per acre 136.48 80.72 0.00 380 
N not 
reported Dummy variable indicating that nitrogen use was not reported 0.18 0.38 0.00 1 

IL Dummy variable indicating Illinois trial 0.14 0.35 0.00 1 

IN Dummy variable indicating Indiana trial 0.08 0.27 0.00 1 

IA Dummy variable indicating Iowa trial 0.16 0.37 0.00 1 

KS Dummy variable indicating Kansas trial 0.06 0.24 0.00 1 

MN Dummy variable indicating Minnesota trial 0.06 0.23 0.00 1 

MO Dummy variable indicating Missouri trial (base case) 0.11 0.31 0.00 1 

NE Dummy variable indicating Nebraska trial 0.11 0.31 0.00 1 

OH Dummy variable indicating Ohio trial 0.09 0.29 0.00 1 

SD Dummy variable indicating South Dakota trial 0.04 0.20 0.00 1 

WI Dummy variable indicating Wisconsin trial 0.15 0.36 0.00 1 

No GM Dummy variable indicating conventional hybrids (base case) 0.58 0.49 0.00 1 

CB Dummy variable indicating hybrid has corn borer resistant trait only 0.16 0.37 0.00 1 

RW Dummy variable indicating hybrid has corn rootworm resistant trait only 0.002 0.04 0.00 1 

Ht Dummy variable indicating hybrid has herbicide tolerant trait only 0.03 0.16 0.00 1 

CB and Ht 
Dummy variable indicating hybrid has both corn borer resistant and herbicide 
tolerant traits 0.08 0.27 0.00 1 

RW and Ht 
Dummy variable indicating hybrid has both corn rootworm resistant and 
herbicide tolerant traits 0.01 0.09 0.00 1 

CB and RW 
Dummy variable indicating hybrid has both corn borer resistant and corn 
rootworm resistant traits 0.01 0.08 0.00 1 

CB, RW and 
Ht 

Dummy variable indicating hybrid is at least triple stacked with corn borer 
resistant, corn rootworm resistant and herbicide tolerant traits 0.14 0.34 0.00 1 
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Empirical procedures 

Using the methods proposed by Just and Pope (1978) and Antle (1983) we 

investigate the effect of the presence of GM traits on the distribution of corn yield 

through the specification and estimation of a heteroskedastic production function 

that allows for the variance and skewness of yield to change with the presence of 

the traits and their various combinations (Anderson and Griffiths 1981; Just and 

Pope 1978; Just and Pope 1979). Additionally, we want to explore the possibility 

that there are regional differences in the impact of the traits, as suggested by 

Goodwin, Vandeveer and Deal (2004) and following evidence of non-normal 

distributions for corn yield and their geographical nature (Harri et al. 2009)5. For 

this reason we estimate our model for the ten most important corn-producing 

states of the US, and then for the ERS Farm Resource Regions for which we have 

data. Although we have some data for five regions, regions 3 and 5 represent only 

2% and 0.3% respectively, of the total. We therefore estimate a production 

function for the whole sample, and for three of the ERS farm resource regions 

represented in the dataset: regions 1 (“Heartland”), 2 (“Northern Crescent”) and 4 

(“Prairie Gateway”).We estimate the mean function for corn yield in bushels per 

acre, while controlling for a wide variety of agronomic practices, location 

characteristics and climatic conditions. Because we have multiple observations 

for the same hybrids, we are also able to control for varietal differences. For each 

model we use the residuals of the mean function to estimate the variance and 

skewness of yield and the effect of each input on these moments.  

We estimate the residuals using both a fixed effects model and a random 

effects model. The fixed effect model allows us to avoid problems of correlation 

between the hybrids which make up the cross sectional element, and the 

independent variables. However, when we use a fixed effects estimator the mean 

contribution of the GM traits associated with each hybrid is absorbed into the 

                                                 
5 Using data for   1488 counties, with 50 years of continuous data from 1956-2005, Harri et al.  
(2009) found that yield data for corn in counties in Corn Belt states were non-normally distributed 
and consistently negatively skewed and that this would be expected since this region has generally 
favorable conditions for corn production, with infrequent disasters. Counties where normality is 
not rejected are mostly found in the predominantly irrigated plains region of Kansas and 
Nebraska, along the southern portions of the Mississippi River, and in Pennsylvania and New 
York. Positive skewness tends to be found in marginal areas such as south Texas and the 
Carolinas where unfavorable conditions are more frequent. 
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fixed effects. A random effects model would allow us to identify the average 

contribution to yield of the GM traits in their various combinations.  

There was no difference in the value of the residuals from each method 

suggesting that, due both to the experimental nature of this data and the wealth of 

the dataset that allows us to control for non-random inputs to the production 

process (namely, site characteristics and weather), the possibility of correlation 

between production inputs and the error term is not important. As a consequence, 

the estimates of the higher moments are unaffected by the choice of estimator and 

we have chosen to estimate our model using a random effects GLS regression as 

our first step.  

In the empirical part of this paper we use the flexible Just and Pope (1978) 

specification to estimate variance. We extend our analysis to estimate skewness 

using the flexible moments approach of Antle (1983).  The expected yield is 

estimated as a function of the independent variables, using a random effects GLS 

regression.  

The residuals for this estimation are predicted (using [yit(X,t,e)-εyit(X,t)], 

and squared (cubed) to give the variance (skewness) of yield. The variance 

(skewness) is then explained as a function of the independent variables using 

Ordinary Least Squares (OLS) to find the marginal effect of each input on the 

variance (skewness) of yield related to each of the inputs. In the presence of 

heteroscedasticity, which was identified using a White test, the standard errors of 

the parameters need to be corrected so that they are consistent. The results 

reported are therefore corrected for heteroskedasticity.   

Results 

The empirical results relating to trend and GM traits are shown in table 4. The 

full results for the whole sample and the regions 1, 2 and 4 are provided in tables 

7-10 in the appendix. Our results for the whole sample are generally consistent 

with those reported in previous work.  

From the mean function, a positive coefficient for the trend variable 

indicates that expected yield is increasing over time. Irrigation and nitrogen 

application also have a positive sign, as would be expected from earlier work 

mentioned above.  Most of the various combinations of GM trait have a positive 

sign, indicating that the traits are on average yield increasing. The exceptions are 
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rootworm resistance, which has a negative coefficient, although this effect is 

imprecisely estimated, and herbicide tolerance by itself which has a negative 

sign, but at the 10% level o f significance. 

The results of the regressions for the second and third moments show that 

variance of corn yield is increasing over time.  However, the positive sign of the 

coefficient of skewness for the trend variable implies a reduced exposure to 

downside risk over time. Nitrogen application decreases variance and reduces 

downside risk, as is demonstrated by a positive marginal skewness.  The negative 

coefficient for marginal variance indicates an effect on risk which is consistent 

with some studies and inconsistent with others. Where variance is taken as the 

sole measure of risk, nitrogen application has typically been considered to 

increase the variance of risk (Babcock 1992). However when nitrogen is grouped 

with other agricultural chemicals it has been considered to be risk decreasing. 

Irrigation is strongly risk decreasing, and strongly reduces the downside risk. 

This is consistent with the findings of Harri et al. (2009).   

The results for the higher moments show that there is not a systematic 

relation between GM traits and yield risk, both between traits and within traits: 

for example, the presence of the rootworm resistant trait by itself has no 

statistically significant effect on mean or skewness, but reduces variance. The 

effect of the presence of most of the other traits and combinations of traits is to 

increase variance. The exceptions are the combination of corn borer and 

rootworm resistance, whose coefficient has a negative sign, but is statistically 

insignificant. The triple stacking combination does not have a statistically 

significant effect on variance.  All combinations of GM traits, with the exception 

of the non-significant rootworm by itself, have a negative coefficient for 

skewness, implying that their presence increases downside risk. Most importantly 

in the context of this paper, the presence of triple stacking has no statistically 

significant effect on variance for the whole sample, and also  appears to increase 

downside risk, suggesting that in general the assumptions underlying the 

insurance discount policies do not have generalized empirical support.  
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Table 4. Relevant Results for Whole Sample and Farm Resource Regions 1, 2 and 4

Whole sample
Dep. Var.
yield Coef. z P>|z| Coef. t P>|t| Coef. t P>|t|
trend 1.29 26.62 0.00 2.67 1.81 0.07 1320.60 7.75 0.00
cbo 6.07 12.80 0.00 83.29 6.28 0.00 -6137.60 -4.24 0.00
rwo -2.77 -1.02 0.31 -231.32 -4.11 0.00 5778.24 1.27 0.20
hto -1.70 -1.70 0.09 110.19 4.16 0.00 -1068.28 -0.38 0.70
cbht 2.35 3.24 0.00 186.85 9.62 0.00 -7007.11 -3.32 0.00
rwht 10.53 5.45 0.00 88.25 1.72 0.09 -13755.47 -2.22 0.03
cbrw 9.32 4.79 0.00 -26.25 -0.53 0.60 -10534.56 -1.95 0.05
cbrwht 10.63 15.01 0.00 26.14 1.45 0.15 -7339.27 -3.94 0.00
Obs 189840
Groups 8731 F( 51,189788) 272.50 F( 51,189788) 39.19

Wald chi
2
(51) 47271.88 Prob > F 0.00 Prob > F 0.00

Prob >chi
2

0.00 R-squared 0.07 R-squared 0.02
Region 1
trend 1.42 24.78 0.00 9.27 5.23 0.00 452.35 2.63 0.01
cbo 5.34 11.19 0.00 65.08 4.40 0.00 -2949.39 -1.86 0.06
rwo -2.70 -1.04 0.30 -167.76 -2.86 0.00 1029.97 0.22 0.82
hto 3.37 3.64 0.00 28.06 0.99 0.32 -1957.15 -0.70 0.49
cbht 6.42 9.09 0.00 120.93 5.18 0.00 -3398.14 -1.36 0.17
rwht 12.84 9.67 0.00 -11.25 -0.25 0.80 -7623.94 -1.76 0.08
cbrw 10.37 5.36 0.00 -13.79 -0.29 0.78 -546.83 -0.14 0.89
cbrwht 11.45 15.81 0.00 63.90 3.13 0.00 -4541.13 -2.28 0.02
Obs 116768
Groups 5965 F( 49,116718) 178.32 F( 49,116718) 24.14

Wald chi
2
(49) 38098.94 Prob > F 0.00 Prob > F 0.00

Prob >chi
2

0.00 R-squared 0.09 R-squared 0.02
Region 2
trend 1.77 15.92 0.00 15.70 4.41 0.00 198.70 0.56 0.58
cbo 11.35 9.00 0.00 117.88 3.62 0.00 -15124.88 -4.80 0.00
rwo -7.81 -6.22 0.00 -549.15 -4.27 0.00 -9826.68 -1.32 0.19
hto 1.56 0.66 0.51 38.22 0.65 0.51 -2919.82 -0.52 0.60
cbht 1.96 1.10 0.27 182.20 3.86 0.00 -2052.04 -0.44 0.66
rwht 5.26 0.69 0.49 475.40 2.20 0.03 -37577.87 -1.40 0.16
cbrw -23.93 -2.33 0.02 -23.70 -0.07 0.95 -2093.40 -0.06 0.95
cbrwht 11.89 6.88 0.00 -493.51 -9.62 0.00 -3482.57 -0.67 0.50
Obs 28037
Groups 1989 F( 41, 27995) 56.65 F(41,27995) 9.97

Wald chi
2
(41) 13680.10 Prob > F 0.00 Prob>F 0.00

Prob > chi
2

0.00 R-squared 0.10 R-squared 0.03
Region 4
trend 0.91 7.94 0.00 31.57 5.92 0.00 -937.87 -1.34 0.18
cbo 1.42 1.09 0.28 201.29 3.45 0.00 634.63 0.08 0.94
rwo 5.79 4.00 0.00 -80.66 -0.23 0.82 1266.24 0.05 0.96
hto -12.47 -5.60 0.00 199.51 1.30 0.19 -22954.85 -1.22 0.22
cbht -0.17 -0.11 0.91 206.02 2.78 0.01 -8886.45 -0.97 0.33
rwht 10.37 5.35 0.00 95.11 0.54 0.59 15174.51 0.97 0.33
cbrw 4.72 1.96 0.05 -110.55 -0.78 0.44 3963.28 0.31 0.76
cbrwht 0.08 0.05 0.96 175.46 2.38 0.02 -15741.93 -1.70 0.09
Obs 19122
Groups 1212 F( 38, 19083) 30.37 F( 38, 19083) 4.2

Wald chi
2
(38) 27053.01 Prob > F 0.00 Prob > F 0.00

Prob > chi
2

0.00 R-squared 0.08 R-squared 0.01

Mean function Variance function Skewness function
Yield in bushels per acre Residuals squared Residuals cubed
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The results for farm resource region 1 (the “Heartland”) are similar to 

those for the whole sample for trend, nitrogen application and irrigation, although 

the effect of irrigation on decreasing variance is stronger, and on improving 

downside risk is much stronger, than for the whole sample. Most of the GM 

combinations are risk increasing, or not significant, with the exception of 

rootworm resistance by itself, which decreases risk and also has a positive effect 

on downside risk. The other combinations have a negative effect on downside 

risk. The other combinations are not statistically significant in the skewness 

function.  

In farm resource region 2 (the “Northern Crescent”), irrigation has a 

stronger effect on decreasing variance and improving downside risk than is seen 

in the whole sample. A number of the combinations do not significantly affect 

mean yield. Corn borer resistance by itself increases mean yield, increases 

variance and has a negative effect on downside risk. In this region, rootworm 

resistance has a statistically significant negative effect on mean yield, but also a 

significant risk reducing effect. Its effect on downside risk is not significant. The 

presence of the triple combination of corn borer and rootworm resistance and 

herbicide tolerance implies an increase in mean yield, a decrease in risk, and has 

no significant effect on downside risk, suggesting that in this region a reduction 

in insurance premiums for triple stacked hybrids could be justified.  

In region 4 (the “Prairie Gateway”) for which we have data for Kansas 

and parts of Nebraska, the mean yield and variance are, in common with the 

whole sample and other regions, increasing over time, but in this region, 

skewness is negative, but not statistically significant. Irrigation has a positive 

effect on mean yield, a strong effect on reducing variance, and a much stronger 

effect in improving downside risk compared with the whole sample and the other 

regions. These irrigation effects could be expected given the importance of 

irrigation in these states. The effect of the GM traits in this region is mixed. Only 

the triple stack combination has a significant (and negative) effect on downside 

risk, and then only at the 10% level of significance. Corn borer resistance by 

itself has no significant effect on mean yield, but increases risk. Rootworm 

resistance increases yield but has no significant effect on variance. Herbicide 

tolerance decreases yield but has no effect on risk. Rootworm combined with 

both corn borer resistance and herbicide tolerance increases yield but has no 
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effect on risk. The triple stack combination has no significant effect on mean 

yield, increases variance, and has a negative effect on downside risk at the 10% 

level of significance.  

It is clear from the above that the effects of different combinations will differ 

between regions, although corn borer resistance by itself is generally consistent in 

having a positive effect on yield, increasing risk, and having a negative effect on 

downside risk. This also applies overall, with the exception of region 2, for the 

combination of most interest to us, the triple-stacking which qualifies those 

growing hybrids with this combination for premium reductions.  The other 

combinations show more mixed results. 

Conclusion 

The results of this study are important because, apart from updating previous 

findings regarding conventional inputs and the corn borer resistant trait, they 

report on the effect on risk, and downside risk of various combinations of GM 

traits, and this is relevant given the current policies with regard to reductions in 

insurance premiums. The results show that only in the “Northern Crescent” does 

the triple stacked combination both increase mean yield and reduce variability of 

yield, suggesting that the policy of premium reduction requires more detailed 

scrutiny, and should be tailored according to location. 
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Appendix.  
 
Data 

Summary statistics for the variables included in the analysis are provided in table 

3 in the text. The number of observations by year and state is shown in table 5. 

Number of trials by GM category is shown in table 6. 

a. Missing data: We have relied on the cooperation of the various extension 

services to obtain copies of those reports which are not available online, and 

some records are not complete.  

i. Iowa has the longest history of testing but records are 

incomplete. Records are complete from 2005. Professor Joe 

Lauer of UW Madison was able to provide us with data for 

individual locations for 1996-2001. The years 2002-2004 are 

lost. Even though we only have ten years of Iowa data the 

number of trials is substantial.  

ii. Cultivation type and rotation were not reported by Ohio for 

1998-2002 but the locations and agronomic practices for other 

years are consistent so that we have assumed that the same 

cultivation methods and rotation decisions were made.  

iii. Indiana in some years reports only regional average yields, so we 

have omitted those years and those locations where individual 

site results are not reported. This means that we have no entries 

for 1990-1993, and 1998-1999, and limited results for 1994-

1997.  

iv. Minnesota trial results for 1990 and for 1995-96 are missing and 

cannot be traced.  

v. The University of Missouri is missing reports for 1998 and 2000, 

but some of the 1998 and 2000 results are reported in the 

following years’ reports and we have included those results. 

b. Dependent variable: Grain yields are reported as bushels per acre of shelled 

grain (56 lb/bu) adjusted to a moisture content of 15.5%. As expected, the 

average annual yield for each state for these trials is consistently above the 

average annual yield for each state published by the National Agricultural 

Statistics Service of the USDA. 
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c. Agronomic variables 

i. Early or late: Most states conduct early and late maturity trials, but in some 

cases the distinction was not made until the late 1990s or early 2000s. Some 

states still do not make a distinction. If there is not a specific statement that 

the trial is early season we have assumed that it is late. Nebraska reports on 

mid trials in some years – we have classified these as late. A dummy 

variable is used to indicate an early trial.  

ii. Irrigated or dryland: Missouri, Nebraska, Kansas, and Wisconsin conduct 

irrigated trials, and a dummy variable is included to indicate whether a trial 

is irrigated. Type of cultivation is reported in some detail and it has been 

impossible to account for all of the variations.  

iii. Minimum or no till compared with conventional tillage: A dummy 

variable has been used to indicate minimum or no till preparation, but only 

where this is explicitly stated. The default variable is conventional and 

everything other type of cultivation is included in this category. 

iv. Soil type: Seven soil types are identified by dummy variables, with silt 

loam as the default soil. The only state that does not report soil type is 

Minnesota and we have used the coordinates for each trial site and the Soil 

Web Survey of the USDA Natural Resources Conservation Service (S1) to 

identify the predominant soil type in that location.  

v. Rotation: previous crop is also reported for most locations. However, 

Illinois does not report on rotation, and, in a small number of other 

locations, the rotation is omitted. As soybean is the usual rotation crop, we 

have assumed that this is the previous crop where it was missing. Dummy 

variables have been included for corn, wheat, alfalfa, and other, with 

soybean as the base case. 

vi. Seeding rate: Generally a seeding rate is reported, although in some states 

final plant population is given instead. We have used seeding rate (in 

thousands of kernels) where possible, but if this was not available we have 

substituted plants per acre. This is not exactly comparable, but the order of 

magnitude is in general similar.  

vii. Fertilizer: We have nitrogen fertilizer application in lbs per acre for most 

states. However, Illinois started reporting fertilizer application rates only in 

2000. Iowa does not report fertilizer rates. We included a zero value for the 
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missing observations. To differentiate between cases where nitrogen use 

was reported as zero, and the missing observations, we have introduced a 

dummy variable with a value of 1 indicating “Nitrogen not reported”. To 

accommodate the estimation of a log-log transformation as a comparison 

for the linear functional form we have assigned a value of 0.01 rather than 

zero where applicable. Although some states do report phosphorus and 

potassium application, this is not always the case, and we have not included 

these fertilizers in our analysis. 

viii. Pesticides and herbicides: It would have been useful to include pesticide 

and herbicide application rates. However the variety of different 

combinations that are possible and that have been used over the past 20 

years is immense. We have assumed that the trials are conducted so as to 

eliminate pest and weed infestations. 

d.  Climatic variables - rainfall and average maximum and minimum 

temperatures: 

In most cases the trial reports include rainfall for the growing months. If not, 

for example for Ohio and Iowa, there is generally a very good network of 

weather stations and it has been possible to extract monthly rainfall from 

their databases (S2, S3). For those states which do not report specific rainfall 

figures (Nebraska includes column charts, and Minnesota does not report 

rainfall) we have used the database provided by the PRISM Climate Group at 

the University of Oregon (S4) This allows monthly rainfall, minimum and 

maximum temperatures to be extracted based on latitude and longitude 

coordinates. Some universities have reported rainfall May-September, others 

April-August and others April-September. We have filled the gaps for the 

months April-September from the PRISM database. As temperature is likely 

to be less local than rainfall, we have extracted minimum and maximum 

monthly temperatures April-September from the PRISM database. We have 

also followed Alston and Venner (S5) in including a cross term for rainfall 

and average maximum monthly temperature for the growing season. 

e. Other dummy variables 

i. State where trial conducted: We have included dummy variables to 

indicate the state where the trial was conducted. This is to allow for 
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differences in method in each state where the differences have not been 

identified by the other included variables.  

ii. Year of trial: We have also included dummy variables or year of trial to 

account for other factors that may have influenced the trial results, 

including technical changes other than varietal change, and unusual weather 

occurrences not reflected in the rainfall and temperature data.  

f. GM traits and stacking of traits 

We have details of the GM traits associated with each hybrid. We have 

identified the presence of these traits using dummy variables, and have also 

created dummy variables to indicate the combinations of traits where traits 

are stacked. The base case is no GM traits. The number of trials by year and 

by category of GM traits for the whole dataset can be found in table S3. 

 

g. Hybrid identifiers  

The trial reports provide the name of the company submitting the hybrid for 

trial, the name of the hybrid, and, since the introduction of genetically 

modified hybrids, the GM traits associated with each hybrid. Since some 

quite different hybrids have the same number, we have identified each 

separate hybrid by combining the name of the submitting company and the 

name of the hybrid. It is this variable that we have used to create dummy 

variables for our cross section. Where the hybrid number is the same, and 

the submitting company has changed, but is known to be affiliated with the 

previous submitting company, we have considered the hybrids to be 

identical. In some cases a hybrid will have the same name, but a different 

submitting company in consecutive years. For example, Keltgen, Lynks and 

Mycogen all submitted a hybrid with the same name in different years. 

Mycogen took over Keltgen and Lynks in the early to mid 1990s, so we 

have assumed that these varieties are in fact the same, and have renamed 

the hybrid identifier accordingly. Kruger Seed Company has at times 

submitted seed under the company names Kruger, KSC/Challenger, Circle 

and Desoy. We have based our decision on the ownership groups shown in 

table S4. This table was collated from numerous sources, including 

company reports, company websites, media releases and newspaper 

articles. It is accurate, to the best of our knowledge, as at June 2010. 
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Table 5. Number of Trials by Year and State 
 

Year Illinois Indiana Iowa Kansas Minnesota Missouri Nebraska Ohio 
South 
Dakota Wisconsin Total 

1990 1692  620  869 1356 1194 511  1515 7757 

1991 1547  482  822 768 1209 1165 460  1222 7675 

1992 1712  631  632 967 1191 949 541  1886 8509 

1993 1819  762  561 937 1243 1365 573  1480 8740 

1994 1749  113  614  566 1093 1429 1018 629  1779 8990 

1995 1717  422  598  1319 1142 1067 593  1988 8846 

1996 1444  1096  3732  529  1022 844 1332 513  2083 12595 

1997 1189  981  3693  642  823 1190 1139 1004 535  2146 13342 

1998 1069  3245  668  789 308 1169 955 590  2063 10856 

1999 2095  3409  621  993 1223 1149 967 634  2159 13250 

2000 1810  1626  3575  555  985 334 1333 853 556  1997 13624 

2001 1739  1710  3321  671  859 1168 1087 844 593  1767 13759 

2002 1302  1629  505  697 1201 1010 844 481  1765 9434 

2003 1630  1155  466  735 1389 996 888 522  1797 9578 

2004 2005  1341  672  931 1468 1149 1010 731  1818 11125 

2005 1925  1471  2214  679  836 1479 1043 941 494  1803 12885 

2006 1816  1196  2607  702  1190 1825 1023 838 640  1682 13519 

2007 1778  1160  2810  932  1296 1529 1352 1215 588  2205 14865 

2008 2020  1470  2587  1029  1039 1585 1201 1053 472  1645 14101 

2009 1565  1241  2397  1028  940 1589 1184 1435 420  1669 13468 

Total 33623  16611  33590  13406  14694 23263 23249 20937 11076  36469 226918 
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Table 6. Number of Trials by Year and GM Category 
 

Year 
Number 
of trials 

CB 
only 

RW 
only 

Ht 
only CBHt CBRW RWHt CBRWHt 

Total 
GM 

Total 
conventional 

1990 7757 0 7757 
1991 7675 0 7675 
1992 8509 7 7 8502 
1993 8740 39 39 8701 
1994 8990 56 56 8934 
1995 8846 69 2 71 8775 
1996 12595 131 6 25 162 12433 
1997 13342 408 20 8 436 12906 
1998 10856 1042 78 53 1173 9683 
1999 13250 3582 705 269 4556 8694 
2000 13624 3286 456 151 3893 9731 
2001 13759 2910 668 301 3879 9880 
2002 9434 2750 533 572 3855 5579 
2003 9578 4319 47 497 1047 8 7 5925 3653 
2004 11125 5242 219 672 1713 25 77 44 7992 3133 
2005 12885 4979 122 925 2678 194 107 247 9252 3633 
2006 13519 3030 149 1,123 4467 462 421 1912 11564 1955 
2007 14865 1517 24 916 4387 433 501 6498 14276 589 
2008 14101 661 9 599 1856 200 423 9908 13656 445 
2009 13468 246 2 384 1544 58 114 10645 12993 475 
Total 226918 34274 572 7582 19073 1372 1651 29261 93785 133133 

 



31 
 

Table 7. Full Results for Whole Sample

Whole sample
Dep. Var.
Obs 189840 Obs 189840 Obs 189840
Groups 8731 F( 51,189788) 272.50 F( 51,189788) 39.19
R-sq: Prob > F 0.00 Prob > F 0.00
within 0.26 R-squared 0.07 R-squared 0.02
between 0.64
overall 0.39

Wald chi
2
(51) 47271.88

Prob >chi
2

0.00

yield Coef.
Robust 
Std. Err. z P>|z| Coef.

Robust HC 
Std. Err. t P>|t| Coef.

Robust HC 
Std. Err. t P>|t|

trend 1.29 0.05 26.62 0.00 2.67 1.47 1.81 0.07 1320.60 170.40 7.75 0.00
seedingrat~u 2.80 0.05 59.93 0.00 7.15 2.22 3.23 0.00 -2240.01 260.93 -8.58 0.00
nomintill -6.64 0.36 -18.31 0.00 84.38 18.46 4.57 0.00 -2502.50 2232.65 -1.12 0.26
irrigated 22.87 0.54 42.11 0.00 -148.66 25.22 -5.89 0.00 13481.59 3007.57 4.48 0.00
early -2.92 0.35 -8.43 0.00 75.13 12.47 6.02 0.00 -16209.34 1412.24 -11.48 0.00
corn -7.05 0.31 -22.62 0.00 -12.43 14.55 -0.85 0.39 3944.25 1569.23 2.51 0.01
wheat -5.01 0.41 -12.14 0.00 90.95 23.75 3.83 0.00 -7704.99 2664.56 -2.89 0.00
alfalfa 2.98 0.61 4.86 0.00 -100.25 36.39 -2.76 0.01 21551.12 3565.74 6.04 0.00
other -9.81 0.55 -17.87 0.00 246.95 33.60 7.35 0.00 -14638.59 4084.54 -3.58 0.00
clay -18.07 0.58 -31.13 0.00 254.00 29.86 8.51 0.00 -16057.84 2840.19 -5.65 0.00
siltyclayloam -2.59 0.24 -10.64 0.00 -102.22 12.63 -8.10 0.00 2067.53 1312.50 1.58 0.12
clayloam -2.09 0.31 -6.71 0.00 -125.91 14.64 -8.60 0.00 82.39 1504.17 0.05 0.96
loam -8.02 0.36 -22.58 0.00 -10.05 19.24 -0.52 0.60 -7705.04 2204.13 -3.50 0.00
sandyloam -4.01 0.40 -10.12 0.00 -139.61 21.68 -6.44 0.00 -5531.74 2483.18 -2.23 0.03
sand -23.10 1.55 -14.92 0.00 773.88 104.93 7.38 0.00 -90350.80 12083.87 -7.48 0.00
nlbs 0.12 0.00 45.00 0.00 -2.40 0.13 -17.89 0.00 191.82 15.38 12.48 0.00
nitnotreported 18.94 0.59 31.93 0.00 -58.49 25.73 -2.27 0.02 30669.27 2792.32 10.98 0.00
aprrain -0.40 0.06 -6.31 0.00 1.05 2.77 0.38 0.70 1978.73 300.87 6.58 0.00
mayrain -0.89 0.04 -20.64 0.00 6.01 1.99 3.03 0.00 -423.67 205.35 -2.06 0.04
junrain 0.25 0.04 5.76 0.00 -9.81 1.76 -5.56 0.00 1341.99 183.05 7.33 0.00
julrain 1.58 0.04 38.53 0.00 -33.91 1.86 -18.21 0.00 1704.62 185.76 9.18 0.00
augrain 0.67 0.05 13.31 0.00 -33.65 2.04 -16.50 0.00 1796.04 215.75 8.32 0.00
septrain -0.46 0.06 -8.31 0.00 16.27 2.38 6.85 0.00 -2088.87 260.10 -8.03 0.00

Mean function Variance function Skewness function
Yield in bushels per acre Residuals squared Residuals cubed
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Whole sample
minapr -0.61 0.07 -8.77 0.00 43.76 2.97 14.74 0.00 -3097.26 324.78 -9.54 0.00
minmay 0.96 0.06 15.45 0.00 -13.05 2.90 -4.50 0.00 1858.44 346.29 5.37 0.00
minjune 1.17 0.07 17.16 0.00 -49.73 2.68 -18.55 0.00 -181.30 288.84 -0.63 0.53
minjuly -0.71 0.08 -8.68 0.00 -68.00 3.64 -18.68 0.00 2503.51 337.29 7.42 0.00
minaug -0.18 0.07 -2.44 0.02 -49.51 3.15 -15.74 0.00 1165.43 351.78 3.31 0.00
minsept 0.04 0.04 0.96 0.34 10.34 2.07 4.99 0.00 717.00 225.54 3.18 0.00
maxapr 1.60 0.05 30.19 0.00 -30.10 2.02 -14.88 0.00 1560.17 216.50 7.21 0.00
maxmay -0.07 0.06 -1.21 0.23 29.43 2.83 10.39 0.00 -2187.22 343.23 -6.37 0.00
maxjune -0.61 0.05 -12.84 0.00 18.27 1.80 10.15 0.00 -85.89 188.00 -0.46 0.65
maxjuly 0.26 0.07 3.58 0.00 44.18 3.67 12.05 0.00 -2067.55 320.69 -6.45 0.00
maxaug -2.75 0.08 -35.77 0.00 56.68 3.22 17.59 0.00 -439.59 335.53 -1.31 0.19
maxsept 1.14 0.05 24.42 0.00 0.40 2.07 0.19 0.85 -247.94 230.33 -1.08 0.28
IL 19.77 0.66 29.92 0.00 -841.43 21.93 -38.37 0.00 21439.22 2399.50 8.93 0.00
IND 15.06 0.72 20.79 0.00 -669.45 25.36 -26.40 0.00 29875.49 2795.12 10.69 0.00
IA 0.65 0.71 0.92 0.36 -1376.12 26.98 -51.01 0.00 35745.60 2984.50 11.98 0.00
KS 14.77 0.62 23.98 0.00 -590.49 26.68 -22.13 0.00 27892.35 2862.51 9.74 0.00
MN 19.82 0.88 22.45 0.00 -774.00 34.47 -22.46 0.00 36899.58 3877.74 9.52 0.00
NE 19.43 0.69 28.11 0.00 -849.45 30.29 -28.05 0.00 18166.78 3555.80 5.11 0.00
OH 11.51 0.74 15.46 0.00 -914.06 25.67 -35.61 0.00 33601.16 2852.77 11.78 0.00
SD 29.87 1.01 29.46 0.00 -877.83 42.12 -20.84 0.00 20840.80 4864.12 4.28 0.00
WI 27.49 0.81 33.79 0.00 -809.46 26.59 -30.44 0.00 12813.51 2955.66 4.34 0.00
cbo 6.07 0.47 12.80 0.00 83.29 13.25 6.28 0.00 -6137.60 1448.52 -4.24 0.00
rwo -2.77 2.73 -1.02 0.31 -231.32 56.28 -4.11 0.00 5778.24 4552.71 1.27 0.20
hto -1.70 1.00 -1.70 0.09 110.19 26.46 4.16 0.00 -1068.28 2799.85 -0.38 0.70
cbht 2.35 0.72 3.24 0.00 186.85 19.43 9.62 0.00 -7007.11 2108.33 -3.32 0.00
rwht 10.53 1.93 5.45 0.00 88.25 51.34 1.72 0.09 -13755.47 6204.95 -2.22 0.03
cbrw 9.32 1.95 4.79 0.00 -26.25 49.86 -0.53 0.60 -10534.56 5389.27 -1.95 0.05
cbrwht 10.63 0.71 15.01 0.00 26.14 17.97 1.45 0.15 -7339.27 1862.53 -3.94 0.00
Constant 75.72 5.79 13.08 0.00 620.10 218.36 2.84 0.01 37494.31 23893.25 1.57 0.12

Mean function Variance function Skewness function
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Table 8. Full Results Region 1 (Heartland)

Region 1
Dep. Var.
Obs 116768 Obs 116768.00 Obs 116768.00
Groups 5965 F( 49,116718) 178.32 F( 49,116718) 24.14
R-sq: Prob > F 0.00 Prob > F 0.00
within 0.23 R-squared 0.09 R-squared 0.02
between 0.72
overall 0.40

Wald chi
2
(49) 38098.94

Prob >chi
2

0.00

yield Coef.
Robust 
Std. Err. z P>z Coef.

Robust HC 
Std. Err. t P>t Coef.

Robust 
HC Std. 

Err. t P>t
trend 1.42 0.06 24.78 0.00 9.27 1.77 5.23 0.00 452.35 172.15 2.63 0.01
seedingrathou 2.38 0.07 32.14 0.00 -14.65 2.76 -5.31 0.00 141.41 264.94 0.53 0.59
nomintill -8.86 0.50 -17.71 0.00 3.06 22.92 0.13 0.89 6707.02 2389.65 2.81 0.01
irrigated 23.33 0.82 28.42 0.00 -211.48 31.35 -6.75 0.00 24485.69 3137.67 7.80 0.00
early -1.27 0.38 -3.33 0.00 -45.49 14.64 -3.11 0.00 -3722.55 1319.34 -2.82 0.01
corn -5.33 0.50 -10.65 0.00 61.63 24.52 2.51 0.01 7090.11 2432.90 2.91 0.00
wheat -5.04 0.56 -9.03 0.00 208.08 30.21 6.89 0.00 -2464.67 2945.04 -0.84 0.40
alfalfa 36.24 1.45 24.91 0.00 -895.48 51.13 -17.51 0.00 18379.23 3829.05 4.80 0.00
other -3.48 1.25 -2.79 0.01 198.09 66.36 2.99 0.00 -31853.00 6644.99 -4.79 0.00
clay -19.89 0.65 -30.68 0.00 319.72 30.79 10.38 0.00 -7891.71 2844.91 -2.77 0.01
siltyclayloam -2.20 0.28 -7.82 0.00 -98.09 13.80 -7.11 0.00 5661.05 1271.53 4.45 0.00
clayloam -4.28 0.37 -11.46 0.00 28.14 18.33 1.54 0.13 -1862.58 1788.53 -1.04 0.30
loam -8.86 0.40 -21.97 0.00 72.52 17.96 4.04 0.00 769.45 1644.28 0.47 0.64
sandyloam -0.38 0.52 -0.73 0.47 -377.57 24.15 -15.63 0.00 21014.52 2043.96 10.28 0.00
sand -9.42 1.43 -6.58 0.00 -94.50 57.51 -1.64 0.10 -8725.74 4437.32 -1.97 0.05
nlbs 0.08 0.00 23.27 0.00 -2.24 0.15 -14.56 0.00 113.16 15.61 7.25 0.00
nitnotreported 12.64 0.72 17.60 0.00 -51.06 29.43 -1.74 0.08 13233.85 2900.72 4.56 0.00
aprrain -0.68 0.07 -9.20 0.00 21.72 2.98 7.30 0.00 180.61 300.38 0.60 0.55
mayrain -0.68 0.05 -13.74 0.00 7.77 2.45 3.18 0.00 497.99 243.03 2.05 0.04
junrain 0.04 0.05 0.84 0.40 -11.16 2.03 -5.51 0.00 1740.04 203.93 8.53 0.00
julrain 1.47 0.05 30.00 0.00 -35.63 2.28 -15.66 0.00 1331.81 230.85 5.77 0.00
augrain 0.53 0.05 10.34 0.00 -27.83 2.13 -13.04 0.00 1319.78 203.78 6.48 0.00
septrain -0.21 0.06 -3.63 0.00 7.60 2.35 3.24 0.00 -1566.59 238.86 -6.56 0.00

Mean function Variance function Skewness function
Yield in bushels per acre Residuals squared Residuals cubed
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Region 1
minapr -0.28 0.08 -3.58 0.00 32.96 3.26 10.11 0.00 -4073.94 310.13 -13.14 0.00
minmay 0.65 0.07 9.77 0.00 4.80 2.73 1.76 0.08 -996.59 275.10 -3.62 0.00
minjune 1.01 0.08 13.27 0.00 -22.42 2.95 -7.60 0.00 -157.65 289.71 -0.54 0.59
minjuly -0.54 0.08 -6.83 0.00 -48.43 3.29 -14.73 0.00 3486.29 326.43 10.68 0.00
minaug 0.03 0.09 0.39 0.70 -59.77 3.38 -17.70 0.00 2160.41 351.21 6.15 0.00
minsept 0.31 0.05 6.73 0.00 10.68 2.20 4.85 0.00 661.85 214.72 3.08 0.00
maxapr 1.57 0.06 25.40 0.00 -37.39 2.30 -16.28 0.00 2712.77 221.25 12.26 0.00
maxmay 0.19 0.07 2.59 0.01 -4.29 2.81 -1.53 0.13 1451.47 273.74 5.30 0.00
maxjune -0.72 0.04 -17.36 0.00 6.79 1.53 4.44 0.00 193.50 131.95 1.47 0.14
maxjuly -0.64 0.07 -9.81 0.00 39.38 2.88 13.66 0.00 -2956.86 317.88 -9.30 0.00
maxaug -3.08 0.09 -33.52 0.00 80.29 3.68 21.79 0.00 -1371.21 378.91 -3.62 0.00
maxsept 0.73 0.05 13.68 0.00 16.88 2.17 7.78 0.00 -1831.75 213.94 -8.56 0.00
IL 13.53 0.70 19.42 0.00 -680.53 24.84 -27.39 0.00 29016.18 2737.53 10.60 0.00
IN 9.51 0.72 13.17 0.00 -515.46 27.16 -18.98 0.00 25721.26 2847.09 9.03 0.00
IA -4.02 0.77 -5.25 0.00 -1152.11 29.98 -38.43 0.00 31467.36 3173.71 9.92 0.00
MN 10.95 1.01 10.83 0.00 -445.41 38.12 -11.68 0.00 21165.97 3952.14 5.36 0.00
NE 13.57 1.00 13.63 0.00 -772.67 36.88 -20.95 0.00 18217.34 3562.60 5.11 0.00
OH 9.79 0.79 12.43 0.00 -832.01 28.64 -29.05 0.00 25621.89 3007.15 8.52 0.00
SD 21.87 1.22 17.97 0.00 -758.49 49.08 -15.46 0.00 25180.48 5110.28 4.93 0.00
cbo 5.34 0.48 11.19 0.00 65.08 14.80 4.40 0.00 -2949.39 1583.43 -1.86 0.06
rwo -2.70 2.61 -1.04 0.30 -167.76 58.76 -2.86 0.00 1029.97 4635.86 0.22 0.82
hto 3.37 0.93 3.64 0.00 28.06 28.48 0.99 0.32 -1957.15 2805.28 -0.70 0.49
cbht 6.42 0.71 9.09 0.00 120.93 23.36 5.18 0.00 -3398.14 2497.02 -1.36 0.17
rwht 12.84 1.33 9.67 0.00 -11.25 44.45 -0.25 0.80 -7623.94 4326.08 -1.76 0.08
cbrw 10.37 1.94 5.36 0.00 -13.79 48.29 -0.29 0.78 -546.83 3983.03 -0.14 0.89
cbrwht 11.45 0.72 15.81 0.00 63.90 20.43 3.13 0.00 -4541.13 1990.20 -2.28 0.02
Constant 200.49 6.41 31.28 0.00 -839.59 246.03 -3.41 0.00 -35756.70 24988.41 -1.43 0.15

Mean function Variance function Skewness function
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Table 9. Full Results Region 2 (Northern Crescent) 

Region 2
Dep. Var.
Obs 28037 Obs 28037 Obs 28037
Groups 1989 F( 41, 27995) 56.65 F(41,27995) 9.97
R-sq: Prob > F 0.00 Prob>F 0.00
within 0.23 R-squared 0.10 R-squared 0.03
between 0.73
overall 0.47

Wald chi
2
(41) 13680.10

Prob > chi
2

0.00

yield Coef. obust Std. E z P>|z| Coef.

Robust 
HC Std. 

Err. t P>|t| Coef. Robust HCt P>|t|
trend 1.77 0.11 15.92 0.00 15.70 3.56 4.41 0.00 198.70 356.40 0.56 0.58
seedingrathou 0.77 0.12 6.53 0.00 55.14 4.50 12.26 0.00 -2562.53 468.69 -5.47 0.00
nomintill 0.29 0.89 0.32 0.75 115.25 38.98 2.96 0.00 -10779.03 3997.27 -2.70 0.01
irrigated 22.68 1.08 20.95 0.00 -453.18 50.54 -8.97 0.00 22570.47 5339.46 4.23 0.00
early -1.04 0.62 -1.68 0.09 -79.28 16.85 -4.71 0.00 -4099.40 1623.68 -2.52 0.01
corn -8.48 0.54 -15.63 0.00 -19.82 22.18 -0.89 0.37 -2751.93 2180.64 -1.26 0.21
wheat 6.79 1.59 4.27 0.00 420.62 78.18 5.38 0.00 5646.78 8052.32 0.70 0.48
alfalfa 3.45 0.74 4.69 0.00 -124.81 35.68 -3.50 0.00 16267.00 3258.99 4.99 0.00
other -8.06 0.88 -9.18 0.00 50.36 42.31 1.19 0.23 -11817.41 4513.01 -2.62 0.01
clay (omitted) (omitted) (omitted)
siltyclayloam -13.11 2.58 -5.07 0.00 -663.98 124.25 -5.34 0.00 -4813.63 6400.25 -0.75 0.45
clayloam 6.62 0.67 9.90 0.00 -250.55 29.81 -8.41 0.00 928.22 2856.94 0.32 0.75
loam -15.50 2.77 -5.59 0.00 -576.22 97.69 -5.90 0.00 24689.22 8126.23 3.04 0.00
sandyloam 3.89 0.90 4.34 0.00 475.82 44.84 10.61 0.00 -21972.68 4643.55 -4.73 0.00
sand -24.55 2.05 -11.97 0.00 587.40 88.67 6.62 0.00 -54746.76 7867.62 -6.96 0.00
nlbs 0.09 0.01 16.67 0.00 -2.45 0.27 -9.23 0.00 197.28 28.50 6.92 0.00
nitnotreported -11.36 2.38 -4.78 0.00 -546.10 104.27 -5.24 0.00 38742.65 10467.72 3.70 0.00
aprrain 1.78 0.18 10.08 0.00 -41.18 7.50 -5.49 0.00 5471.54 726.66 7.53 0.00
mayrain -0.54 0.12 -4.52 0.00 0.26 5.27 0.05 0.96 828.92 493.20 1.68 0.09
junrain 1.89 0.11 17.98 0.00 12.71 5.65 2.25 0.02 -1379.21 597.16 -2.31 0.02
julrain 0.89 0.11 7.79 0.00 -45.05 5.29 -8.52 0.00 1985.45 527.91 3.76 0.00
augrain 0.95 0.12 8.03 0.00 -50.52 4.79 -10.56 0.00 3344.26 460.10 7.27 0.00
septrain 1.18 0.14 8.41 0.00 -25.35 6.94 -3.65 0.00 1662.13 722.01 2.30 0.02

Mean function Variance function Skewness function
Yield in bushels per acre Residuals squared Residuals cubed
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Region 2
minapr 1.33 0.21 6.38 0.00 34.46 8.94 3.85 0.00 -1275.79 964.80 -1.32 0.19
minmay 1.26 0.18 6.85 0.00 43.91 8.31 5.28 0.00 -1753.23 858.70 -2.04 0.04
minjune -0.52 0.24 -2.21 0.03 -85.19 11.18 -7.62 0.00 358.06 1186.42 0.30 0.76
minjuly 2.61 0.22 12.10 0.00 -58.39 9.60 -6.08 0.00 5266.92 1014.35 5.19 0.00
minaug 1.33 0.19 6.99 0.00 -62.41 7.98 -7.82 0.00 3367.36 814.52 4.13 0.00
minsept -1.11 0.16 -7.08 0.00 81.03 8.14 9.95 0.00 -2324.34 835.63 -2.78 0.01
maxapr 1.00 0.13 7.71 0.00 -16.23 5.04 -3.22 0.00 596.30 520.07 1.15 0.25
maxmay -0.43 0.15 -2.91 0.00 25.76 6.84 3.76 0.00 -1805.10 673.74 -2.68 0.01
maxjune 2.95 0.19 15.20 0.00 60.34 10.07 5.99 0.00 -3047.12 1082.69 -2.81 0.01
maxjuly -3.45 0.20 -17.22 0.00 49.26 10.27 4.80 0.00 -6723.78 1114.36 -6.03 0.00
maxaug -2.91 0.16 -18.38 0.00 85.84 7.20 11.93 0.00 -1554.57 793.68 -1.96 0.05
maxsept 2.30 0.14 15.97 0.00 -64.48 7.08 -9.11 0.00 3190.30 751.17 4.25 0.00
cbo 11.35 1.26 9.00 0.00 117.88 32.55 3.62 0.00 -15124.88 3149.31 -4.80 0.00
rwo -7.81 1.26 -6.22 0.00 -549.15 128.49 -4.27 0.00 -9826.68 7443.55 -1.32 0.19
hto 1.56 2.37 0.66 0.51 38.22 58.48 0.65 0.51 -2919.82 5588.39 -0.52 0.60
cbht 1.96 1.79 1.10 0.27 182.20 47.22 3.86 0.00 -2052.04 4703.51 -0.44 0.66
rwht 5.26 7.65 0.69 0.49 475.40 216.30 2.20 0.03 -37577.87 26776.70 -1.40 0.16
cbrw -23.93 10.27 -2.33 0.02 -23.70 344.24 -0.07 0.95 -2093.40 34188.51 -0.06 0.95
cbrwht 11.89 1.73 6.88 0.00 -493.51 51.33 -9.62 0.00 -3482.57 5185.85 -0.67 0.50
Constant -71.50 13.57 -5.27 0.00 -6964.85 565.52 -12.32 0.00 474345.60 65954.24 7.19 0.00

Mean function Variance function Skewness function
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Table 10. Full Results Region 4 (Prairie Gateway) 

Region 4
Dep. Var.
Obs 19122 Obs 19122 Obs 19122
Groups 1212 F( 38, 19083) 30.37 F( 38, 19083) 4.2
R-sq:  Prob > F 0.00 Prob > F 0.00
within 0.4812 R-squared 0.08 R-squared 0.01
between 0.7536
overall 0.5384

Wald chi
2
(38) 27053.01

Prob > chi
2

0.00

yield Coef.
Robust 
Std. Err. z P>|z| Coef.

Robust 
HC Std. 

Err. t P>|t| Coef.

Robust 
HC Std. 

Err. t P>|t|
trend 0.91 0.11 7.94 0.00 31.57 5.33 5.92 0.00 -937.87 697.46 -1.34 0.18
seedingrat~u 3.52 0.11 31.86 0.00 29.25 6.28 4.66 0.00 -2643.86 777.37 -3.40 0.00
nomintill -7.88 0.81 -9.71 0.00 94.85 41.28 2.30 0.02 6661.30 4490.30 1.48 0.14
irrigated 17.10 1.21 14.12 0.00 -404.60 58.07 -6.97 0.00 33058.62 6882.15 4.80 0.00
early -15.91 1.99 -8.00 0.00 -342.97 65.82 -5.21 0.00 10521.00 5876.67 1.79 0.07
corn -9.24 0.73 -12.70 0.00 77.57 41.15 1.89 0.06 -17229.22 5237.63 -3.29 0.00
wheat -10.20 1.15 -8.86 0.00 358.89 60.29 5.95 0.00 1613.53 6989.71 0.23 0.82
alfalfa -6.88 2.68 -2.57 0.01 -1271.50 123.37 -10.31 0.00 36240.15 10013.16 3.62 0.00
other -10.55 1.40 -7.54 0.00 555.60 73.79 7.53 0.00 -22669.54 8570.38 -2.65 0.01
siltyclayloam 1.60 0.82 1.94 0.05 -173.31 38.39 -4.51 0.00 -4919.46 3917.24 -1.26 0.21
clayloam -4.72 4.61 -1.02 0.31 -1969.32 190.61 -10.33 0.00 9453.72 19443.16 0.49 0.63
sandyloam -12.97 1.09 -11.93 0.00 242.97 56.80 4.28 0.00 -7522.61 7154.94 -1.05 0.29
nlbs 0.19 0.01 23.74 0.00 -4.92 0.43 -11.31 0.00 84.74 53.63 1.58 0.11
aprrain -0.29 0.20 -1.49 0.14 -110.53 11.62 -9.51 0.00 5186.05 1509.01 3.44 0.00
mayrain -0.18 0.14 -1.30 0.19 -40.91 6.44 -6.36 0.00 -709.51 696.32 -1.02 0.31
junrain 0.80 0.16 5.04 0.00 -14.44 8.65 -1.67 0.10 1999.66 1097.52 1.82 0.07
julrain 0.64 0.11 5.91 0.00 33.79 5.38 6.28 0.00 -1473.77 568.24 -2.59 0.01
augrain -0.86 0.21 -4.19 0.00 20.96 9.89 2.12 0.03 -3949.46 1132.18 -3.49 0.00
septrain -0.60 0.16 -3.80 0.00 -39.98 8.38 -4.77 0.00 21.05 941.34 0.02 0.98

Mean function Variance function Skewness function
Yield in bushels per acre Residuals squared Residuals cubed
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Region 4
minapr -2.09 0.20 -10.67 0.00 74.63 11.60 6.43 0.00 -404.71 1407.92 -0.29 0.77
minmay 1.65 0.20 8.31 0.00 49.56 9.71 5.11 0.00 -4479.31 1171.36 -3.82 0.00
minjune 2.27 0.21 11.01 0.00 -100.69 11.34 -8.88 0.00 1346.59 1322.39 1.02 0.31
minjuly -1.29 0.25 -5.08 0.00 3.53 13.77 0.26 0.80 -882.98 1769.61 -0.50 0.62
minaug -2.70 0.26 -10.54 0.00 -66.40 15.00 -4.43 0.00 6529.19 2040.64 3.20 0.00
minsept -0.21 0.12 -1.80 0.07 6.41 5.20 1.23 0.22 1366.80 609.82 2.24 0.03
maxapr 1.24 0.14 8.75 0.00 -31.70 8.10 -3.91 0.00 544.92 1018.65 0.53 0.59
maxmay 0.54 0.17 3.21 0.00 -69.87 8.26 -8.46 0.00 4388.36 1067.56 4.11 0.00
maxjune -2.24 0.18 -12.52 0.00 105.70 9.57 11.04 0.00 -3712.10 1144.79 -3.24 0.00
maxjuly 1.66 0.22 7.63 0.00 38.01 10.52 3.61 0.00 -2827.06 1247.11 -2.27 0.02
maxaug -1.87 0.23 -8.19 0.00 33.30 11.67 2.85 0.00 -1346.62 1401.99 -0.96 0.34
maxsept 1.15 0.13 8.58 0.00 -6.52 6.92 -0.94 0.35 -2944.42 772.12 -3.81 0.00
cbo 1.42 1.30 1.09 0.28 201.29 58.37 3.45 0.00 634.63 7724.36 0.08 0.94
rwo 5.79 1.45 4.00 0.00 -80.66 348.68 -0.23 0.82 1266.24 24540.43 0.05 0.96
hto -12.47 2.23 -5.60 0.00 199.51 152.90 1.30 0.19 -22954.85 18889.86 -1.22 0.22
cbht -0.17 1.56 -0.11 0.91 206.02 74.18 2.78 0.01 -8886.45 9120.37 -0.97 0.33
rwht 10.37 1.94 5.35 0.00 95.11 174.71 0.54 0.59 15174.51 15600.81 0.97 0.33
cbrw 4.72 2.41 1.96 0.05 -110.55 141.64 -0.78 0.44 3963.28 12884.24 0.31 0.76
cbrwht 0.08 1.65 0.05 0.96 175.46 73.87 2.38 0.02 -15741.93 9257.89 -1.70 0.09
Constant 159.31 10.61 15.01 0.00 -1748.08 560.62 -3.12 0.00 321801.30 60254.98 5.34 0.00

Mean function Variance function Skewness function

 

 

 


