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Economic Value of Information: Wheat Protein Measurement

(Preliminary Draft - Please do not Quote without Permission)

Abstract

In this paper we study U.S. wheat farmers’ willingness to pay for near infrared

(NIR) sensor that can segregates wheat grains according to their protein concen-

tration. We first develop a microeconomic optimization model of wheat farmers’

segregating and commingling decisions. Then we use U.S. wheat prices and stocks

to estimate a wheat protein stock demand system. This allows us to establish the

effects of changes in the protein profile of wheat stocks on protein premiums. The

paper’s simulation section combines the results from the microeconomic optimiza-

tion model and from the econometric estimations to simulate wheat farmers’ WTP

for the sorting technology. Preliminary findings from the simulation show that a typ-

ical hard red winter (hard red spring) wheat farmer’s WTP for the sorting technology

is 5.6 (4.8) cents per bushel.

Key words: information, economic value, wheat, protein, market structure.

JEL classification: Q12, Q16, D81.
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1 Introduction

Wheat is the world’s second largest crop by average annual (1990-2009) production. The

average annual wheat production over 1990 to 2009 is 593.45 million metric tons.The

U.S. is the third largest wheat producer which produces about 10% of world production.

The top two wheat producers in the world are China and India, which respectively produce

about 17% and 11% of world wheat production. The top twenty countries produce about

86% of total world wheat.1

Protein concentration is one of the major factors that affect prices of wheat and barley.

For wheat that is used to produce bread or pasta, higher protein concentration is preferred

due to the favorable end-use properties added by the higher protein level, and hence

higher protein wheat often receives protein premiums. For example, U.S. Wheat As-

sociates (http://www.uswheat.org) and Agricultural Marketing Service (AMS) at USDA

(http://www.ams.usda.gov/AMSv1.0/) report wheat prices based on protein concentra-

tions. Like U.S. wheat markets, wheat markets in other major wheat countries pay pro-

tein premiums as well. In China and France, protein levels directly determine the grading

of wheat (Tab. 37 and Tab. 58 in Popper, Schäfer, and Freund, 2007). In Canada, No.

1 Canada Western Red Spring (CWRS) wheat and No. 2 CWRS wheat are often sold

at different protein levels (p50, Popper, Schäfer, and Freund, 2007). Australian Wheat

Board (AWB) has maximum or minimum requirements for wheat protein levels for its six

main wheat grades (Tab. 28 in Popper, Schäfer, and Freund, 2007). India also has such

requirements for its five classes of wheat (p86, Popper, Schäfer, and Freund, 2007). In

Argentina, wheat experts proposed to further divide wheat classes by protein levels (p94,

Popper, Schäfer, and Freund, 2007).

1Data source of this paragraph: Food and Agricultural Organizations of the United Nations
(http://faostat.fao.org/site/567/default.aspx#ancor), accessed on October 19th, 2010.
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A new technology named near infrared (NIR) sensor makes sorting wheat grains ac-

cording to their protein concentrations possible (Long, Engel, and Siemens, 2008). If the

sorting technology is widely adopted by wheat farmers, then one should expect that the

supply of wheat with favorable protein concentration levels will increase. Given that the

demand is unchanged, the protein premium will be negatively affected by the sorting tech-

nology. The purpose of this article is to study wheat farmers’ willingness to pay (WTP)

for the sorting technology. To fulfill the purpose we first develop a microeconomic opti-

mization model of wheat farmers’ segregating and commingling decisions. Then we use

U.S. wheat prices and stocks to estimate a wheat protein stock demand system. This al-

lows us to establish the effects of changes in the protein profile of wheat stocks on protein

premiums. The paper’s simulation section combines the results from the microeconomic

optimization model and from the econometric estimations to simulate wheat farmers’

WTP for the sorting technology.

Our analysis focuses on Hard Red Winter (HRW) wheat and Hard Red Spring (HRS)

wheat, which account for about 64% wheat production in the U.S. Initial wheat stocks

are important to determine WTP since they affect wheat price schedules. We simulated a

normalized WTP (i.e., WTP for a sorting service which sorts wheat production from 100

acres every year and for 10 years). For HRW wheat, results show that if we take sets of 10

year continuous historical data and use them as wheat stocks facing HRW wheat farmers,

then the normalized WTP ranges from from 1,821to2,273, depending on which 10-year

data we excerpt from the data set.

The article proceeds as follows. In Section 2 we develop a conceptual model of a

typical wheat farmer’s optimal segregating and commingling decisions facing various

protein premium schedules. Section 3 estimates a wheat protein stock demand system.

Section 4 simulates the WTP of wheat farmers’ for the sorting technology. Section 5

4



concludes.

2 Conceptual Model

In this section we develop a microeconomic optimization model of a wheat farmer’ segre-

gating and commingling decisions according to wheat protein concentrations. The goal of

the wheat farmer is to maximize the profit from selling her wheat by optimally segregat-

ing and commingling her wheat given the protein premium schedule and the distribution

of protein concentration of her wheat. At this moment we assume that segregating and

commingling costs are zero. Therefore, the profit maximizing goal is equal to maximizing

the revenue from selling wheat.

Processing wheat with various protein levels is different from processing wheat with

various dockage rate. Since protein is part of wheat kernels, protein within one load of

wheat does not have linear separability that dockage has. For example, 1,000 bushels

of grain with average 10% protein level cannot be segregated into 900 bushels of zero

percent protein wheat and 100 bushels of 100% protein wheat. This means that the segre-

gating result will be constrained by the distribution of protein concentration in one load of

wheat. For instance, if 1,000 bushel of 12% protein wheat is a mix of 500 bushels of pure

10% protein wheat (imagine that each grain of this 500 bushels contains 10% protein) and

500 bushels of 14% protein wheat (imagine that each grain of this 500 bushels contains

14% protein). Suppose the farmer segregate this 1,000-bushel load into 1,000 one-bushel

loads. Then the protein level of any load among the 1,000 one-bushel loads must lie

in the interval [10%,14%]. Such constraint does not apply when processing wheat with

various dockage rate (Hennessy and Wahl 1997). For example, 1,000 bushels of grain

with 1% dockage for unacceptable materials can be decomposed into 990 bushels of zero
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percent dockage grain and 10 bushels of cleanings, or 500 bushels of 1.1% dockage and

500 bushels of 0.9% dockage. Therefore, regarding processing wheat at protein dimen-

sion, like Hennessy and Wahl (1997), perfect commingling is an available action to the

wheat farmer; unlike Hennessy and Wahl (1997), however, perfect segregating is not an

available action to the wheat farmer. For one load of wheat, the extent of segregation

depends on this load’s distribution of protein concentration. This future non-linear sep-

arability makes the analysis of this article different from the analysis in Hennessy and

Wahl (1997), in which both perfect segregating and perfect commingling are available as

choices to maximize revenue.

2.1 Model Setup

Unlike Hennessy and Wahl (1997) that studied optimal segregating or commingling de-

cision at elevator level, we consider the optimal decision at farm level. This is because

the near infrared (NIR) technology can be readily applied in field and farmers have the

incentive to adopt the technology. If wheat farmers and elevators are facing the same pro-

tein premium schedule, then once farmers adopt the technology to explore the arbitrage

opportunity, there will be very little benefit for elevators to process wheat according to

protein concentration levels. We assume that before the NIR technology is adopted, the

wheat farmer sell her wheat in one load. That is, without the NIR technology, the farmer

cannot segregate high protein wheat from his harvest to obtain the protein premium. After

adopting the NIR technology, then she has the freedom to sorting her wheat according to

protein concentration, and then optimize her revenue either by segregating or commin-

gling. The method developed in this article can be readily applied to analyzing optimal

arrangements of multiple wheat loads.

To better present the results in this paper, a series of definitions about the wheat
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farmer’s activities (i.e., sorting, segregating, commingling, and processing) dealing the

load of wheat are necessary.

Definition 1. To sort one load of wheat is to read the protein concentration of each small-

est unit (e.g., one grain or one bushel of grains) of the load, and then label units with same

protein concentrations as a group but label units with different protein concentrations as

different groups.

Here the verb “label” is used only for conceptual convenient. As we will see in this

article that during the optimal processing, the action of “label” is not necessary because a

unit of wheat will be placed into a corresponding sub-load once its protein concentration

is read.

Definition 2. Commingling two loads (or two groups of a load as sorting results in Defini-

tion 1) is to mix the them so that any sample of the mix has the same protein concentration.

Definition 3. Segregating one load of wheat is to separate the load into two or more sub-

loads with different protein concentrations. Complete segregating one load means that

wheat in this load is separate into as many as possible sub-loads such that each sub-load

only contains wheat with the same protein concentration and that protein concentration

of each sub-load differs.

Definition 4. Processing one load of wheat means to sort the load of wheat and then do

commingling or segregating.

From Definitions 1 to 4 one can see that sorting is necessary for both commingling

and segregating. Without sorting the farmer cannot know the protein concentrations of

any part in the load, and hence she cannot conduct segregating or commingling. There-

fore, in the rest of this article if we say that “no sorting is needed to a load of wheat,”
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then it implies that neither segregating nor commingling is needed, which also means no

processing is needed to this load of wheat.

Suppose a wheat farmer has one load of wheat with mean protein level µ . The mass

of this load of wheat is normalized to one. The protein concentration distribution of this

load of wheat is F(l) with density function f (l) and support [0, L̄]. Here L̄ ≤ 1 is the

upper bound of protein concentration of one unit of wheat. We assume there is no atoms

on the protein concentration distribution. For simplicity we assume the farmer knows

the protein distribution before she adopts the NIR technology. If the farmer does not

know the protein distribution until she utilizes the NIR technology, then the estimation

of willingness to pay for the NIR technology would require the farmer’s belief about

protein distributions of her harvest. In the situation that farmers only have a belief about

the protein concentration distribution, our analysis in optimal processing decisions is still

essential. This is because for any given protein concentration distribution under a belief

our analysis can be used to obtain the optimal processing decisions.

In our model the wheat farmer is assumed as a price taker. This is reasonable consider-

ing the large number of wheat farmers in the United States. Let the non-decreasing wheat

price function facing the farmer be p(l), where l is protein concentration of one unit of

wheat. Protein premium is imbedded in the price schedule because high protein wheat

receives high price. In the following subsections we study the wheat farmer’s optimal

segregating and commingling decisions under four price schedules: 1) uniformly curved

schedules (i.e., concave or convex), 2) non-uniformly curved schedules (i.e., concave at

low protein levels and convex at high protein levels, or the reverse), and 3) three-step

schedules.
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2.2 Uniformly Curved Schedules

Incentives to segregate and commingle grain with different dockage when the price qual-

ity schedule is uniformly curved (i.e., concave or convex) have been studied in Hennessy

and Wahl (1997). Regarding wheat with different protein concentrations, incentives to

segregate and commingle is similar as what is in Hennessy and Wahl (1997). But we still

demonstrate the results here because some of them will be utilized repeatedly in obtaining

optimal processing decisions when price schedules are not uniformly curved.

Proposition 1. If the price schedule is concave, then no sorting is needed to the load.

That is, this load of wheat will be sold as it is. If the price schedule is convex, then the

load should be sorted and completely segregated.

Proof. Suppose that the price schedule, p(l), is concave and that the processing out-

come is segregating the load into n ≥ 2 sub-loads, namely sub-loads 1, ...,n. If we

show that this processing outcome is not optimal under the concave price schedule, then

we prove the first half of the proposition. Let sub-load 1 have weight W1 and protein

concentration l1 per unit weight, and let sub-load 2 have weight W2 and protein con-

centration l2 per unit weight. The total revenue from sub-load 1 and from sub-load 2

is W1 p(l1) +W2 p(l2). If the farmer commingles sub-load 1 and sub-load 2, then the

protein concentration of the mix is (W1l1 +W2l2)/(W1 +W2). Therefore, the revenue

from the mix is (W1 +W2)p((W1l1 +W2l2)/(W1 +W2)). By Jensen’s inequality, we have

(W1 +W2)p((W1l1 +W2l2)/(W1 +W2)) > W1 p(l1)+W2 p(l2) when p(l) is concave. The

second part of the proposition can be proved by a complete reversal of the above proce-

dure.

From Proposition 1 we have the following corollary.
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Corollary 1. Commingling any two loads increases (decreases) a wheat farmer’s revenue

when the price schedule is concave (convex). Segregating one load increases (decreases)

a wheat farmer’s revenue when the price schedule is convex (concave).

Next proposition studies the effects of protein concentration distribution on revenue

when price schedule is concave and convex.

Proposition 2. Suppose wheat load A and wheat load B have protein concentration dis-

tribution F(l) and G(l), respectively, where G(l) is a mean-preserving spread of F(l).

And suppose loads A and B have the same weight. If price schedule is convex, then a

wheat farmer can receive higher maximum revenue from selling load B than load A. If

price schedule is concave, then the maximum revenue from selling loads A and B is the

same.

Proof. If the price schedule is convex, then by Proposition 1 both load A and load B will

be completely segregated. Therefore, the maximum revenue from selling loads A and

B is
∫ 1

0 p(l)dF(l) and
∫ 1

0 p(l)dG(l), respectively. By Proposition 6.D.2 on page 199 of

Mas-Colell, Whinston, and Green (1995) we can obtain
∫ 1

0 p(l)dF(l)<
∫ 1

0 p(l)dG(l). If

the price schedule is concave, then by Proposition 1 neither load A nor load B is sorted.

Because loads A and B have the same weight and mean protein concentration, they bring

the same amount revenue to the farmer.

2.3 Nonuniformly Curved Schedules

Instead of being uniform curves, price schedules may have nonuniform curves. Figures 1a

and 1b present two possibilities of these schedules. Figure 1a shows a price schedule that

is concave at low protein concentration levels and convex at high protein concentration

levels. Figure 1b shows a price schedule that is convex at low protein concentration levels
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and concave at high protein concentration levels. Following Hennessy and Wahl (1997)

we call schedules with the curvature of Figure 1a as shape type I and schedules with

the curvature of Figure 1b as shape type II. Without loss of generality it is assumed that

p(0) = 0, so the schedules pass through the origin. In Figure 1a and Figure 1b, points

O and O′ are two ends of price schedule curve. Point B is the inflexion point where the

schedule changes from being concave (convex) to being convex (concave) in Figure 1a

(Figure 1b).

In Figure 1a, there are two tangent lines of price curve OO′ that are of critical interest.

Line O′A is the tangent of the price curve with tangency point at A. If there is no tan-

gency point, then set point A as origin O. Line CD is defined as in Definition 5. Let the

coordinates of points A, B, C, and D are [lA, p(lA)], [lB, p(lB)], [lC, p(lC)], and [lD, p(lD)],

respectively.

Definition 5. Line CD in Figure 1a is defined as: (1) Line CD is a tangent of curve

OB with tangency point at C. (2) Line CD intersects curve O′B at point D. (3) The

l-coordinates of points C and D is such that lA < lC < lB and
∫ lD

0 f (l)ldl/
∫ lD

0 f (l)dl = lC.

Definition 5 indicates that the commingle of wheat with protein concentration no

higher than lD has mean protein concentration lC. Let µ be the mean protein concen-

tration of the initial load of wheat. Therefore, if µ ≤ lA, line CD does not exist.

In Figure 1b, there are two critical tangent lines as well. Line OA is the tangent of the

price curve with tangency point at A. If there is no tangency point, then set point A as O′.

Line CD is defined as in Definition 6.

Definition 6. Line CD in Figure 1b is defined as: (1) Line CD is a tangent of curve

O′B with tangency point at C. (2) Line CD intersects curve OB at point D. (3) The

l-coordinates of points C and D are such that lB < lC < lA and
∫ L̄

lD f (l)ldl/
∫ L̄

lD f (l)dl = lC.
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Definition 6 indicates that the commingle of wheat with protein concentration no less

than lD has mean protein concentration lC. Therefore, if µ ≥ lA, line CD does not exist.

For schedules with shape type I and schedules with shape type II, the optimal process-

ing arrangements are presented in next proposition.

Proposition 3. For shape type I schedules, (i) when µ ≤ lA, then no sorting is needed in

the optimal arrangements; and (ii) when µ > lA, then in the optimal arrangements wheat

in this load with protein concentration higher than lD should be completely segregated

and the remaining wheat should be completely commingled. Here lD is the l-coordinate

of point D defined in Definition 5.

For shape type II schedules, (i) when µ ≥ lA, then no sorting is needed in the optimal

arrangements; and (ii) when µ < lA, then in the optimal arrangements wheat in this load

with protein level higher than lD should be completely commingled and the remaining

wheat should be completely segregated. Here lD is the l-coordinate of point D defined in

Definition 6.

We first prove a lemma that will be used repeatedly in the proof of the proposition.

Suppose one unit of wheat with protein concentration α is a commingle of wheat with

purely α1 protein concentration and wheat with purely α2 protein concentration. And

suppose this unit of wheat is segregated into two sub-loads, namely A and B, with mean

protein concentration lA and lB, respectively. Without loss of generality, we assume that

α1 < α2 and lA < lB. Then the following two items are true:

Lemma 1. (i) α1 ≤ lA < lB ≤ α2. (ii) lA (or lB) can be any value on the interval of [α1,α)

(or (α,α2]).

Proof. The proof of item (i) is trivial because the unit of wheat dose not contain any

wheat that with protein concentration less than α1 or higher than α2.
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Now let us prove item (ii) is true. Let lA equal λA and lB equal λB, where λA (or λB) is

an arbitrary value on the interval of [α1,α) (or [α,α2)). To show item (ii) is to show that

the unit of wheat can be segregated into sub-loads A and B such that lA = λA and lB = λB.

Assume the wights of sub-load A and B are WA and WB, respectively. Then we have

 WA +WB = 1,

WAλA +WBλB = α.
(1)

Suppose the weights of α1 wheat and α2 wheat are W1 and W2, respectively. Then W1

and W2 can be uniquely determined by

 W1 +W2 = 1,

W1α1 +W2α2 = α.
(2)

Suppose we commingle x units of α1 wheat and y units of α2 wheat to obtain sub-load

A. Then we must have  x+ y =WA,

xα1 + yα2 =WAλA.
(3)

Solving equation system (3) generates

 x = α2−λA
α2−α1

WA,

y = λA−α1
α2−α1

WA.
(4)

If we show that the remaining wheat (i.e., wheat not in sub-load A) has weight WB

and mean protein concentration λB, then the proof is completed. Clearly, the weight of

remaining wheat is (W1− x)+ (W2− y) = (W1 +W2)− (x+ y) = 1−WA =WB. And the
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protein of the remaining wheat is (W1− x)α1 +(W2− y)α2 = (W1α1 +W2α2)− (xα1 +

yα2) = α−WAλA =WBλB. Therefore, the mean protein concentration is λB.

If we use vector (lA, lB) to denote the protein concentrations of sub-loads A and B

segregated from this one unit of wheat and if we relax the constraint lA < lB, then Lemma

1 can be rewritten as

Lemma 2. Suppose one unit of wheat with protein concentration α is a commingle of

wheat with purely α1 protein concentration and wheat with purely α2 protein concentra-

tion. If this unit of wheat is segregated into two sub-loads, then it can and only can be

segregated into two sub-loads such that (lA, lB) is majorized by (α1,α2), where lA and lB

are the protein concentrations of these two sub-loads, respectively.

Based on Lemma 1 we can prove Proposition 3. The proof is presented in Appendix

A.

2.4 Three-Step Schedules

In wheat markets the price schedules are often of the step function forms. In this sub-

section we study a wheat farmer’s optimal processing decisions when price schedules are

three-step function forms. When price schedule in wheat market is an N-step schedule

(N > 3), unfortunately we cannot obtain an elegant uniformly concave or convex effective

price schedule by eliminating dominated discontinuous points on the step price schedule

like Hennessy and Wahl (1997) did. This is because of the non-linear separability in the

protein dimension. However, we still can use price schedule convexity and the results

of optimal decisions facing three-step schedules to simplify the effective price schedule

once we know the protein distribution of one load.

14



Suppose the three-step price schedule is

p(l) =


p1 if 0≤ l < l1

p2 if l1 ≤ l < l2

p3 if l2 ≤ l ≤ L̄,

(5)

where l ∈ [0, L̄] is protein concentration of one load of wheat; p3 > p2 > p1 > 0 are prices;

and l1 and l2 are constants such that 0≤ l1 < l2 ≤ L̄. Figure 2 depicts this three-step price

schedule. In this subsection we further assume that the mean protein concentration of one

load of wheat, µ , is such that µ ∈ (0, l2). If µ ≥ l2, then it will receive the highest price

and hence its owner has no incentive to further process it.

The farmer’s problem is to maximize her revenue by optimally processing her wheat.

Because the price schedule has a three-step function form, the farmer’s problem is equal

to optimally segregating his wheat into three sub-loads, namely S1, S2, and S3, to get

the maximized revenue. Let µi, pi, and qi be the mean protein concentration, the price

received, and the weight of sub-load Si, i = 1, ...,3, respectively. By construction we

have µ1 ∈ [0, l1), µ2 ∈ [l1, l2), µ3 ∈ [l2, L̄], and ∑
3
i=1 qiµi = µ (please recall that the total

quantity is normalized to 1). Then the farmer’s problem is to maximize ∑
3
i=1 piqi subject

to certain conditions.

For the next result, several definitions are necessary.

Definition 7. We define c1 and c2 as two minimum non-negative constants that are such

that
∫ L̄

c1
f (l)ldl∫ L̄

c1
f (l)dl

≥ l1 and
∫ L̄

c2
f (l)ldl∫ L̄

c2
f (l)dl

= l2, respectively.

Definition 7 says that the average protein level of the mix of all wheat with protein

level higher than c1 is greater than or equal to l1; and the average protein level of the mix

of all wheat with protein level higher than c2 is l2. Clearly we have c2 < l2 and c1 < l1.
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Definition 8. When c2 > l1, then l̂1 is defined as the minimum non-negative constant that

satisfies
∫ c2

l̂1
f (l)ldl∫ c2

l̂1
f (l)dl

≥ l1.

Definition 8 says that l̂1 is the minimum non-negative constant such that the average

protein level of wheat distributed on [l̂1,c2] is no less than l1.

We also need to present two non-linear programming problems.

max
qi

3

∑
i=1

piqi(6)

s.t.

qi ≥ 0,
3

∑
i=1

qi = 1,

∫ F−1(q1)

0
f (l)ldl +q2l1 +q3l2 = µ,

F(c1)≤ q1 ≤ F(c2).

max
qi

3

∑
i=1

piqi(7)

s.t.

qi ≥ 0,
3

∑
i=1

qi = 1,

∫ F−1(q1)

0
f (l)ldl +q2l1 +q3l2 = µ,

F(c1)≤ q1 ≤ F(l̂1).

For the optimal processing outcomes under three-step price schedules, we have the
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following proposition.

Proposition 4. Suppose the mean protein concentration of one load of wheat, µ , is such

that µ ∈ (0, l2). The optimal processing outcomes are (i) the solutions of problem (6)

if c2 ≤ l1; (ii) the solutions of problem (7) if c2 > l1 and if l̂1 > 0; and (iii) q∗1 = 0,

q∗2 = F(c2), and q∗3 = 1−F(c2) if c2 > l1 and if l̂1 = 0.

Visual presentations of the three items in Proposition 4 are depicted in Figure 3, Figure

4, and Figure 5, respectively. To prove the proposition, several lemmas are necessary.

Lemma 3. The maximized amount of wheat with mean protein concentration at l2 (l1)that

can be segregated out from the initial load is 1−F(c2) (1−F(c1)).

Proof. The proof is trivial. Suppose now all wheat with protein concentration that is no

less than c2 is segregated into sub-load S3. By the definition of c2 we know that the mean

protein concentration of sub-load S3 is l2. In order to increase the weight of sub-load S3,

one must add some of the remaining wheat into sub-load S3. However, the wheat in the

remaining now has protein concentration lower than c2, which is lower than l2. Adding

such wheat into sub-load S3 will make the mean protein concentration in the sub-load

lower than l2. The same argument applies when proving the other part of this lemma.

Lemma 4. In the optimal arrangements, (i) if q∗1 > 0, then µ2 = l1 and µ3 = l2; (ii) if

q∗2 > 0 or if q∗3 > 0, then µ3 = l2.

Proof. The proof is completed by simple arbitrage arguments. For item (i), if q∗1 > 0 but

µ2 > l1, then the farmer can always increase her revenue by commingling some wheat

from sub-load S1 to sub-load S2 as long as µ2 ≥ l1. This is because the wheat that is

moved from sub-load S1 to sub-load S2 now is sold at price p2 instead of price p1 and

the price of wheat initially in sub-load S2 is not affected. The same argument applies for
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µ3 = l2 of item (i) and for the first part of item (ii). If q∗3 > 0, then q∗2 > 0 or q∗1 > 0,

or both. This is because µ < l2. By item (i) and the first part of item (ii) we know that

µ3 = l2.

Let l̄S1 denote the protein concentration of wheat that has the highest protein in S1.

Let lS2
(or lS3

) denote the protein concentration of wheat that has the lowest protein in

sub-load S2 (or S3). The next lemma can be stated as

Lemma 5. In the optimal arrangements, we have (i) l̄S1 ≤min[lS2
, lS3

] and (ii) any wheat

with protein concentration no higher than l̄S1 is in sub-load S1.

Proof. Suppose in the optimal arrangement we have lS1 > min[lS2
, lS3

]. That is, pro-

tein concentration of some wheat in sub-load S1 is higher than protein concentration of

some wheat in sub-load S2 or in sub-load S3. Without loss of generality we assume that

min[lS2
, lS3

] = lS2
. Then the farmer can increase her revenue by doing step (1) exchanging

1 unit of l̄S1 wheat from sub-load S1 with 1 unit wheat with protein concentration lower

than l̄S1 from sub-load S2; and step (2) moving δ amount of wheat with protein concen-

tration lower than l1 from sub-load S1 to sub-load S2 as long as µ2 is no less than l1. By

doing step (1), µ2 is increased and but the revenue is not affected; by doing step (2), q2

is increased by δ and q1 is decreased by δ . So is the revenue is increased by δ (p2− p1).

In sum, we must have lS1 ≤ min[lS2
, lS3

] in the optimal arrangement. Item (ii) follows

naturally.

Lemma 6. In the optimal arrangements, (i) if c2 ≤ l1, then l̄S1 ∈ [c1,c2]; (ii) if c2 > l1,

then l̄S1 ∈ [c1, l̂1].

Proof. First, we show that l̄S1 ≥ c1. If lS1 < c1, then the mean protein concentration of

the commingle of wheat in sub-load S1 and wheat in S3 will be lower than l1, which

contradicts that µ2 ∈ [l1, l2) and µ3 ≥ l2.
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Second, we show that if c2 ≤ l1 then l̄S1 ≤ c2. Suppose when c2 ≤ l1 we have l̄S1 > c2.

So the mean protein concentration of the commingle of wheat in sub-load S2 and wheat in

S3 will be higher than l2, which contradicts that in the optimal arrangements µ2 ∈ [l1, l2)

and µ3 = l2 (Lemma 4).

Third, we show that if c2 > l1 then l̄S1 ≤ l̂1. Please note that l̂1 has definition only if

c2 > l1. Suppose l̄S1 > l̂1 when c2 > l1. Therefore we have q∗1 = F(l̄S1)> 0. Taking q∗1 as

fixed, to maximize the revenue is equal to maximize q3 under the constraint of µ2 ≥ l1.

The maximized q3 is 1−F(c2). Since c2 > l1 and lS1 > l̂1, we must have µ2 > l1, which

is not optimal (Lemma 4).

Lemma 7. In the optimal arrangements, (i) if c2 ≤ l1, then µ2 = l1; (ii) if c2 > l1 and if

l̂1 > 0, then µ2 = l1.

Proof. If q∗1 > 0, then items (i) and (ii) are true according to Lemma 4. Now we prove

that items (i) and (ii) are true when q∗1 = 0.

If q∗1 = 0, then we must have q∗2 > 0 and q∗3 ≥ 0. This implies that µ ≥ l1. If c2 ≤ l1,

then the initial load of wheat can be seen as a commingle of wheat with l2 protein concen-

tration and wheat with l0 protein concentration, where l0 ≡
∫ c2

0 f (l)ldl/
∫ c2

0 f (l)dl < l1.

According to Lemma 1, the initial load of wheat can be segregated into two sub-loads

with one sub-load having protein concentration at l1 and the other sub-load having pro-

tein concentration at l2. Given q∗1 = 0, this segregation is optimal. It is because that if

q∗1 = 0, then the optimal segregation should be to maximize q3 while keeping µ2 ≥ l1.

Some algebra can show that q3 is not maximized when µ2 > l1.

If q∗1 = 0, then q∗2 and q∗3 should be such that

 q∗2 +q∗3 = 1

q∗2µ2 +q∗3l2 = µ.
(8)
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Solving (8) we obtain q∗3 =
µ−µ2
l2−µ2

. Then we have

(9)
dq∗3
dµ2

=
µ− l2

(l2−µ2)2 < 0.

Therefore, in the optimal arrangement µ2 must be equal to l1 if c2 ≤ l1. The same proce-

dure follows when proving item (ii).

The proof of Proposition 4 is presented in Appendix B. One may intend to think

that the programming problems (6) and (7) without the fourth constraint will generate

the same optimal solutions. Her argument could be the programming problem naturally

prefers a smaller q1 over a bigger q1; therefore, the programming problem without the

constraint F(c1)≤ q1 ≤ F(l̂1) will automatically drive q1s small enough so that F(c1)≤

q1 ≤ F(l̂1) is met.

But this is not necessarily true. Decreasing one unit of q1 from q∗1 means that the

farmer will gain p2− p1. But to keep µ2 = l1, the farmer has to move x amount of wheat

from sub-load S3 (with averagely l2 protein level) to sub-load S2; otherwise wheat in

sub-load S2 will have average protein level lower than l1. Therefore, the revenue loss is

x(p3− p2). If x(p3− p2)> p2− p1, then decreasing q∗1 is not profitable.

Suppose we delete the constraint F(c1) ≤ q1 ≤ F(l̂1) in problem (7). And suppose

F(c2)> q1 > F(l̂1). By construction of l̂1 we have

∫ c2
l̄S1

f (l)ldl∫ c2
l̄S1

f (l)dl
> l1. In this case the achiev-

able q2 and q3 given q1 should be q2 =
∫ c2

l̄S1
f (l)dl and 1−F(c2), respectively. However,

since we delete the constraint F(c1) ≤ q1 ≤ l̂1, the programming problem will obtain q2

and q3 based on q1 by its two equality constrains. And always the q2 (or q3) obtained

from the two equality constraints is smaller (or greater) than the true value. Therefore,

the programming problem without constraint F(c1)≤ q1 ≤ F(l̂1) biases the revenue to a

bigger value.
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Sivaraman et al. (2002) claim that their method applies to step premium schedules

(page 157, Case 4). However, their claim is not correct. They assume that in the optimal

outcomes the protein levels in one bin are continuous, (i.e., Di = [di−1,di] in the last

paragraph on page 156). But this may not be true. Here is an example. Suppose the

protein concentrations of one load of wheat is uniformly distributed on [11.4%,13.6%].

Then the average protein level of this load is 12.5%. The price schedule is wheat with

protein level higher than or equal to 13% receives 13% protein price; wheat with protein

level lower than 12% receives 11% protein price; the rest of wheat receives 12% price.

Suppose wheat prices encourage commingling and the optimal solution is that q∗1 = 0,

q∗2 > 0, and q∗3 > 0, here q∗1, q∗2, and q∗3 are quantities of wheat that receive 11%, 12%, and

13% protein price, respectively. Then q∗2 = 1/2 and q∗3 = 1/2 can be solved by

 q∗2 +q∗3 = 1

0.12q∗2 +0.13q∗3 = 0.125.
(10)

Based on the uniform distribution, how to achieve q∗2 = 1/2 and q∗3 = 1/2? Is it pos-

sible to find d ∈ [11.4%,13.6%] such that (d − 11.4%)/(13.6%− 11.4%) = 1/2 and

(d + 11.4%)/2 = 12%? The answer is no. One procedure that can make q∗2 = 1/2 and

q∗3 = 1/2 is as follows: Step 1. Put wheat with protein level between 12.4% and 13.6%

into one bin, say bin A, and mix them completely; so the average protein level in bin A

is 13%; Step 2. Put wheat with protein level between 11.4% and 12.4% into another bin,

say bin B; so the average protein level in bin B is 11.9%. Step 3. Move some wheat (with

average protein level 13%) from bin A to bin B until the average protein level in bin B

reaches 12%. Clearly protein levels of wheat in bin B is not continuous. For example,

Bin B could includes wheat with protein levels between 11.4% and 12.4% and wheat with

protein levels at 13%.
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Since in reality wheat protein premium often has step-form schedules, the result in

Proposition 4 will be utilized as the basis in the empirical part of this article. In next

section we estimate the wheat protein stock demand system that will be utilized when

simulating the WTP of the sorting technology.

3 Wheat Protein Stock Demand System

Since price differences, not price levels, matter for calculating the WTP, in our econo-

metric model we focus on price differences instead of price levels. That is, the dependent

variables in the econometric model are price differences. We expect that the protein pre-

miums are mainly affected by the wheat stocks and seasonality based on the standard

supply-demand analysis. Specifically, the econometric models are

p3t− p2t = αX + e1t(11)

p2t− p1t = βX + e2t ,(12)

where pit (i=1,2,3) is wheat price, pi, in period t; and X =(1,sh2t ,sh3t , tst ,sea1t ,sea2t ,sea3t)

is the independent variable vector in which sh2t and sh3t are the shares of wheat stocks

that receive p2t and p3t , respectively; tst is the total stocks in period t; sea jt , j = 1,2,3 is

seasonal dummy of season j in period t; e1t and e2t are error terms.

Regressions in equation (11) can alleviate the endogeneity problem existing in the

model. The reason is that there are omitting variables that affect wheat prices and are

correlated with wheat stocks, such as weather, foreign exchange rate, and prices of live

cattle or hogs. By differencing prices, these variables will likely be canceled out so that

regressions in equation (11) can fit the classical linear model assumptions for ordinary

least square (OLS) estimator to be best linear unbiased estimator (BLUE). We use the
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feasible generalized least squares (FGLS) method to correct autocorrelation problem in

the model.

3.1 Data

We use daily cash price data of HRW wheat and HRS wheat from Montana Wheat and

Barley Committee (http://wbc.agr.mt.gov/). For HRW wheat, the prices are broken down

to prices for 11% protein wheat, 12% protein wheat, and 13% protein wheat, respectively.

For HRS wheat, the prices are broken down to prices for 13% protein wheat, 14% protein

wheat, and 15% protein wheat, respectively. The time range for the price data is from

1980 to 2009. To make time series continuous, we use monthly averages of daily cash

price data. For some years price data are missing for one or two months. We use cubic

spline interpolation to fill the missing monthly average data. Therefore we get 360 obser-

vations, in which 8 observations are data filled by cubic spline interpolation. Figures 6

and 7 provide visual presentations of monthly HRW wheat prices and HRS wheat prices,

respectively.

The monthly stocks of HRW wheat with 11%, 12%, and 13% protein level are calcu-

lated using the following procedure. Step 1), all wheat quarterly stocks (1980-2009) are

obtained from NASS of USDA;2 Step 2), calculate the percentage of HRW wheat produc-

tion in all wheat production using data of wheat production by class from Crop Quality

Reports published by U.S. Wheat Associates; Step 3), quarterly all wheat stocks in step

1) are multiplied by the percentage in step 2) to get the quarterly HRW wheat stock; Step

4), the percentages of HRW wheat with different protein levels in every year from 1980

to 2009 are obtained from annual Crop Quality Report published by U.S. Wheat Asso-

2The website address is: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1079
(accessed on October 28, 2010)
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ciates. Step 5), using data from Step 4), calculate the percentages of the following three

categories of HRW wheat in total HRW wheat production: HRW wheat with protein level

less than 12%, HRW wheat with protein level higher than or equal to 12% but less than

13%, HRW wheat with protein level higher than or equal to 13%; Step 6), quarterly HRW

wheat stocks in step 3) were multiplied by percentages in step 5) to get the quarterly

stocks of HRW wheat at 11%, 12%, and 13% protein level, respectively; Step 7), using

cubic spline interpolation to quarterly stocks obtained in step 6) to get monthly HRW

wheat stocks. The monthly stocks of HRW wheat at the three protein levels are presented

in Figure 8. By the similar steps we can obtain the monthly stocks of HRS wheat at

protein levels of 13%, 14%, and 15%, respectively. The result is presented in Figure 9.

3.2 Regression Results

The results of regression in equation (11) for HRW wheat and HRS wheat are reported in

Table 1 and Table 2, respectively. From Table 1 we can see that the coefficients of sh2t

are significant at 5% level in regression (12). The coefficients of sh3t are significant at 5%

level in regressions (11) and (12). For example, in the case of HRW wheat, if the share of

13% protein wheat is increased by one percentage point, then the price difference between

13% protein wheat and 12% protein wheat will decrease by 0.42 cent. The coefficient of

tst are not significantly different from zero, which means total stocks do not affect wheat

protein premium. Seasonal dummies do not affect price difference between 13% protein

wheat and 12% protein wheat, but they do affect price difference between 12% protein

wheat and 11% protein wheat and price difference between 13% protein wheat and 11%

protein wheat.

From Table 2 we can see that the coefficients of sh3t are significant at 5% level in

each regression. If the share of 15% protein wheat is increased by one percentage point,
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then the price difference between p3 and p2 will decrease by 0.53 cent. The coefficient of

sh2 is significantly different from 0 in regression (12) at 10% level but is not significant

in regression (11). The coefficient of tst is not significantly different from zero in each

regression, which means total stocks do not affect wheat protein premium. The price

differences in the third season (July, August, and September), the harvest season of HRS

wheat, are not significantly different from price differences in the fourth season (October,

November, and December). But the price differences in the second season (April, May,

and June) are significantly lower than the prices differences in the fourth season. This

indicates that the protein premium reaches the highest value during the harvest season

and decreases as wheat stocks shrink.

3.3 Field-Level Protein Concentration Distribution Model and Data

In order to estimate how much wheat with different protein levels can be sorted out from

a load of wheat produced by a farmer, we need to know the protein concentration dis-

tribution of this load of wheat. Denote Φ(·) as the distribution function of the protein

concentration. Our task in this subsection is to estimate Φ(·). Washington State Univer-

sity Extension Cereal Variety Testing Program (http://variety.wsu.edu/) provides wheat

and barley variety testing data and cultural data that can be traced back to 1997. One va-

riety is usually planted in several different locations. The data report the variety’s yield,

test weight and protein concentration in each location and each year. In this subsection

we focus on HRW wheat. The method we develop here can be easily applied to HRS

wheat variety testing results.

From 1997 to 2009, the Program tested 194 HRW varieties in 15 locations across the

State of Washington. Even though there were so many varieties tested, only a few of

them were widely planted by wheat farmers. According to data from National Agricul-
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tural Statistics Service (NASS) of USDA, in each crop year, the top ten varieties usually

accounted for more than 90 percent of planted area for the same class of wheat in the

State of Washington.3 Therefore, in our analysis we only focused on the top 10 varieties

in a crop year. According to this standard, 16 HRW wheat varieties were chosen from

1997 to 2009. The names of varieties and locations are listed in Table 3.

Top varieties varied from year to year. One variety may be popular in some years but

disappeared from the list of top varieties in another year. In addition, not every variety was

tested in every location every year. In one year, some locations may have more varieties

than other locations. It was also possible that one of our 16 varieties in some years did

not get tested at all. We collect the observation of one variety’s performance into our

dataset if: a) it is in the list of top varieties; and b) it was tested at least one time between

1997 and 2009. Using this screen we collected 538 observations. For each observation,

we know the variety’s name, yield, test weight, protein level, trial location where it was

tested, and year when it was tested. We also know detailed cultural information about the

trial, such as the type of soil, fertilizer usage, precipitation, latitude and longitude, etc.

Table 4 presents summary statistics of the 538 observations of HRW wheat protein

concentrations. Its sample average is 11.87%. Its maximum and minimum values are

16.6% and 7.4%, respectively. The sample standard deviation is 0.017. However, this

is not a satisfying estimator of the variability of HRW wheat protein concentration. The

reason is that it is at the farm level for a given variety and in a given year that protein seg-

regation occurs. But these 538 observations include 16 varieties planted on 15 locations

within 13 years. If we accept this standard deviation as the estimator of protein variabil-

ity, then we will over-estimate protein variability. To get a better estimation, we need to

control for the effect of varieties, locations and years.

3Data source: http://www.nass.usda.gov/Statistics by State/Washington/Historic Data/smallgrains/whtvar.pdf
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We applied regression analysis to estimate the protein variability. We assume that

protein concentration has normal distribution conditional on variety, location, and year.

That is,

(13) pr conc|x∼ Normal(c+
13

∑
i=2

αyeari +
16

∑
i=2

β jvariety j +
15

∑
i=2

γklocationk,σ
2),

where x is a shorthand for the vector of a constant and dummy control variables:

(constant,year2, . . .year13,variety2, . . . ,variety16, location1, . . . , location15). Here i, j,

and k start from 2 because we set year1, variety1, and location1 as bases. Since in the

dataset there is only one observation of protein concentration for a variety at one location

in one year, it is difficult to test the normality of protein concentration conditional on

variety, location, and year. However, we can test the normality of protein concentration

conditional on variety or location, or both. If we cannot reject the normality in these tests,

then we will have good reason to assume that protein concentration conditional on variety,

location, and year has a normal distribution as well.4

The linear regression model can be written as

(14) protein = c+
13

∑
i=2

αyeari +
16

∑
i=2

β jvariety j +
15

∑
i=2

γklocationk +u,

where u∼ Normal(0,σ2) is the error term. An unbiased estimator of σ2 is s2 = e′e/(n−

K− 1) where e is least squares residuals, n is the number of observations, and K is the

number of independent variables.

The results of regression (14) are listed in Table 5. The value of s2 is 0.0001. Combin-

ing the coefficients in Table 5, we will know exactly the distribution of protein concen-

4Results of Lilliefors’ test (Lilliefors, 1967) on the normality of protein concentration show that in most
cases we cannot reject the hypothesis that our sample of protein concentration (conditional on one or two
variables of year, variety, and location) comes from a normal distribution at the 0.01 significance level.
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tration for a given variety at one location in one year. For example, the estimated protein

distribution of variety Boundary at Connell in 2009 is Normal(0.126,0.0001). We are

confident that the distribution Normal(0.126,0.0001) is a satisfactory approximation of

protein distribution of variety Boundary at Connell, Washington in 2009 at farm level.

The reason is that the trials of one location are very closed to each other. For example, in

Connell Washington from year 2005 to 2009, the shortest distance between two trials is

only 200 feet; and the longest distance is 1.4 miles. Therefore, we can see these trails as

a reasonable sample from an individual farm.

Regarding HRS wheat, the data set includes variety testing results of 13 years, 15

varieties, and 28 locations in the State of Washington. The regression for HRS wheat is

(15) protein = c+
13

∑
i=2

αyeari +
15

∑
i=2

β jvariety j +
28

∑
i=2

γklocationk + e,

whose results are presented in Table 6.

Now we have protein distribution conditional on variety, location, and year. Together

with the protein-price relations, we can calculate the revenue difference for a farmer be-

tween segregating and not segregating. We now have all the elements we need to estimate

the WTP of wheat farmers for the sorting technology. In the next section we show how to

utilize these elements in the simulation, and we report the simulation results.

4 WTP Simulation

In this section we focus on the WTP of HRW wheat farmers. Simulations for WTP of

HRS wheat farmers follow the same methods. We take sets of continuous stock data from

the data set as wheat stocks facing farmers. For example, we may take wheat stocks from

crop year 1980/1981 to crop year 1989/1990 from the data set as wheat stocks facing

28



farmers. Then the WTP based on wheat stocks from 1980/1981 to 1989/1990 is the WTP

for the technology if it had been launched in that period of time. Depending on which

period of time we take, there are multiple possibilities of wheat stocks facing farmers.

The general idea under the simulation procedure is as follows. Given initial HRW

wheat stocks, we find out what the wheat stocks will be after the sorting technology is

adopted by farmers who can benefit from the technology considering the technology’s

market equilibrium effect. When we find out the wheat stocks after sorting, then we

calculate the new price differences. Based on the new price differences, we then calculate

the WTP of wheat farmers for the sorting technology. We calculate the WTP on 100-acre

and 10-year basis. We name it as normalized WTP. Here “10-year” is the lifespan of a

sorter and “100-acre” is the area of field whose production is sorted by the sorter. In other

words, the normalized WTP stands for the net present value of a farmer’s willingness to

pay for sorting wheat from 100 acres every year and for 10 years. The interest rate is set

at r=0.05. Once we have the normalized WTP, it is easy to calculate a farmer’s WTP for

a sorter if the sorter can last M years and can sort production from N acres per year. We

use the trend yield in this report.5. The yield trend is described as

(16) yieldt = const +b(t−1932)+ et ,

where t = 1933,1934, . . . ,2009. The statistics for regression (16) are summarized in Table

7.

We take sets of 10-year continuous stock data directly from the data set and use them

as the wheat stock facing wheat farmers. For example, we may use historical wheat stock

data from crop year 1999-2000 to crop year 2008-2009. There are 30 calendar years

(1980-2009) and 29 complete crop years (1980-81, , 2008-09) in the data set. Hence

5Data source: NASS, all wheat yield, 1933-2009, website: http://www.nass.usda.gov/QuickStats/
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we have 20 different sets of wheat stocks to take. They are: wheat stocks of crop years

1980-81 to 1989-90, wheat stocks of crop years 1981-82 to 1990-91, . . . , wheat stocks of

crop years 1999-00 to 2008-09. We go through simulation for each of the 20 wheat stock

sets. For HRW wheat, the mean WTP from the 20 stock sets is $2,028 (about 5.6 cents

per bushel). For HRS wheat, the mean WTP from the 20 stock sets is $1,910 (about 4.8

cents per bushel). Figure 10 depicts the WTP of HRW wheat farmers. Figure 11 depicts

the WTP of HRS wheat farmers. In Figures 10 and 11, a crop year on the x-axis means

that the ten-year continuous stock data starts in that year.

5 Conclusions and Future Work

Two important and related trends in food markets are a) growth in demand for differenti-

ated products, and b) capacity to distinguish between quality attributes at the commercial

level. U.S. planted wheat acres are declining in the face of stiff international competition

in premium product markets and demand for crop acres from biofuels. A sorting technol-

ogy could allow wheat growers to better identify grain that can be directed to premium

markets while also increasing consumer surplus. Our work provides a coherent methodol-

ogy for evaluating the benefits for a farm-level information technology. A microeconomic

optimization model of wheat farmers’ segregating and commingling decisions is devel-

oped. Wheat farmers’ WTP for the sorting technology is simulated using U.S. HRW and

HRS wheat prices and stocks based on an estimation of a wheat protein stock demand

system. Our preliminary findings from the simulation show that a typical HRW (HRS)

wheat farmer’s WTP for the sorting technology is about 5.6 (4.8) cents per bushel. Future

work such as studying the sorting technology’s impacts on wheat protein premiums or

studying the sorting technology’s market prospects may be done based on the analysis in
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this paper.

Appendixes

Appendix A

In this appendix we prove Proposition 3.

Proof. Here we only prove the results for shape type I schedules. The same procedure

applies when proving results related with shape type II schedules.

Part A. In this part we prove that under shape type I schedules item (i) is true. Sup-

pose in the optimal arrangement the load is segregated into n≥ 2 sub-loads with different

protein concentrations. Then there must be at least one sub-load, say sub-load i, with pro-

tein concentration less than lA. If not, then µ would be greater than lA, which contradicts

µ ≤ lA in item (i). Next we are going to show that the wheat farmer can increase her

revenue by commingling sub-load i with any other sub-load j 6= i.

Let li and l j be the protein concentration of sub-loads i and j, respectively. If l j ≤

lA, then sub-load i and sub-load j are under the segment of the price schedule that is

uniformly concave, therefore, according to Corollary 1 the farmer can always increase

her revenue by commingling sub-load i and sub-load j. If l j > lA, then from Figure A1

we see that points [li, p(li)], A, and [l j, p(l j)] form a concave price schedule. It is easy

to show that for any two points E and F on the price curve, if point E (F) is on the left

(right) of point A, then points E, A, and F form a concave price schedule. Similarly, by

Corollary 1 the farmer can always increase her revenue by commingling sub-load i and

sub-load j. In sum, for shape type I schedules, when µ ≤ lA, then no sorting is needed in

the optimal arrangements.
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Part B. Now let us show that for shape type I schedules item (ii) is true. In Step 1 we

show that when µ > lA, then the tangent line CD defined in Definition 5 uniquely exists.

Step 2 shows that in the optimal arrangement there is one and only one sub-load that has

protein concentration lower than lB. Let Z be the name of this sub-load. Step 3 shows

that sub-load Z has protein concentration lC. Step 4 shows that in sub-load Z there is no

wheat with protein concentration higher than lD. Step 5 concludes the proof.

Step 1. In this step we show that when µ > lA, then line CD defined in Definition

5 uniquely exists. Let us start from the tangent line AO′. Imagine that line AO′ is ro-

tated in a clockwise direction while the tangent point between the line and the curve OB

moves rightward from point A. Let [l j, p(l j)] denote the coordinates of the tangent point,

J. And let [lk, p(lk)] denote the intersection point, K. During the rotation the value of∫ lk
0 f (l)ldl/

∫ lk
0 f (l)dl (i.e., the mean protein concentration of the commingle of wheat

with protein concentration no higher than lk) is decreasing and the value of l j is increas-

ing. At point B we have l j = lk and
∫ lk

0 f (l)ldl/
∫ lk

0 f (l)dl < l j.

When the coordinate of the tangency point is [l j, p(l j)], then the slope of the tangent

is p′(l j). Hence the equation of the tangent is p = p′(l j)l +[p(l j)− p′(l j)l j]. Then given

l j, the l-coordinate of the intersection point, lk > l j, can be determined by an equation

system as follows

 p = p(lk),

p = p′(l j)lk +[p(l j)− p′(l j)l j],
(A-1)

where lk > l j. From equation system (A-1) we can obtain that the relationship between l j

and lk is determined implicitly by

(A-2) H(lk; l j)≡ p(lk)− p′(l j)lk− [p(l j)− p′(l j)l j] = 0.
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By implicit function theorem we have

dlk
dl j

= −
∂H/∂ l j

∂H/∂ lk
(A-3)

= −
−p′′(l j)lk− p′(l j)+ p′(l j)+ p′′(l j)l j

p′(lk)− p′(l j)

= −
−p′′(l j)lk + p′′(l j)l j

p′(lk)− p′(l j)

=
p′′(l j)(lk− l j)

p′(lk)− p′(l j)

Since curve OB is concave, we have p′′(l j) < 0. Together with lk > l j we have

p′′(l j)(lk− l j) < 0 in equation (A-3). Because at point [lk, p(lk)] the slope of curve O′B

is greater than the slope of the line JK, it is true that p′(lk)− p′(l j) > 0. Therefore, we

show dlk/dl j < 0.

When l j = lB, which means the tangency point is at point B, then we have lk = lB

as well because point B is the inflection point. This implies that when l j = lB then the

tangency point and the interception point coincide with point B.

Let us construct a function

(A-4) M(l j) =
∫ lk(l j)

0
f (l)ldl/

∫ lk(l j)

0
f (l)dl− l j,

where lk(·) is a function of l j implicitly determined in equation (A-2). When l j = lA,

then M(l j) > 0, which is because µ =
∫ O′

0 f (l)ldl/
∫ O′

0 f (l)dl > lA. When l j = lB, then

M(l j) < 0, which is because
∫ lB

0 f (l)ldl/
∫ lB

0 f (l)dl < lB. Therefore, according to the

intermediate value theorem, there must be an lC ∈ (lA, lB) such that M(lC) = 0. That is∫ lk(lC)
0 f (l)ldl/

∫ lk(lC)
0 f (l)dl = lC. This shows that when µ > lA, then line CD defined in

Definition 5 exists.

Now we show that the line defined in Definition 5 is unique. The uniqueness will be
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proved if we show dM(l j)/dl j < 0.

dM(l j)

dl j
=

f (lk)lkl′k(l j)
∫ lk(l j)

0 f (l)dl− f (lk)l′k(l j)
∫ lk(l j)

0 f (l)ldl

(
∫ lk(l j)

0 f (l)dl)2
−1(A-5)

=

f (lk)lkl′k(l j)(
∫ lk(l j)

0 f (l)dl)
(

1−
∫ lk(l j)

0 f (l)ldl

lk
∫ lk(l j)

0 f (l)dl

)
(
∫ lk(l j)

0 f (l)dl)2
−1

< 0.

The inequality in expression (A-5) holds because f (lk)lkl′k(l j)(
∫ lk(l j)

0 f (l)dl)> 0 and∫ lk(l j)
0 f (l)ldl

lk
∫ lk(l j)

0 f (l)dl
< 1.

Step 2. In this step we show that in the optimal arrangement there is one and only

one sub-load that has mean protein concentration less than lB. We denote this unique

sub-load as Z. Suppose there are two or more sub-loads that have protein concentration

less than lB. Since curve OB is concave, according to Corollary 1 the farmer can increase

her revenue by commingling these sub-loads. Therefore, having more than one sub-loads

that are with protein concentration less than lB is not optimal. If there is not any sub-load

that has protein concentration lower than lB, then there must be one sub-load, namely

sub-load J, with protein concentration l j ≥ lB that is a commingle of wheat with protein

concentration li < lB and wheat with protein concentration lk > lB. If l j > lB, then since

curve O′B is convex, by Proposition 1 sub-load J should be completely segregated. If

l j = lB, then for any point, say point E, with l-coordinate lE such that lB < lE < lk, we

can always find a point, say point F with l-coordinate lF such that li < lF < lB, so that

points E, B, and F form a convex price schedule (Figure A2). By Lemma 1, the sub-

load with protein concentration l j can be segregated into two smaller sub-loads. One is

with protein concentration at lE and the other one with protein concentration lF . Again,

by Proposition 1 sub-load J should be segregated. Therefore, having no sub-load whose
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protein concentration is less than lB is not optimal either.

Step 3. In this step we show that the protein concentration of sub-load Z, lZ , is equal

to lC. Here lC is the l-coordinate of point C defined in Definition 5. Suppose in the op-

timal arrangement we have lZ > lC. Then there are two types of configuration of this

unique sub-load Z. The first one is that there is some wheat with protein concentra-

tion l j > lD in sub-load Z; the second one is that some wheat with protein concentration

lower than lZ is not included in sub-load Z. These two types of configuration exist be-

cause
∫ lD

0 f (l)ldl/
∫ lD

0 f (l)dl = lC. Intuitively, since the mean protein concentration of

wheat with protein concentration lower than lD is lC, then to form a sub-load with protein

concentration higher than lC one needs either to include some wheat with protein concen-

tration higher than lD in the sub-load or to exclude some wheat with protein concentration

lower than lZ , or both. The two types of configuration are not mutual exclusive.

Now we show the first configuration is not optimal. Suppose sub-load Z has some

wheat with protein concentration l j > lD. Since the the mean protein concentration of this

sub-load is equal to lZ , this sub-load must have some wheat with protein concentration

lower than lZ . Draw a line that connects points Z and D (see Figure A3). Then we can

always find a point, say point E, that is very close to point Z from the left side so that

lE > li, here lE is the l-coordinate of point E. Points E, Z, and D form a convex price

schedule. By Lemma 1, sub-load Z can be segregated into two smaller loads, one is

with protein concentration at lD; and the other one is with protein concentration lE . By

Corollary 1, segregating sub-load Z increases the farmer’s revenue. Therefore, the first

type of configuration is not optimal.

Now we show the second one is not optimal either. If some wheat with protein concen-

tration lower than lZ is not included in sub-load Z, then this wheat must be commingled

with some wheat with protein concentration higher than lB to form a sub-load with mean
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protein concentration no less than lB. If not, then there are at least two sub-loads that

have protein concentration lower than lB, which has been shown not optimal in Step 2.

Suppose it is that wheat with protein concentration equal to li < lZ is commingled with

wheat with protein concentration equal to l j > lB to form a sub-load K with protein con-

centration equal to lk ≥ lB. If lk > lB, then it is always beneficial to segregate sub-load K

because curve O′B is convex. If lk = lB, then (with the same argument we made in Step 2)

we can always find a point, say E, which is very close to point B from the left side, so that

points E, B, and [l j, p(l j)] form a convex price schedule (See Figure A4). According to

Corollary 1, however, segregating this sub-load is beneficial. Therefore, the second type

is not optimal either.

Now we show the unique sub-load Z cannot have lZ < lC. If lZ < lC, then there must

be some wheat with protein concentration at l j such that lZ ≤ l j ≤ lD that is not in sub-load

Z. Otherwise the mean protein concentration of sub-load Z will be lC or higher. However,

the three points, Z, C, and [l j, p(l j)], form a concave price schedule (See Figure A5).

According to Corollary 1 the farmer can increase her revenue by commingling wheat in

sub-load Z with wheat that has protein concentration l j.

Step 4. This step shows that in sub-load Z there is no wheat with protein concentration

higher than lD. Here lD is the l-coordinate of point D defined in Definition 5. Suppose

this is not true, then sub-load Z contains some wheat with protein concentration lk > lD.

Therefore, there must be some wheat with protein concentration l j such that lC ≤ l j ≤ lD

that is not in sub-load Z. This is because if all wheat with protein concentration between

lC and lD is in sub-load lZ , then together with some wheat with protein concentration

higher than lD being in sub-load lZ as well, the mean protein concentration of sub-load

Z must be higher than lC. Please recall that the mean protein concentration of wheat

with protein concentration less than lD is lC. We name the sub-load that contains wheat
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with protein concentration l j as sub-load J. By the result in Step 2 we know the mean

protein concentration of sub-load J is no less than lB. We clam that sub-load J only

contains wheat with protein concentration at l j. If sub-load J is a commingle of wheat

with different protein concentrations and if its mean protein concentration is higher than

lB, then according to Corollary 1 it is profitable to segregate sub-load J. If sub-load J

is a commingle of wheat with different protein concentrations and if its mean protein

concentration is equal to lB, then on the price curve we can always find two points, say

E and F , such that (1) E is on the left of point B and F is on the right of point B; and

(2) points E, B, and F form a convex price shape. According to Corollary 1, under this

situation segregating sub-load J is profitable.

From sub-load Z we can separate out one unit of wheat with mean protein level l j

that is a mix of wheat with protein concentration lk and some wheat with mean protein

concentration lC. Exchanging this unit of mix separated from sub-load Z with one unit

wheat from sub-load J does not affect the mean protein concentrations of both sub-load

Z and sub-load J. Therefore, the total revenue is not affected by this exchange. However,

the farmer can increase her revenue by segregating the unit of mix originally from sub-

load Z but now in sub-load J. One way of the segregation is to segregate the mix into

two groups, one group has mean protein concentration at lC; the other group has mean

protein concentration at lD. The three points, C, J, and D, form a convex price schedule

(See Figure A6). Therefore, according to Corollary 1 the farmer can increase her revenue

by segregating the unit of mix.

Step 5. We have shown in Step 1 that line CD defined in Definition 5 exists when

µ > lA. We also have shown that there is one and only one sub-load, namely sub-load

Z, that has mean protein concentration less than lB but equal to lC in Step 2 and Step

3. In Step 4 we showed that there is no wheat with protein concentration higher than
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lD in sub-load Z, which implied that sub-load Z is a commingle of wheat with protein

concentration no higher than lD. Because wheat with protein concentration higher than

lD is under a convex price schedule and there is no commingling opportunity for such

wheat, these wheat will be completely segregated according to Proposition 1. In sum,

for the type I price schedules, when µ > lA, then in the optimal arrangements wheat with

protein concentration higher than lD should be completely segregated and the remaining

wheat should be completely commingled.

Appendix B

In this appendix we prove Proposition 4.

Proof. To optimally process one load of wheat is to explore the benefit of commingling

and segregating based on the information from measuring protein concentration. Once the

benefit of commingling and segregating is completely obtained, the processing reaches

its optimal results. Since the farmer’s goal is to find out the optimal q1, q2, and q3 to

maximize her revenue, the objective function maxqi ∑
3
i=1 piqi in problem (6) and problem

(7) is correct. The major work of specifying an appropriate form of programming problem

for the farmer is to correctly dealing with the non-linear segregating property imposed by

protein concentration distribution. In this proof we show that the constraints specified in

problem (6) and problem (7) achieve this goal.

The first three constraints in problem (6) (or problem (7)) are necessary for clear

reasons. The first constraint says that the weight of each sub-load cannot be negative.

The second constraint says the total weight of three sub-loads sums up to one. The third

constraint indicates that the protein concentration of wheat in sub-loads S2 and S3 are
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l1 and l2, respectively (Lemma 4 and Lemma 7). It also says the total protein in three

sub-loads is equal to µ , the aggregate protein in the initial load.

The last constraint in problem (6) and problem (7) is the key. When c2 ≤ l1, then

by Lemma 5 and Lemma 6, we have F(c1) ≤ q1 ≤ F(c2). Therefore, the wheat not in

sub-load S1 can be seen as a commingle of wheat with protein concentration l2 and wheat

with protein concentration l0, here l0 ≡
∫ c2

lS1
f (l)ldl/

∫ c2
lS1

f (l)dl < l1. Then by Lemma 1

we know this commingle can be segregated into two sub-loads, one with protein con-

centration at l1 and the other with protein concentration l2. Given q1, by Lemma 7 we

know that this segregation is optimal. For each q1 ∈ [F(c1),F(c2)], the second and the

third constraints in problem (6) uniquely determine the optimal q2 and q3 (i.e., optimal

conditional on q1). Therefore, the non-leaner programming problem (6) will search out

the optimal q1, q2, and q3. This shows that item (i) is true. The same procedure follows

when proving item (ii).

When c2 > l1 and l̂1 = 0, then according to Lemma 6 we have q∗1 = 0. Then in the

optimal arrangements q3 must be maximized constrained by µ2 ≥ l1. By the definition

of l̂1 we have
∫ c2

l̂1
f (l)ldl/

∫ c2
l̂1

f (l)dl ≥ l1. By Lemma 3 we know that q∗3 = 1−F(c2).

Therefore, q∗2 = F(c2). This concludes the proof.
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Table 1. Results of Regressions (11) to (12) of HRW Wheat
  Regression (11) Regression (12) 
variables coefficients t value coefficients t value 
const. 41.78 6.17 34.43 7.21 
sh2 -0.31 -1.66 -0.44 -3.21 
sh3 -0.42 -5.56 -0.21 -3.84 
ts -0.19 -1.31 -0.16 -1.67 
sea1 -0.75 -0.71 -1.99 -2.64 
sea2 -2.08 -1.71 -2.31 -2.62 
sea3 0.63 0.59 -1.48 -1.98 
  F-statistic: 6.78 F-statistic: 6.15 

 

 

 

Table 2. Results of Regressions (11) to (12) of HRS Wheat 

  Regression (11) Regression (12) 
variables coefficients t value coefficients t value 
const. 47.60 3.45 116.27 3.21 
sh2 -0.32 -1.29 -1.38 -1.98 
sh3 -0.53 -3.28 -1.54 -3.72 
ts 0.24 0.53 1.48 0.84 
sea1 -3.88 -2.81 -5.28 -1.19 
sea2 -3.28 -2.06 -9.98 -1.99 
sea3 -0.99 -0.73 3.04 0.68 
  F-statistic: 4.03 F-statistic: 4.34 

 

 

 

 

 

 

 

 

 

41



Table 3. Trial Locations and Names of Top Varieties  
of HRW Wheat in the State of Washington 

Locations 

(1) Almira  
(2) Bickleton  
(3) Connell 
(4) Coulee city 
(5) Dayton 

(6) Dusty 
(7) Finley 
(8) Horse heaven 
(9) Lamont 
(10) Lind 
 

(11) Pullman 
(12) Reardan 
(13) Ritzville 
(14) St andrews 
(15) Walla walla 

Varieties 

(1) Agripro paladin 
(2) Bauermeister (1) 
(3) Boundary  
(4) Buchanan 
(5) Columbia – 1 
(6) Declo 

(7) Eddy 
(8) Estica  
(9) Finley  
(10) Hatton 
(11) Quantum hybrid   
542 

(12) Residence 
(13) Semper  
(14) Symphony  
(15) Wanser 
(16) Weston 

 

 

 

Table 4. Summary Statistics of HRW Wheat Testing Results 
(Observations: 538) 

 Mean Variance Maximum Minimum 
Protein 11.87% 2.88 ൈ 10ିସ 16.6% 7.40% 

Yield (bu/acre) 63.25 1.06 ൈ 10ଷ 165.90 9.90 
Test Weight 

(lb/bu) 
60.48 6.16 64.50 47.10 
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Table 5. Results of Regression (14) 
variable coefficient t value variable coefficient t value 
constant 0.1153 22.6973 variety10 -0.0084 -1.8672 

year2 -0.0165 -6.5310 variety11 -0.0033 -0.7456 
year3 0.0038 1.3690 variety12 -0.0102 -1.9260 
year4 -0.0042 -1.3678 variety13 -0.0082 -1.5482 
year5 0.0137 5.4812 variety14 -0.0011 -0.2564 
year6 0.0028 1.0606 variety15 -0.0058 -1.1062 
year7 -0.0034 -1.2555 variety16 0.0016 0.3564 
year8 0.0080 2.9421 location2 -0.0184 -6.3658 
year9 -0.0007 -0.2265 location3 0.0088 3.5184 

year10 0.0052 1.7054 location4 -0.0006 -0.1847 
year11 0.0127 3.9615 location5 0.0004 0.1355 
year12 0.0145 4.6577 location6 0.0067 1.2968 
year13 0.0099 3.1529 location7 0.0119 3.0240 

variety2 -0.0095 -2.2997 location8 0.0209 8.8342 
variety3 -0.0079 -1.9563 location9 -0.0080 -2.4570 
variety4 -0.0141 -3.2322 location10 0.0150 6.3996 
variety5 0.0002 0.0295 location11 0.0015 0.6535 
variety6 0.0007 0.1719 location12 0.0059 1.8062 
variety7 -0.0033 -0.8035 location13 0.0035 1.3373 
variety8 -0.0089 -1.9462 location14 -0.0105 -4.4670 
variety9 -0.0067 -1.6678 location15 0.0056 2.0292 
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Table 6. Coefficients of Regression (15)  

variable coefficient t value variable coefficient t value 
constant 0.1185 43.57 location2 0.0067 1.82 
year2 0.0051 2.77 location3 0.0055 1.11 
year3 0.0148 7.72 location4 0.0039 1.79 
year4 0.0233 11.44 location5 0.0202 8.54 
year5 0.0318 15.41 location6 0.0031 1.48 
year6 0.0357 17.19 location7 0.0073 3.13 
year7 0.0321 15.43 location8 0.0084 2.67 
year8 0.0350 17.72 location9 -0.0135 -5.83 
year9 0.0400 19.79 location10 0.0006 0.27 
year10 0.0332 16.53 location11 0.0130 6.27 
year11 0.0344 16.34 location12 0.0033 1.59 
year12 0.0356 17.07 location13 0.0165 5.27 
year13 0.0381 18.37 location14 0.0234 7.25 
variety2 -0.0060 -2.72 location15 0.0090 3.34 
variety3 -0.0100 -2.93 location16 0.0259 9.24 
variety4 -0.0105 -3.86 location17 -0.0007 -0.32 
variety5 -0.0089 -5.28 location18 0.0083 3.19 
variety6 -0.0035 -1.97 location19 0.0107 3.56 
variety7 -0.0062 -2.39 location20 -0.0008 -0.37 
variety8 -0.0096 -5.79 location21 0.0058 1.21 
variety9 0.0040 1.54 location22 0.0061 2.93 
variety10 -0.0005 -0.13 location23 -0.0029 -1.31 
variety11 -0.0114 -6.85 location24 0.0158 6.13 
variety12 -0.0097 -4.09 location25 0.0144 5.04 
variety13 -0.0080 -4.44 location26 0.0010 0.50 
variety14 -0.0043 -2.48 location27 0.0059 1.54 
variety15 -0.0106 -2.77 location28 0.0030 1.36 
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Table 7. Results of Regression (16)  
variables coefficient t value 
const 11.58 20.68 
b 0.43 36.08 
R_square: 0.94 
F test: 1203.5 
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Figure 6. Prices of HRW Wheat of Protein Level 11%, 
12%, and 13%
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Figure 7. Prices of HRS Wheat at Protein Level 13%, 14%, 
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Figure 8. Monthly HRW Wheat Stocks with 11%, 12%, and 
13% Protein Level
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Figure 11. WTPs of HRS Wheat Farmers if the Sorting 
Technology Had Been Launched in a Historical Crop Year
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