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Abstract

Developing groundwater management plans requires a gatetstanding of the interde-
pendence of groundwater hydrology and producer water Usavim. While state-of-the-
art groundwater models require water demand data at higbdgdgregated levels, the lack
of producer water use data has held up the progress to meéatetwh This paper proposes
an econometric framework that links county-level crop ageedata to well-level hydro-
logic data to produce heterogeneous patterns of crop chait@rigation practices within
a county. Together with agronomic data on irrigation wagguirements of various crops
and irrigation practices, this model permits estimatiorihef water demand distribution
within a county. We apply this model to a panel of 16 countiethe Southern Texas High
Plains from 1972 to 2000. The results obtained not only arsistent with those from
the traditional multinomial logit land use model, but alsdicate the presence of large
intra- and inter-county heterogeneity in producer waterhehavior.

Keywords: Discrete Choice Model, Random-coefficients Discrete Ghdiodel, Crop

Choice, BLP, Groundwater, Texas High Plains, Ogallala Aeyui

Introduction

The Ogallala Aquifer is the largest freshwater aquifer eystn the world. The massive
underground water in the Ogallala Aquifer is the lifeblood irrigated agriculture in the
Texas High Plains, where agriculture accounts for more 8G# of annual groundwa-

ter withdrawals { ) % The region’s groundwater table has declined



rapidly since intensive irrigation became widespread @lt®30s. It is widely accepted that
this nonrenewable aquifer resource will be exhausted in fogare. The Texas state leg-

islature in 2005 passed a bill of water conservation plagmhich requires Groundwater

Management Areas to define desired future conditions for tgpective groundwater re-

sources. Accordingly, the High Plains Water District haslelsshed a management goal of
50/50, meaning that the district will have 50 percent of theent volume of groundwater

available for use in 50 years.

After center pivot irrigation technology was introducedbinhis region, the low pump-
ing cost has made Ogallala Aquifer became available foelagale agriculture. Irrigated
farmland increased substantially from 1950 to 1978, egfigdrom 1964 to 1978 when
farmers adjusted to more water-intensive crops. Irrigediod water-intensive crop acreage
have remained at these higher levéis( ).1Current irrigation meth-
ods within the region include conventional furrow irrigati center pivot irrigation, Low
Energy Precision Application (LEPA) and subsurface driation (SDI). In order to sus-
tain the Ogallala Aquifer, policy makers have tried to resgltlee acreage of high water use
crops and rates of extraction through incentive-based uneashat encourage conversion
to more efficient irrigation technology.

The adoption of more efficient irrigation technology does mecessarily reduce
groundwater withdrawal. ( ) evaluate the effect on groundwater
extraction of a widespread conversion from traditionalteermivot irrigation systems
to higher efficiency dropped-nozzle center pivot systemsieyTfind that the shift to
more efficient irrigation technology has not decreased theumt of water applied to a
given crop, and has actually increased groundwater eidrattirough changing cropping
patterns. ( ) also suggest that more efficient irrigation
technology can actually lead to increased water use, bedatusers may adjust their crop
mix toward more water intensive crops, expand their iregaacreage and apply more

water to the crops they plant.



Because groundwater is mainly used for irrigated agricejtwater conservation must
come from the reduction of water use in agriculture, throalganging crop mix or im-
proving irrigation efficiency . Understanding the farmeafoice over crops and irrigation
technologies is essential to anticipating future condgiof the groundwater resources and
developing effective groundwater conservation polici€be existing tool for predict the
future conditions of underground water in the Texas Highri3les a groundwater simula-
tion model for the Ogallala Aquifer, Groundwater AvailatyiModel (GAM), developed by
Texas Water Development Board. The model requires as imgstithates of site-specific
groundwater demands. Accurate estimates of irrigatiorem@¢mands are essential for
assessing management plans aimed to achieve the 50/50Cywedntly, county-level wa-
ter demands in GAM are estimated using an aggregation puoedtat multiplies crop
acreage by crop water requirement, then adds up the regwater demands across all
planted crops. When applied to the high-resolution GAM nhotlee county level ag-
gregate water demand can lead to substantial informatss I&nother drawback of the
current GAM model is that it cannot predict future irrigatiovater demands.

The purpose of this paper is to overcome the limitation of cbeent GAM model.
We develop a model by which future irrigation water demarals loe predicated for the
Texas High Plains, and which can be incorporated into thetiegi GAM model to assess
the management plans proposed to achieve the 50/50 goakhu8®=&GAM divides the
whole region into a large number of cells that are much smgdbn an individual county’s
area, we strive to estimate the spatial distributions oewdemands within each county,
rather than the aggregate water demand at the county levdb €ffort is expected to
improve significantly the predicting power of GAM becaus&arcounty water demand
variability is likely large in the study area as indicatedthg observed heterogeneity in

such hydrological variables as water table and saturatekinbss.



Econometric Framework

The multinomial logit model has been widely adopted in asialyf crop choices and
irrigation technology adoption\( ) Yo Most of the
multinomial logit land use models use county-level datacWwisannot produce site-specific
estimate of water demand within a county. We use a randorffideats discrete choice
model to link the county-level data to hydrological datale pumping well level. The
dependent variables are acreage shares for crop-irngidnology combinations and the
independent variables are the prices of crop, the seedarastip and irrigation installation
costs. Hydrological data are introduced into the model ligctihg the coefficients on the
price and cost variables.

We estimate our model using the BLP techniqter( )S
Berry and his coauthors developed this technique to agtgegdistribution of consumer
preferences over products into a market-level demand reysteorder to produce more
efficient estimates of price elasticities of demands. Weleyhis technique to aggregate
well-level hydrological data into our county-level lanceusodel, so as to produce within-
county distributions of price elasticities of land sharésyo ( ) deveoped a computer
program in Matlab to execute the BLP technique, which we agtopur analysis.

Suppose we observe the production data-efl, ..., l; producers irt =1,..., T county-
year combinations. In each county-year, farmers choosemtorgrow and an irrigation
technology among crop-irrigation technology choices. The conditional nedi utility of

farmeri choosing crop-irrigation system combinatipat county-yeat is

Uijt = Xj 3"+ &j + &ijt
(1)

i=1...,l j=121,....3, t=1...,T,
wherex; is aK-dimensional row vector of observable crop and irrigatigstem charac-
teristics, including crop price, seed price and installattost of the irrigation systent;

is the unobserved (by the econometrician) crop-irrigaipstem characteristics including



the productivity of a given crop-irrigation system;; is a mean-zero stochastic terfy,
areK + 1 individual-specific coefficients depending on hydroladjiconditions individual
farmers face. Let the average value of paramptexrcross farmers g8, and assume the

following specification foi3;:

(2) B = B+NGi+z2vy, Ui ~ N(0,1k)

whereK is the dimension of the observed characteristics ve&ois a two by one vector
of groundwater variables including pumping lift and welkkl, N is a (K + 1) x 2 matrix
of coefficients.u; is aK x 1 vector of unobservable farmer characteristics and isnasgu
to have a standard normal distribution, ands a scaling matrix or;. The coefficients
on crop-irrigation system characteristifk, therefore, consists of a constant tenand a
random ternT1G; whose distribution depends on coeffici€htand the spatial distribution

of pumping lift and well yield.

Data

As show in the map in figurel}, the study region includes 16 counties in the Southern
Texas High Plains: Bailey, Castro, Cochran, Crosby, Dawstwmyd, Gaines, Hale, Hock-
ley, Lamb, Lubbock, Lynn, Parmer, Swisher, Terry, and Yoak@The study region covers
most of the Southern Texas High Plains. Our dataset is a pameting these 16 counties
from 1972 to 2000. Each county’s land is assumed to be adlddatcorn, cotton, sorghum,
wheat and “other” crops, including peanut, hay, oats, sagpetc. The crop acreage data
are taken from the farm survey conducted annually by USDAfidwhal Agricultural Sta-
tistical Servicg NASS). For each crop, the planted acreage is divided further intdeshd
and irrigated by furrow, sprinkler, center pivot, LEPA anBISThe classification system
results in 24 land use types.

The independent variables include crop price, seed pmstaliation cost of the irriga-

tion system, a given locations’ pumping lift and well yiel@ihe irrigation equipment in-


http://www.nass.usda.gov/

stallation cost was estimated by interviewing local irtiga system dealers and expressed
as the annual cost per acre of irrigated land. We obtainegl prce data from USDA's
Agricultural Statistics BoardThe seed price data are taken from crop budgets compiled by
Texas AgriLife Extension ServicdPrice and cost data are all adjusted by CPI. The pump-
ing lift and well yield data are generated from the GAM mod&RAM divides each county
into hundreds of cells, for which the pumping lift and weleld data are generated. We
then aggregated the data into 49 observations as repregermtithe empirical joint dis-
tribution of pumping lift and well yield. Tablelj presents of the summary statistics of
the variables above. Cotton is the main crop in this regiah an average share of more
than 30%, followed by sorghum and wheat with each having a 46féage share. The
installation cost varies widely across different irrigettisystems: furrow only costs about
$1.7 per acre per year, while SDI costs over $100 per acregagr the cost for center pivot
and LEPA are less than the cost of SDI but significantly highan that of sprinkler and
furrow. The average pumping lift in this area is 150 feet bwaries across counties and
over time. In some places the pumping lift is zero (indiag@nlocation with surface wa-
ter), while in other places the pumping lift is near 800 fddte well yield is not distributed

evenly across the whole region as well, ranging from zerodo-& per hour.

Results and Discussion

Table @) presents the results from a logit regression, where thepeddent variables are
crop price, seed price, installation cost, lagged shanescaunty average values of pump-
ing lift and well yield, and 24 crop-irrigation system dunasi All parameters but those on
seed price and installation cost are statistically sigafic

Table @) presents a sample of estimated own- and cross-priceciigstiof crop acreage
shares from the logit model. Each entiryj gives the elasticity of cropwith respect to a
change in the price of crop Cotton has an higher own price elasticity than other crops

have. When cotton price increases, land planted to corghsar and wheat will be con-


http://www.nass.usda.gov/Charts_and_Maps/Agricultural_Prices/index.asp
http://agecoext.tamu.edu/budgets/

verted to cotton. The cross elasticities on the three cropsfasimilar size, indicating an

increase in cotton price will reduce their acreage sharegjural proportions. An increase
in corn price, however, will draw more land from cotton thaonfi sorghum and wheat. A
similar result applies to the situation when sorghum andawvpeices rise. These results
are reasonable because the soil and climate in the studynregeé generally suitable for
growing cotton, while corn, sorghum, and wheat acreage are clustered and therefore
less likely to change.

The results from the BLP model are presented in tah)e The first column contains
the means of the random coefficienis, They are very similar to those from the tabB® (
logit model. The coefficients for seed price and installattost are statistically insignifi-
cant. The coefficients for crop price and lagged share atiststally significant and of the
expected sign. The crop-irrigation system dummy variabitesall significant.

Parameter estimates of pumping lift and well yield are presgin the next two columns.
The significant constant terms suggest that the farmerty ighigher if the pumping lift is
lower and well yield is greater. This makes sense becaus lowmping lift implies lower
pumping cost and higher well yield implies higher irrigativater supplies, both of which
can boost the producer’s profit and therefore utility. Tluafoms hydrological conditions
are important factors affecting the producer’s crop antnietogy choice.

Pumping lift has a significant negative interactive effaticoop price. This implies that
the marginal utility of crop price will decrease as pumpiifgihcreases. In other words,
farmers with lower groundwater table are less sensitiverop @rice changes. This is
because crop yield is lower if groundwater table is lowem{ping cost is higher), and a
given amount of price change will have a greater effect offitfiar a producer with higher
yield.

Figures R) and Q@) respectively show Parmer and Lynn counties’ groundwatenp
ing lift and well yield contour map in 1973, and the corresgliog crop price coefficient

distributions. Parmer county is located at the northwest@oand Lynn county is at the



southeast corner in our study region. Their hydrologicaditions are in stark contrast.
The 1973 mean pumping lifts in Parmer and Lynn are are 320 Grfdd, respectively.
The two figures show the farmer in these two counties haverdifit responses to crop
price change. The mean value of the crop price coefficientgit in Parmer than in Lynn,
because the former has a higher pumping lift than does ttez.|lakdditionally, Parmer’s
price coefficient distribution is skewed towards the leftjle Lynn’s is skewed towards the
right, consistent with the fact that more farmers in Parnaerdohigher pumping lift, while
more farmers in Lynn has a lower pumping lift.

The figure @) plots compare the own price elasticity distributions af trarious irri-
gation systems and crops. The first plot, for example, coegpdre own price elasticity
distributions of the dryland cotton and irrigated cottorfige irrigation systems. The other
three plots are for corn, sorghum, and wheat. It is clear fatithese four plots that the
range of the price elasticity distribution is larger for re@fficient irrigation systems. This
is because improving irrigation efficiency amounts to iasiaeg the water supply, which in

turn expands the crop choice set of the producer.

Conclusions

Developing groundwater management plans requires a gaetstanding of the interde-
pendence of groundwater hydrology and producer water usavie. While state-of-the-
art groundwater models require water demand data at higbdgdregated levels, the lack
of producer water use data has held up the progress to meéeetd This paper proposes
an econometric framework that links county-level crop ageedata to well-level hydro-
logic data to produce heterogeneous patterns of crop chatérigation practices within
a county. Together with agronomic data on irrigation wagguirements of various crops
and irrigation practices, this model permits estimatiorihef water demand distribution
within a county. We apply this model to a panel of 16 countiethe Southern Texas High

Plains from 1972 to 2000. The results obtained not only ansistent with those from the



traditional multinomial logit land use model, but also icalie the presence of large intra-
and inter-county heterogeneity in producer water use hehdwuture research will incor-

porate the model into an existing hydrologic model to offptaanning tool for groundwater

management in the Southern Texas High Plains.
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Groundwater Pumping Lift (Lynn,1973)

Groundwater Pumping Yield (Lynn,1973)
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Tables

Table 1. Descriptive Statistics of Key Variables Used in thénalysis

Mean Median Std. Dev. Min Max

Crop Share (%) Cotton 0.305 0.299
Corn 0.045 0.004
Sorghum 0.093 0.066
Wheat 0.098 0.065
Crop Price ($/Ib) Cotton 0.574 0.485
Corn 0.052 0.046
Sorghum 0.045 0.040
Wheat 0.060 0.053
Seed Price Cotton($/Ib) 0.470 0.468
Corn($/Ib) 1.147 1.078
Sorghum($/Ib) 0.629 0.613
Wheat($/bu) 0.128  0.113
Installation cost($/ac-year) Furrow 1.720 1.522
Sprinkler 6.461 5.559
Center Pivot 62.480 61.146
LEPA 67.595 65.667
SDI 111.073 87.546
Well Property Lift(foot) 150.835 135.750

Yield(ac-fthr)  0.234  0.181

0.144 0.032 0.701

0.075 0 0.525
0.079 0.002 0.415
0.088 0 0.477

0.205 0.277 1.054
0.023 0.023 0.115
0.020 0.019 0.103
0.031 0.024 0.159

0.117 0.303 0.711
0.260 0.688 1.884
0.097 0.462 0.813
0.051 0.040 0.242

0.012 01.4 2.595
0.058 4.851 10.803

0.299 46.428 76.957
0.331 50.534 83.934
1.661 64.049 241.743
3.329 0 798.4
0.225 0 4.121
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Table 2. Result From logit Model

Parameter Standard

Variable DF Estimate Error t-ValuePr > |t|
Intercept 1 -0.395 0.045  -8.68<.0001
Crop price 1 0.263 0.073 3.6 0.0003
Seed price 1 0.092 0.049 1.86 0.0625
Installation cost 1 -0.578 0.37 -1.55 0.1214
Lagged share 1 0.879 0.004 215.7%.0001
Mean lift 1 0.735 0.095 7.67 <.0001
Mean yield 1 0.771 0.092 8.31<.0001
crop-sysl 1 -0.487 0.060 -8.04<.0001
Crop-sys2 1 -0.699 0.060 -11.54<.0001
crop-sys3 1 -0.272 0.060 -4.5<.0001
crop-sys4 1 -0.600 0.061 -9.7<.0001
crop-sysb 1 -0.946 0.068 -13.85<.0001
crop-sys6 1 -0.248 0.061 -4.07<.0001
crop-sys7’ 1 -0.648 0.071 -9.06<.0001
crop-sys8 1 -0.887 0.073 -12.11<.0001
crop-sys9 1 -0.623 0.073  -8.44<.0001
crop-sys10 1 -0.822 0.075 -10.87<.0001
crop-sysll 1 -0.931 0.081 -11.44<.0001
crop-sysl2 1 -1.014 0.074 -13.57<.0001
crop-sysi13 1 -0.615 0.055 -11.1<.0001
crop-sysl4 1 -0.817 0.056 -14.39%<.0001
crop-sysi15 1 -0.474 0.059  -8.03<.0001
crop-sysl6 1 -0.758 0.062 -12.18<.0001
crop-sysl7 1 -0.891 0.069 -12.83<.0001
crop-sysl18 1 -0.310 0.054 -5.68<.0001
crop-sysi19 1 -0.430 0.047 -8.65<.0001
crop-sys20 1 -0.678 0.051 -13.2<.0001
crop-sys21 1 -0.333 0.054 -6.1<.0001
crop-sys22 1 -0.684 0.057 -11.84<.0001
crop-sys23 1 -0.843 0.066 -12.68<.0001
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Table 3. Own and Cross Price Elasticity of Crop Acreage Share

cotton corn  sorghum wheat
cotton 0.178645 -0.000865 -0.000753 -0.000994
corn -0.001613 0.016962 -0.000125 -0.000165
sorghum -0.003046 -0.000302 0.014623 -0.000362
wheat -0.003178 -0.000288 -0.00025 0.019438

19



Table 4. Result From Random Coefficient Model

Interaction with groundwater

Variable Means Lift Yield
Intercept -0.3557 -0.4881 0.4228
(0.0478) (0.1726) (0.1883)
Crop price 0.4456 -0.8986 -
(0.1359) (0.2321)
Seed price 0.0502 - 0.1502
(0.0318) (0.0413)
Installation cost -2.9195  0.9539 0.746
(1.8473) (2.3548) (0.9853)
Lagged share 0.8879
(0.0047)
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