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Abstract

This paper assesses the effect of the U.S. Job Corps (JC), the nation’s largest

and most comprehensive job training program targeting disadvantaged youths, on

wages. We employ partial identification techniques and construct informative non-

parametric bounds for the causal effect of interest under weaker assumptions than

those conventionally used for point identification of treatment effects in the pres-

ence of sample selection. In addition, we propose and estimate bounds on quantile

treatment effects of the program on participants’ wages. In general, we find con-

vincing evidence of positive impacts of JC on participants’ wages. Importantly, we

find that estimated impacts on lower quantiles of the distribution are higher, with

the highest impact being in the 5th percentile where a positive effect on wages is

bounded between 8.4 and 16.1 percent. These bounds suggest that JC results in

wage compression within eligible participants.

1 Introduction

Assessment of the effect of federally funded labor market programs on participants’

outcomes (e.g., earnings, education, employment, etc.) is of great importance to policy

makers. To answer the question about these programs’ effectiveness vis-a-vis their public

cost, one relies on the ability to estimate causal effects of program participation, which

usually is a difficult task.1 The vast majority of both substantive and methodological

econometric literature of program evaluation (see Angrist and Krueger, 1999, Blundell

and Dias, 2009, and Imbens and Wooldridge, 2009) focuses on estimating causal effects

of participation on total earnings, which is, as pointed out by Lee (2009), a basic step for

a cost-benefit analysis. Evaluating the impact on total earnings, however, leaves open a

relevant question about whether or not these programs have a positive effect on the human

capital of participants, which is the ultimate the goal of active labor market programs.

Total earnings are the product of the individual’s wage times hours worked, in other

1When conducting evaluation of these kind of programs one has to deal with a missing data problem,

i.e., an individual may either be participating in the program or not, but no one individual can be in

both states simultaneously. In the econometric literature this inherent fact of both experimental and

observational studies is referred to as “the fundamental problem of causal inference” (Holland, 1986).
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words, earnings have two components: price of labor and quantity supplied of labor.

Therefore, by focusing on estimating the impact of program participation on earnings,

one can not distinguish how much of the effect is due to human capital improvements.

Clearly, assessment of the effect of program participation on human capital requires to

focus on the price component of earnings, i.e., wages. The importance of the effect of

labor market programs on participants’ wages stems from its direct relationship with the

improvement of the participants’ human capital due to the program, which is essential

for individuals to boost their labor market opportunities. In addition, the estimation of

this effect allows policy makers to better understand the components through which these

programs lead to more favorable labor market outcomes.

Unfortunately, estimation of the causal effect of program participation on individu-

als’ wages is not straightforward due to the sample selection problem (Heckman, 1979).

Basically, we only observe wages for those individuals who are employed, and thus, com-

parable individuals’ wages may or may not be observed. Even in experimental settings,

randomization does not guarantee the comparability of individuals’ wages in treatment

and control groups, since a person’s decision to be employed is endogenous and occurs

after training has been completed.

In this paper, we use the data from the National Job Corps Study, a randomized

evaluation of the Job Corps (JC) program which is funded by the U.S. Department of

Labor, to empirically assess the effect of training on participants’ wages. To accomplish

this objective we construct informative nonparametric bounds for the causal effect of

participation. This strategy requires weaker assumptions than those conventionally used

for point identification of the average treatment effect in the presence of sample selection.2

Similarly to Lee (2009), our analysis starts by computing the Horowitz and Man-

ski (2000) “worst-case” scenario bounds. Their general approach imputes missing data

with either the largest or the smallest possible values, using these extremes to compute

2Point identification of average treatment effects typically requires strong distributional assumptions

such as bivariate normality (Heckman, 1979). One may relax this distributional assumption by relying

on exclusion restrictions (Heckman, 1990; Heckman and Smith, 1995), which are variables that determine

selection into the sample (i.e., employment) but do not affect the outcome (i.e., wages). It is well known,

however, that in the case of employment and wages both types of assumptions are hard to satisfy in

practice (Angrist and Krueger, 1999; Angrist and Krueger, 2001).
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the largest or the smallest possible treatment effect, which constitute bounds that are

consistent with the observed data. As such these bounds do not require the use of exclu-

sion restrictions nor making distributional assumptions. While the approach encompasses

non-refutable assumptions in settings where the outcome data is missing, it requires the

availability of a bounded support of the outcome. As a result, the “worst-case” scenario

bounds’ width is uninformative in our particular application.

Subsequently, we proceed by imposing more structure through the use of several as-

sumptions and derive results using the Principal Stratification (PS) framework (Frangakis

and Rubin, 2002).3 In addition to assuming random assignment of a binary treatment,

which is satisfied in our application, the construction of our bounds requires assuming

weak monotonicity of mean potential outcomes at three levels: individual, within subpop-

ulation and across subpopulations.4 These subpopulations (strata under PS framework)

are defined by the values of two variables: the potential treatment status and an employ-

ment indicator that determines the observability of the outcome (i.e., wages). Given the

binary nature of both variables, this set up gives rise to four principal strata.

These assumptions are not totally new to the growing body of literature on partial

identification. For example, in a setting similar to ours, Zhang et al., (2008) and Lee

(2009) derive bounds for the effect of a job training program on wages, assuming random

assignment of treatment and individual level monotonicity.5 While the former uses PS

to derive results, both studies in essence devised the same identification strategy of a

trimming proportion of the outcome distribution that allows tightening the bounds for

average treatment effects. Relative to the Horowitz and Manski (2000) “worst-case”

bounds, resulting bounds in Zhang et al., (2008) and Lee (2009) are tighter and do not

rely on the availability of a bounded support of the outcome.

3The PS framework has its roots in the analysis of identification of local average treatment effects

using instrumental variables in Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996)
4Even though, bounds on the parameter of interest involve only one subpopulation, i.e., always em-

ployed individuals independent of treatment assignment, the assumption of weak monotonicity across

subpopulations requires interaction with other subpopulations found in a sample.
5The assumption of individual level monotonicity has also been used in different settings. For example,

Flores and Flores-Lagunes (2010) use PS to derive bounds on the population net and mechanism average

treatment effect in a setting where outcome data was always observed. Zhang and Rubin (2003) use PS

to estimate causal effects when some outcomes are truncated by death.
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An example of the identifying power of assuming monotonicity within subpopulation

can be found in Flores and Flores-Lagunes (2010, FF hereafter). They use in spirit the

same identification strategy as Zhang et al., (2008) and Lee (2009), and assume weak

monotonicity of mean potential outcomes within subpopulations to construct bounds

on the net and mechanism average treatment effects. Finally, the assumption of weak

monotonicity across subpopulations is also considered in Blundell et al., (2007), Zhang

et al., (2008), and more recently in Lechner and Melly (2010) and FF (2010). This

last level of monotonicity, which is also known in the literature as stochastic dominance

(Manski and Pepper, 2000), imposes further restrictions resulting in tighter bounds. In

particular, the identification strategies in Blundell, et al., (2007), who derive sharp bounds

on the distribution of wages and the interquantile range to study income inequality in the

U.K., and Lechner and Melly (2010), who use partial identification to bound wage effects

of a German job training program, are similar since they both require non-parametric

estimation of the conditional distributions of the outcome. In contrast, the identification

strategy that we follow is similar to Zhang et al., (2008), Lee (2009), and FF (2010), which

does not rely on a non-parametric estimate of a conditional distribution of the outcome.

We contribute to the literature in two ways. First, we provide a substantive em-

pirical analysis of the effect of the Job Corps training program on participants’ wages.

The analysis is considered substantive for two reasons; the first is due to the current im-

portance of Job Corps. With a yearly cost of about $1.5 billion, Job Corps is America’s

largest job training program, as such, this federally funded program is under constant

scrutiny, and given that its effectiveness has always been debatable, with legislation seek-

ing to cut federal spending, the program’s operational budget is currently under threat.

The second reason is that our results provide evidence to answer a policy relevant ques-

tion about the impact of Job Corps on more disadvantage participants, and hence its

effectiveness. Importantly, data to derive our results come from the first nationally rep-

resentative experimental evaluation of an active labor market program for disadvantaged

youth (Schochet et al., 2008), and thus implications can be generalized, with confidence,

to Job Corps at a national level.

The second contribution is methodological in nature. Using the PS framework and

relying on a set of weak monotonicity assumptions to tighten nonparametric bounds, we
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provide the basis for analyzing treatment effects in different quantiles of the distribution of

an outcome in the presence of sample-selection. In doing so we propose the construction of

bounds on the “Local Quantile Treatment Effect” (LQTE). Intuitively, after identifying

the upper and lower bounding distributions of individuals that are always employed inde-

pendent of their treatment assignment (our stratum of interest), bounds on the LQTE are

constructed by looking at the difference between quantiles of these trimmed (marginal)

distributions and the distribution of control individuals who are employed. Our strategy

of identification of bounds is similar to Zhang et. al., (2008), Lee(2009), and FF (2010).

Our approach is distinguished from these three in that we go a step further into analyzing

quantiles.6

In summary, by exploiting the ability of the proposed quantile model we characterize

the heterogeneous impact of Job Corps training on different points of the participants’

wage distribution. Compared to Lee (2009), who uses the same dataset as we do and

assumes individual level monotonicity only, our bounds are tighter and more informa-

tive about the sign of the effect of training on wages, suggesting a positive effect on

wages bounded between 3.4 and 9.3 percent. We go a step further in our analysis and

report bounds for treatment effects on the 5th, 10th, ..., and 95th percentile of participants’

post-treatment wages. Our results suggest that the impact on lower quantiles of the dis-

tribution is higher, with the highest impact being in the 5th percentile where a positive

effect on wages is bounded between 8.4 and 16.1 percent. In other words, after accounting

for the systematic heterogeneity in the impact of Job Corps on participants’ wages we

conclude that in addition to having a positive impact on wages, across the entire distri-

bution, the program has an effect of wage compression within disadvantage groups. To

our knowledge, the latter effect has not been previously identified, and thus it sheds light

on the effectiveness of Job Corps at a new, important level.

The rest of the paper is organized as follows. Section 2 briefly describes the Job

Corps, the data and its source the National Job Corps Study. Section 3 formally defines

sample selection and briefly introduces a general identification strategy of bounding treat-

6Conventionally, other models of quantile treatment effect rely on instrumental variables (Abadie, An-

grist and Imbens (2002) and Chernozhukov and Hansen (2005)), while the partial identification strategy

we propose does not.
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ment effects. In section 4 we introduce the Principal Stratification framework and the

assumptions necessary to construct bounds on the treatment effect. Section 5 proposes

bounds on quantiles treatment effect needed to analyze the heterogeneity of effects of

Job Corps training on participants’ wages. Section 6 contains our empirical application

results. We conclude in section 7.

2 Job Corps and the National Job Corps Study

This subsection briefly describes both the Job Corps program and the randomized

experiment, known as the National Job Corps Study (NJCS), which generated the data

used in this empirical analysis.

Job Corps is America’s largest and most comprehensive residential education and

job training program. This federally funded program was established in 1964 as part of

the War on Poverty under the Economic Opportunity Act, and is currently administered

by the US Department of Labor (DOL). With a yearly cost of about $1.5 billion, Job

Corps annual enrollment ascends to 100,000 students (DOL, 2010). The program’s goal

is to help disadvantaged young people, ages ranging from 16 to 24, improve the quality

of their lives by enhancing their labor and educational skills set. Eligible participants

are provided with the opportunity to benefit from the program’s goal through academic,

vocational, and social skills training provided at over 123 centers nationwide (DOL, 2010).

Participants are selected based on several criteria, including age (16-24 years), legal US

residency, economically disadvantage status, living in a disruptive environment, in need

of additional education or training, and be judged to have the capability and aspirations

to participate in Job Corps (Schochet et al., 2008).

Being the nation’s largest job training program, the Job Corps’ history is full of con-

troversy and its effectiveness has always been debatable. During the mid 1990’s, the US

Department of Labor commissioned Mathematica Policy Research, Inc. (MPR) to design

and implement a randomized evaluation, the NJCS, in order to determine the program’s

effectiveness. The main feature of the study was its random assignment, namely, individ-

uals were sampled from nearly all outreach and admissions agencies (OA)7 located in 48

7Outreach and admissions (OA) agencies conduct recruitment and screening for Job Corps. OA
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continuous states and the District of Columbia and randomly assigned to treatment and

control groups. During the sample intake period, between November 1994 and February

1996, a total of 80,883 first time eligible applicants were included in the study. From this

total, approximately 12% were assigned to the treatment group (Nt = 9,409) while 7%

of the eligible applicants were assigned to the control group (Nc = 5,977). The remain-

ing 65,497 were assigned to a program non-research group (Schochet et al., 2001). After

recording the data in a baseline interview, for both treatment and control experimental

groups, a series of follow up interviews were conducted at weeks 52, 104, 156, and 208

after randomization.

Randomization took place at the OA level, that is, before participants’ assignment to

a JC center. As a result, only 73% of the individuals randomly assigned to the treatment

group actually enrolled in JC. Even though individuals assigned to the control group

were embargoed from participating in JC for a period of 3 years after random assign-

ment, 1.4% of them enrolled in the program within the prohibited period (Schochet et

al., 2008). Therefore, in the presence of this non-compliance, the difference-in-means es-

timator, which compares average outcomes between individuals by random assignment to

a treatment or a control group, represents the “Intention-to-Treat” (ITT ) effect (Flores-

Lagunes et al., 2009). Similarly to Lee (2009) and Flores and Flores-Lagunes (2010), the

present empirical analysis focuses on estimating informative non-parametric bounds for

the ITT parameter. However, we go a step further and use bounds to analyze JC’s effect

on different quantiles of the distribution of wages.

In particular, this paper uses the same dataset employed by Lee (2009), who devel-

ops an intuitive trimming procedure for bounding average treatment effects of Job Corps

program on participants’ wages.8 Similarly to Lee (2009), the present analysis abstracts

from missing values due to interview non-response and attrition over time by only in-

cluding individuals who had no missing values for the post-treatment variables: weekly

earnings and weekly hours worked. Thus, the resulting sample size, NLee=9145, is smaller

than the original NJCS sample size, N=15386. Due to both programmatic and research

reasons, different subgroups in the population study had different probabilities of being

agencies include private nonprofit firms, private for-profit firms, state employment agencies, and the

centers themselves (Schochet et al., 2001).
8For a description of Lee’s (2009) trimming procedure refer to footnote 18 in section 4.1.
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included in the research sample, and thus, subsequent analysis requires the use of design

weights (Schochet, 2001).9

Summary statistics are presented in Table 1. Pretreatment variables in the dataset

include: demographic variables (rows 1 to 12), education and background variables (rows

13 to 16), income variables (rows 17 to 25) and employment information (rows 26 to 31).

As expected, given the randomization, the distribution of these pretreatment character-

istics is similar across treatment and control groups, i.e., the difference in the next to last

column is not statistically significant at a 5% level of confidence. The resulting difference

for post-treatment earnings across groups, also reported in penultimate column, is quan-

titatively equivalent and consistent with the previously reported 12% positive effect of JC

on participants’ earnings (Burghardt et al., 1999; Flores-Lagunes et al., 2009; Schochet

et al., 2001). Results were also consistent with those obtained in previous studies when

looking at the effect of JC on participants’ weekly hours worked (Schochet et al., 2001).

3 The Sample Selection Problem and Identification

of Treatment Effects

Assessing the impact of job training programs on participants’ wages, as pointed out

by Zhang et al., (2008) and Lee (2009), is distinct than assessing the program’s impact

on earnings. Notice that earnings are the product of the individual’s wage times hours

worked, therefore, the latter impact encompasses the effect on the likelihood of being

employed (labor supply effect) and the effect on wages. The impact on participants’

wages, however, can be interpreted as pure price effect, which is the focus in the present

study since significant increases in wages can be directly related with the improvement

of the participants’ human capital due to the program, which is essential for individuals

to boost their labor market opportunities. In particular, one of JC main goals is the

enhancement of participants’ human capital through academic and vocational training,

and thus, a proper assessment requires focusing on the program’s impact on wages.

9For example, OA agencies had struggle recruiting females for residential slots. Therefore, sampling

rates to the control group were intentionally set lower in some areas, to overcome difficulties with unfilled

slots. See Schochet (2001) for more details on reasons and calculation of design weights.
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It is well known, however, that estimation of program’s treatment effect on partici-

pants’ wages is complicated due to the fact that we only observe the wages of those who

are employed, which is often referred in the literature as the sample selection problem

(Heckman, 1979). Formally, let’s assume an experimental setting with N individuals and

with only two observable causes denoted by τi, where τi=1 indicates that individual i

has been randomly assigned to participate in the program (treatment group) and τi=0

denotes no participation (control group). Yi, individual i’s wage, is assumed to be a linear

function10 of the treatment indicator τi and a set of pretreatment characteristics x1i,

Yi = β1τi + β2x1i + µ1i (1)

The self-selection process into employment is assumed to be linearly related to the

treatment indicator τi and a set of pretreatment characteristics x2i,

S∗i = δ1τi + δ2x2i + µ2i, (2)

where S∗i is a latent variable representing the propensity to be employed. Let Si de-

note the observed employment indicator that takes values Si=1 if individual i is employed

and 0 otherwise. In notation

Si = 1[S∗i ≥ 0],

where 1[·] is an indicator function. Therefore, Yi is only observed when individuals

self-select into working, i.e., Si =1 when individual i’s propensity to work is positive

(S∗i ≥ 0).

Conventionally, point identification of the parameter of interest β1, which is as-

sumed to be constant for the entire population, requires strong assumptions such as joint

independence of the errors (u1i, u2i) in the wage and employment equations (1) and (2),

10Linearity is assumed to simplify the exposition of the sample selection problem and the identification

of treatment effects. However, the alternative non-parametric approach to address sample selection, which

is the focus of this paper, does not impose linearity to identify bounds on treatment effect parameters.

In fact, as shown below and in subsequent sections, the identification procedure discussed in this study

makes no functional form assumptions.
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respectively, and the regressors τi , x1i and x2i , and bivariate normality of the errors (u1i,

u2i). One may relax the bivariate normality assumption about the errors by relying on

exclusion restrictions (Heckman, 1990; Heckman and Smith, 1995), which are variables

that determine employment but do not affect wages, or equivalently, variables in x2i that

do not belong in x1i; but it is well known that in general finding such variables that go

along with economic reasoning is in practice difficult (Angrist and Krueger, 1999; Angrist

and Krueger, 2001).

An alternative approach to model sample selection suggests that treatment effect

parameters can be bounded without making strong distributional assumptions or without

relying on the validity of exclusion restrictions. Following a conservative general frame-

work provided by Horowitz and Manski (2000)11 (HM hereafter), bounds on treatment

effects when data is missing due to a nonrandom process, such as the self-selection into

not working (S∗i < 0), can be constructed, provided that the outcome variable has a

bounded support. These bounds are known in the literature as “worst-case” scenario

bounds (HM).

For ease of explanation we now switch to a slightly different notation than the one

introduced above, let’s define the average treatment effect (ATE) using the potential

outcomes framework (Rubin, 1974), as the following

ATE = E[Yi(1)− Yi(0)|Xi] = E[Yi(1)|Xi]− E[Yi(0)|Xi], (3)

where Yi(0) and Yi(1) are the two potential wages for unit i under control (τi=0) and

treatment (τi=1), respectively. For simplicity we are going to suppress the conditioning

on Xi, where Xi=(x1i, x2i). Conditional on τi and the observed employment indicator Si,

the ATE in (3) can be written as:12

11In their paper Horowitz and Manski (2000) derived conservative bounds on population parameters of

interest using nonparametric analysis applied to experimental settings with problems of missing binary

outcomes and covariates. Their general framework, however, can be applied to continuous outcome

variables, thus allowing to model sample selection in our setting (Lee, 2009).
12Notice that outcomes of individuals are compared by random assignment. In the presence of non-

compliance, conditioning on the assigned treatment indicator τi the formulae for ATE is interpreted as

the “intention to treat” (ITT ).
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ATE = E[Yi|τi = 1, Si = 1]Pr(Si = 1|τi = 1)+

E[Yi(1)|τi = 1, Si = 0]Pr(Si = 0|τi = 1)

−E[Yi|τi = 0, Si = 1]Pr(Si = 1|τi = 0)−

E[Yi(0)|τi = 0, Si = 0]Pr(Si = 0|τi = 0)

(4)

Examination of Equation (4) reveals that from the data we can identify all the

conditional probabilities (Pr(Si|τi)), and also the expectations of wage when conditioning

on Si=1 (E[Yi|τi = 1, Si = 1] and E[Yi|τi = 0, Si = 1]). Unfortunately, due to sample

selection, from the experimental data is not possible to point identify E[Yi|τi = 1, Si = 0]

and E[Yi|τi = 0, Si = 0]. We can, however, impute “worst-case” scenario bounds on

these unobserved quantities, provided that the support of the outcome lies in the interval

(Y LB, Y UB), i.e., the missing outcomes E[Yi|τi = 1, Si = 0] and E[Yi|τi = 0, Si = 0] can

take any value in the interval (Y LB, Y UB). The HM lower and upper bounds (LBHM and

UBHM respectively) are calculated from the data as follow:

LBHM = E[Yi|τi = 1, Si = 1]Pr(Si = 1|τi = 1) + Y LBPr(Si = 0|τi = 1)

−E[Yi|τi = 0, Si = 1]Pr(Si = 1|τi = 0)− Y UBPr(Si = 0|τi = 0)

UBHM = E[Yi|τi = 1, Si = 1]Pr(Si = 1|τi = 1) + Y UBPr(Si = 0|τi = 1)

−E[Yi|τi = 0, Si = 1]Pr(Si = 1|τi = 0)− Y LBPr(Si = 0|τi = 0)

(5)

In the next sections we follow, in spirit, this general bounding approach and proceed

by imposing more structure through the use of several assumptions in the context of the

Principal Stratification framework (Frangakis and Rubin, 2002).

4 Principal Stratification Framework and Identifica-

tion of Bounds on Treatment Effects

Flores and Flores-Lagunes (2010) (FF hereafter) employed the Principal Stratifica-

tion (PS) framework (Frangakis and Rubin, 2002) to study the mechanisms or channels

through which the treatment works. To accomplish their objective, FF decomposed the

12



ATE into net average treatment effect (NATE), defined as “the average potential out-

come from a counterfactual treatment in which the effect of the original treatment on

the mechanism variable is blocked minus the average potential outcome under control”

and mechanism average treatment effect (MATE), which is equal to ATE-NATE. In

their paper they used local net average treatment effects (LNATE) and local mechanism

average treatment effects (LMATE), which are defined at the principal strata level, to de-

rive informative non-parametric bounds for the population NATE and MATE. As they

pointed out, their approach for identification of LNATE can be useful to study treat-

ment effects when dealing with sample selection. In our particular application, treatment

effects on wages are identified after controlling for the self-selection “mechanism”, i.e.,

employment, which can be done for a specific “local” subpopulation comprised of individ-

uals with defined wages, thus the focus here is on the local net average treatment effect

for those who are always employed independent of treatment assignment.

FF approach followed in essence the same identification strategy employed by Zhang

et al. (2008), who also used PS framework, and Lee (2009). FF’s study, however, was

not limited by a context where selection causes censoring of the outcome of interest, and

therefore, they were able to derive non-parametric bounds for the population parameters,

NATE and MATE, which enables learning “how” the treatment affects the outcome.

In our case, similarly to Zhang et al. (2008) and Lee (2009), the focus is on the average

treatment effect on wages, which are censored when the individuals are not employed.

Thus, the identification of the ATE on wages requires controlling for selection into em-

ployment (the mechanism), and it will become clear in this section that this is equivalent

to focus on the LNATE for a subpopulation for which the mechanism is not affected

by the treatment. Mainly, this section is devoted to summarize FF’s main identification

results as well as to apply them to our particular application, which is the identification of

informative non-parametric bounds for the treatment effect of JC on participants’ wages.

PS framework introduced by Frangakis and Rubin (2002) allows for identification of

average causal effects when controlling for a post-treatment variable that has been affected

by treatment assignment. In the context of JC, this affected post-treatment variable is

employment. Following FF terminology, this variable is referred to as a mechanism. It will

become clearer in the next few paragraphs that whenever individuals belong to the same
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principal strata, which are constructed based on the potential values that the mechanism

can take, which is a function of the treatment, comparisons between average outcomes

by treatment assignment will have a causal interpretation since the strata an individual

belongs to is not affected by treatment assignment.

Consistent with the notation introduced in the previous section, based on Equation

(2), it is clear that the mechanism Si, is affected by the treatment (τi). Hence, the

mechanism, denoted as Si(τ), has two potential values Si(0) and Si(1), when i is assigned

to control and treatment, respectively. Given Si(τ) potential values, FF defined the

“composite” potential outcomes as Yi(τi, Si(τ)).13 The potential outcome Yi(1, Si(0))14

is used to define NATE, since it represents the potential outcome of individual i under

treatment in which the effect that τi=1 has on the mechanism is controlled, such that

Si(τ)=0. The ATE in (3), without the conditioning on X, can be decomposed using

Yi(1, Si(0)) as follows:

If we write the ATE = E[Yi(1) − Yi(1, Si(0))] + E[Yi(1, Si(0)) − Yi(0)], then the

NATE can be formally defined as:

NATE = E[Yi(1, Si(0))− Yi(0)], (6)

and the MATE = E[Yi(1) − Yi(1, Si(0))]. As mentioned at the beginning of this

section, in our particular application (treatment effect of program participation on wages)

discussion of theMATE is out of the scope of the paper,15 the focus instead is on LNATE,

which will be formally discussed in subsequent paragraphs.

Basic principal stratification consists in partitioning individuals into groups based

on the values that the mechanism vector {Si(0), Si(1)} may take. Let Si(τ) be binary.

This is the case in the context of our application since Si(τ) may only take a value of 0 if

individual i is unemployed and 1 if employed. As a result, the four principal strata are:

13Notice that the potential outcomes Yi(1, Si(1)) and Yi(0, Si(0)) correspond to the conventional po-

tential outcomes Yi(1) and Yi(0) used in Equation (3). Two more potential outcomes are generated from

the “composite” process, Yi(1, Si(0)) and Yi(0, Si(1)), for more detail see FF (2010).
14The potential outcome Yi(1, Si(0)) represents the counterfactual used in the definition of NATE

given at the beginning of this section.
15Perhaps one may be interested in studying “how” the treatment works, in other words, understanding

the mechanisms or channels through which the treatment affects participants’ wages (Blanco, et al., 2011).
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NN = Si(0) = 0, Si(1) = 0

EE = Si(0) = 1, Si(1) = 1

EN = Si(0) = 1, Si(1) = 0

NE = Si(0) = 0, Si(1) = 1

(7)

In the context of JC, NN is the strata for those individuals who would be unem-

ployed independent of treatment assignment, EE is the strata for those who would be

employed independent of treatment assignment, EN represent those who would be em-

ployed if assigned to control, but not employed if assigned to treatment, and NE is the

strata for those who would be unemployed if assigned to control, but employed if assigned

to treatment.

FF’s first result states that the observed data (Yi, τi, Si) contains information on

the counterfactual Yi(1, Si(0)) only for the subpopulation of individuals where treatment

(τi) does not affect the mechanism (Si), such that Si(0) = Si(1) and Yi = Yi(1, Si(0)).

With this result in mind, it follows that from the data is possible to identify objects for

certain strata. Let the “Local” NATE, or LNATE, be defined as the NATE for a given

principal strata in (7):

LNATEk = E[Yi(1, Si(0))|k]− E[Yi(0)|k], fork = NN,EE,EN,NE (8)

In general the LNATEk in (8) is useful for analyzing treatment effects in the presence

of self-selection. In particular, LNATEk in (8) will be used to analyze treatment effects

of JC on participants’ wages. The reason for using (8) is that wages are not defined for

individuals when they are not employed, therefore, one has to focus on those individuals

with defined wages independent of treatment assignment. This is the case for individuals

that belong to the k = EE strata. Notice that k = EE corresponds to the strata for

which the mechanism is not affected by treatment assignment. Another strata in which

the mechanism is not affected by treatment would be k = NN , but we will not be able to

compute LNATENN since wages for this individuals are not defined in neither treatment

arm (k = NN is comprised of always unemployed individuals). Furthermore, within
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the EE strata, comparisons between average wages by treatment assignment will have a

causal interpretation, since the strata an individual belongs to is not affected by treatment

assignment. Intuitively, “estimation” of the parameter LNATEEE on wages controls for

selection into employment.16

Note that, the LNATEEE parameter is equivalent to the ATEEE parameter used

by Zhang et al. (2008), and the ATE in Lee (2009). To see this, notice that from

FF’s first result Yi = Yi(1, Si(0)), for k = EE, thus, LMATEEE = E[Yi(1)|EE] −

E[Yi(1, Si(0))|EE] = 0 (the same applies when k = NN). Identification of the LNATEk

parameter for k different than EE is not possible given that wages are not well-defined

when individuals are unemployed.

4.1 Basic Assumptions and Identification of Bounds

Without enough assumptions, point identification of LNATEEE in the form of (8)

is not possible since one does not observe the counterfactual E[Yi(1, Si(0))|EE]. Thus,

the focus is on partial identification of LNATEEE. To partially identify LNATEEE, we

start by making the following assumptions:

Assumption A: Randomly Assigned Treatment.

Assumption B: Individual Level Monotonicity of τ on S(τ).

Assumptions A and B correspond to assumptions A1 and A2 in FF, respectively.

Assumption A corresponds implies independence of the errors in regressions (1) and (2)

(u1i, u2i) and (τi, X). This commonly used assumption is ensured by the random assign-

ment of treatment in the NJCS. The monotonicity assumption (B) is applied to the effect

that the treatment has on the mechanism.17 Specifically, monotonicity states that treat-

16Identification of LNATEEE using PS framework is similar to the estimation of Local average treat-

ment effects using instrumental variables by Imbens and Angrist (1994) and Angrist, Imbens and Rubin

(1996).
17Assumption B is also commonly invoked in the literature of imperfect compliance but is applied to

the effect of an instrument on treatment status (Imbens and Angrist, 1994; and Angrist, Imbens and

Rubin, 1996).
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ment assignment can only affect the mechanism in one direction, Si(1) ≥ Si(0) for all

i. Zhang et al. (2008) and Lee (2009) employed the monotonicity assumption, stated as

how treatment affects selection into employment. In this particular application, sample

selection, defined by employment status (Si(τ)), corresponds to the “so-called” mecha-

nism variable. Therefore, up to this point, the approaches in Zhang et al. (2008), and

Lee (2009) yield the same results as in FF.

Given the monotonicity assumption (B) of a non-decreasing effect of τi on Si, one

may rule out the existence of the principal strata defined as EN , comprised of individuals

whose likelihood of employment was affected negatively given that they were assigned to

the treatment group. In the context of Job Corps, individual level monotonicity is likely

to hold since the program offers job search assistance to their participants. Unfortunately,

Assumption B is not testable and a negative impact of treatment on employment can not

be statistically ruled out. As shown in the last column of Table 3, Assumption B allows the

identification of some members in EE and NN , they are defined by the observed groups

(first column) with (τi, Si) (0, 1) and (1,0), respectively. Furthermore, given assumptions

A and B, the proportions of each principal strata in the population are point identified

(Zhang et al., 2008; and FF, 2010). Let πk be the population proportions of each principal

strata k = NN,EE,EN,NE, and let pS|τ ≡ Pr(Si = s|τi = t) for (t, s) = 0, 1. Then,

πEE = p1|0, πNN = p0|1, πNE = p1|1 − p1|0 = p0|0 − p0|1 and πEN = 0.

From Table 3, we know that individuals in the observed group with (τi, Si) = (0, 1)

belong to the strata of interest EE (Last row and column). Therefore, from LNATEEE =

E[Yi(1, Si(0))|EE]−E[Yi(0)|EE] one can point identify the control E[Yi(0)|EE] by com-

puting E[Yi|τi = 0, Si = 1]. On the other hand, is not possible to point identify

E[Yi(1, Si(0))|EE], since the average outcome for individuals in the observed group with

(τi, Si) = (1, 1), contains units from two strata, EE and NE. With the known popula-

tion proportions πk, however, note that E[Yi|τi = 1, Si = 1] can be written as a weighted

average between individuals in EE and NE:

E[Yi|τi = 1, Si = 1] =
πEE

(πEE + πNE)
E[Yi(1)|EE] +

πNE
(πEE + πNE)

E[Yi(1)|NE] (9)

Notice in (9) that the proportion of EE in the group (τi, Si) = (1, 1) can be point
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identified as πEE/(πEE +πNE)=p1|0/p1|1. Therefore, following the identification results by

Zhang et al. (2008), and FF (2010), which are the same as those reported in Lee (2009),18

E[Yi(1)|EE] can be bounded from above by the expected value of Yi for the (p1|0/p1|1)

fraction of the largest values of Yi for those in the observed group (τi, Si)=(1, 1). In

other words, we cannot identify which observations belong to E[Yi(1)|EE], the “infra-

marginal” individuals, and which belong to E[Yi(1)|NE], the “marginal” individuals.

But the “worst-case” scenario is that the largest values (p1|0/p1|1) of Yi belong to the

“infra-marginal” individuals. Thus, computing the expected value of Yi after trimming

the lower tail of the distribution of Yi, in (τi, Si)=(1, 1), by 1− (p1|0/p1|1) yields an upper

bound for the “infra-marginal” group (Lee, 2009). Similarly, E[Yi(1)|EE] can be bounded

from below by the expected value of Yi for the (p1|0/p1|1) fraction of the smallest values

of Yi for those in the same observed group.

From FF proposition 1, LNATEEE has the following upper and lower bounds,

UBEE and LBEE, respectively:

UBEE = E[Yi|τi = 1, Si = 1, Yi ≥ y11
1−(p1|0/p1|1)]− E[Yi|τi = 0, Si = 1]

LBEE = E[Yi|τi = 1, Si = 1, Yi ≤ y11
(p1|0/p1|1)]− E[Yi|τi = 0, Si = 1],

(10)

where y11
1−(p1|0/p1|1) and y11

(p1|0/p1|1) denote the 1−(p1|0/p1|1) and the (p1|0/p1|1) quantile

of Yi conditional on τi = 1 and Si = 1, respectively.

4.1.1 Estimation Using Basic Assumptions

The estimates of bounds in (10) have the following sample analog form:

18The identification procedure in Lee (2009), which uses a generalize sample selection model approach,

is the same in nature to that in Zhang et al. (2008) and Flores and Flores-Lagunes (2010), both under

a PS framework. Specifically, from the wage regression in (1) Lee noted that the observed population

mean for the treatment group E[Yi|τi = 1, Si = 1] corresponds to a weighted average of “infra-marginal”

individuals, whose employment is not affected by treatment assignment, and “marginal” individuals, who

are induced by the treatment assignment to be selected into the sample; hence, resulting in Equation (9).

From this point on, Lee (2009) calculates trimming proportions based on the same intuition provided in

Zhang, et al. (2008) and FF (2010) for bounding E[Yi(1)|EE] in equation (9).
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ÛBEE =
Σn
i=1Yi · τi · Si · 1[Yi ≥ ŷ1−p̂]

Σn
i=1τi · Si · 1[Yi ≥ ŷ1−p̂]

− Σn
i=1Yi · (1− τi) · Si
Σn
i=1(1− τi) · Si

L̂BEE =
Σn
i=1Yi · τi · Si · 1[Yi ≤ ŷp̂]

Σn
i=1τi · Si · 1[Yi ≤ ŷp̂]

− Σn
i=1Yi · (1− τi) · Si
Σn
i=1(1− τi) · Si

,

(11)

where p̂, the sample analog of (p1|0/p1|1), is used to pin down the quantiles (ŷ1−p̂

and ŷp̂) of the treatment group outcome distribution (analogs to the quantiles y11
1−(p1|0/p1|1)

and y11
(p1|0/p1|1) in (10), respectively), is calculated as follows:

p̂ =
Σn
i=1(1− τi) · Si
Σn
i=1(1− τi)

/
Σn
i=1τi · Si
Σn
i=1τi

(12)

Up to this point, using basic assumptions A and B, our results are quantitatively

equivalent to those reported by Lee (2009). Specifically, Lee (2009) calculates the trim-

ming proportion by taking the treatment control difference in the proportion with non-

missing outcomes and dividing by the proportion that is selected in the treatment group.19

Afterwards, Lee uses this proportion to calculate the threshold quantiles to trim the data

and compute bounds for the treatment effect, yielding the same bounds estimates as those

in (11). Lee (2009) shows that bounds in (11) are sharp and asymptotically normal, which

allows the computation of confidence intervals.

4.2 Narrowing Bounds: Weak Monotonicity Within and Across

Strata

We now consider two assumptions that can help sharpen the bounds in (10). The

first assumption is related to, but different from, Manski (1997) and Manski and Pepper

(2000) “monotone treatment response”. Their assumption states that the individual po-

tential outcomes are a monotone function of the treatment, i.e., Yi(1) ≥ Yi(0) for all i.

In contrast to the monotone treatment response, our assumption is weaker since it allows

some individual effects of the treatment on the outcome to be negative. This is accom-

plished by imposing monotonicity on the mean potential outcomes for those individuals in

the EE strata. Notice our assumption is a subset of FF’s Assumption B, who uses weak

19Notice, Lee’s (2009) trimming proportion, which is equal to: [ΣS·τ
Στ −

ΣS·(1−τ)
Σ(1−τ) ]/[ΣS·τ

Στ ] with Σ summing

for the entire sample n, is equivalent to the expression for p̂ in (12)
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monotonicity of mean potential outcomes within each of the four stratum. Formally, we

employ:

Assumption C: Weak Monotonicity of Mean Potential Outcomes Within the EE Strata.

E[Y (1, S(0))|EE] ≥ E[Y (0)|EE]

In addition to the basic assumptions A and B, Assumption C implies that LNATEEE ≥

0.20 Therefore, the lower bound in (10) becomes: max{0, LBEE}; while the upper bound

remains unchanged. In the context of Job Corps, Assumption C is likely to hold given

that participants are exposed to substantial academic instruction.21 Thus, consistent

with conventional human capital theories in economics, one would expect, on average, a

non-negative effect of treatment (JC participation) on wages.

As pointed out by FF, a potentially unattractive feature of Assumption C is that it

restricts the sign of the effect of interest. We now consider a second assumption that is

available in the partial identification literature. Our assumption is related to, but differ-

ent from Manski and Pepper (2000) “monotone instrumental variable”. Their assumption

states that mean responses vary weakly monotonically across subpopulations defined by

specific values of the instrument. In contrast, our assumption conditions mean responses

on two of the basic principal strata defined by a specific value of the mechanism, i.e.,

S(1). A formal statement of our assumption is as follows:

Assumption D: Weak Monotonicity of Mean Potential Outcomes Across the EE and

NE Strata.

E[Y (1)|EE] ≥ E[Y (1)|NE]

Assumption D is a subset of FF’s Assumption C. Although their approach is the basis

for our analysis, their application does not deal with censored outcomes, and thus, their

20To see this, take the LNATEEE definition in (8), E[Y (1, S(0))|EE] − E[Y (0)|EE], employing As-

sumption C, E[Y (1, S(0))|EE] ≥ E[Y (0)|EE], will result in LNATEEE ≥ 0.
21On average, JC participants can expect to receive about 440 hours of academic instruction (Schochet

et al., 2001).
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assumption also contemplates weak monotonic relations with respect to the NN strata.

Our assumption is also related to the stochastic dominance assumption in Blundell et.

al., (2007), Lechner and Melly (2010), and Zhang et. al., (2008). Their assumption is a

special case of the “monotone instrumental variable” assumption, applied in settings with

missing outcomes, and it relates to the stochastic dominance conditions (Manski, 2003).

Similarly to the above mentioned literature, Assumption D formalizes the notion that

the EE strata is likely to be comprise of more capable individuals than those belonging

to the NE strata, since ability is positively correlated with labor market outcomes (e.g.

wages, employment) one should expect potential outcomes for the EE strata to weakly

dominate those for the NE strata. In our particular application, Assumption D is not

directly testable since we are dealing with censored outcomes22, however, in the estimation

section we provide an indirect way of gauging its plausibility.

Employing assumptions A and B in addition to Assumption D results in tighter

bounds. To illustrate this derivation consider the following: from (8), LNATEEE =

E[Yi(1, Si(0))|EE] − E[Yi(0)|EE], one can point identify the control E[Yi(0)|EE] by

computing E[Yi|τi = 0, Si = 1] while E[Yi(1, Si(0))|EE] is only partially identified. The

average outcome in the observed group with (τi, Si) = (1, 1), contains units from two

strata, EE and NE, and can be written as a weighted average, E[Yi|τi = 1, Si = 1] =

πEE

(πEE+πNE)
E[Yi(1)|EE]+ πNE

(πEE+πNE)
E[Yi(1)|NE]. After solving for E[Yi(1)|NE], substitute

it into the inequality of Assumption C6, the result suggest that E[Yi(1)|EE] ≥ E[Yi|τi =

1, Si = 1], implying that E[Yi(1)|EE] is bounded from below by E[Yi|τi = 1, Si = 1].

Therefore, the lower bound in (10) becomes: E[Yi|τi = 1, Si = 1]− E[Yi|τi = 0, Si = 1].

4.2.1 Estimation Using Basic Assumptions and Assumptions C and D

When Assumption C is added to the basic assumptions (A and B), the upper bound

estimate of (10) remains ÛBEE from (13). The estimate for the lower bound, however,

is taken to be the max between zero and the lower bound estimated in (13). Formally,

in addition to the basic assumptions, under weak monotonicity within the EE strata the

lower bound sample estimate is:

22In a setting were outcome data is not censored, FF provided a formal test that requires the combi-

nation of several of their assumptions that can be use to falsify these assumptions.
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L̂Bc
EE = max{0, L̂BEE} (13)

We now explore the tightening power of Assumption D, in combination with A and

B. As with Assumption C, the upper bound estimate of (10) remains ÛBEE from (13).

The effect of Assumption D is on the estimate for the lower bound, which has the following

sample analog form:

L̂Bd
EE =

Σn
i=1Yi · τi · Si
Σn
i=1τi · Si

− Σn
i=1Yi · (1− τi) · Si
Σn
i=1(1− τi) · Si

(14)

Although Assumption D is not directly testable, we can compare average baseline

characteristics across strata as an indirect way of gauging its plausibility. Intuitively, one

should expect greater or equal average values of characteristics for the EE strata, follow

by the NE, and lastly by the NN (i.e., a weakly monotonic rank across strata). We

perform this indirect test in our empirical application (section 6).

The next section will summarize the results of using PS framework and our identi-

fying assumptions to bound effects at different quantiles of the wage distribution.

5 Bounds on Quantiles of Treatment Effects

The principal stratification framework introduced, discussed, and implemented in

the previous section, provides the basis for analyzing different quantiles in the distribution

of effects that JC participation have on post treatment wages. Specifically, this section

reports bounds for treatment effects on the 5th, 10th, ..., and 95th percentile of participants’

wages in week 208.

The parameter of interest in this particular section is the “Quantile Treatment

Effect” (QTE), defined as the difference in quantiles between the treated and control

groups’ outcomes at a given quantile level “α” (Abadie, et. al., 2002; and Chernozhukov

and Hansen, 2005). Conventionally, this difference is defined as long as the marginal

distributions of potential outcomes are identified, in our particular application, however,

marginal distributions of potential outcomes are only partially identified. Nevertheless,

we follow the same conventional rationale and propose the estimation of bounds on the

22



QTE based on the partial identification results derived using PS.

Our work on QTE is closely related to two papers. First, Blundell, et. al., (2007)

derived sharp bounds on the distribution of wages and the interquantile range, which is

their measure to study income inequality in the U.K. for years 1978 to 2000. Their work

builds on Manski (1994) and Manski and Pepper (2000). From this starting point, the

“worst-case” bounds on the conditional quantiles (Manski, 1994), they imposed theoreti-

cal motivated restrictions to tighten bounds on quantiles. First they introduced positive

selection into work, which is expressed as the stochastic dominance of employed individ-

uals’ wages on wages for the unemployed. Note that this is analogous to Assumption D

in our paper. Second, Blundell, et al., (2007) considered exclusion restrictions that can

be weakened with monotonicity.23 Exclusions restrictions were shown to have tightening

power, however, their use is out of the scope of our paper.

Blundell, et. al., (2007) were interested in population parameters and since wages

are not defined for unemployed individuals, their procedure requires nonparametric esti-

mation of employment probabilities and the observed wage distribution amongst workers

conditional on a set of characteristics X. In contrast, our study focuses on analyzing

QTE for a particular subpopulation with defined wages, the EE strata, and thus we do

not rely on nonparametric estimates of employment probabilities and wage distributions.

Even though, in our particular application we do not identify population parameters,

when studying job training program effects our parameter is considered relevant for pol-

icy purposes. Note that we partially identify the effect of training on a population that

accounts for 57% of the total sample, where 39% are individuals with undefined wages

and the remainder 4% are individuals with defined wages dependent on being assigned to

treatment (τ = 1).

Second, Lechner and Melly (2010) use partial identification to bound wage effects of

a German job training program. To bound QTE they consider a nonparametric version

of the linear quantile regression (Koenker and Portnoy, 1987) to estimate the conditional

distribution function, in doing so, they rely on the propensity score to reduce the di-

mensionality problem.24 In contrast, due to the experimental nature of our data and

23In a different setting, Flores and Flores-Lagunes (2010b) imposes similar restrictions to derive bounds

on local average treatment effects, using invalid instrumental variables.
24Another shortcoming in the application, not the methodology, in Lechner and Melly (2010) is data
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our set of assumptions, identification and use of principal stratification allow us to rely

on asymmetrically trimmed distributions (Lee, 2009), unconditional on covariates,25 to

estimate QTE. Therefore, we fully relax assumptions of unconfoundedness, traditionally

seen as an all or nothing assumptions (Imbens and Wooldridge, 2009). In what follows

we formally introduce the proposed methodology to bound QTE.

Let α ∈ (0, 1) denote the α-quantile of the distribution of individuals’ wages that

belong to the EE principal strata F (Yi|EE). Following the same intuition for identifi-

cation of the sample population quantity E[Yi|τi = 0, Si = 1] and the trimmed means

E[Yi|τi = 1, Si = 1, Yi ≤ y11
(p1|0/p1|1)] and E[Yi|τi = 1, Si = 1, Yi ≥ y11

1−(p1|0/p1|1)], which are

comprised of individuals that belong to EE, we propose the construction of bounds for

the local quantile treatment effect LQTEα
EE as follow:

Proposition 1 Under assumptions A and B, then LBα
EE ≤ LQTEα

EE ≤ UBα
EE; where

UBα
EE = Fα[Yi|τi = 1, Si = 1, Yi ≥ y11

1−(p1|0/p1|1)]

− Fα[Yi|τi = 0, Si = 1]

LBα
EE = Fα[Yi|τi = 1, Si = 1, Yi ≤ y11

(p1|0/p1|1)]

− Fα[Yi|τi = 0, Si = 1]

(15)

Where Fα[·] is the α-quantile of F [·]. Analogous to (10), F [Yi|τi = 1, Si = 1, Yi ≥

y11
1−(p1|0/p1|1)] and F [Yi|τi = 1, Si = 1, Yi ≤ y11

(p1|0/p1|1)] correspond to the upper and lower

bounding distributions of infra-marginals, i.e., those individuals that belong to EE in the

observed group (τi, Si) = (1, 1).26 As such, UBα
EE is an upper bound of the difference in

driven. Basically, they don’t have data on wages, and thus, use results of an intuitive decomposition

of earnings to conclude about the effect of training on human capital. Specifically they decompose

E[Y (1)−Y (0)] = E[Y (1)−Y (0)|S(1) = 1]Pr(S(1) = 1) + (E[Y (0)|S(0) ≤ S(1)])Pr(S(0) ≤ S(1)), where

Y represents earnings, the rest is consistent with our notation. The first term is the effect on human

capital and the second the effect on employment.
25Lee (2009) uses baseline characteristics to tighten bounds. The idea is to split the sample into

mutually exclusive groups based on observed covariates and perform the analysis separately in each

group.
26Recall in the case of bounds derived in (10), E[Yi|τi = 1, Si = 1, Yi ≥ y11

1−(p1|0/p1|1)] and E[Yi|τi =

1, Si = 1, Yi ≤ y11
(p1|0/p1|1)] represented the upper and lower bounds for infra-marginal individuals’ means.
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quantiles between the treated and control groups’ defined outcomes at a given α-quantile.

Similarly, LBα
EE represents a lower bound for this difference.

5.1 Estimation Using Basic Assumptions

The estimates of bounds in (15) are obtained as follow:

ÛBα
EE = ŷuα − ŷcα

L̂Bα
EE = ŷlα − ŷcα

,

(16)

where the α-quantiles for both marginal distribution are calculated as:

ŷbdα = min{y :
Σn
i=1τi · Si · 1[Y bd ≤ y]

Σn
i=1τi · Si

≥ α},

with bd = u, l for the upper and lower bounding distribution, respectively; and Y bd

represents the distributions F [Yi|τi = 1, Si = 1, Yi ≥ y11
1−(p1|0/p1|1)] for bd = u and F [Yi|τi =

1, Si = 1, Yi ≤ y11
(p1|0/p1|1)] for bd = l, in (14). Similarly, the α-quantiles for the observed

control group with (τi, Si) = (0, 1), are calculated as:

ŷcα = min{y :
Σn
i=1(1− τi) · Si · 1[Y c ≤ y]

Σn
i=1(1− τi) · Si

≥ α},

with Y c given by the distribution F [Yi|τi = 0, Si = 1] of individuals in the observed

control group.

5.2 Identification and Estimation Using Assumptions C and D

Analogous to Section 4.2, we seek to tighten bounds in (15) by employing As-

sumptions C and D. These assumptions impose direct restrictions on the distributions

of infra-marginal individuals allowing for a more accurate identification. Since section

4.2 contains a detail exposition of how these restrictions work in our application (and in

general), the focus here is on the proposition, estimation and results that can be derived

based on our framework and the set of assumptions. In particular, we propose bounds

on the QTE as in (15) and estimate the difference in quantiles of the distributions of
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infra-marginal individuals and observed control outcomes at a given α-quantile, where

the distribution of infra-marginals’ outcomes has been further restricted by Assumption

C or D.27 Formally we have:

Proposition 2 Under assumptions A and B, and C, then LBα
EE

c ≤ LQTEα
EE ≤ UBα

EE;

where

LBα
EE

c = max{0, LBα
EE} (17)

Estimation in (16) will be slightly modified for the estimate of the lower bound

L̂Bα
EE

c, and remains the same for the upper bound estimate ÛBα
EE. Specifically,

L̂Bα
EE

c = max{0, L̂Bα
EE} (18)

We now consider the identifying power of assumption D, and formally propose:

Proposition 3 Under assumptions A and B, and D, then LBα
EE

d ≤ LQTEα
EE ≤ UBα

EE;

where

LBα
EE

d = Fα[Yi|τi = 1, Si = 1]− Fα[Yi|τi = 0, Si = 1] (19)

As before estimation of the upper bound is given by ÛBα
EE, and the estimate for

LBα
EE

d is given by:

L̂Bα
EE

d = ŷlα
d − ŷcα, (20)

where ŷlα
d = min{y :

Σn
i=1τi·Si·1[Y t≤y]

Σn
i=1τi·Si

≥ α}, and Y t represents the untrimmed distri-

bution F [Yi|τi = 1, Si = 1].

27We could also combine the assumptions to obtain better results, but in our particular application

this combination does not produce tighter bounds than those using D alone with the basic assumptions.

In other words lower bounds under Assumption D are always the binding maximum.
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6 Estimation of Bounds on the Effect of Job Corps

on Participants’ Wages

In this section we empirically assess the effect of Job Corps training on wages using

data from the National Job Corps Study. This substantive empirical analysis starts by

imputing the HM “worst-case” bounds. Results from this general bounding approach are

considered a benchmark from which we proceed by imposing more structure as previously

discussed. After reporting the HM bounds (Section 6.1), we report bounds derived under

the PS framework and the basic assumptions (A and B) in Section 6.2, and assumptions

C and D in Section 6.3. Sections 6.4 and 6.5 illustrate the identifying power of bounds in

Proposition 1 and 2, respectively.

6.1 Horowitz and Manski (HM) “worst-case” bounds

Table 2 reports the HM “worst-case” scenario bounds for the treatment effect of

JC on log wages in week 208 after randomization. Similarly to Lee (2009), the variable

wage was transformed to minimize the effect of outliers on the width of these bounds.

Specifically, wages were split into 20 percentile groups, according to the 5th, 10th,..., and

95th percentile of wages, and individuals belonging to a particular group were assigned

with the mean wage for that group. In addition, we also report these bounds using original

wages. Original wages enable us to: measure the effect of Lee’s (2009) “smoothing” of

wages, and more importantly, take advantage of the original variation in wages to further

analyze bounds of treatment effect on quantiles of their distribution.

Column 3 in Table 2 shows that Lee’s transformed log wages have an upper bound

of the support, denoted by Y UB in (5), of 2.77, and the lower bound of the support,

Y LB in (5), was calculated to be 0.90. As expected, the “smoothing” of wages has a

large impact on the support of the outcome. From the last column, the upper and lower

bounds of the support of original log wages are 5.99 and -1.55, respectively. Consequently,

HM bounds’ width for original log wages (6.244) is considerably larger than that for the

transformed (1.548). Detailed calculations of all quantities needed to construct bounds

in (5) are shown in the second column of Table 2. Despite large differences, evidence
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presented in Table 2 has the same qualitative implication about the HM bounds using

both sets of wages, e.g., transformed and untransformed. Based on the calculated upper

and lower HM bounds using transformed log wages (0.802 and -0.746, respectively) and

original log wages (3.135 and -3.109, respectively), one is driven to conclude that these

intervals are not informative in the context of JC, as they are as consistent with positive

as they are with negative values. Nevertheless, HM “worst-case” bounds provide a useful

starting point for the construction of tighter bounds. An alternative framework to identify

more informative bounds is discussed in the following section, and will be used for the

remainder of this analysis.

6.2 Results under Assumptions A and B

Table 4 reports results after constructing bounds estimates in (11) for LNATEEE.

Population quantities needed for the construction of these bounds under the PS framework

using Lee’s transformed wages are in column 3. Therefore, these results replicate those by

Lee (2009). For example, Lee’s trimming proportion p = 0.068 is equivalent to 1 minus the

proportion of EE in Equation (9), which is estimated as (1−p̂) from (12), and corresponds

to the quantile of Yi with a ln(wage) = 1.636. Lee’s trimmed mean E[Y |y > yp] = 2.090

corresponds to the expected value of Yi for the 1-(p1|0/p1|1) fraction of the largest values

of Yi for those in the observed treatment group, E[Yi|τi = 1, Si = 1, Yi ≥ y11
1−(p1|0/p1|1)],

which is estimated as
Σn

i=1Yi·τi·Si·1[Yi≥ŷ1−p̂]

Σn
i=1τi·Si·1[Yi≥ŷ1−p̂]

from (11). Finally, under both procedures, the

estimated upper bound ÛBEE = 0.093 is computed as the difference between 2.090 and

1.997, where the latter quantity corresponds to the observed control E[Yi|τi = 0, Si = 1]

in (10), estimated as
Σn

i=1Yi·(1−τi)·Si

Σn
i=1(1−τi)·Si

. A symmetric procedure yields an estimated lower

bound L̂BEE=-0.019 for the LNATEEE. The width of these bounds is 0.112.

Table 4 also reports estimated bounds for LNATEEE using original wages. Pop-

ulation quantities needed for the construction of these bounds are in the 4rd column.

Unlike the HM “worst-case” bounds from the previous section, the bounding procedure

in (10) does not depend on a bounded support, and thus, the effect of Lee’s smooth-

ing of wages is negligible. The estimated upper and lower bounds, ÛBEE = 0.099 and

L̂BEE = −0.022, respectively, are slightly greater in magnitude that the estimated bounds

using transformed wages. Consequently, estimated bounds’ width, 0.121, is only slightly

28



larger. Despite minor differences, the implication of the estimated bounds in (12) using

both transformed and original wages is the same. One may note that in comparison to

the HM bounds (Table 2), which are consistent with both large negative and positive

treatment effects, bounds reported in Table 4 are narrower, and hence, more informative

about the size and sing of the effect, i.e., compared to ÛBEE, L̂BEE is negative but closer

to zero, thus, these bounds are more consistent with positive effects.28

In both cases, transformed and original wages, we provide bootstrap standard errors

(in parenthesis) for the estimated bounds.29 Our standard errors are numerically equiv-

alent to those reported in Lee (2009) (0.013 and 0.018 for the upper and lower bound,

respectively), which he derived from the asymptotic normality of his bounds. In partic-

ular, standard errors reported in Table 4 give a sense of the accuracy of the estimated

bounds, more importantly, they can be used to construct confidence intervals.

6.3 Results Adding Assumptions C and D

Columns 3 and 6 in Table 5 (subheading C) report results after tightening bounds

in (11), with Assumption C, for transformed and original wages, respectively. Implemen-

tation of weak monotonicity of mean potential outcomes within the EE strata results in

tighter bounds for the LNATEEE when compared to bounds for the ATE in Lee (2009),

the difference is in the order of 17 percent for both transformed and untransformed wages.

To see this, notice that compared to the negative lower bounds estimated in columns 2 and

5 (subheading A and B), which only employ the basic assumptions, the L̂Bc
EE for both

transformed and original wages, are zero due to Assumption C. Therefore, the estimated

bounds’ width is reduced from 0.112 to 0.093 and from 0.121 to 0.099 for transformed

and original wages, respectively. Given that these bounds are truncated at zero, boot-

strap standard errors (in parenthesis) employ the formula for truncated (at zero) normal

28These bounds are also useful to assert assumptions required for conventional point identification

(discussed in previous section). Notice, the difference in means estimator 0.034 (2.031 - 1.997) is consistent

with the estimated bounds on LNATEEE , which suggests the following statistical test: Reject point

identification assumptions if the point identified effect 0.034 lies out of bounds (ÛBEE , L̂BEE) (Manski,

2003).
29All standard errors for bounds not involving maximum operators are obtained with 5,000 bootstrap

replications.
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distribution (Cai et al., 2008). Unfortunately, these standard errors can not be used to

compute confidence intervals, unlike those standard errors reported under assumptions A

and B (subheading A and B), and assumptions A, B and D (subheading D).

Columns 4 and 7 in Table 5 (subheading D) report results after tightening bounds

in (11), with Assumption D, for transformed and original wages, respectively. In this case

implementation of weak monotonicity of mean potential outcomes across the EE and the

NE strata results in tighter bounds for the LNATEEE when compared to bounds for the

ATE in Lee (2009). The difference is in the order of 47 to 49 percent for transformed

and untransformed wages, respectively. Notice, bounds estimates with Assumption D

are also tighter than those estimated under Assumption C. Differentials are calculated

by comparing the effect of Assumption D on the estimated bounds’ width. For exam-

ple, focusing on original wages, under Assumption D the L̂BEE increases from -0.022,

using basic assumptions A and B, to L̂Bc
EE=0.037, resulting in estimated bounds’ width

reduction from 0.121 to 0.062.

Importantly, employing Assumption D enable us to estimate bounds that are infor-

mative about the sign of the effect of Job Corps training on participant wages, suggesting

a positive change bounded from 0.037 to 0.099 percent (original wages). In contrast, the

estimated bounds using basic assumptions, as those in Lee (2009), are not informative.

Furthermore, compared to Assumption C, Assumption D does not restrict the sign of the

effect to be positive.

As mentioned in section 4.2.1, we perform indirect test to gauge the plausibility

of Assumption D, using baseline sample information on hourly wages, weekly earnings,

and weekly hours worked, which are hypothesized to be related to better labor market

outcomes (e.g., post-treatment wages). According to Assumption D, one should expect

better characteristics for the EE strata, follow by the NE, and lastly by the NN (i.e.,

a weakly monotonic rank across strata). Ranking mean characteristics among EE and

NN is straightforward since it only requires comparing the means between the observed

groups (τi, Si)=(0, 1) and (1, 0), respectively. Baseline hourly wages for the EE and NN

strata are, respectively (standard errors in parenthesis): 3.49 (0.08) and 2.56 (0.05). Since

the difference is statistically significant, so far there is no evidence against Assumption

D. Similarly to FF, the mean for the NE strata can be written as a function of the
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population mean, the means of the EE and NN stratum and the population proportions,

formally: E[BWi|NE] = {E[BWi] − πEEE[BWi|EE] − πNNE[BWi|NN ]}/πNE, where

BWi represent baseline average hourly wages. After computing E[BWi|NE] with the

corresponding sample quantities the resulting mean (standard error), 3.94 (1.49), is not

statistically significant from the means for the EE and NN . This result further suggests

that there is no statistical evidence against Assumption D. Similar conclusions can be

reached when considering baseline weekly earnings and hours worked.30

Following the analysis in Lee (2009), we also examine bounds at different time

horizons (weeks 135, 180 and 208) and provide further evidence about the positive impact

of Job Corps on participants’ wages. In addition, we provide more evidence about the

tightening power of Assumptions C and D. Figure 1 contains 6 different graphs depicting

the weekly evolution of bounds on the treatment effect of interest. We contrasts results

of estimated bounds on LNATEEE by transformed and original wages, graphs on the

left and on the right, respectively; and by assumption, where basic assumptions A and

B are depicted in the upper pair of graphs, Assumption C in the middle graphs, and

Assumption D in the bottom graphs. Given that in both sets of wages (transformed and

original) the estimated results are similar, our focus for this visual analysis is on original

wages (graphs on the right).

Lower bounds using basic assumptions A and B are negative for weeks 135, 180 and

208, ranging from -0.033 to -0.007, the estimated values in weeks 180 and 135, respectively.

These results are quantitatively similar to the results reported in Lee (2009) (which are

reported in the upper right graph). As noted by Lee (2009), these bounds are more

consistent with positive effects, upper bounds range from 0.084 to 0.099, the respective

values for weeks 135 and 208. Implementation of Assumption C results in tighter bounds,

which are depicted in the middle graphs. Note that Assumption C restricts the lower

bounds, in all weeks analyzed, to be equal to zero. As previously discussed upper bounds

remain unchanged across assumptions. Finally, after implementing Assumption D, bounds

become fully informative about the sign of the effect of Job Corps on wages, for all weeks

30Baseline weekly earnings are ranked as follows: for the EE and NN strata 119.46 (2.63) and 89.19

(1.91), respectively, and 198.97 (77.12) for the NE stratum. Weekly hours worked at the baseline are

ranked as follows: for the EE and NN strata 34.69 (0.77) and 35.25 (0.76), respectively, and 40.78 (5.34)

for the NE stratum.
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considered the lowest lower bound observed is 0.030, which corresponds to the effect on

week 180. This last result indicates that the impact of Job Corps on wages is no less than

3.0 percent in the course of weeks considered.

6.4 Quantile Treatment Effect Results under Proposition 1

Table 6 reports the estimated bounds in (16) for the LQTEα
EE using Lee’s (2009)

transformed wages. The α-quantiles studied correspond to the 20 percentiles in column

1, i.e., α=(0.05, 0.10,...,0.90, 0.95). Column 2 contains the respective α-percentiles of

the distribution F [Yi|τi = 0, Si = 1] of wages for employed individuals in the control

group. Columns 3 and 4 report α-percentiles of the distributions F [Yi|τi = 1, Si =

1, Yi ≥ y11
1−(p1|0/p1|1)] and F [Yi|τi = 1, Si = 1, Yi ≤ y11

(p1|0/p1|1)], respectively. Notice that, in

columns 2, 3 and 4, wages, as one may expect, are strictly increasing with α.31 The last

3 columns report, respectively, the upper and lower bounds estimates for the LQTEα
EE,

and the width of these bounds, computed as the difference ÛBα
EE − L̂Bα

EE. Results are

documented in the following paragraph.

The highest upper bound of 0.203 is observed at the 0.05 percentile; subsequent

percentiles’ upper bounds remain positive with values between 0.049 and 0.111, at the 0.60

and 0.65 percentiles, respectively. The upper bound becomes zero at the 0.80 percentile,

spikes up to 0.127 at the subsequent percentile and returns to zero in percentiles 0.90

and 0.95. At the median the upper bound is 0.098, which is close to the upper bound

for the mean (ÛBEE=0.093) reported in Table 4. Also in percentile 0.05, the lower

bound reaches a maximum of 0.105. The effect on the 0.95 percentile is the only one

consistent with negative effects of Job Corps participation on wages, the lower bound is

-0.365. With a lower bound of 0.041, median bounds are informative about the sign of

the effect of JC participation on wages, which is not the case for the mean reported in

Table 4 (L̂BEE=-0.019). Interestingly, lower bounds at several percentiles were zero; this

result can be attributed to Lee’s (2009) smoothing of wages. Recall, these transformed

31Chernozhukov and Hansen (2005), who proposed a model for instrumental quantile treatment effects

estimation, assume that the potential outcomes are strictly increasing in α-quantiles. We have yet to

test the implications of such assumption in our in our model, i.e., monotonicity in the local quantile

treatment response function.
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wages are the mean value within the percentile range of wages they belong to (e.g. wages

between the 0.05 and 0.10 percentiles are equal to the mean value of original wages

between those percentiles), and thus, values of wages from the “worst-case” scenario

trimmed distribution F [Yi|τi = 1, Si = 1, Yi ≤ y11
(p1|0/p1|1)] and wages for the observed

control distribution F [Yi|τi = 0, Si = 1] are likely to overlap when computing LQTEα
EE.

A better assessment of the effect of Lee’s smoothing is conducted after contrasting these

results with those using original wages (Table 7).

Table 7 also reports the estimated bounds in (16) for the LQTEα
EE, but using original

wages. Notice that Lee’s (2009) smoothing of wages has large impacts on the lower bound

estimates of the LQTEα
EE, this can be seen by comparing column 6 in Tables 6 and 7.

Specifically, lower bounds with zero effect of JC participation are not predominant when

using original wages, around 60 percent reduction of zero effect lower bounds relative

to those reported using transformed wages. Using original wages is advantageous in the

sense that it allow us to exploit the original variation on wages, thus resulting in a more

credible analysis of QTE. In what follows the analysis is performed using original wages.

Figure 2 contains a graph depicting the upper and lower bounds, based on results

reported in Table 7. After taking advantage of the original variation in wages, we note

that for higher quantiles of the distribution (higher than 0.75 percentile) the effect of

JC on wages may be negative, the estimated lower bounds for the LQTEα
EE range from

-0.003 to -0.200 for percentiles 0.85 and 0.95. This 20 percent reduction in wages due

to JC participation at the 0.95 percentile is about 9 times more negative than the lower

bound for the mean effect reported in Table 4. In contrast, for quantiles below the median,

bounds for the treatment effect of interest are positive. More importantly, for the lowest

quantiles studied, 0.05, 0.10, 0.15 percentiles, the upper bounds for the effect of JC on

wages are larger relative to the rest of the distribution, these values are 0.161, 0.102,

and 0.087, respectively. At the median, bounds (ÛB0.5
EE = 0.081 and L̂B0.5

EE = 0.030) are

tighter and informative, i.e., consistent with positive effects of JC on wages, relative to

bounds for the mean effect reported in Table 4 (L̂BEE = −0.022 and ÛBEE = 0.099).

We would like to highlight the importance of these empirical results as they provide

the basis for policy implication discussion in the last section. In summary, according to

the derived bounds for the LQTEα
EE, the effect of JC on participants’ wages’ distribution
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is heterogeneous, this is evident given that, in general, bounds contain positive and larger

effects at percentiles lower than the median than those higher, which may contain negative

effects as they approach the endpoint of the distribution.

6.5 Quantile Treatment Effect Results under Proposition 2

Estimated bounds for the LQTEα
EE are reported in Table 8. Consistent with previ-

ous results (section 4.2.1), the restrictive nature of Assumption C (heading Monotonicity

within strata) affects the the lower bounds (subheading LB) on the last five quantiles

analyzed, note that these lower bounds under the basic assumptions A and B in column

3 are negative. Results for the remainder quantiles (from 0.05 to 0.70 percentiles) do not

change compared to those calculated assuming A and B (Basic A and B), and thus, we

can draw the same conclusions as before (those for Table 7).

Estimated bounds for the LQTEα
EE employing weak monotonicity across strata (D

plus the basic assumptions A and B) are reported under columns 8 and 9 in Table 8.

Consistent with previous results (also in section 4.2.1), compared to bounds estimated

using Assumption A, B and C, bounds estimates employing A, B and D are tighter and

more informative in every percentile analyzed. These estimated results can be seen clearer

in the graphical analysis in Figure 3, where Assumption D yields tighter bounds (UB and

LB-D for upper and lower, respectively), followed by C (UB and LB-C) and lastly by

Basic Assumptions (UB and LB).

Importantly, we find that the program’s impact on lower quantiles of the distribution

is higher, with the highest impact being in the 0.05 percentile, where the positive effect

on wages is bounded between 0.084 and 0.161. At the median, the effect is bounded

between 0.042 and 0.081, which is similar but tighter than the corresponding results for

the mean. Furthermore, the effects at other conditional quantiles of the distribution of

wages do not exceed bounds between 0.022 and 0.067. These results are encouraging

with regard to the effectiveness of Job Corps on participant’s wages, and provide new

insights about the policy-relevant question of whether Job Corps has a higher impact on

the more disadvantaged participants, i.e., those individuals in the lower tail of the wage

distribution.
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7 Concluding Remarks and Implications

In this paper, we empirically assess the effect of training on wages using data from

the National Job Corps Study, a randomized evaluation of the U.S. Job Corps, the na-

tion’s largest and most important job training program targeting disadvantaged youths.

In accomplishing this objective we make two important contributions. The first one, is a

substantive empirical analysis of the effect of the Job Corps training program on partic-

ipants’ wages. Results derived in our empirical application provide evidence to answer a

policy relevant question about the impact of Job Corps on more disadvantage participants,

and hence its effectiveness. With legislation seeking to cut federal expending, positive ev-

idence is particularly important for this federally funded program. Importantly, data to

derive our results come from the first nationally representative experimental evaluation

of an active labor market program (Schochet et al., 2008), and thus implications can be

generalized, with confidence, to Job Corps at a national level.

The second contribution, methodological in nature, is that we extend recent partial

identification results of treatment effects in the presence of an endogenous post-treatment

variable (in this case employment) due to Zhang et al., (2008), Lee (2009), and Flores

and Flores-Lagunes (2010). This strategy allows constructing informative nonparametric

bounds for the causal effect of interest under weaker assumptions than those convention-

ally used for point identification of treatment effects in the presence of sample selection. In

addition to providing bounds on average effects, we propose bounds on quantile treatment

effects of the program on participants’ wages. Importantly, these bounds allow analyzing

the heterogeneity of this effect on different points of the participants’ post-training wage

distribution, a feature that is not capture when analyzing mean impacts (Bitler et al.,

2006).

When only considering mean impacts, our bounds are tighter and more informative

about the sign of the effect of training on wages relative to those in Lee (2009). Our

results indicate that the Job Corps program has a positive average effect on participants’

wages measured 208 weeks after random assignment that is bounded between 3.4 and 9.3

percent. Similarly to Lee (2009), we conclude that the program can be view as a human

capital investment given that these bounds are roughly consistent with point estimates
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reported in the literature of returns to schooling (Card, 1999).

The proposed quantile model allows characterizing the impact heterogeneity of Job

Corps training on different points of the participants’ wage distribution. Impacts on lower

quantiles of the distribution of wages are higher, with the highest impact being in the 5th

percentile where a positive effect on wages is bounded between 8.4 and 16.1 percent. At

the median, the effect is bounded between 4.2 and 8.1percent, which is similar but tighter

than the corresponding results for the mean. Furthermore, the effects at other conditional

quantiles of the distribution of wages do not exceed bounds between 2.2 and 6.7 percent.

These results are encouraging with regard to the effectiveness of Job Corps on par-

ticipant’s wages, and provide new insights about the policy-relevant question of whether

Job Corps has a higher impact on the more disadvantaged participants, i.e., those indi-

viduals in the lower tail of the wage distribution. In other words, it is now evident that

the effect of Job Corps is twofold; first, it has a positive impact across the studied distri-

bution of wages (20 percentiles), second, the program has an effect of wage compression

within disadvantage groups. To our knowledge, the latter effect has not been previously

identified, and thus it sheds light on the effectiveness of Job Corps at a new, important

level.
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Table 1. Summary statistics, by treatment status, NJCS. 

Row 

#

Proportion 

nonmissing Mean S.D.

Proportion 

nonmissing Mean S.D. Difference S.E.

1 Female 1.00 0.458 0.498 1.00 0.452 0.498 -0.006 0.010

2 Age 1.00 18.351 2.101 0.98 18.436 2.159 0.085 0.045

3 White 1.00 0.263 0.440 1.00 0.266 0.442 0.002 0.009

4 Black 1.00 0.491 0.500 1.00 0.493 0.500 0.003 0.010

5 Hispanic 1.00 0.172 0.377 1.00 0.169 0.375 -0.003 0.008

6 Other race 1.00 0.074 0.262 1.00 0.072 0.258 -0.002 0.005

7 Never married 0.98 0.916 0.278 0.98 0.917 0.275 0.002 0.006

8 Married 0.98 0.023 0.150 0.98 0.020 0.139 -0.003 0.003

9 Living together 0.98 0.040 0.197 0.98 0.039 0.193 -0.002 0.004

10 Separated 0.98 0.021 0.144 0.98 0.024 0.154 0.003 0.003

11 Has a child 0.99 0.193 0.395 0.98 0.189 0.392 -0.004 0.008

12 # of child 0.99 0.268 0.640 0.98 0.270 0.650 0.002 0.014

13 Education 0.98 10.105 1.540 0.98 10.114 1.562 0.009 0.033

14 Mother's ed. 0.81 11.461 2.589 0.82 11.483 2.562 0.022 0.060

15 Father's ed. 0.61 11.540 2.789 0.62 11.394 2.853 -0.146 0.075

16 Ever arrested 0.98 0.249 0.432 0.98 0.249 0.432 -0.001 0.009

household income:

17 <3,000 0.65 0.251 0.434 0.63 0.253 0.435 0.002 0.011

18 3,000 - 6,000 0.65 0.208 0.406 0.63 0.206 0.405 -0.002 0.011

19 6,000 - 9,000 0.65 0.114 0.317 0.63 0.117 0.321 0.003 0.008

20 9,000 - 18,000 0.65 0.245 0.430 0.63 0.245 0.430 0.000 0.011

21 >18,000 0.65 0.182 0.386 0.63 0.179 0.383 -0.003 0.010

Personal income

22 <3,000 0.92 0.789 0.408 0.92 0.789 0.408 -0.001 0.009

23 3,000 - 6,000 0.92 0.131 0.337 0.92 0.127 0.334 -0.003 0.007

24 6,000 - 9,000 0.92 0.046 0.209 0.92 0.053 0.223 0.007 0.005

25 >9,000 0.92 0.034 0.181 0.92 0.031 0.174 -0.003 0.004

At baseline

26 Have a job 0.98 0.192 0.394 0.98 0.198 0.398 0.006 0.008

27 Months employed 1.00 3.530 4.238 0.60 3.596 4.249 0.066 0.089

28 Had a job 0.98 0.627 0.484 0.98 0.635 0.482 0.007 0.010

29 Earnings 0.93 2810.482 4435.616 0.94 2906.453 6401.328 95.971 118.631

30 Usual hrs/week 1.00 20.908 20.704 0.61 21.816 21.046 0.908 0.437

31 Usual weekly earnings 1.00 102.894 116.465 0.97 110.993 350.613 8.099 5.423

After random assignment

32 Week 52 weekly hrs. 1.00 17.784 23.392 1.00 15.297 22.680 -2.487 0.482

33 Week 104 weekly hrs. 1.00 21.977 26.080 1.00 22.645 26.252 0.668 0.547

34 Week 156 weekly hrs. 1.00 23.881 26.151 1.00 25.879 26.574 1.997 0.551

35 Week 208 weekly hrs. 1.00 25.833 26.250 1.00 27.786 25.745 1.953 0.544

36 Week 52 weekly earnings 1.00 103.801 159.893 1.00 91.552 149.282 -12.249 3.238

37 Week 104 weekly earnings 1.00 150.407 210.241 1.00 157.423 200.266 7.015 4.297

38 Week 156 weekly earnings 1.00 180.875 224.426 1.00 203.714 239.802 22.839 4.855

39 Week 208 weekly earnings 1.00 200.500 230.661 1.00 227.912 250.222 27.412 5.127

N = 3599 5546

Variable

Control Program Difference

Notes:  Missing values for each pretreatment characteristic were imputed with the mean of that variable.  

Computation used design weights.  

* Indicates that the difference is statistically significant at a 5% level. 

All proportions of nonmissing, estimated mean values, and standard deviations (S.D.) for pre and post-

treatment variables were the same as those reported in Lee (2009). 

 



Table 2. Bounds on treatment effects for week 208 ln(wage) using bounds of support (Horowitz and 

Manski, 2000). 

 

Quantity in eq. (5) Transformed wages Original wages 

Bounds on Support of wages  

  5
th

 percentile mean wage  2.46 4.77 

95
th

 percentile mean wage  15.96 14.00 

Y
LB

 Y
LB

 0.90 -1.55 

Y
UB

 Y
UB

 2.77 5.99 

Control group  

  Observations  3599 3599 

(i)Employment rate  Pr(Si=1 | τi=0) 0.566 0.566 

(ii)Mean ln(wage) E[Yi | τi=0, Si=1] 1.997 1.991 

(a)Upper bound (i)*(ii)+(1-(ii))*Y
UB

 2.332 3.729 

(b)Lower bound (i)*(ii)+(1-(ii))*Y
LB

 1.52 0.451 

Treatment group  

  Observations  5546 5546 

(iii)Employment rate Pr(Si=1 | τi=1) 0.607 0.607 

(iv)Mean ln(wage) E[Yi | τi=1, Si=1] 2.031 2.028 

(c)Upper bound (iii)*(iv)+(1-(iii))*Y
UB

 2.321 3.587 

(d)Lower bound (iii)*(iv)+(1-(iii))*Y
LB

 1.586 0.620 

ITT Effect  

  Upper bound UB
HM

 0.802 3.135 

Lower bound LB
HM

 -0.746 -3.109 

Width UB
HM 

-
 
LB

HM
 1.548 6.244 

Notes: The population quantities Pr(Si=0 | τi=0) and Pr(Si=0 | τi=1) are calculated as (1- Pr(Si=1 | τi=0)) and  

(1- Pr(Si=1 | τi=1)), respectively. 

Equivalently to using Equations in (5) to calculate UB
HM

 and
 
LB

HM
, one may use the upper and lower 

bounds for the control and treatment group, labeled (a), (b), (c), (d), respectively, and compute:  

UB
HM

= (c)–(b) and LB
HM

= (d)-(a). 

The variable wage was transformed as described in Section 6.1; these results are reported under the column 

heading “Transformed wages”.  

 

 

 

 

Table 3. Observed groups based on treatment and employment indicators (τi, Si) and PS mix within 

groups. 

Groups by observed (τi, Si) PS PS (individual monotonicity) 

(0,0) NN and NE NN and NE 

(1,1) EE and NE EE and NE 

(1,0) NN and EN NN 

(0,1) EE and EN EE 

Notes: PS stands for principal strata. 

  

 



Table 4. Bounds on treatment effects for ln(wage) in week 208 using principal stratification (PS). 

 

PS framework Transformed wages Original wages 

Control group  

  Number of observations  3599 3599 

(ii)Proportion of nonmissing p1|0 = Pr(Si =1| τi=0) 0.566 0.566 

(iii)Mean ln(wage) for employed E[Yi | τi=0, Si=1] 1.997 1.991 

Treatment group  

  Number of observations  5546 5546 

(v)Proportion of nonmissing p1|1 = Pr(Si =1| τi=1) 0.607 0.607 

Mean ln(wage) for employed E[Yi | τi=1, Si=1] 2.031 2.028 

 

 

  p= [(v)-(ii)]/(v) 1 - p1|0 /  p1|1 0.068 0.068 

p
th

 quantile               
   1.636 1.639 

(ix)Trimmed mean: E[Y|y>yp] E[Yi | τi=1, Si=1, Yi ≥               
   ] 2.090 2.090 

 

 

  (1-p)
th

 quantile             
   2.768 2.565 

(xi)Trimmed mean: E[Y|y<y1-p] E[Yi | τi=1, Si=1, Yi ≤             
   ] 1.978 1.969 

Effect  

  Upper bound UBEE = (ix)-(iii) 0.093 0.099 

 

 (0.014) (0.014) 
Lower bound LBEE = (xi)-(iii) -0.019 -0.022 

 

 (0.018) (0.016) 

Width UBEE
 
- LBEE 0.112 0.121 

Notes: PS stands for principal stratification methodology, as used in Flores and Flores-Lagunes (2010). 

In parenthesis are standard errors computed as described in footnote 31. 

 
Table 5. Bounds on treatment effects for ln(wage) in week 208 using principal stratification (PS) 

and assumptions A and B, C, and D. 

 

Transformed wages 

 

Original wages 

Assumption: A and B C D 

 

A and B C D 

Control group       

    Number of observations 3599 3599 3599 

 

3599 3599 3599 

(ii)Proportion of nonmissing 0.566 0.566 0.566 

 

0.566 0.566 0.566 

Mean ln(wage) for employed 1.997 1.997 1.997 

 

1.991 1.991 1.991 

Treatment group 

       Number of observations 5546 5546 5546 

 

5546 5546 5546 

(v)Proportion of nonmissing 0.607 0.607 0.607 

 

0.607 0.607 0.607 

Mean ln(wage) for employed 2.031 2.031 2.031 

 

2.028 2.028 2.028 

        p= [(v)-(ii)]/(v) 0.068 0.068 0.068 

 

0.068 0.068 0.068 

pth quantile 1.636 1.636 1.636 

 

1.639 1.639 1.639 

Trimmed mean: E[Y|y>yp] 2.090 2.090 2.090 

 

2.090 2.090 2.090 

        1-p quantile 2.768 2.768 2.768 

 

2.565 2.565 2.565 

Trimmed mean: E[Y|y<y1-p] 1.978 1.978 1.978 

 

1.969 1.969 1.969 

Effect 

       Upper bound 0.093 0.093 0.093 

 

0.099 0.099 0.099 

 

(0.014) (0.014) (0.014) 

 

(0.014) (0.014) (0.014) 

Lower bound -0.019 0.000 0.034  -0.022 0.000 0.037 

 

(0.018) (0.011) (0.011) 

 

(0.016) (0.012) (0.012) 

Width  0.112 0.093 0.059   0.121 0.099 0.062 

Notes:  Assumption A and B for randomized treatment and individual level monotonicity. Assumptions C and D 

correspond to monotonicity within and across strata, respectively. In parenthesis are standard errors, 

(described in footnote 31).  Standard errors’ computations under Assumption C follow Cai et al. (2008). 



 

 

 

 

 
Figure 1. Bounds of Job Corps Effects by Week after Random Assignment.  
Notes:  Y axis is the effect on log wages. 

Assumption A and B for randomized treatment and individual level monotonicity. Assumptions C and D 

correspond to monotonicity within and across strata, respectively. 

Weekly Evolution of Bounds for the Treatment Effect 

of Job Corps on Wages, Assumptions A, B, C and D 



Table 6. Bounds on quantiles of the distribution of transformed ln(wages) in week 208, using PS 

framework and Assumptions A and B.  
α-percentile α-control α-F[Y|y>y1-p] α-F[Y|y<yp] Upper bound Lower bound Width 

0.05 1.499 1.701 1.604 0.203 (0.062) 0.105 (0.077) 0.097 

0.10 1.660 1.740 1.660 0.080 (0.026) 0.000 (0.014) 0.080 

0.15 1.701 1.789 1.740 0.087 (0.014) 0.039 (0.021) 0.049 

0.20 1.740 1.824 1.789 0.085 (0.029) 0.049 (0.028) 0.036 

0.25 1.789 1.866 1.789 0.077 (0.014) 0.000 (0.015) 0.077 

0.30 1.824 1.900 1.824 0.075 (0.023) 0.000 (0.023) 0.075 

0.35 1.866 1.942 1.866 0.076 (0.007) 0.000 (0.013) 0.076 

0.40 1.900 1.975 1.942 0.075 (0.027) 0.043 (0.026) 0.033 

0.45 1.942 2.016 1.942 0.074 (0.007) 0.000 (0.013) 0.074 

0.50 1.975 2.073 2.016 0.098 (0.026) 0.041 (0.023) 0.057 

0.55 2.016 2.073 2.016 0.057 (0.013) 0.000 (0.023) 0.057 

0.60 2.073 2.122 2.073 0.049 (0.011) 0.000 (0.011) 0.049 

0.65 2.073 2.184 2.122 0.111 (0.038) 0.049 (0.032) 0.062 

0.70 2.122 2.184 2.122 0.062 (0.023) 0.000 (0.026) 0.062 

0.75 2.184 2.277 2.184 0.092 (0.004) 0.000 (0.014) 0.092 

0.80 2.277 2.277 2.277 0.000 (0.015) 0.000 (0.046) 0.000 

0.85 2.277 2.403 2.277 0.127 (0.060) 0.000 (0.061) 0.127 

0.90 2.403 2.403 2.403 0.000 (0.116) 0.000 (0.061) 0.000 

0.95 2.768 2.768 2.403 0.000 (0.000) -0.365 (0.087) 0.365 

Notes: α-control corresponds to the α-percentile of F[Yi | τi=0, Si=1]. 

α-F[Y|y>y1-p] and α-F[Y|y<yp] correspond to the α-percentile of the distributions F[Yi | τi=1, Si=1, Yi ≥ 

               
  ] and F[Yi | τi=1, Si=1, Yi ≤             

   ], respectively.  

 The upper bound     
 = α-F[Y|y>y1-p] - α-control. The lower bound     

 = α-F[Y|y<yp] - α-control. 

 The width in the last column is computed as     
 -     

 . 

In parenthesis are bootstrap standard errors, computed as described in footnote 31. 

 

Table 7. Bounds on quantiles of the distribution of original ln(wages) in week 208, using PS 

framework and Assumptions A and B. 

α-percentile α-control α-F[Y|y>y1-p] α-F[Y|y<yp] Upper bound Lower bound Width 

0.05 1.526 1.686 1.594 0.161 (0.055) 0.068 (0.062) 0.092477 

0.10 1.648 1.749 1.658 0.102 (0.024) 0.011 (0.011) 0.090972 

0.15 1.705 1.792 1.706 0.087 (0.010) 0.001 (0.013) 0.085782 

0.20 1.749 1.820 1.792 0.071 (0.022) 0.043 (0.020) 0.028330 

0.25 1.792 1.872 1.792 0.080 (0.014) 0.000 (0.007) 0.080043 

0.30 1.833 1.902 1.833 0.070 (0.022) 0.000 (0.013) 0.069526 

0.35 1.872 1.946 1.872 0.074 (0.007) 0.000 (0.008) 0.074108 

0.40 1.910 1.974 1.940 0.065 (0.022) 0.030 (0.020) 0.034106 

0.45 1.946 2.015 1.946 0.069 (0.006) 0.000 (0.008) 0.068993 

0.50 1.973 2.054 2.002 0.081 (0.022) 0.030 (0.019) 0.051643 

0.55 2.015 2.079 2.019 0.065 (0.007) 0.005 (0.016) 0.059961 

0.60 2.062 2.110 2.079 0.048 (0.019) 0.018 (0.016) 0.030772 

0.65 2.079 2.141 2.092 0.062 (0.013) 0.012 (0.017) 0.049378 

0.70 2.140 2.197 2.140 0.057 (0.010) 0.000 (0.012) 0.057159 

0.75 2.197 2.251 2.175 0.054 (0.012) -0.023 (0.019) 0.076770 

0.80 2.251 2.303 2.225 0.051 (0.018) -0.027 (0.029) 0.077962 

0.85 2.303 2.369 2.300 0.067 (0.021) -0.003 (0.022) 0.069914 

0.90 2.439 2.485 2.327 0.046 (0.030) -0.111 (0.040) 0.157629 

0.95 2.608 2.669 2.408 0.061 (0.036) -0.200 (0.051) 0.260884 

Notes:  Same notes as in Table 6 apply to Table 7. The difference is that the outcome, Yi, corresponds to original 

ln(wages) rather than transformed ln(wages). In parenthesis are bootstrap standard errors, computed as 

described in footnote 31. 



 
 

 

Figure 2. Bounds on quantiles of the distribution of original ln(wages)in week 208, using PS 

framework and assumptions A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8. Bounds on quantiles of the distribution of original ln(wages) in week 208, using PS 

framework and assumptions A and B, C, and D. 

  Basic A and B   Monotonicity within strata   Monotonicity across strata 

α-percentile UB LB Width   UB LB Width   UB LB Width 

0.05 0.161 0.068 0.092 
 

0.161 0.068 0.092 
 

0.161 0.084 0.077 

 
(0.055) (0.062) 

  
(0.055) (0.044) 

  
(0.055) (0.054) 

 
0.10 0.102 0.011 0.091 

 
0.102 0.011 0.091 

 
0.102 0.011 0.091 

 
(0.024) (0.011) 

  
(0.024) (0.007) 

  
(0.024) (0.012) 

 
0.15 0.087 0.001 0.086 

 
0.087 0.001 0.086 

 
0.087 0.027 0.060 

 
(0.010) (0.013) 

  
(0.010) (0.008) 

  
(0.010) (0.013) 

 
0.20 0.071 0.043 0.028 

 
0.071 0.043 0.028 

 
0.071 0.043 0.028 

 
(0.022) (0.020) 

  
(0.022) (0.016) 

  
(0.022) (0.015) 

 
0.25 0.08 0.000 0.080 

 
0.08 0.000 0.080 

 
0.08 0.025 0.055 

 
(0.014) (0.007) 

  
(0.014) (0.044) 

  
(0.014) (0.012) 

 
0.30 0.07 0.000 0.070 

 
0.07 0.000 0.070 

 
0.07 0.039 0.030 

 
(0.022) (0.013) 

  
(0.022) (0.007) 

  
(0.022) (0.013) 

 
0.35 0.074 0.000 0.074 

 
0.074 0.000 0.074 

 
0.074 0.035 0.039 

 
(0.007) (0.008) 

  
(0.007) (0.005) 

  
(0.007) (0.013) 

 
0.40 0.065 0.030 0.034 

 
0.065 0.03 0.034 

 
0.065 0.036 0.028 

 
(0.022) (0.020) 

  
(0.022) (0.016) 

  
(0.022) (0.014) 

 
0.45 0.069 0.000 0.069 

 
0.069 0.000 0.069 

 
0.069 0.035 0.034 

 
(0.006) (0.008) 

  
(0.006) (0.005) 

  
(0.006) (0.011) 

 
0.50 0.081 0.030 0.052 

 
0.081 0.029 0.053 

 
0.081 0.042 0.039 

 
(0.022) (0.019) 

  
(0.022) (0.016) 

  
(0.022) (0.014) 

 
0.55 0.065 0.005 0.060 

 
0.065 0.005 0.060 

 
0.065 0.065 0.000 

 
(0.007) (0.016) 

  
(0.007) (0.010) 

  
(0.007) (0.010) 

 
0.60 0.048 0.018 0.031 

 
0.048 0.018 0.031 

 
0.048 0.022 0.026 

 
(0.019) (0.016) 

  
(0.019) (0.012) 

  
(0.019) (0.017) 

 
0.65 0.062 0.012 0.049 

 
0.062 0.012 0.049 

 
0.062 0.061 0.001 

 
(0.013) (0.017) 

  
(0.013) (0.011) 

  
(0.013) (0.009) 

 
0.70 0.057 0.000 0.057 

 
0.057 0.000 0.057 

 
0.057 0.035 0.022 

 
(0.010) (0.012) 

  
(0.010) (0.004) 

  
(0.010) (0.014) 

 
0.75 0.054 -0.023 0.077 

 
0.054 0.000 0.054 

 
0.054 0.038 0.016 

 
(0.012) (0.019) 

  
(0.012) (0.003) 

  
(0.012) (0.015) 

 
0.80 0.051 -0.027 0.078 

 
0.051 0.000 0.051 

 
0.051 0.051 0.000 

 
(0.018) (0.029) 

  
(0.018) (0.005) 

  
(0.018) (0.019) 

 
0.85 0.067 -0.003 0.07 

 
0.067 0.000 0.067 

 
0.067 0.049 0.018 

 
(0.021) (0.022) 

  
(0.021) (0.001) 

  
(0.021) (0.018) 

 
0.90 0.046 -0.111 0.158 

 
0.046 0.000 0.046 

 
0.046 0.03 0.016 

 
(0.030) (0.040) 

  
(0.030) (0.001) 

  
(0.030) (0.033) 

 
0.95 0.061 -0.200 0.261 

 
0.061 0.000 0.061 

 
0.061 0.031 0.030 

 
(0.036) (0.051) 

  
(0.036) (0.001) 

  
(0.036) (0.034) 

 
Notes: In parenthesis are standard errors, computed as described in footnote 31.  Standard errors’ computations 

under Monotonicity within strata (Assumption C) follow Cai et al. (2008). 

 

 

 

 

 



 
Figure 3. Bounds on quantiles of the distribution of original ln(wages)in week 208, using PS 

framework under assumptions A and B, C, and D. 
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