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Double Dipping in Environmental Markets 

Abstract: There is an increasing tendency to use markets to induce the provision 

of environmental services. As such markets increase in scope, potential market 

participants might sell multiple environmental services.  The question we consider 

here is whether participants in such markets should be allowed to sell credits in 

more than one market simultaneously.  Some have argued in favor of such 

“double dipping,” because it would make the provision of environmental services 

more profitable.  In practice, however, most programs do not allow double-

dipping.  We show that if the optimal level of pollution abatement is sought, then 

double-dipping maximizes societal net benefits.  However, if pollution policies 

are set in a piecemeal fashion, then the caps for each market are unlikely to be 

optimal and, in this second-best setting, a policy prohibiting double dipping can 

lead to greater social net benefits.  We explore conditions under which a single-

market policy is preferred, or equivalently, where piecemeal policies are likely to 

yield particularly inefficient outcomes.  

Keywords: Environmental policy, tradable discharge permits, numerical methods  
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Double Dipping in Environmental Markets 

I. Introduction  

Suppose that a farmer adopts a conservation practice that both improves water quality 

and sequesters carbon.  Should policy makers allow the farmer to sell credits generated by this 

single practice change in both a water quality credit market and a carbon market?  That is, should 

the farmer be allowed to “double dip”? This is the question addressed in this paper. 

Driven by the simple intuition that it makes sense to minimize the cost of pursuing 

environmental improvements, since the early 1990s a wide range of market-based programs have 

been developed to address environmental problems.  In the U.S., air pollution trading programs 

include the national SO2 trading program, California’s Reclaim program, and the multi-state 

Ozone Transport Commission.  For water pollution, encouraged by the USEPA (USEPA 2004), 

over 50 watershed or statewide programs are in various stages of development and trading has 

taken place in 25 of these (USEPA 2007).  A market-based approach is used in wetland 

mitigation banking (Shabman and Scodari 2005), in Habitat Conservation Plans to comply with 

the Endangered Species Act, as a tool in urban planning (McConnell et al. 2006), to encourage 

renewable energy (Berry 2002), and in the European climate change policy (Kruger et al. 2007).  

Virtually every new environmental policy in the U.S. includes a market element and the list of 

environmental goods and service covered by such programs continues to expand. 

In recent years, market based programs have increasingly been making use of offsets or 

what Dewees (2001) calls Emission Reduction Credits.   Offset provisions are used to create 

incentives for sources that are not included in the aggregate cap and have been used to reduce 

nonpoint source pollution (Woodward, Kaiser, and Wicks 2002), to offset wetland losses 

(Shabman and Scodari 2005), and is as a way to reduce CO2 emissions.  For example, as a way 
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to fulfill a portion of their obligations under the Kyoto Protocol, countries with binding 

obligations (Annex 1 countries) can sponsor emission reducing programs in developing nations 

under the Clean Development Mechanism.  Such offsets reduce CO2 emissions from developing 

countries while lowering the cost to the Annex 1 nations.   

Together, the growing scope of market based programs along with the increasing use of 

offsets has greatly expanded the potential for interaction across markets.  In particular, when 

offsets are generated through changes in land management, more than one environmental benefit 

will often result.  A number of authors have called attention to this, highlighting the potential of 

multiple markets, what we will call double dipping (Kieser & Associates 2003; Davis 2006; von 

Hagen 2006; Greenhalgh 2008). If generators of environmental services can sell credits in many 

markets then the incentive to create these services will increase.   

To an economist, allowing double dipping may at first glance appear to be as logical as 

allowing a cotton farmer to sell both the lint and the seed. Nonetheless, it is controversial.  One 

reason for this is that most programs have strict provisions requiring that credits be “additional,” 

meaning that they “have arisen because of the new incentive of trading the permit or obligation 

on the market” (Haddad 1997).  As a practical matter, if a source is selling credits in several 

markets it is more difficult to establish that all of the offsets are in fact additional.  This paper 

explores whether there are economic reasons to allow or forbid double dipping.   

Double dipping is possible when two or more pollutants are complements in the firm’s 

abatement cost function. At the firm level, complementarity means that abatement of two 

pollutants can be done at lower cost than the sum of the costs of abating each pollutant 

separately.  At an economy-wide level, complementarity means that an increase in abatement of 
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one pollutant reduces the social marginal cost of the other related pollutants.   As a result, 

complementarity leads to an increase in the socially optimal level of aggregate abatement. 

As we show in section IV, a policy of allowing double dipping, which we will refer to as 

a multiple-markets (MM) policy, leads to the least-cost allocation of abatement.  It follows, 

therefore, that if the caps are set optimally, the resulting equilibrium under an MM policy will 

lead to the social optimum.  In order to achieve optimality, however, not only must policy 

makers have full knowledge of the cost and benefit functions, but in addition the policies for all 

the related pollutants must be coordinated.  If policy makers do not take into account 

complementarities, then their estimate of the marginal cost will be too high and the resulting 

targets will be “second best,” falling short of the optimal level.   

When abatement targets are below the social optimum, then it is possible that greater net 

benefits to society can be obtained from a policy of not allowing double dipping, what we will 

call a single market (SM) policy  The reason is that for a given program cap, an SM policy will 

actually lead to more total abatement since a source selling credits in one market will, because of 

complementarities, also abate other pollutants.  As a result, although costs are higher under an 

SM policy, the social benefits are also greater.   

Unfortunately, the question of whether an MM or SM policy yields greater net benefits is 

not clear cut.  In sections V and VI we evaluate the conditions that tend to make each policy 

option preferred,1 looking at key parameters and the number of firms participating in the 

markets.  To briefly summarize our findings, the SM policy option is likely to be most appealing 

when complementarity is significant, when the slope of the marginal benefit curves are relatively 

flat, and when there is greater heterogeneity in the pollution abating firms.  An MM policy 
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becomes more attractive if these conditions do not hold or if the slopes of the marginal benefit 

curves for the various pollutants differ greatly.  We should note that social net benefits can 

always be increased by moving the caps toward the optimum and adopting a cost-minimizing 

MM policy; if possible, that would be a better policy alternative. Hence, the conditions that tend 

to favor an SM policy can also be interpreted as indicators that of the importance of 

complementarities and the need to coordinate policies.   

II. Literature Review 

Dales (1968a, 1968b) and Crocker (1966) are credited with coming up with the idea of 

using tradable pollution permits to control pollution.  The first formal treatment of this problem 

was provided by Montgomery (1972).  While Montgomery’s model incorporated the general 

features of a multiple pollutant problem, he characterized it as a single pollutant with multiple 

receptor points.   

In what appears to be the first direct treatment of tradable permits with multiple 

pollutants, Beavis and Walker (1979) established the optimality conditions for the control of 

multiple water pollutants when there are nonseparable interactions in both the damage function 

and in the cost functions of abating firms.  They showed that in most situations, when there are 

multiple pollutants to be controlled, the optimal policy choice requires jointly choosing the level 

for all pollutants simultaneously.  The case of multiple pollutants that cause tropospheric ozone 

was studied by von Ungern-Sternberg (1987), who showed the importance of considering costs 

when developing a policy. Michaelis (1992) took a similar approach to the case of climate 

                                                                                                                                                             

1 Throughout we will refer to a policy option as preferred if it yields greater net social benefits.  
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change where multiple pollutants (e.g., CO2 and methane) lead to a single consequence, and 

develops relative prices for such pollutants. 

Montero (2001) considers the question as to whether cross-pollutant trading should be 

allowed, i.e., whether a firm should be allowed to increase emissions of pollutant A by buying 

credits generated by reducing pollutant B.  Such cross-pollutant trading can be economically 

efficient except if the pollutants enter the social benefit function in a Leontief or maximin 

manner.  In a fashion akin to Weitzman (1974), Montero finds that the relative slopes of the 

marginal benefit and marginal cost curves prove critical to determining if cross-pollutant trading 

should be allowed or not.  If the marginal damage curves are steep, then it is less efficient to 

allow cross pollutant trading.  

Caplan and Silva (2005) and Caplan (2006) investigate a multipollutant problem in an 

international setting.  A productive sector in each nation creates both a regional and global 

pollutant in a fixed proportion.  They show that if policy makers respond optimally in a three 

stage decision process, optimal caps will be chosen and trading programs at the international and 

national level can lead to a Pareto efficient result.  Caplan (2006) goes on to show that if taxes 

are used, as opposed to a cap-and-trade approach, then the resulting equilibrium in similar three-

stage games is not socially efficient.  As in the current paper, the inability of the decision makers 

to coordinate can lead to an inefficient outcome.  

More closely related to the current paper, Horan et al. (2004) ask whether farmers can 

receive government subsidies to implement best management practices and then sell the credits 

generated by those practices in a transferable rights market.  They show that efficiency gains 

occur under double dipping when two payments scheme are coordinated.  But even in the 

uncoordinated or stand-alone setting, double dipping increases efficiency with well-targeted 
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payment incentives. If payment incentives are not well-targeted, then it is more efficient to 

restrict farmers to participating in either the trading program or the government program.   

Finally, our analysis is closely related to the problem of adverse selection that arises 

when sources are paid to carry out an environmental action, even though they would have 

implemented the practice without a market incentive.  Of particular note are the papers by Lewis 

(1996), who provides a general discussion of this problem in environmental problems, and 

Montero (2000), who shows how this arises when there is one set of firms that is regulated and 

another that has the opportunity to voluntarily opt-in to the program.  The current paper explores 

how the presence of multiple pollution markets can lead to this phenomenon. 

III. Basic graphical analysis of the multiple pollutants problem 

A firm’s choice to abate two pollutants, a1 and a2, leads to costs, g(a1, a2).  In a fashion 

similar to Helfand (1991), in Figure 1 we present the iso-cost curves associated with differing 

levels of abatement of the two pollutants for a representative firm with costs increasing in the 

distance from the origin.  The rays labeled g1=0 and g2=0 that traverse the iso-cost curves 

indicate the set of points along which the marginal cost of abatement of one pollutant is equal to 

zero. For example, at each point on the line labeled g2=0, for a given level of a1, the marginal 

cost to increase a2 is equal to zero.  These lines, therefore, are the reaction functions of the firm’s 

abatement of one pollutant to abatement of the other.  In Figure 1a, reaction functions are 

horizontal and vertical, so that if a firm is required to abate pollutant 1, it will take no actions 

with regard to pollutant 2.  In Figure 1b, the pollutants are complements – if the firm is obligated 

to abate a positive quantity of pollutant 1 then, without any policy intervention on pollutant 2, the 

firm’s cost minimizing choice will be to reduce its net emissions of pollutant 2 by following the 

g2=0 ray. Finally, in Figure 1c the pollutants are substitutes – a requirement to abate pollutant 1 
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will lead the cost-minimizing firm to actually increase its emissions of pollutant 2 (a2<0).  We 

will focus throughout the paper on the case in which the pollutants are complements (Figure 1b).   

a1

a2

g a( 1, 2a K)=
g1=0

g2=0

 a1

a2
g1=0

g2=0

 
a1

a2
g1=0

g2=0  
 (a) (b) (c) 

Figure 1: Iso-cost curves for abatement of two pollutants where  
(a) costs are independent, (b) the pollutants are complements, and  

(c) the pollutants are substitutes 

To introduce our policy problem, we start by considering a very simple case of an 

economy with n possible sources of offsets of two pollutants, P1 and P2.  In Figure 2 we 

represent the case of P2, for which a market based program is being developed that will allow 

firms to be paid to reduce P2.  The purchasers of these credits will be other sources that are 

subject to a cap on their emissions.  The costs of the capped polluters are high enough that all 

required abatement will be provided by the n sources of offsets.  Society has a known marginal 

benefits curve for aggregate reductions in this pollutant, MB2, and government has estimated the 

social marginal costs of abatement for these n firms, MC2.  Attempting to maximize net social 

benefits, we assume that the P2 policy makers set the cap at 2Â  where 22MB =MC .   

However, unbeknownst to the P2 policy maker, simultaneously a market-based policy 

affecting P1 is being introduced.  Furthermore, while first n−1 firms are unaffected by the P1 

policy, the nth firm can offset both P1 and P2 and its cost function is characterized by 

complementarity as in Figure 1b.  For that firm, the P1 policy induces it to abate a2 units of P2 
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resulting to a rightward shift in the social marginal cost curve, from MC2 to MC* in Figure 2.  

This shifted curve is the true social marginal cost curve contingent on the P1 policy since it 

reflects the fact that there is no additional cost to generate the a2 units of abatement that arose 

due to the P1 policy.  The socially optimal level of abatement of P2 is *
2A , where the social 

marginal cost equals the social marginal benefit.  Following standard tradable permits intuition 

(Baumol and Oates 1988), if a cap were set at *
2A , the socially optimal level of abatement would 

be achieved at lowest possible cost.  

$

A2

MB2

MC*

a2

MC2

A2 A2
*

 
Figure 2: Marginal benefits and marginal costs of abating pollutant 2 

While *
2A  would be the optimal cap, 2Â  is second-best in the sense that it is made based 

on the limited information available to the policy maker. Given the balkanized fashion in which 

most environmental policy is carried out, this second-best policy captures important features of 

the real world.2   

                                                 

2 Our assumption that the policy maker has a clear picture of the marginal benefit curve, on the 
other hand, is admittedly unrealistic.  We discuss below how errors in measurement of the MB 
curves can have effects that are similar to those in which the MC curve is mis-specified. 
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We can now ask whether an SM or MM policy is preferred in this second-best setting.  

Note that regardless of the policy choice, the a2 units of abatement will occur and will generate 

benefits.  The question is whether they should be counted in satisfying the P2 cap, 2Â .  If an MM 

approach is taken, then the a2 units can be used to satisfy the cap so that total abatement of P2 is 

exactly 2Â , less than *
2A .  If multiple markets are not allowed, then the nth firm cannot sell its a2 

credits and the other n−1 firms must supply 2Â  units of abatement so that under an SM policy 

total abatement of P2 is 2 2Â a+ , more than *
2A .   

Since neither 2Â  nor 2 2Â a+  is socially optimal; the question about whether an MM or 

SM policy is preferred depends on which policy yields a smaller welfare cost. As seen in Figure 

3, if an MM policy is adopted, then the equilibrium price paid in the pollution market will be p 

and, a welfare cost will result, indicated by the triangle labeled MM.  Under an SM policy, the 

market-clearing price would be p , leading to inefficiently high level of total abatement and 

social costs labeled SM.   

 

$

A2

MB2

MC*

a2

SM

MC2

p

p

A2
A2

*
+a2A2

MM

 

$

A2

MB2

MC*

SMMM

MC2

p

p

A2
A2

*
+a2A2a2  

$

A2

MB2

MC*

SM
MM

MC2

p

p

A2
A2

* +a2A2   
 Base case Steep MB curve Steep MC curve 

Figure 3: Effect on welfare costs under a second-best cap 2Â  
with steep MB and steep MC  
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In this simple example, the question of which policy is more efficient depends on the 

slopes of the MC and MB curves.  In the first panel of Figure 3 we present the base case when 

the welfare costs for the two policies are about equal.  In the second panel we consider the case 

when the MB curve is steeper.  As the curve becomes steeper, the SM triangle grows and the 

MM triangle shrinks – an MM policy yields greater social benefits.  Intuitively, this makes sense; 

if the MB curve were vertical, the first- and second-best caps would be at the same point and the 

preferred policy would be that which minimizes the cost, which achieved by the MM policy.  On 

the other hand, if the MB curve were horizontal, the key to avoiding social cost is to ensure that 

all abatement with a cost less than the MB were achieved, and that would follow from the SM 

policy.  

In the third panel of Figure 3 we present the case when the MC curve is steep.  In this 

case, the a2 units of abatement achieved because of complementarity has a large relative effect 

on total costs.  A steepening of the MC curve, therefore, increases the gap between 2Â  and A* so 

that the error associated with an SM policy shrinks.  When the MC curve is flat, on the other 

hand, then the rightward shift from MC2 to MC* would have little effect on the intersection with 

the MB curve.  As a result, as the MC curve flattens, the welfare cost associated with the MM 

policy declines as this is the less expensive way to achieve a level of abatement.  

Our simple graphical analysis shows that in a second-best setting it is not obvious 

whether allowing double dipping is economically efficient.  The simple model gives some 

indication of the conditions when an MM policy would be preferred: when the MB curve is 

relatively steep or MC curve is relatively flat. These findings, however, stem from a very 

simplistic framework and are not generalizable.  How will other parameters enter in to the policy 
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question?  What if there are many firms characterized by complementarity? In the remainder of 

this paper we answer these questions in more general settings.   

IV. The multiple pollutants problem and policy alternatives 

For the remainder of this paper we consider the policy problem in which there are 

j=1,…,m pollutants, Pj, and aggregate abatement of each pollutant, Aj, yields additively separable 

benefits to society, ( ) ( )j j
j

B A B A=∑ . An abatement cap, ˆ jA , places a restriction on high-cost 

sources of Pj, but these sources are allowed to fulfill their obligations by purchasing credits from 

n low-cost firms.  We assume that the cost differential is such that any abatement cap will be 

satisfied entirely by the low-cost firms, hence explicit modeling of the high-cost firms is not 

necessary. The low-cost firms, which have no explicit limit on their emissions, can generate 

credits by reducing their net emissions relative to their initial level. The cost of abating pollution 

for these i=1,…,n sources is a function of their vector of abatement activities, gi(ai), where 

ai=(ai1, ai2, …, aim) and aij is the abatement of pollutant j by firm i.   

A. The planner’s problem 

We will maintain throughout the following regularity assumptions: (1) the benefit and 

cost functions are all continuously differentiable; (2) each of the benefit functions is assumed to 

be strictly concave with B'>0 and B''<0;  (3) the cost functions gi(⋅) are strictly convex and, since 

we assume that each firm’s baseline level is the previous optimum, the marginal cost curves 

begin at the origin, i.e. ( )0
0i

ij

g
a

∂ =∂  for all i, j, where 0  is the null vector.  In addition, 

because of our interest in pollutants that are complements, (4) we will assume that 
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( )
0i

ik ij

g

a a

 ∂ ⋅∂ ≤  ∂ ∂ 
 for all i and all j≠k, which we will refer to as strict complementarity if the 

inequality is strict.  (5) At the market level we will assume that no supplier has market power so 

that any vector of prices is treated as exogenous by the individual firms.   

For a vector of aggregate abatement levels, ( )1 2, , , mA A A A= … , a cost effective 

allocation of abatement activities is found by solving the optimization problem: 

 
{ }

( )
1 1

min s.t.   for all .
ij

n n

i i ij j
a i i

g a a A j
= =

≥∑ ∑  (1)  

Since the gi(⋅) functions are convex by assumption, the total cost function is also convex and 

first-order conditions are necessary and sufficient for the solution of (1): 

 
1

0
n

i
j ij j

iij

g
a A

a
λ

=

∂  − − = ∂  
∑  (2)  

where λj is the j th Lagrange multiplier.  Solving (2), a cost-minimizing allocation will be 

characterized by the equi-marginal conditions: 

 
( ) ( )i i l l

ij lj

g a g a

a a

∂ ∂
=

∂ ∂
 for all i, j, and l. (3)  

Note that because of complementarity, it can hold that for aij>0, ( ) 0i i ijg a a∂ ∂ = . Hence, even if 

Aj>0, the j th constraint may not bind.   

Ideally, the planner would be concerned with not only minimizing costs, but in 

maximizing societal net benefits, i.e.,  

 
{ } ( ) ( )

1 1 1

max s.t. 
ij

m n n

j j i i j ij
a j i i

B A g a A a
= = =

− =∑ ∑ ∑  (4)  

As with (1), (4) is a convex programming problem so that the optimal vector of aggregate 

abatement, A*, is characterized by the first-order conditions,  
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 ( ) ( )* i i
j j

ij

g a
B A

a

∂
′ =

∂
 for all i, j. (5)  

Hence, to achieve the social optimum it is required that the cost minimization is satisfied and the 

aggregate levels of abatement are set optimally.  

B. The MM policy 

In this paper we consider two decentralized policies to incentivize abatement effort. 

Under an MM policy, the n sources can generate valuable credits for all reductions in their net 

emissions.  For a given vector of prices, p=(p1,…,pm), the problem of these profit maximizing 

firms can be written 

 ( )max
i

j ij i i
a

j

p a g a−∑  (6)  

with first-order conditions 

 
( )i i

j
ij

g a
p

a

∂
=

∂
 for all i, j. (7)  

Inverting (7), a firm’s profit maximizing vector of abatement can be written ( )ia p . By 

complementarity, we know that ( ) 0ij ika p a∂ ∂ ≥ .  We will occasionally assume what we call 

constant complementarity, ( )2 2 0ij ka p a∂ ∂ = , though this will only be required for sufficiency 

conditions.  

A price vector, pMM, leads to a market equilibrium if, for a given vector of abatement 

caps, ( )1 2
ˆ ˆ ˆ ˆ, , , mA A A A= … , ( ) ˆMM

ij j
i

a p A≥∑  for all j.  Since the firms’ cost functions are convex 

and continuously differentiable, it follows that under the MM policy, aggregate abatement MM
jA  

will exactly equal the cap in all markets if pj
MM>0 for all j. On the other hand, it is possible for a 
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high cap on one pollutant to lead to complementary abatement in another pollutant so that for 

some j ˆMM
j jA A>  and pj

MM=0..   

Using the first order conditions, we obtain the following proposition. 

Proposition 1: Under the regularity assumptions, the equilibrium under an MM 

policy will result in the cost effective allocation of abatement to achieve a level of 

abatement ˆA A≥ .  If the caps are chosen optimally, *Â A= , the equilibrium will 

also achieve the socially optimal level and allocation of abatement. 

Proof: For a vector of caps Â , the MM equilibrium conditions, (7), are equivalent 

to (3) when Â A= .  For optimality, if *Â A=  then (7) also ensures that 

( )i i
j j

ij

g a
p B

a

∂′= =
∂

 for all i, j, which satisfies (5).   

It will be helpful to refer to the aggregate benefits, costs, and net benefits in an 

equilibrium under an MM policy as a function of a vector of abatement caps: ( )ˆMMB A , 

( )ˆMMC A , and ( )ˆMMNB A .   

Proposition 2: Under the regularity assumptions, 
( )ˆ

0
ˆ

MM

j

B A

A

∂
≥

∂
 and 

( )ˆ
0

ˆ

MM

j

C A

A

∂
≥

∂
.  Furthermore, constant complementarity is sufficient for 

( )2

2

ˆ
0

ˆ

MM

j

B A

A

∂
≤

∂
 and 

( )2

2

ˆ
0

ˆ

MM

j

C A

A

∂
≥

∂
. 

Proof: See Appendix A. 
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C. The SM policy 

Under an SM policy, each polluter can sell credits for abating only one of the m 

pollutants.  Hence, the firm optimization problem becomes 

 ( )
,

max
i

j ij i i
j a

p a g a− . (8)  

Distinct from (6), under an SM policy, credit suppliers must choose both the market in which to 

participate and how much abatement to carry out.  For a given price vector, the decision to 

participate in market j will be optimal if  

 ( ) ( )* * * *j k
j ij i i k ik i ip a g a p a g a− ≥ −  for all k≠j,  (9)  

where the vector *j
ia  is the vector of abatement levels that are optimal given that the firm is 

participating in market j.   

Because of the discrete nature of the choices made by firms under the SM policy, the 

equilibrium is not necessarily characterized by convenient first-order solutions.  Consider the 

following example.  Suppose that there are two pollutants with caps, 1 2
ˆ ˆA A= .  There are 101 

identical firms that emit both pollutants with cost functions that satisfy the regularity 

assumptions and also have the characteristic that the marginal cost to abate the pollutants are 

equal in the sense that ( ) ( )1 2 1 1 2 2, ,i i i i i i i ig a a a g a a a′ ′∂ ∂ = ∂ ∂  for 1 2i ia a′=  and 2 1i ia a′= .  Consider 

a potential equilibrium with 50 firms selling credits in market one and 51 in market two.  

Because of its greater number of firms, the slope of the aggregate marginal cost curve in market 

two would be slightly flatter than that for market one.  Hence, using the supply functions that 

follow from the first order conditions, the price needed to reach 2Â  would be lower than the 

price needed to supply 1Â .  However, such a price vector cannot be an equilibrium since if p2<p1 

there will be an incentive for the price-taking firms to shift from market two to market one.  This 
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means that, the equilibrium price in market 2 cannot equal the marginal cost for the firms 

participating in that market and still exactly achieve the cap.  In equilibrium, the price paid for 

credits in market two will be greater than the marginal cost at the equilibrium allocation.   

When the equilibrium price is greater than the marginal cost, the regularity assumptions 

do not ensure that profit maximizing choices will lead to a cost-minimizing supply of credits – 

multiple equilibria are possible.  We will assume that there are competitive forces that push firms 

to a cost minimizing allocation so that equimarginal conditions are satisfied, i.e., 

( ) ( )i i k k

ij kj

g a g a

a a

∂ ∂
=

∂ ∂
 for all i, k.  Hence, for firms i and l participating in the j th SM market, in 

addition to (9), the following first-order conditions must be satisfied at the equilibrium: 

 
( ) ( )i l

j
ij lj

g g
p

a a

∂ ⋅ ∂ ⋅
= ≤

∂ ∂
, and 

( ) ( )
0i l

ik lk

g g

a a

∂ ⋅ ∂ ⋅
= =

∂ ∂
 for all k≠j. (10)  

As above, we will define aggregate benefit, cost, and net benefit functions, ( )ˆSMB A , 

( )ˆSMC A , and ( )ˆSMNB A , that follow from the equilibrium responses when the SM policy is 

used.  Under an SM policy, only a portion of all the potential abaters of a pollutant j will be 

participating in the j th market to generate ˆ jA  credits.  However, the firms participating in markets 

k≠j will still abate the j th pollutant due to complementarities. Hence, the total abatement of the j th 

pollutant, SM
jA , will be greater than ̂ jA  and we can state the following proposition. 

Proposition 3: Assuming the regularity conditions, under an SM policy, SM
jA ≥ ˆ

jA  

for all j, ( ) ( )ˆ ˆSM MMB A B A≥  and ( ) ( )ˆ ˆSM MMC A C A≥  with the inequalities being 

strict if strict complementarity holds. 

Proof: See Appendix A. 
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Proposition 3 tells us that, for a given cap, the SM policy leads to benefits and costs that 

are greater than those generated by the MM policy. It does not, however, infer anything about the 

net benefits of two policy options.  However, it turns out that in the neighborhood of the origin, 

ˆ 0A = , the SM policy leads to greater net benefits. 

Proposition 4: In the neighborhood of the origin where ˆ
jA >0 for at least two 

pollutants, ( ) ( )ˆ ˆSM MMNB A NB A≥  with a strict inequality holding if strict 

complementarity holds.   

Proof: See Appendix A 

 
Figure 4: Example of how SMNB  and MMNB  intersect at ˆ cA  

Together, propositions 1 and 4 tell us that there exist caps where each option generates 

greater net benefits.  If the caps are set at the optimal level, the MM policy is preferred.  In the 

neighborhood of the origin, the SM policy does better.  If the net benefit functions are both 
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strictly concave, then it will holds that the space of all possible caps can be divided into two 

parts, a lower portion where the SM policy dominates and an upper portion where the MM 

policy is preferred.  This idea is shown in Figure 4 which presents the hypothetical net benefit 

surfaces for the two policy options for a range of cap levels.  Somewhere between 0 and A* the 

NBSM surface will cross the NBMM surface, an intersection which we refer to as ˆ cA .  

If the NBSM and NBMM surfaces are smooth and concave, then ˆ cA  will be a single 

continuous line as presented Figure 4.  Because of the discrete nature of choices under the SM 

policy, the NBSM may or may not be smooth and concave even if the regularity conditions are 

satisfied.  However, the general pattern is more important and is established by propositions 1 

and 4: there will tend to be a region of smaller caps where the SM policy will tend to be 

preferred, and another region close A* where the MM policy does better.   

V. Double-dipping in a fully symmetric economy 

In the remainder of the paper we seek to understand the conditions that would tend to 

favor one or the other of the two policies. To obtain our results we narrow our focus to a model 

with specific functional forms for the cost and benefit equations.  The essential features of the 

abatement technology that we want to capture are heterogeneous costs across the i= 1,…,n firms 

and the potential for complementarity in the cost function to abate the pollutants P1 and P2. A 

parsimonious cost function that satisfies these requirements is a quadratic abatement cost 

function of the form 

 2 21 2
1 2 1 2 1 2( , )

2 2
i i

i i i i i i i ig a a a a a a
α α γ= + +  (11) 

with αij>0.  The interaction term, γ i, is assumed to be non-positive so that the two pollutants are 

complements as in Figure 1b.  If a firm faces prices p1 and p2, then it will profit from the supply 
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of abatement credits ai1 and ai2: ( )1 1 2 2i i i ip a p a gπ = + − ⋅ .  From the first order conditions we can 

obtain the profit maximizing supply functions: 

 � � � �
1 2 1 2 2 1 2 1 and  i i i i i ia p p a p pα γ α γ= − = −  (12)  

where � ( ) � ( )2 2
1 2 1 2  and ij ij i i i i i i i iα α α α γ γ γ α α γ= − = − .  In order to ensure that the supply 

curves are upward sloping in the own price, we only consider case when ( )2
1 2 0i i iα α γ− > , 

which is sufficient to impose convexity of the cost function as assumed in the regularity 

conditions.  The additively separable benefit function, ∑=
j

jj ABAB )()( , is assumed to take the 

form: 

 2,1,,0,0
2

)( 2 ==>>Ω−Ω= ∑ jaAwhereAAAB
i

ijjjjj
j

jjjj θ
θ

. (13) 

In order to obtain clear analytical results, in this section we use a case of the model in 

which there are two pollutants and two representative firms.  In this fully symmetric case we set 

11 22 (0,1]α α α= = ∈  and 12 21
1α α α= =  and let 1 2γ γ γ= = .3  On the benefit side, we assume 

that the benefit functions for the two pollutants are identical: 1 2Ω = Ω = Ω  and 1 2θ θ θ= = .   

The model is now reduced to four parameters and each has a clear intuitive meaning.  

Since αii=α<1 and αij>1, firm 1 will tend to abate more of P1 while firm 2 will specialize on P2. 

A reduction in α, therefore, will be referred to as an increase in the degree of specialization of 

the firms.  The γ parameter captures the degree to which there is complementarity in the 

economy so that for γ=0 the goods are independent (Figure 1a) and as γ approaches −1, the 

                                                 

3 Complementarity, along with the restriction that ( )2
1 2 0i i iα α γ− >  implies ( ]1,0γ ∈ − . 
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degree of complementarity across the goods increases (Figure 1b).  The final key variable is the 

slope parameter in the benefit function, θ≥0.  As θ increases in absolute value, the marginal 

benefit curves become steeper.  The second parameter in the benefit function, Ω, simply scales 

the marginal benefit functions.   

At the first-best optimum, the marginal benefit of abatement would equal marginal cost, 

ij ij i ika aθ α γ= + , i=1,2, j=1,2, k≠j.  We know from Proposition 1 that the optimum is achieved 

through an MM policy.  In this case the optimal cap can be written  

 
( )

( )
2

*

2 2

2 1
ˆ

2
A

γα α
γ α γθα α θ α θ

Ω − −
=

+ − − −
.4 (14)  

To identify the optimal cap, therefore, the planner must have knowledge of all the parameters of 

the economy, including the interaction term, γ, which may be particularly difficult to observe or 

estimate.  

We now consider the benefits and costs under the different policies at arbitrary cap 

levels, 1 2
ˆ ˆ ˆA A A= = .  Under an MM policy, firms can sell credits in both markets so that 

equilibrium is achieved where 11 21 12 22
ˆMM MM MM MMa a a a A+ = + = .  Solving for the equilibrium prices 

and then using (12), in this case we have  

 11 22 2

1 ˆ
1 2

MM MMa a A
γα

α γα
−= =

+ −
 and 

2

12 21 2
ˆ

1 2
MM MMa a A

α γα
α γα

−= =
+ −

. (15)  

                                                 

4 Despite the relatively parsimonious specification, the analytical solutions to this problem were 
quite cumbersome.  Analytical results were derived using Matlab and confirmed manually or 
numerically.  The Matlab code used for the in the paper will be made available online upon 
publication. 
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In the SM case, firms can only sell credits in one market and, since 11 12α α<  and 22 21α α< , 

11 22
ˆSM SMa a A= =  while 12

SMa  and 21
SMa  is the complementary abatement, i.e.,  

 11 22
ˆSM SMa a A= =  and 12 21

ˆSM SMa a Aγα= = − . (16)  

Note that 21
SMa  and 12

SMa  are affected by both α and γ, so in this specification it is not possible to 

completely isolate the slope of the MC curve from the level of complementarity as was done in 

Figure 3. From (16) it follows that the SM policy results in abatement of each pollutant in excess 

of Â , leading to greater social benefits but higher costs.   

Substituting (15) and (16) into the benefit and cost functions and simplifying, the net 

benefits of policies given an arbitrary cap Â  can be written  

 ( ) ( )
( )

2 2 2

2

ˆ ˆ ˆ ˆ ˆ ˆ2 4 2 2
ˆ

2 1
MM

A A A A A A
NB A

αγ θ γα γα α θ α α θ

γα α

− + − Ω + Ω − − + Ω −
=

− −
 (17)  

and  

 ( ) ( ) ( ) ( )( )2 2 2ˆ ˆ ˆ ˆ2 1 1 2 1SMNB A A A Aγα θ γα α γ α γ= − Ω − + + − + + − . (18)  

If ( ) ( )ˆ ˆ 1SM MMNB A NB A >  then at that cap level an SM policy would be preferred.  In 

Appendix A we show 
( ) ( )ˆ ˆ

0ˆ

SM MMNB A NB A

A

 ∂
  <

∂
.  By Proposition 4 we know that 

( ) ( )ˆ ˆSM MMNB A NB A  is greater than 1 in the neighborhood of the origin, and, by Proposition 1, 

the ratio is less than 1 when *Â A= . The monotonicity of the derivative, therefore, implies that 

there is a unique cap level ˆ cA , where the two policies yield equivalent net benefits.  In Appendix 

A we solve for this value: 
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 ( ) ( )
( )

1
2

2 2

2

1
ˆ 2 2 1

1 2
cA

γ
γ θγ θγ α γ

α γα

−
 −
 = Ω − − + −

+ −  

. (19)  

The ratio of ˆ cA  to *Â  tells us how far away from the first best cap the policy maker must 

be in order for the SM policy to actually deliver greater net benefits.  For example, if 

*

ˆ 0.3ˆ
cA

A
= , then as long as the cap that is set is at least 30% of the optimal level, it would be 

preferable to adopt the MM policy.  Dividing (19) by (14) and simplifying we obtain: 

 
( )2 2

2 2 3 2 2 3 2 3 2 2*

ˆ 2 2

ˆ 5 2 2 2 2 2

cA

A

αγ γθα α θ α θ γ
θγ α γθ γθα θγ α θγ α γα α γ α α γ

− + − − −
=

− + + + − + − − +
. (20) 

Although this expression is quite complicated, its one obvious feature is that Ω does not appear – 

the intercepts of the marginal benefit equations have no effect on the ratio.  Instead, Ω simply 

scales the net benefits under both policies.   

The derivatives of (20) with respect to the parameters will provide insights into the 

circumstances where an SM policy is most likely to be appropriate.  We present the derivatives 

of *

ˆ
ˆ

cA
A

 with respect to α, γ, and θ in Appendix A. The derivative with respect to α is negative 

implying that as specialization increases (α declines) the portion of the space where the SM 

policy dominates increase.  We also show that ( )*

ˆ 0ˆ
cA

A
θ∂ ∂ >

∂
, meaning that the switching 

point at which MM policy begins to dominate becomes closer to *Â  as the marginal benefit 

curve becomes steeper.   

These patterns can be seen in figure 5, which presents level curves of *

ˆ
ˆ

cA
A

 over the 

range of values of α and γ for two values of θ. On the left we present the case where θ =0.5, i.e. 

the marginal benefit curves are relatively flat.  As is seen in the figure, when α is small, ˆ cA  is 
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very close to *Â .  That is, when the firms have a strong tendency to specialize in one or the other 

of the pollutants, the SM policy is preferred for almost all cap levels and, interestingly, the 

complementarity level, γ, does not affect this very much.  On the other hand, as α increases and 

the firms become more similar in terms of their marginal costs of abatement, the chosen cap on 

aggregate abatement would have to be much lower than the optimal level before an SM policy 

would be preferred.  At α=0.6, for example, for even high levels of complementarity, the caps 

would have to be set less at less than 80% of optimal for an SM policy to be preferred and, if low 

levels of complementarity prevail, say γ=-0.1, the MM policy would be preferred unless the caps 

were set at less than 40% of the optimum.  

The right side of Figure 5 presents the same level curves, but for demand curves that are 

four times steeper. In this case the MM policy yields greater net benefits only if caps are set very 

nearly at their optimal levels.  The ratio *

ˆ
ˆ

cA
A

 is greater than 80% for almost the entire 

parameter space.  So when the marginal benefit curve is steep, if policy makers suspect that the 

caps they choose may be suboptimal, they can adopt an SM policy with a relatively high degree 

of confidence.  This result makes intuitive sense since as θ increases, the consequences of 

abatement that is too low are greater; anything that would increase abatement, including an SM 

policy, becomes increasingly attractive.  
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Figure 5: Level curves of ˆ ˆc *A A  for full range of values of αααα and γγγγ   

We now compare the two policies when caps are set at their second-best level, 

( ) ( )2 2 2ˆ 1A α α θ α θ= Ω + + + , found by setting γ=0 in (14).  In Figure 6 we present the ratio 

SM MMNB NB  when the second-best cap is chosen for different values of γ and θ when α=0.2 

and α=0.8.  In both cases, the SM policy yields greater net benefits at 2Â  when 

complementarities are significant (γ is large in absolute value) and the MB curve is relatively flat 

(θ is relatively small).  However, when θ is large, the MM policy yields greater net benefits even 

if complementarities are at their maximum level.  This confirms what we found in Figure 3.  On 

the other hand, contrary to what was suggested by Figure 3, if γ is close to zero then a flat 

marginal benefit curve, θ=0, does not ensure that the SM policy will be preferred at 2Â .  
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Figure 6: SM MMNB NB ratio at second-best cap (αααα=0.5) 

There are two important differences in Figure 6 between the case when α=0.2 and when 

α=0.8.  First there is a matter of scale.  When α=0.2, the percent error is small so that at 2Â  

choosing the incorrect policy results in an error of less than 10%.  When there are high levels of 

specialization, the policy choice will have little effect on in actual outcomes. When α=0.8, on the 

other hand, the supply curve is steep and the cost of making an incorrect policy choice can 

exceed 50%.  Second, the steeper supply curve also substantially diminishes the portion of the 

parameter space where the SM policy is preferred.  This is consistent with Figure 3; steep MC 

curves tend to favor an MM policy. 

The fully symmetric model, though extremely restrictive, does give us some clues as to 

the conditions under which an SM policy might be chosen.  As the firms become less specialized 

(α→1), the cap level at which the MM policy begins to dominate falls.  As the degree of 

complementarity increases (γ → −1), under a second-best policy an SM policy becomes more 

attractive.  Finally, the slope of the marginal benefit curve shows that for flat curves, second-best 

caps tend to yield greater net benefits under the SM policy than under MM policy. In the last 
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main section of this paper we relax the restrictions of the fully symmetric model and use 

numerical analysis to explore further the MM and SM policies. 

VI. Numerical analysis for more than two firms and multiple sources of heterogeneity 

In this section we study how our findings change when there are more than two firms.  

One can think of the two-firm case as representative of an economy in which there are many 

firms, but only two types of firms.  Increasing the number of firms in the model, therefore, can 

be thought of as representative of adding more heterogeneity to the economy.  Unfortunately, as 

we move beyond the two-firm model, the increasing number of parameters makes it difficult to 

obtain clean analytical results.  Hence, in this section we use numerical methods. 

The first question that we ask is how increasing the number of firms alters the point at 

which the preferred policy switches from SM to MM.  In figures 7 and 8 we present the results of 

1000 simulated markets. In each market the parameters for the benefit and cost functions are 

drawn independently from distributions as described in Appendix B.  Once a set of parameters 

are chosen, we then vary the caps for the two pollutants,  1Â  and 2Â , from 6% to 125% of their 

optimal levels.  At each level we solve for the equilibria under the MM and SM policies.  In the 

case of the MM policy, there is no variation in the results; for any set of parameters a 

proportional change in the caps leads to the exact same change in net benefits relative to the first-

best level.  For the SM policy, on the other hand, the relative net benefits can vary substantially, 

and we present the 95% confidence bounds for this policy.   

Comparing figures 7 and 8, we see that increasing the number of firms has three 

discernable effects.  First, there is a noticeable upward shift in the net benefits that can be 

achieved by the SM policy.  While the average NB curve for the SM case peaks at about 90% of 

the first-best optimum in the 2-firm case (figures 7), this curve peaks at 98% of the optimum 
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when 30 firms are simulated.  This upward shift also moves to the right the point at which the net 

benefits under the SM policy will cross the MM curve.  Finally, we see a tightening of the 

distributions around the mean, though this is attributable at least in part to the fact that the 

distribution of the average cost from 30 firms will be tighter than that for 2 firms.   
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Figure 7: Average Net Benefits under SM and MM policies with 2 firms 
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Figure 8: Average Net Benefits under SM and MM policies with 30 firms 

In figures 9, 10 and 11 we present the results of Monte Carlo simulations for economies 

with thirty heterogeneous firms, while holding one of the parameters constant at a variety of 
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levels.5  In Figure 9 we vary the α parameter which determines the extent to which there is 

specialization in the firms’ cost functions.  In each simulation, the 30 firms are randomly set into 

one of two groups, αi1=α or αi2=α.  While on average 15 firms would be in each group, the 

actual numbers vary across draws.  When the firm are highly specialized (α=0.1), the two 

policies yield very similar benefits for any cap.  As noted above, this makes sense since when 

firms are specialized it also means that the complementary abatement falls and the policy 

decision regarding double dipping is less consequential.  However, as specialization declines 

(α=0.7), the two policies diverge. In such an economy, if the cap is set too low, an SM policy 

can generate about 40% more net benefits to society.  On the other hand, if the cap is set at the 

first-best optimum or above, when α is high the cost of choosing an SM policy can be very great.   
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Figure 9: Effect of specialization on the average net benefits for  

SM and MM policies as percent of optimum  

                                                 

5 To make the figures easier to read, only the average results are presented in these figures. In all 
cases, the variation across draws was substantially reduced, making the confidence bounds much 
tighter than in figures 7 and 8. 



 30 

0%

25%

50%

75%

100%

0.00 0.25 0.50 0.75 1.00 1.25

N
B

 a
s 

%
 o

f O
pt

im
um

NB(MM)/NB*

 gamma= -0.1

 gamma= -0.3

 gamma= -0.6

 gamma= -0.9

   
Figure 10: Effect of complementarity on the average net benefits for  

SM and MM policies as percent of optimum 

In Figure 10 we vary the complementarity parameter, setting γ at four levels, from −0.1, 

where there is only slight complementarity, to γ = −0.9.  It is not surprising that the potential 

advantages of an SM policy only arise for greater levels of complementarity.  While there is a 

shift in the point at which the two policies cross, this very slight for value of γ  ≤−0.3. 

Finally, in Figure 11 we present the results of simulation analysis in which we explore the 

role of θ, the slope parameter of the marginal benefit curve. As distinct from our analysis of the 

fully symmetric case, here we set the slopes of the marginal benefit curves at different levels.  It 

is clear from this figure that the relative slopes are an important factor in determining if an SM or 

MM policy is preferred.  In the topmost curve, both slopes equal.6  As the difference between the 

slopes increases, the net benefits from an SM policy fall monotonically. We know that an SM 

policy can lead to total abatement in excess of the first best optimum in one market and 

                                                 

6 In separate analysis, we found that for 1 2θ θ= , the actual value of the slope made little 

difference and curves with the value set from 0.1 to 2.0 were virtually indistinguishable. 
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insufficient supply in the other. This tendency is exacerbated as the difference between θ1 and θ2 

grows.  
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Figure 11: Effect of the slope of marginal benefit curve on the average net benefits for  

SM and MM policies as percent of optimum 

VII. Discussion, policy implications, and conclusions 

In this paper we have addressed an important policy issue – should participants in 

pollution trading programs be allowed to use a single practice change to generate credits in 

multiple markets?  As mentioned in the introduction, this question is related to the issue of 

“additionality,” i.e., that credits should be granted only in response to the incentives created by 

the program. When there is complementarity in the firms’ cost functions and multiple 

environmental markets are present, identifying what reductions should be counted as additional 

can be complicated.  Two different interpretations of additionality are frequently adopted 

(Wunder 2005).  In the first case, a baseline is established at a particular point in time and any 

reductions in emissions from that baseline would be additional and creditable. Alternatively, 

baselines can be thought of as emissions that follow from a business as usual path and 

additionality is recognized when emissions fall relative to the baseline level.   
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Our analysis can be thought of as a stylized presentation of these two approaches to 

additionality when multiple markets are present.  If double-dipping is allowed, then a seller of 

credits can be compensated for any reductions in emissions regardless of how or why those 

reductions arose – all abatement relative to the starting point is additional.  If double-dipping is 

not allowed, then they must dedicate their credits to one or the other markets – the response to 

one policy becomes the baseline path and emission reductions that come about because of 

complementarities in the cost function are not additional.   

In our model, it is clear that for any level of total abatement, an MM policy leads to a 

cost-effective allocation of effort and, if the caps are chosen correctly, will maximize aggregate 

net benefits.  Based on what we see of policy in practice, however, we believe that such multiple 

pollutant optimization is rarely accomplished.  Consider the fact that the agricultural sector might 

soon be allowed to sell carbon offsets to manufacturer, phosphorus offsets to a waste water 

treatment plant, and wetland mitigation credits to a developer.  Yet it seems unlikely that the 

policies regarding these three markets will be coordinated.  

Under what conditions might an SM policy might be desirable?  We find that this tends to 

occur when there is evidence of substantial complementarities, when the firms’ costs curves are 

such that they do not tend to specialize, and when the MB curves tend to have similar slopes.  If 

all these conditions are satisfied, then an SM policy may yield greater net benefits.  

Alternatively, and probably better, when these conditions are satisfied, a coordinated policy that 

takes into account market interactions is particularly important.   

A step even more substantial than setting the caps correctly would be to bring all sources 

under the suite of cap and trade programs, thus eliminating the voluntary offset programs.  This 

would provide positive incentives for abatement of any and all pollutants and negative incentives 
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for any increase in emissions.  Of course there are numerous practical and political challenges 

that have pushed policy makers to use offsets, but any offsets policy is in itself a second-best 

solution.  

There are several issues that make the “real world” substantially more complicated than 

the stylized model used here.  First, there is the issue of sequencing. It is rarely the case that two 

or more environmental markets are created simultaneously.  Instead, the programs are rolled out 

over time; the U.S. SO2 market, predates the water quality markets, which predate markets for 

CO2 and biodiversity.  In this case, not only have polluters often committed to one market first, 

but that they may not have committed to the market in which they have comparative advantage.  

Inefficient sorting and inefficient practices can result.7  As new markets are created, policy 

makers should ask how they will interact with previous ones. Although our results may be 

helpful in guiding the policy decisions that must be made, they do not apply directly.   

Second, we should point out that our stylized policy makers act as if they are completely 

ignorant of complementarities when setting the caps, but then admit this possibility when 

choosing between the SM and MM policy options.8  Such schizophrenic behavior is unlikely to 

hold completely true in reality.  It seems more likely that the policymakers would be uncertain 

about the extent that complementarities are present and would hopefully take into account this 

possibility when setting the cap and when choosing between an SM and MM policy.  In a simple 

case akin to that of Figure 3, the similarities to Weitzman (1974) become even more apparent: 

the SM policy behaves like a price rule and the MM policy like a quantity restriction.  We leave 

the extension of our analysis along these lines for future work. 

                                                 

7 This recalls the results of Atkinson and Tietenberg (1991) for a single market. 
8 We thank a reviewer for pointing out this extension of our model.  
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We have also narrowed most of our analysis to situations in which there are only two 

pollutants. Yet as just noted, markets across many environmental services are arising and 

relationships across three or more such markets are possible.  In Section IV we show that 

generally, if caps are sufficiently low, an SM policy is preferred and, that if the caps are set 

optimally, the MM policy will yield greater net benefits.  As far as the effect of other parameters 

goes, however, we can only speculate that implications of the two-firm model also apply when 

three or more pollutants are involved.   

Finally, we should point out that we have ignored the issue of transaction costs and other 

regulations.  As Stavins (1995) showed, when transaction costs occur the market equilibrium can 

be inefficient and the initial allocation of permits can matter.  The issue of transaction costs is 

particularly important in the multiple markets problem since the transaction costs in an MM 

structure might actually be lower than in an SM structure (Greenhalgh 2008).  It is also the case 

that firms face a variety of other environmental regulations, not all of which have market-based 

elements.   

There is great interest in finding ways to make environmental markets work together and 

there is much merit to the idea that incentives should be created for projects that generate 

multiple environmental benefits.  If complementarities exist in the production of environmental 

services, then a policy of allowing double-dipping will maximize such incentives.  However, 

complementarities also lead to a reduction in the cost of providing these services so that a higher 

environmental standard will be socially efficient.  In the development of environmental policy, 

these factors should be considered.  Ideally, policy makers would take into account 

complementarities when setting caps and allow double dipping.  But if coordinated policies are 

not possible, allowing double dipping may not lead to the greatest net benefits to society.   
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Appendix A: Propositions, Proofs and Derivations 

Proof of Proposition 2 

Let pMM=(p1
MM,…,pm

MM) be the MM equilibrium price vector given a cap, Â .  We consider 

three cases:  pj
MM>0 for all j, and pj

MM=0 for all j, and pj
MM>0 with pk

MM =0 for some k≠j.  

Case 1 (pj
MM>0 for all j): In this case, Aj

MM= ˆ
jA  for all j at MM equilibrium so that 

1ˆ

MM
j

j

A
A

∂ =
∂

 and 0ˆ

MM
k

j

A
A

∂ =
∂

. Hence, ( ) ( )ˆ ˆMMB A B A= , and B(⋅) is increasing and concave in 

its arguments. Further, given the assumptions on gi(⋅), an increase in ̂ jA  will lead to an increase 

in aij for all j.  Since ( ) ( ) ( )ˆMM MM MM
i i

i

C A C A g a= =∑ , and the sum of a monotonic convex 

function is monotonic and convex, it follows that 
( )ˆ

0
ˆ

MM

j

C A

A

∂
≥

∂
 

( )2

2

ˆ
0

ˆ

MM

j

C A

A

∂
≥

∂
. Case 1 also 

applies in the case where pj=0 but ˆ MM
j jA A= . 

Case 2 (pj
MM=0): In this case, the aggregate supply of Aj

MM> ˆ
jA  so an increase in ˆ jA  will 

not affect benefits or costs, i.e.,
( ) ( ) ( ) ( )2 2

2 2

ˆ ˆ ˆ ˆ
0

ˆ ˆ ˆ ˆ

MM MM MM MM

j j j j

B A B A C A C A

A A A A

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
. 

 Case 3 (and pj
MM >0 and pk

MM=0 for some k≠j): In this case, the marginal change in ˆ
jA  

will also cause a change in Ak
MM. Hence, 

( )ˆ

ˆ ˆ

MM MM
j k k

MM MM
j kj j

B A B B A

A AA A

∂ ∂ ∂ ∂= +
∂ ∂∂ ∂

.  We can decompose 

the second term as 
ˆ ˆ

MM
ijk k k ik

MM
ik ik ijj j

aB A B a

A a aA A

∂∂ ∂ ∂ ∂=
∂ ∂ ∂∂ ∂∑ . Under constant complementarity, the second 
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derivative of Bk with respect to aij vanishes, so concavity holds due to concavity of Bj. On the 

cost side, the monotonicity and convexity of CMM are as in case 1.  

Proof of Proposition 3. 

Let I j
 SM be the set of firms participating in the j th market under the SM policy and let Nj

 SM 

be the number of firms in this set.  

Suppose that ̂ jA >0 while ˆ 0kA =  for all k≠j.  In this case pj
SM>0 and pk

SM =0 and Nj
 SM=n.  

The SM equilibrium will be exactly the same as in the MM case, so that ( ) ( )ˆ ˆSM MMB A B A=  and 

( ) ( )ˆ ˆSM MMC A C A= .  In this case, Aj= ˆ
jA  while for k≠j complementarity ensures that Ak≥0. 

If ˆ
jA >0 and ˆ 0kA >  for at least one market k≠j, then from (10), pj

SM>0 and pk
SM >0 and 

SM
jN n<  for all j. Because of complementarity, the firms in Ik

SM for pk
SM>0 will also abate Aj.  

Hence, under the SM policy SM
jA ≥ MM

jA ≥ ˆ
jA  for all j, implying that ( ) ( )ˆ ˆSM MMB A B A≥  with 

strict inequalities holding if strict complementarity holds. By Proposition 1, an MM policy is 

cost effective way to reach any level of abatement, including MM
jA .  By monotonicity of the cost 

functions, therefore, ( )ˆSMC A ≥ ( )ˆMMC A . 

Proof of Proposition 4. 

Consider a marginal increase in ˆ
jA  and ˆkA  at 0.  This will induce firms to separate into 

markets such that Nj
 SM+Nk

 SM=n. In the equilibrium, the firms I j
 SM abate ̂ jA  plus complementary 

reductions in k while the firms Ik
 SM abate ̂ kA  plus complementary reductions in j.  In contrast, in 
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the MM case, abatement in a market j can exceed ̂ jA  only if pj
MM=0.  Hence, under strict 

complementarity, either SM
jA > MM

jA  or SM
kA > MM

kA  or both. Hence, ( ) ( )ˆ ˆSM MMB A B A> .   

On the cost side, since we assume that all firms’ marginal costs start at the origin, 

0ˆ ˆ
MM MM

j j

C C
A A

∂ ∂= =
∂ ∂

.  Hence, the marginal net benefit under the SM policy exceeds the 

marginal net benefit under MM so that in the neighborhood of the origin ( ) ( )ˆ ˆSM MMNB A NB A> . 

Derivation of derivative of SM MMNB NB  with respect to Â  

Using (18) and (17),  

 
( ) ( ) ( )( )

( )
( )

2 2 2

2 2 2

2

ˆ ˆ ˆ2 1 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ2 4 2 2

2 1

SM

MM

A A ANB

NB A A A A A A

γα θ γα α γ α γ

αγ θ γα γα α θ α α θ

γα α

− Ω − + + − + + −
=
 − + − Ω + Ω − − + Ω −
 
 − −
 

. (A1)  

This can be simplified as follows: 

( )
( ) ( )

2 2 2

2

2 2 2

ˆ ˆ ˆ ˆ ˆ2 2 2
1 2

ˆ ˆ ˆ ˆ ˆ2 4 2 2

SM

MM

A A A A ANB

NB A A A A A

γα θ θ γα θ α γ α αγ
γα α

αγ θ γα γα α θ α α θ

− Ω + Ω + − + + −
= − + −

+ − Ω + Ω − − + Ω −
 

( ) ( )
( )

2 2 2 2 3 2 2 2 3 3 2

2
2 2 2

2 1 2 3 2

ˆ ˆ ˆ ˆ4 2
=

ˆˆ
2 2

SM

MM

NB

NB

A A A A AA

γα α α α γ γα α γ α θαγ θγα θα γ θα γ γθ

αγ θ γα γα α θ α α θ

− − + − Ω + − − − + + − +

+ − Ω + Ω − − + Ω −

∂

∂

Since the denominator is positive, the sign of the derivative depends upon the sign of the 

numerator.  By assumption, α, Ω are both positive.  The first expression in parentheses, 

( )21 2 0γα α− + − <  since 0 and >0γ α< .  Hence the product of the terms except the final 

expression in parentheses is positive.  Rearranging the final term we have 

 ( )3 2 2 2 2 2 2 3 3 23 2γα γ α α γ α θαγ θγα θα γ θα γ γθ− + − − + + − + , or 
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 ( ) ( )( )2 2 2 2 2 3 3 221 3 21γα γ α θαγ θγα θα θ γ γγ γ α θ−− − − + + − + . 

It can easily be seen that for θ>0, α>0, <0γ  and ( )21 0γ− > , each term in this expression is 

negative. Hence, the numerator of the derivative is negative. 

Derivation of equation (19) 

By definition, ( ) ( )ˆ ˆSM c MM cNB A NB A= .  From (A1), this will hold where 

 
( ) ( ) ( ) ( )

( )( )
2 2 2 2 2

2 2 2

ˆ2 1 2 2 2 2 1

ˆ 2 4 2 2

c

c

A

A

γα α γα θ θγα θα γ α αγ γα α

αγ θγα θα α θ γα α

 − − − Ω + Ω + − + + − − − 

= + − − − − Ω + Ω + Ω
 

This can be simplified to  

 
( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2

2 2

ˆ 2 1 2 2

4 2 2 2 1 2 2

cA γα α θ θγα θα γ α αγ αγ θγα θα α θ

γα α γα α γα

 − − − + + − − + − − − 

= − Ω + Ω + Ω + − − − Ω + Ω
 

so that 

 
( ) ( ) ( )

( ) ( ) ( )
2 2

2 2 2 2 2 2

4 2 2 2 1 2 2
ˆ

2 1 2 2
cA

γα α γα α γα

γα α θ θγα θα γ α αγ αγ θγα θα α θ

− Ω + Ω + Ω − − − − Ω + Ω
=
 − − − + + − − + − − − 

. 

Simplifying 

 
( ) ( ) ( )( )

( ) ( ) ( )
2 2

2 2 2 2

2

2 2

2 2 1 1 2 2
ˆ

2 1 2

1

2
A

γα α γα α γα α γα

γα α θ θγα θα γ α αγ αγ θγα θα α θ

Ω − + + + + − −
=
 − − − + + − − + − − −

−



+



 
( )

( ) ( ) ( )
2

2 2 2 2 2 2

2 1 2
ˆ

1 2 2 2
A

γα γα α

γα α θ θγα θα γ α αγ αγ θγα θα α θ

Ω − +
=
 − − + − + + − − + − − − 

 

 

( ) ( )( )
( )

2 2

2 2 2

2

2ˆ
2 1

2
1 2

cA
γα

αγ α θ γα α
θ θγα θγ α α αγ

γα α

Ω=
 − + − −
 − − + + − −
 − +
 
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( ) ( )
( )

2

2 2

2

2ˆ
1

2 1
1 2

cA
γ

γ
θγ θγ α γ

γα α

Ω=
 −
 − − + −

− +  

 

 

( ) ( )
( )

2

2 2

2

2ˆ
1

2 1
1 2

cA
γ

γ
θγ θγ α γ

γα α

Ω=
 −
 − − + −

− +  

. 

Derivation of the derivatives of *

ˆ
ˆ

cA
A

 with respect to model parameters  

The derivatives of *ˆ ˆcA A  with respect to the parameters were obtained using Matlab.  The 

derivative with respect to γ is 

 
( )

3 4 4 2 2 4 2 4 3 2 3 3 2 3 2

2 4 2 2 2 2 2 2 2 2 2 3 2*

22 2 3 2 2 3 2 3 2 2

4 4 4 4ˆ
2

2 2 4ˆ

5 2 2 2 2 2

cA

A

α γ θ γ θ α γ α αγ θ γ θ α θγ α γ θ α
α

γ α θ γ α θ α γ θ γ γθα α θ α θα
γ θγ α γθ γθα θγ α θγ α γα α γ α α γ

 + − + − − −
 ∂  + + + + + − − − =

∂ − + + + − + − − +
. 

As seen in Figure 5, the sign of 
*

ˆ

ˆ

cA

A
γ

 
∂ ∂ 
 

 varies over the parameter space. 

The derivative of *ˆ ˆcA A  with respect to α is 

( )

5 2 4 3 4 2 4 2 2 3 2 3 3 2

2 4 2 2 3 2 2 2 2 2 2 2 2 2 2*

22 2 3 2 2 3 2 3 2 2

2 2 4 4 4ˆ
2

2 2 2 2 2 2ˆ

2 5 2 2 2 2

cA

A

γ α θ γ α θ γ α γ θ α γ θ α γ θ α
γ

γ α θ γ θα α γ γ α θ γ θα γ θ γθα α θα
α γθ γ θα γθα γ θα γ θα γα α γ α α γ

 − + + − −
 ∂  + + − + − + − + + =

∂ − + + − + − − +
. 

We can sign the derivative if the sign of the numerator can be established.  Simplifying and 

collecting terms that can be signed, we can write  
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�

2 5 3 2 2 3 2

*

2 2 2 2 2 2 2 2

2

2 22 2

2 2 2 1 4
ˆ

ˆ
2

2

1

2 4 4

cA

Asign sign

θα γ γ θα γ γ θα γ γ θ α

γ
α

γ θ α α γ θ α θ γ θ γ γθ α

+ ++− + − − +
+

+ + +

+

+ + ++ + +− +

      − + − + − −              ∂ 
   =  ∂ 
   

   + + + − + + + + − 
 
  

�����
����� ����� �����

�������

�����

 
 
 
 
 
 
 

 
 

 (A2)  

where the + and − symbols indicate the signs of the respective terms.  Hence, this derivative will 

be negative if �
2 2 22 2 2 22 2 4 4 0θ α θ γ θ γ γθ α

+ + + +− +

 
− + + + + − > 
 
 

�����
. For any value of γ<0 and α>0, this 

expression takes on its lowest value if θ=0.  In that case, the last two terms in (A2) become 

� �
2 2 2 22 222 1 2α α γ γ α γ γ

+ + +− −

    + − + = + −    
    

.  However, for all γ∈[-1,0], ( )( )221 2 0γ γ+ − ≥ .  

Hence, 
*

ˆ
0

ˆ

cA
sign

A
α

  
∂ ∂ <   
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.  

Finally, the derivative with respect to θ is 

( ) ( )
( )

4 2 2 2
*

22 2 3 2 2 3 2 3 2 2

ˆ
2 2 1 2 1ˆ

5 2 2 2 2 2

cA

A γ γ α γα α γ
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=
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The sign of the derivative, therefore, will depend on the sign of the numerator.  Most of 

the terms can be signed as follows: 

( ) ( )4 2 2 22 2 1 2 1γ γ α γα α γ
−

+ −

+

− + − −

�����
�������

����

. 

Hence, the sign of the derivative will depend on the sign of ( )4 22 1γ γ− + , which is equal 

to ( )( )221 2γ γ+ − , which as indicated above is positive.  Hence, 
*

ˆ
0

ˆ

cA
sign

A
θ

  
∂ ∂ >   
  

.
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Appendix B: Details of numerical analysis solutions in first- and second-best policies 

(We recommend that this Appendix and the Matlab code used in the paper be unpublished but 

made available online upon publication) 

A. Supply functions 

The cost function for the i th firm in our model is ( ) 2 21 2
1 2 1 22 2

i i
i i i i i i ig a a a a a

α α γ= + + .  

Profits from abatement are ( )1 1 2 2i i i ip a p a gπ = + − ⋅ .  For any price vector, therefore, the firm 

will maximize πi yielding the first order conditions ij ij i ik ja a pα γ+ = , j=1,2.  Solving this system 

of two equations with two unknowns leads to the supply functions  

 � � � �
2 1 2 1 1 2 1 2 or i i i i i ia p p a p pα γ α γ= − = −  (B1)  

where � ( ) � ( )2 2
1 2 1 2  and ij ij i i i i i i i iα α α α γ γ γ α α γ= − = − .  The supply functions in (B1) hold 

regardless of the policy choice that is made, though in an SM approach one of the prices would 

be zero.  We restrict our analysis to parameters such that 2
1 2i i iα α γ− >0 in order to ensure that 

the cost function is convex and the supply curves are upward sloping.  

Aggregate supply of the two pollutants under an MM policy is sum of the individual 

supplies: 

 � � � �
1 1 2 2 2 2 1 1  and  i i i i

i i i i

A p p A p pα γ α γ= − = −∑ ∑ ∑ ∑ . (B2)  

The supply in an SM setting is more complicated since a firm participating in market 1 would 

face p2=0.  
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B. Market equilibrium, the first best case 

Social benefits ( )j j
j

TB B A=∑  where 2

2
j

j j j jB A A
θ

= Ω − .  Under first-best case the 

optimum is found taking into account the full degree to which prices will adjust.  Hence, the 

optimum will be set where the price is equal to the marginal benefit, j jB p′ = , which will hold 

where  

 j j
j

j

p
A

θ
Ω −

= . (B3)  

Equation (B3) can be thought of as the demand for aggregate abatement from the social 

planner’s perspective.   

We can, therefore, solve for the market-clearing price in the social optimum by finding 

the prices that equate the aggregate supply (B2) and aggregate demand (B3) equations.  Solving 

this system of two equations for p1 and p2, after some somewhat tedious algebra, we reach  

�

�

�

�

�

�

�

1 2

21
2 1 1

2
1 22

1
2

2
1

1
2

1

  and  
1

1
1

i
i

i i
i i

ii
ii

i
i

i
i

p

p p

γ
θ θ α γ

θ

αγ θ
α

θα
θ

 
 Ω Ω
 +

Ω + + 
 = =

      +          − +  
+  

  
  

∑
∑ ∑

∑∑
∑

∑

. 

Substituting these prices into (B1) yields the distribution of abatement activities across the firms 

in the market. 
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C. The second-best cap 

If the agency ignores the interaction effects, then the social objective function can be 

written as additively separable social maximization problems  

 
{ }

2 2max
2 2ig

j ij
j j j ij

a i

A A a
θ α

Ω − −∑  

with first-order conditions, 0j j j ij ijA a iθ αΩ − − = ∀ .   

The second-best caps can, therefore, be found as the solution to a system of linear 

equations: 

 j ij ij ij j
i

a a iθ α+ = Ω ∀∑  

or, in matrix notation,  

 

1 1

2 2

...

...
j j j j j j

j j j j j j

j j j nj nj j

a

a

a

θ α θ θ
θ θ α θ

θ θ θ α

+ Ω     
     + Ω     =
     ⋅ ⋅ ⋅
     + Ω          

⋱ ⋮ ⋮

⋱

 

which can be solved for aim using linear algebra and then be summed to yield ˆ
jA , the second-

best cap.   

D. MM policy in the second-best setting 

Firms facing a second-best cap will not ignore the γ parameters.  Hence, they will still 

supply following the (B1).  The market clearing prices are then found by solving equations (B2) 

such that the second-best caps, ˆ
jA , are supplied. 

This is again a system of linear equations:  
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� �

� �

�

�

2
1 1

2 21

i i
i i

i i
i i

p A

p A

α γ

γ α

 −
    

=     
  −   

 

∑ ∑

∑ ∑
 

which can be solved to find p1 and p2 in the MM setting.  

E. Second-best supply – single market case 

The single-market case is somewhat more complicated because of the discrete nature of 

the choices. The firms will enter into only one of the two markets, choosing the market that 

generates the highest profits.   

Firms continue to supply according to (B1), but in this case one of the prices will equal 

zero; they have to choose between � �
1 2 1 2 1  and  if they sell in market 1i i i ia p a pα γ= = −ɶ ɶ , and 

� �
1 2 2 1 2  and  if they sell in market 2.i i i ia p a pγ α= − =ɶ ɶɶ ɶ   Accordingly, profits if they sell in market 1 

will be 2 21 2
1 1 1 1 2 1 22 2

i i
i i i i ip a a a a a

α απ γ = − + + 
 

ɶ ɶ ɶ ɶ ɶ  which can be simplified to  

 �
�

� ��
2

2
2 1 2 2

1 1 2 22 2
i i i

i i i i ip
α α απ α γ γ γ α

 
 = − − +
 
 

 

and, by symmetry, if they sell in market 2 

 � � � ��2
2 21 2

2 2 1 1 12 2
i i

i i i i i ip
α απ α γ α γ γ α = − − + 

 
. 

A firm will sell in market 1 if π1>π2, i.e., 

 �
�

� �� � � � ��
2

2 2
2 2 21 2 2 1 2

1 2 2 2 1 1 12 2 2 2
i i i i i

i i i i i i i i i i ip p
α α α α αα γ γ γ α α γ α γ γ α

    − − + > − − +     

. 

As a matter of algebra, it can be shown that a firm will participate in market 1 if  
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> 

 
 (B4)  

and in market 2 otherwise.   

For any given price ratio, therefore, the firms can be ordered based on the ratio 1

2

i

i

α
α  

and it will hold that firms with lower ratios will tend to supply to market 1 and those with higher 

ratios will supply to market 2. 

However, for n firms, there are n−1 possible divisions between the 2 markets, each of 

which is capable of generating 1 2
ˆ ˆ and A A  units of total abatement.  We solve the problem in 

several steps.  First we check each possible division of the n firms and then choose the division 

that minimizes total costs to achieve the caps.  It is not always the case that there is a pair of 

prices within the set of price ratios defined by (B4) that will, using the supply functions (B1), 

yield exactly 1 2
ˆ ˆ and A A  and also support the cost-minimizing division of the firms.  As explained 

in the text, when this occurs, we assume that firms within the market will settle on a price that 

will be more than sufficient to supply 1 2
ˆ ˆ and A A , but that the firms will actually only supply the 

capped levels, 1 2
ˆ ˆ and A A .   

F. Calculation of net benefits 

Once the first-best, MM, or SM allocation of abatement activities is found, the individual 

and aggregate supplies are substituted into the cost and benefit functions to calculate the net 

benefits under each setting. 
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G. Parameters used for Monte Carlo simulations 

When conducting policy analysis, we draw 1000 sets of parameters for each from 

independent uniform distributions for each parameter.  The range for these parameters is 

presented in Table B1. For α and γ, the parameters’ ranges are naturally bound.  The θ  

parameter could go arbitrarily high, though an upper bound is chosen that yields results that are 

qualitatively interesting.  The value of Ω is set so that it increases with the number of firms so 

that per-firm abatement will be similar regardless of the number of firms participating.  Since we 

have shown that Ω does not affect the relative performance of the SM and MM policies, it is held 

constant for any given market size.   

 When chosen from uniform distribution 
Parameter Minimum Maximum 
α 0.1 1.0 
θ 0.5 1.5 
γ  −0.99 0.0 
Ω 25⋅n 25⋅n 

Table B1: Parameters used in most simulations 



 47 

References 

Atkinson, Scott and Tietenberg, Tom. 1991. Market Failure in Incentive-Based Regulation: The 
Case of Emissions Trading. Journal of Environmental Economics and Management 
21(1):17-31. 

Baumol, William J. and Wallace E. Oates. 1988l The theory of environmental policy, 2nd 
edition. New York: Cambridge University Press. 

Beavis, Brian, and Martin Walker. 1979. Interactive Pollutants and Joint Abatement Costs: 
Achieving Water Quality Standards with Effluent Charges. Journal of Environmental 
Economics and Management 6(4):275-86. 

Berry, David. 2002. The Market for Tradable Renewable Energy Credits. Ecological Economics 
42(3):369-79. 

Caplan, Arthur J. 2006. A Comparison of Emission Taxes and Permit Markets for Controlling 
Correlated Externalities. Environmental and Resource Economics 34(4):471-92. 

Caplan, Arthur J. and Silva, Emilson C.D. 2005. An Efficient Mechanism to Control Correlated 
Externalities: Redistributive transfers and the coexistence of regional and global pollution 
permit markets. Journal of Environmental Economics and Management 49:68-82 

Crocker, T. D. 1966. The Structuring of atmospheric pollution control systems. The economics of 
air pollution. H. Wolozin. New York, W.W. Norton & Co.: 61-86. 

Dales, J. H. 1968b. Land, Water, and Ownership. The Canadian Journal of Economics, 1(4):791-
804. 

Dales, J.H. 1968a. Pollution, property and prices.  Toronto: University of Toronto Press. 

Davis, Adam. 2006. What's Sauce for the Goose. Katoomba Group’s Ecosystem Marketplace. 
http://ecosystemmarketplace.com: June 15, 2006. 

Dewees, Donald N. 2001. Emissions Trading: ERCs or Allowances? Land Economics 77(4):513-
26. 

Greenhalgh, Suzie. 2008. Bundled Ecosystem Markets – Are They The Future? Presented Paper 
at 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida. 

Haddad, Brent M. 1997. Putting Markets to Work: The Design and Use of Marketable Permits 
and Obligations. Paris: Organization for Economic Co-operation and Development, 
Occasional Paper #19. 

Helfand, Gloria E. 1991. Standards versus Standards: The Effects of Different Pollution 
Restrictions. American Economic Review 81(3):622-34. 

Horan, Richard D., Shortle, James S., and Abler, David G. 2004. The Coordination and Design 
of Point-Nonpoint Trading Programs and Agri-Environmental Policies. Agricultural and 
Resource Economics Review 33(1):61-78. 



 48 

Kieser & Associates. 2003. Ecosystem Multiple Markets: Executive Summary. 
http://www.envtn.org/docs/emm_es.PDF: February 13, 2003, 

Kruger, Joseph, Oates, Wallace E., and Pizer, William A. 2007. The European Union Emissions 
Trading Scheme: Decentralization in the EU Emissions Trading Scheme and Lessons for 
Global Policy. Review of Environmental Economics and Policy 1(1):112-33. 

Lewis, Tracy R. 1996. Protecting the Environment When Costs and Benefits Are Privately 
Known. RAND Journal of Economics 27(4):819-47. 

McConnell, Virginia, Kopits, Elizabeth, and Walls, Margaret. 2006. Using Markets for Land 
Preservation: Results of a TDR Program. Journal of Environmental Planning and 
Management 49(5):631-51. 

Michaelis, Peter. 1992. Global Warming: Efficient Policies in the Case of Multiple Pollutants. 
Environmental and Resource Economics 2(1):61-77. 

Montero, Juan-Pablo. 2000. Optimal Design of a Phase-In Emissions Trading Program. Journal 
of Public Economics 75(2):273-91. 

Montero, Juan-Pablo. 2001. Multipollutant Markets. RAND Journal of Economics 32(4):762-74. 

Montgomery, W David. 1972. Markets in Licenses and Efficient Pollution Control Programs. 
Journal of Economic Theory 5(3):395-418. 

Shabman, Leonard  and Paul Scodari. 2005. The Future of Wetlands Mitigation Banking. 
Choices 20(1):65-70. 

Stavins, Robert N. 1995. Transaction Costs and Tradable Permits. Journal of Environmental 
Economics and Management 29(2):133-48. 

U.S. Environmental Protection Agency (USEPA). 2004. Final Water Quality Trading Policy. 
Office of Water. Retrieved Oct 27, 2004 from: 
http://www.epa.gov/owow/watershed/trading/finalpolicy2003.html 

U.S. Environmental Protection Agency (USEPA). 2007. List of all trading programs. Office of 
Water. Retrieved December 12, 2007 from:  
http://www.epa.gov/owow/watershed/trading/tradingprograminfo.xls  

von Hagen, Bettina. 2006. I'll Have Mine Double-Dipped. Katoomba Group’s Ecosystem 
Marketplace http://ecosystemmarketplace.com: June 19, 2006. 

von Ungern-Sternberg, Thomas. 1987. Environmental Protection with Several Pollutants: On the 
Division of Labor between Natural Scientists and Economists. Journal of Institutional 
and Theoretical Economics 143(4):555-67. 

Weitzman, Martin L. 1974. Prices vs. Quantities. Review of Economic Studies 41(4):477-91. 

Woodward, Richard T., Kaiser, Ronald A., and Wicks, Aaron-Marie B. 2002. The Structure and 
Practice of Water Quality Trading Markets. Journal of the American Water Resources 
Association 38 (4):967-979. 



 49 

Wunder, Sven. 2005. Payments for Environmental Services: Some Nuts and Bolts. CIFOR 
Occasional Paper No.42. CIFOR: Jakarta 


