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Estimating the Spatial Distribution of

Groundwater Demand In the Texas High Plains

Shiliang Zhao, Chenggang Wang, James P. Bordovsky,

Zhuping Sheng, Jesus R. Gastelum

Abstract

Developing groundwater management plans requires a good understanding of the interde-

pendence of groundwater hydrology and producer water use behavior. While state-of-the-

art groundwater models require water demand data at highly disaggregated levels, the lack

of producer water use data has held up the progress to meet that need. This paper proposes

an econometric framework that links county-level crop acreage data to well-level hydro-

logic data to produce heterogeneous patterns of crop choiceand irrigation practices within

a county. Together with agronomic data on irrigation water requirements of various crops

and irrigation practices, this model permits estimation ofthe water demand distribution

within a county. We apply this model to a panel of 16 counties in the Southern Texas High

Plains from 1972 to 2000. The results obtained not only are consistent with those from

the traditional multinomial logit land use model, but also indicate the presence of large

intra- and inter-county heterogeneity in producer water use behavior.

Keywords: Discrete Choice Model, Random-coefficients Discrete Choice Model, Crop

Choice, BLP, Groundwater, Texas High Plains, Ogallala Aquifer

Introduction

The Ogallala Aquifer is the largest freshwater aquifer system in the world. The massive

underground water in the Ogallala Aquifer is the lifeblood for irrigated agriculture in the

Texas High Plains, where agriculture accounts for more than90% of annual groundwa-

ter withdrawals (Jensen 2004; Stewart 2003). The region’s groundwater table has declined
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rapidly since intensive irrigation became widespread in the 1930s. It is widely accepted that

this nonrenewable aquifer resource will be exhausted in near future. The Texas state leg-

islature in 2005 passed a bill of water conservation planning which requires Groundwater

Management Areas to define desired future conditions for their respective groundwater re-

sources. Accordingly, the High Plains Water District has established a management goal of

50/50, meaning that the district will have 50 percent of the current volume of groundwater

available for use in 50 years.

After center pivot irrigation technology was introduced into this region, the low pump-

ing cost has made Ogallala Aquifer became available for large-scale agriculture. Irrigated

farmland increased substantially from 1950 to 1978, especially from 1964 to 1978 when

farmers adjusted to more water-intensive crops. Irrigation and water-intensive crop acreage

have remained at these higher levels (Hornbeck and Keskin 2011). Current irrigation meth-

ods within the region include conventional furrow irrigation, center pivot irrigation, Low

Energy Precision Application (LEPA) and subsurface drip irrigation (SDI). In order to sus-

tain the Ogallala Aquifer, policy makers have tried to reduce the acreage of high water use

crops and rates of extraction through incentive-based measures that encourage conversion

to more efficient irrigation technology.

The adoption of more efficient irrigation technology does not necessarily reduce

groundwater withdrawal. Pfeiffer and Lin (2010) evaluate the effect on groundwater

extraction of a widespread conversion from traditional center pivot irrigation systems

to higher efficiency dropped-nozzle center pivot systems. They find that the shift to

more efficient irrigation technology has not decreased the amount of water applied to a

given crop, and has actually increased groundwater extraction through changing cropping

patterns. Warda and Pulido-Velazquez(2008) also suggest that more efficient irrigation

technology can actually lead to increased water use, because farmers may adjust their crop

mix toward more water intensive crops, expand their irrigated acreage and apply more

water to the crops they plant.
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Because groundwater is mainly used for irrigated agriculture, water conservation must

come from the reduction of water use in agriculture, throughchanging crop mix or im-

proving irrigation efficiency . Understanding the farmer’schoice over crops and irrigation

technologies is essential to anticipating future conditions of the groundwater resources and

developing effective groundwater conservation policies.The existing tool for predict the

future conditions of underground water in the Texas High Plains is a groundwater simula-

tion model for the Ogallala Aquifer, Groundwater Availability Model (GAM), developed by

Texas Water Development Board. The model requires as inputsestimates of site-specific

groundwater demands. Accurate estimates of irrigation water demands are essential for

assessing management plans aimed to achieve the 50/50 goal.Currently, county-level wa-

ter demands in GAM are estimated using an aggregation procedure that multiplies crop

acreage by crop water requirement, then adds up the resulting water demands across all

planted crops. When applied to the high-resolution GAM model, the county level ag-

gregate water demand can lead to substantial information loss. Another drawback of the

current GAM model is that it cannot predict future irrigation water demands.

The purpose of this paper is to overcome the limitation of thecurrent GAM model.

We develop a model by which future irrigation water demands can be predicated for the

Texas High Plains, and which can be incorporated into the existing GAM model to assess

the management plans proposed to achieve the 50/50 goal. Because GAM divides the

whole region into a large number of cells that are much smaller than an individual county’s

area, we strive to estimate the spatial distributions of water demands within each county,

rather than the aggregate water demand at the county level. This effort is expected to

improve significantly the predicting power of GAM because intra-county water demand

variability is likely large in the study area as indicated bythe observed heterogeneity in

such hydrological variables as water table and saturated thickness.
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Econometric Framework

The multinomial logit model has been widely adopted in analysis of crop choices and

irrigation technology adoption (Negri and Brooks 1990; Green et al. 1986). Most of the

multinomial logit land use models use county-level data, which cannot produce site-specific

estimate of water demand within a county. We use a random-coefficients discrete choice

model to link the county-level data to hydrological data at the pumping well level. The

dependent variables are acreage shares for crop-irrigation technology combinations and the

independent variables are the prices of crop, the seed cost for crop and irrigation installation

costs. Hydrological data are introduced into the model by affecting the coefficients on the

price and cost variables.

We estimate our model using the BLP technique (Berry, Levinsohn, and Pakes 1995),

Berry and his coauthors developed this technique to aggregate a distribution of consumer

preferences over products into a market-level demand system in order to produce more

efficient estimates of price elasticities of demands. We employ this technique to aggregate

well-level hydrological data into our county-level land use model, so as to produce within-

county distributions of price elasticities of land shares.Nevo(2000) deveoped a computer

program in Matlab to execute the BLP technique, which we adopt in our analysis.

Suppose we observe the production data ofi = 1, ..., It producers int = 1, ...,T county-

year combinations. In each county-year, farmers choose a crop to grow and an irrigation

technology amongj crop-irrigation technology choices. The conditional indirect utility of

farmeri choosing crop-irrigation system combinationj at county-yeart is

(1)
ui jt = x jβ ∗

i +ξ j + εi jt

i = 1, . . . , It ; j = 1, . . . ,J; t = 1, . . . ,T,

wherex j is a K-dimensional row vector of observable crop and irrigation system charac-

teristics, including crop price, seed price and installation cost of the irrigation system.ξ j

is the unobserved (by the econometrician) crop-irrigationsystem characteristics including
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the productivity of a given crop-irrigation system,εi jt is a mean-zero stochastic term,β ∗
i

areK +1 individual-specific coefficients depending on hydrological conditions individual

farmers face. Let the average value of parameterβi across farmers asβ , and assume the

following specification forβi:

(2) β ∗
i = β +ΠGi +Συi, υi ∼ N(0, IK)

whereK is the dimension of the observed characteristics vector,Gi is a two by one vector

of groundwater variables including pumping lift and well yield, Π is a(K +1)×2 matrix

of coefficients.υi is aK ×1 vector of unobservable farmer characteristics and is assumed

to have a standard normal distribution, andΣ is a scaling matrix onυi. The coefficients

on crop-irrigation system characteristics,βi, therefore, consists of a constant termβ and a

random termΠGi whose distribution depends on coefficientΠ and the spatial distribution

of pumping lift and well yield.

Data

As show in the map in figure (1), the study region includes 16 counties in the Southern

Texas High Plains: Bailey, Castro, Cochran, Crosby, Dawson, Floyd, Gaines, Hale, Hock-

ley, Lamb, Lubbock, Lynn, Parmer, Swisher, Terry, and Yoakum. The study region covers

most of the Southern Texas High Plains. Our dataset is a panelcovering these 16 counties

from 1972 to 2000. Each county’s land is assumed to be allocated to corn, cotton, sorghum,

wheat and “other” crops, including peanut, hay, oats, soybean, etc. The crop acreage data

are taken from the farm survey conducted annually by USDA’s National Agricultural Sta-

tistical Service(NASS). For each crop, the planted acreage is divided further into dry land

and irrigated by furrow, sprinkler, center pivot, LEPA and SDI. The classification system

results in 24 land use types.

The independent variables include crop price, seed price, installation cost of the irriga-

tion system, a given locations’ pumping lift and well yield.The irrigation equipment in-
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stallation cost was estimated by interviewing local irrigation system dealers and expressed

as the annual cost per acre of irrigated land. We obtained crop price data from USDA’s

Agricultural Statistics Board. The seed price data are taken from crop budgets compiled by

Texas AgriLife Extension Service. Price and cost data are all adjusted by CPI. The pump-

ing lift and well yield data are generated from the GAM model.GAM divides each county

into hundreds of cells, for which the pumping lift and well yield data are generated. We

then aggregated the data into 49 observations as representative of the empirical joint dis-

tribution of pumping lift and well yield. Table (1) presents of the summary statistics of

the variables above. Cotton is the main crop in this region with an average share of more

than 30%, followed by sorghum and wheat with each having a 10%acreage share. The

installation cost varies widely across different irrigation systems: furrow only costs about

$1.7 per acre per year, while SDI costs over $100 per acre per year; the cost for center pivot

and LEPA are less than the cost of SDI but significantly higherthan that of sprinkler and

furrow. The average pumping lift in this area is 150 feet but it varies across counties and

over time. In some places the pumping lift is zero (indicating a location with surface wa-

ter), while in other places the pumping lift is near 800 feet.The well yield is not distributed

evenly across the whole region as well, ranging from zero to 4ac-ft per hour.

Results and Discussion

Table (2) presents the results from a logit regression, where the independent variables are

crop price, seed price, installation cost, lagged shares, the county average values of pump-

ing lift and well yield, and 24 crop-irrigation system dummies. All parameters but those on

seed price and installation cost are statistically significant.

Table (3) presents a sample of estimated own- and cross-price elasticities of crop acreage

shares from the logit model. Each entryi, j gives the elasticity of cropi with respect to a

change in the price of cropj. Cotton has an higher own price elasticity than other crops

have. When cotton price increases, land planted to corn, sorghum and wheat will be con-
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verted to cotton. The cross elasticities on the three crops are of similar size, indicating an

increase in cotton price will reduce their acreage shares inequal proportions. An increase

in corn price, however, will draw more land from cotton than from sorghum and wheat. A

similar result applies to the situation when sorghum and wheat prices rise. These results

are reasonable because the soil and climate in the study region are generally suitable for

growing cotton, while corn, sorghum, and wheat acreage are more clustered and therefore

less likely to change.

The results from the BLP model are presented in table (4). The first column contains

the means of the random coefficients,β . They are very similar to those from the table (2)

logit model. The coefficients for seed price and installation cost are statistically insignifi-

cant. The coefficients for crop price and lagged share are statistically significant and of the

expected sign. The crop-irrigation system dummy variablesare all significant.

Parameter estimates of pumping lift and well yield are presented in the next two columns.

The significant constant terms suggest that the farmer’s unity is higher if the pumping lift is

lower and well yield is greater. This makes sense because lower pumping lift implies lower

pumping cost and higher well yield implies higher irrigation water supplies, both of which

can boost the producer’s profit and therefore utility. This confirms hydrological conditions

are important factors affecting the producer’s crop and technology choice.

Pumping lift has a significant negative interactive effect on crop price. This implies that

the marginal utility of crop price will decrease as pumping lift increases. In other words,

farmers with lower groundwater table are less sensitive to crop price changes. This is

because crop yield is lower if groundwater table is lower (pumping cost is higher), and a

given amount of price change will have a greater effect on profit for a producer with higher

yield.

Figures (2) and (3) respectively show Parmer and Lynn counties’ groundwater pump-

ing lift and well yield contour map in 1973, and the corresponding crop price coefficient

distributions. Parmer county is located at the northwest corner and Lynn county is at the
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southeast corner in our study region. Their hydrological conditions are in stark contrast.

The 1973 mean pumping lifts in Parmer and Lynn are are 320 and 50 foot, respectively.

The two figures show the farmer in these two counties have different responses to crop

price change. The mean value of the crop price coefficient is lower in Parmer than in Lynn,

because the former has a higher pumping lift than does the latter. Additionally, Parmer’s

price coefficient distribution is skewed towards the left, while Lynn’s is skewed towards the

right, consistent with the fact that more farmers in Parmer has a higher pumping lift, while

more farmers in Lynn has a lower pumping lift.

The figure (4) plots compare the own price elasticity distributions of the various irri-

gation systems and crops. The first plot, for example, compares the own price elasticity

distributions of the dryland cotton and irrigated cotton byfive irrigation systems. The other

three plots are for corn, sorghum, and wheat. It is clear fromall these four plots that the

range of the price elasticity distribution is larger for more efficient irrigation systems. This

is because improving irrigation efficiency amounts to increasing the water supply, which in

turn expands the crop choice set of the producer.

Conclusions

Developing groundwater management plans requires a good understanding of the interde-

pendence of groundwater hydrology and producer water use behavior. While state-of-the-

art groundwater models require water demand data at highly disaggregated levels, the lack

of producer water use data has held up the progress to meet that need. This paper proposes

an econometric framework that links county-level crop acreage data to well-level hydro-

logic data to produce heterogeneous patterns of crop choiceand irrigation practices within

a county. Together with agronomic data on irrigation water requirements of various crops

and irrigation practices, this model permits estimation ofthe water demand distribution

within a county. We apply this model to a panel of 16 counties in the Southern Texas High

Plains from 1972 to 2000. The results obtained not only are consistent with those from the
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traditional multinomial logit land use model, but also indicate the presence of large intra-

and inter-county heterogeneity in producer water use behavior. Future research will incor-

porate the model into an existing hydrologic model to offer aplanning tool for groundwater

management in the Southern Texas High Plains.

9



References

Albrecht, D.E. 1990. “The adaptations of farmers in an era ofdeclining groundwater sup-

plies.” SouthernRuralSociology 7:46–62.

Arriagada, L.E.S. 2005. “Optimal Crop Choice: Farmer Adaptation to Climate Change.”

Unpublished, http://www.aeaweb.org/annual_mtg_papers/2006/0108_1300_0403.pdf.

Berry, S., J. Levinsohn, and A. Pakes. 1995. “Automobile Prices in Market Equilibrium.”

Econometrica 63:841–890.

Berry, S.T. 1994. “Estimating Discrete-Choice Models of Product Differentiation.”The

RAND Journalof Economics 25:242–262.

Brouwer, R., and M. Hofkes. 2008. “Integrated hydro-economic modelling: Approaches,

key issues and future research directions.”EcologicalEconomics 66:16–22.

Carpentier, A., and E. Letort. 2008. “Modelling acreage decisions within the multinomial

logit framework : profit functions and discrete choice models.” In AmericanAgricultural

EconomicsAssociation2008AnnualMeeting,Orlando,Florida.

Caswell, M.F., and D. Zilberman. 1986. “The Effects of Well Depth and Land Quality

on the Choice of Irrigation Technology.”AmericanJournalof Agricultural Economics

68:798–811.

Colaizzi, P., P.H.Gowda, T.H. Marek, and D.O. Porter. 2009.“Irrigation In The Texas High

Plains: A Brief History And Potential Reductions In Demand.” Irrigation andDrainage

58:257–274.

Green, G., D. Sunding, D. Zilberman, and D. Parker. 1986. “Explaining Irrigation Tech-

nology Choices: A Microparameter Approach.”American Journal of Agricultural

Economics 78:1064–1072.

Harou, J.J., M. Pulido-Velazquez, D.E. Rosenberg, J. Medellin-Azuara, J.R. Lund, and

R.E. Howitt. 2009. “Hydro-economic models: Concepts, design, applications, and future

prospects.”Journalof Hydrology 375:627–643.

10



Hornbeck, R., and P. Keskin. 2011. “Farming the Ogallala Aquifer:Short-

run and Long-run Impacts of Groundwater Access.” Unpublished,

http://cbey.research.yale.edu/uploads/Ogallala_Feb2011.pdf.

Jensen, R. 2004. “Ogallala Aquifer: Using Improved Irrigation Technology and Water Con-

servation to Meet Future Needs.”TexasWaterResourcesInstitute August:1.

McFadden, D. 1980. “Econometric Models for Probabilistic Choice Among Products.”The

Journalof Business, 53:s13–s29.

Moore, M.R., N.R. Gollehon, and M.B. Carey. 1994. “Multicrop Production Decisions

in Western Irrigated Agriculture: The Role of Water Price.”American Journal of

AgriculturalEconomics 76:859–874.

Moreno, G., and D.L. Sunding. 2005. “Joint Estimation of Technology Adoption and Land

Allocation with Implications for the Design of Conservation Policy.” AmericanJournal

of AgriculturalEconomics 87:1009–1019.

Negri, D.H., and D.H. Brooks. 1990. “Determinants of Irrigation Technology Choice.”

AmericanJournalof AgriculturalEconomics 15:213–223.

Nevo, A. 2001. “Measuring Market Power in the Ready-to-Eat Cereal Industry.”

Econometrica 69:307–342.

—. 2000. “A Practitioner’s Guide to Estimation of Random-Coefficients Logit Models of

Demand.”Journalof Economics& ManagementStrategy 9:513-548.

Pfeiffer, L., and C.Y.C. Lin. 2010. “Does Efficient Irrigation Technology Lead to Reduced

Groundwater Extraction?: Empirical Evidence.” InAgriculturalandAppliedEconomics

Association2010AnnualMeeting,Denver,Colorado.

Segarra, E., and Y. Feng. 1984. “Irrigation Technology Adoption in the Texas High Plains.”

TexasJournalof AgricultureandNaturalResources 7:71–83.

Seo, S., E. Segarra, P.D. Mitchell, and D.J. Leatham. 2008. “Irrigation technology adop-

tion and its implication for water conservation in the TexasHigh Plains: a real options

approach.”AgriculturalEconomics 38:47–55.

11



Stewart, B.A. 2003.Aquifers, Ogallala.Encyclopediaof WaterScience, S. W. Trimble,

B. A. Stewart, and T. A. Howell, eds. Taylor & Francis.

Terrell, B.L., and P.N. Johnson. 1999. “Economic Impact Of The Depletion Of The Ogal-

lala Aquifer: A Case Study Of The Southern High Plains Of Texas.” In American

AgriculturalEconomicsAssociationannualmeetingin Nashville,TN.

Warda, F.A., and M. Pulido-Velazquez. 2008. “Water conservation in irrigation can increase

water use.”Proceedingsof theNationalAcademayof Science 105:18215–18220.

Wheeler, E., E. Segarra, P. Johnson, J. Johnson, and D. Willis. 2006. “Economic and Hy-

drologic Implications of Selected Water Policy Alternatives for the Southern Ogallala

Aquifer.” Unpublished, http://www.depts.ttu.edu/casnr/water/wheeler.pdf.

12



Figures

Figure 1. The Study Area
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Figure 2. Price Coefficient and Groundwater Distribution(Parmer,1973)
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Tables

Table 1. Descriptive Statistics of Key Variables Used in theAnalysis

Mean Median Std. Dev. Min Max
Crop Share (%) Cotton 0.305 0.299 0.144 0.032 0.701

Corn 0.045 0.004 0.075 0 0.525
Sorghum 0.093 0.066 0.079 0.002 0.415
Wheat 0.098 0.065 0.088 0 0.477

Crop Price ($/lb) Cotton 0.574 0.485 0.205 0.277 1.054
Corn 0.052 0.046 0.023 0.023 0.115
Sorghum 0.045 0.040 0.020 0.019 0.103
Wheat 0.060 0.053 0.031 0.024 0.159

Seed Price Cotton($/lb) 0.470 0.468 0.117 0.303 0.711
Corn($/lb) 1.147 1.078 0.260 0.688 1.884
Sorghum($/lb) 0.629 0.613 0.097 0.462 0.813
Wheat($/bu) 0.128 0.113 0.051 0.040 0.242

Installation cost($/ac-year) Furrow 1.720 1.522 0.012 1.407 2.595
Sprinkler 6.461 5.559 0.058 4.851 10.803
Center Pivot 62.480 61.146 0.299 46.428 76.957
LEPA 67.595 65.667 0.331 50.534 83.934
SDI 111.073 87.546 1.661 64.049 241.743

Well Property Lift(foot) 150.835 135.750 3.329 0 798.4
Yield(ac-ft/hr) 0.234 0.181 0.225 0 4.121
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Table 2. Result From logit Model

Parameter Standard
Variable DF Estimate Error t-ValuePr > |t|
Intercept 1 -0.395 0.045 -8.68<.0001
Crop price 1 0.263 0.073 3.6 0.0003
Seed price 1 0.092 0.049 1.86 0.0625
Installation cost 1 -0.578 0.37 -1.55 0.1214
Lagged share 1 0.879 0.004 215.73<.0001
Mean lift 1 0.735 0.095 7.67 <.0001
Mean yield 1 0.771 0.092 8.31<.0001
crop-sys1 1 -0.487 0.060 -8.04<.0001
crop-sys2 1 -0.699 0.060 -11.54<.0001
crop-sys3 1 -0.272 0.060 -4.5<.0001
crop-sys4 1 -0.600 0.061 -9.7<.0001
crop-sys5 1 -0.946 0.068 -13.85<.0001
crop-sys6 1 -0.248 0.061 -4.07<.0001
crop-sys7 1 -0.648 0.071 -9.06<.0001
crop-sys8 1 -0.887 0.073 -12.11<.0001
crop-sys9 1 -0.623 0.073 -8.44<.0001
crop-sys10 1 -0.822 0.075 -10.87<.0001
crop-sys11 1 -0.931 0.081 -11.44<.0001
crop-sys12 1 -1.014 0.074 -13.57<.0001
crop-sys13 1 -0.615 0.055 -11.1<.0001
crop-sys14 1 -0.817 0.056 -14.39<.0001
crop-sys15 1 -0.474 0.059 -8.03<.0001
crop-sys16 1 -0.758 0.062 -12.18<.0001
crop-sys17 1 -0.891 0.069 -12.83<.0001
crop-sys18 1 -0.310 0.054 -5.68<.0001
crop-sys19 1 -0.430 0.047 -8.65<.0001
crop-sys20 1 -0.678 0.051 -13.2<.0001
crop-sys21 1 -0.333 0.054 -6.1<.0001
crop-sys22 1 -0.684 0.057 -11.84<.0001
crop-sys23 1 -0.843 0.066 -12.68<.0001
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Table 3. Own and Cross Price Elasticity of Crop Acreage Shares

cotton corn sorghum wheat
cotton 0.178645 -0.000865 -0.000753 -0.000994
corn -0.001613 0.016962 -0.000125 -0.000165
sorghum -0.003046 -0.000302 0.014623 -0.000362
wheat -0.003178 -0.000288 -0.00025 0.019438
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Table 4. Result From Random Coefficient Model

Interaction with groundwater
Variable Means Lift Yield
Intercept -0.3557 -0.4881 0.4228

(0.0478) (0.1726) (0.1883)
Crop price 0.4456 -0.8986 -

(0.1359) (0.2321)
Seed price 0.0502 - 0.1502

(0.0318) (0.0413)
Installation cost -2.9195 0.9539 0.746

(1.8473) (2.3548) (0.9853)
Lagged share 0.8879

(0.0047)
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