View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Research Papers in Economics

MPRA

Munich Personal RePEc Archive

IV Estimation of Panels with Factor
Residuals

Robertson, Donald; Sarafidis, Vasilis and Symons, James
University of Cambridge, University of Sydney, UCLA

25. October 2010

Online at http://mpra.ub.uni-muenchen.de/26166/
MPRA Paper No. 26166, posted 25. October 2010 / 03:25


https://core.ac.uk/display/6620539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/26166/

[V Estimation of Panels with Factor Residuals

Donald Robertson, Vasilis Sarafidis and James Symons*

October 25, 2010

Abstract

This paper considers panel data regression models with weakly exogenous or
endogenous regressors and residuals generated by a multi-factor error structure.
In this case, the standard dynamic panel estimators fail to provide consistent
estimates of the parameters. We propose a new estimation approach, based
on instrumental variables, which retains the traditional attractive features of
method of moments estimators. One novelty of our approach is that we in-
troduce new parameters to represent the unobserved covariances between the
instruments and the factor component of the residual; these parameters are typ-
ically estimable when IV is large. Some important estimation and identification
issues are studied in detail. The finite-sample performance of the proposed esti-
mators is investigated using simulated data. The results show that the method
produces reliable estimates of the parameters over various parametrizations and
is robust to large values of the autoregressive parameter and/or the variance of

the factor loadings.
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1 Introduction

This paper develops a new approach, based on instrumental variables, for consistent
and asymptotically efficient estimation of panel data models with errors generated by
a multi-factor structure. The factor structure is an attractive framework as it permits
general forms of unobserved heterogeneity that may otherwise contaminate estima-
tion and statistical inference. There are several ways factor residuals can come about,
depending on the application in mind. In macroeconometric panels, the factors may
be thought of as economy-wide shocks that affect all individuals, albeit with different
intensities; essentially, this allows cross-sections to inhabit a common environment,
to which they may respond differently. In microeconometric panels, the factor struc-
ture may capture different sources of unobserved individual-specific heterogeneity, the
impact of which varies intertemporally in an arbitrary way. For instance, in stud-
ies of production functions, the factor loadings may capture distinct components of
technical efficiency of a given firm that vary through time. In models of earnings
determination, the factor loadings may reflect several different unobserved skills of an
individual, with the factors representing the economy-wide price of these skills, which
is not necessarily constant over time. Systematic changes in tastes (weltanshaung) is
another plausible example. In some circumstances such variables could be measured
and directly included in the model, but often the details of measurement might be
difficult, contentious and, in any case, outside the focus of the analysis.! In such cases
it is inviting to allow the model residual to be composed of one or more unspecified
factors, themselves to be estimated. One can interpret such a procedure as allowing
some degree of cross-sectional dependence in the model residuals.?
Consider the simplest case of a one-factor, one-regressor model in the standard
form
Tt = 0oy + Nifr +eqx t=1,...,Ti=1,... N. (1.1)

In some cases the values of f;, or \;, are assumed to be known, such as when fitting
i-specific, or t-specific intercepts (fixed-effects), or polynomial time-trends, but here
we shall treat the f; as vectors of parameters to be estimated. In this case, one can

fit this model by non-linear least-squares, based on principal components analysis;

!For example, how does one measure monetary shocks? Does one look at interest rates or
monetary aggregates? Which monetary aggregates? How does one handle financial innovation?

2 An overview of the current literature on panel data models with error cross-sectional dependence
is provided by Sarafidis and Wansbeek (2010).



see e.g. Bai (2009). Pesaran (2006) suggests the alternative of augmenting the re-
gression model by the cross-sectional averages of the variables, x1; and x5, which
will span the unobserved factors for large N. Both these methods require that the
set of regressors is strongly exogenous with respect to the idiosyncratic error com-
ponent, €;, and N, T are both large. In the present paper we focus on the case
where N is large, T fixed and the model includes regressors that are not strongly
exogenous. This is an empirically relevant scenario in many applied circumstances.
For example, our framework allows models with lags of the dependent variable on the
right-hand side, as in partial adjustment models for labour supply, Euler equations
for household consumption, and empirical growth models. In these models the coeffi-
cient of the lagged dependent variable captures inertia, habit formation and costs of
adjustment and therefore has structural significance. Furthermore, since underlying
economic behaviour is intrinsically dynamic, past residual errors might influence the
current value of explanatory variables even when lagged dependent variables are not
directly present in the model, leading to weak exogeneity. For instance, in panels of
observations on economies, expectational errors are likely to work through the whole
economy over time, and it is natural to expect that a given variable is often not im-
mune from this process. Finally, our framework also permits models with endogenous
regressors, due to errors of measurement and/or simultaneity, and so it possesses an
appealing generality.

When the values of f;, or \;, are known, as in the fixed effects specification, a
popular strategy to estimate models with weakly exogenous, or endogenous regressors
has been to use the Generalised Method of Moments (GMM), analysed in the dynamic
panel data context by Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano
and Bover (1995), Blundell and Bond (1998) and others. Among the many economic
applications where GMM has been used include estimation of (i) production functions
and technological spillovers (e.g. Blundell and Bond, 2000), (i) the demand for
money (e.g. Bover and Watson, 2005) (iii) the responsiveness of labor supply to
wages (e.g. Ziliak, 1997), (iv) the structure and profitability of the banking sector
(e.g. Tregenna, 2009) and the empirical growth literature (e.g. Presbitero, 2008). In
all these applications the set of regressors includes weakly exogenous variables, the

cross-sectional dimension is fairly large while 7" is relatively small.3

3In particular, Blundell and Bond (2000) use a panel of 509 R&D-performing US manufacturing
companies, Bover and Watson (2005) use data on 5,649 firms operating in Spain, Ziliak (1997)



However, as shown by Sarafidis and Robertson (2009) and Sarafidis, Yamagata
and Robertson (2009), all these procedures fail to provide consistent estimates of the
parameters when the errors are generated by a multi-factor structure. Intuitively,
this is because the standard moment conditions used are invalidated in this case.
Panel data models with a single-factor structure and a small number of time-series
observations have been studied by Holtz-Eakin, Newey and Rosen (1988), Ahn, Lee
and Schmidt (2001) and Nauges and Thomas (2003). All these studies utilise some
form of quasi-differencing that eliminates the factor from the residuals. More recently,
Ahn, Lee and Schmidt (2006) in a seminal paper develop a GMM estimator that
allows for multiple factors using multi-quasi-differencing. In this paper we develop
an instrumental variables approach that does not involve quasi-differencing and is,
in general, more efficient than the existing quasi-differencing-type GMM estimators
because it exploits extra restrictions implied by the model.

The basic intuition behind our solution is as follows. Assume in the above model
we have some variable (instrument) z; for which E(zje;) = 0. This implies an

orthogonality condition

E(zpz1ie) = OE(ziw2it) + geft, (1.2)

where g, = F(zy ;). We treat the gs as parameters to be estimated. Replacing the
E(.) terms by their sample moments, one has 7" such orthogonality conditions and
2T + 1 parameters to be estimated (¢ and the gs and fs): too many to be identified.
However, if all lags of z; are instruments, the number of orthogonality conditions
is expanded to T(T + 1)/2, while the number of parameters remains the same; one
has now more conditions than parameters for 7' > 3, so one can hope for unique
estimates. We shall call estimators in this class Factor Instrumental Variables (FIV)
estimators. FIV estimators have been introduced by Robertson and Symons (2007);
the present treatment greatly improves and extends that paper. FIV estimators have
the traditional attraction of MoM estimators in that they exploit only the orthog-
onality conditions, which may in fact be the implication of an underlying economic
theory, and make no use of subsidiary assumptions such as homoskedasticity or other

assumed distributional properties of the error process. The method is general in the

surveys 534 individuals, Tregenna (2007) considers 644 banking institutions, while Presbitero (2008)
utilises data from 144 countries. T ranges from 5 to 27 in these applications.



sense that all that is required is the existence of some instrument z; with orthogo-
nality conditions at sufficiently many periods other than ¢ to identify the introduced
g parameters.

In most practical circumstances the instrument set will include lags of the de-
pendent and independent variables of the model. In this case, a number of linear
restrictions can be demonstrated to hold among the parameters (¢ and the gs and
fs) of the model. Greater efficiency can be obtained if these are imposed in estima-
tion. We call this the FIVR (restricted FIV) in contrast to the estimator obtained
when these restrictions are not imposed, FIVU (unrestricted FIV).

We remark that our approach is valid under the fixed-effects framework as well.
In this case, FIVU is asymptotically equivalent to the GMM estimator proposed by
Arellano and Bond (1991) and FIVR is asymptotically equivalent to the GMM esti-
mator proposed by Ahn and Schmidt (1995) for the fixed effects case. Furthermore,
within FIVR it is straighforward to impose mean-stationarity on the initial condi-
tions, in which case FIVR is asymptotically equivalent to the system GMM estimator
(Arellano and Bover, 1995 and Blundell and Bond, 1998). Thus, FIV estimators offer

a unifying treatment of existing dynamic panel estimators.

2 Stochastic Framework

We assume we have a population of vectors Y; of common dimension which obey
xz;ﬁ: )\,zrft—'—git, t = 17"'7T7 (21)

where variables subscripted ¢ are formed from subvectors of Y;. The g-vector [ is

assumed to be a function of r free parameters ¢:

B =p(9).

In the work below we shall usually take 3 = (1, —¢?)? where ¢ is an r-vector of
parameters We assume an n-factor model i.e. ); is a stochastic n x 1 vector (the

factor loadings) and f;is an n x 1 vector of parameters (the factors) at time t; g

4

is a purely idiosyncratic disturbance.* The sampling structure is that we have N

4We shall treat n as known. The results presented below are not affected when the number of
factors is unknown and is estimated consistently. A formal proof for this argument is provided by



sufficiently independent draws, indexed by 7, from the population of Y;. The following

assumptions are made:

AssuMPTION 1. Existence of instruments. We assume potential instruments
are given by a vector W; of dimension d; these instruments may correspond to the
variables of the model or be extraneous variables. In each period t, ¢; instruments

are available, expressed in vector form as follows:
Wi = S, (2.2)

for which E(Wye;;) = 0. Here S, is the selector matrix of Os and 1s that picks out from
all potential instruments W; those that apply at date ¢. The matrix S; has dimension
¢; X d where ¢; is the number of orthogonality conditions associated with ;. Thus,
for example, in the event that the model has a single strongly exogenous independent
variable, W; would consist of all values of this variable, from ¢ = 1 to ¢t = T and
S; would be the identity matrix /7. In the event that the independent variable were
only weakly exogenous, then the selector matrix would pick out values dated ¢ and
earlier. Mixed cases can occur naturally, such as when the covariates consist of (say)
a weakly exogenous variable and an endogenous variable. In this case, W; is a 27" x 1
matrix and the selector matrix will pick out current and lagged values of the weakly

exogenous variable, as well as the appropriate dates for the second variable.

PROPOSITION. Assume E(eyAl) = 0. If xy is weakly exogenous and all lags of
xy belong to the instrument set then F(g;sei) =0, s # t.

The point of the proposition is that in these circumstances the orthogonality of
the disturbances is guaranteed by Assumption 1, so that they do not add to moment
conditions beyond those implied by this assumption.

The model (2.1) can be stacked over ¢ to take the form

XiB=Ir @\ )f +e;, (2.3)

Bai (2003, footnote 5). A consistent estimate of the number of factors in this context can be obtained
using a sequential method based on Sargan’s overidentifying restrictions test statistic. The intuition
is that when the number of factors fitted is smaller than the true value, Sargan’s statistic will reject
the null hypothesis for N sufficiently large. Alternatively, one can estimate the number of factors
consistently using an information based criterion. Ahn, Lee and Schmidt (2006) provide specific
details and proofs for both methods. See also Sarafidis and Yamagata (2010) for a discussion.



where f = vecFT, FT = [fi,..., fr]. The corresponding instrument matrix Z; is
defined by

W; 0 " 0
0o w 0
e , (2.4)
0 0 Wir

where one has F(Z¢;) = 0, where ¢; denotes the column vector of £;;. Note that Z]
is ¢ x T, where ¢ = ZEZT ¢; is the total number of orthogonality conditions. From
(2.2) we have

Zl' = S(Ir @ W), (2.5)
where
Sy 0 0
0 S .. 0
S=| . (2.6)
0 0 . Sp

The matrix S has dimension ¢ x T'd. The orthogonality condition for the instruments

is now

E(Z] XiB = Z{ (Ir @ X)) f) = 0. (2.7)

By use of (2.5) this can be written as
Mp—-S(Ir®G)f =0, (2.8)

where M = E(ZI'X;) and G = E(W;\T). Matrices M and G have dimensions ¢ x q

and d x n respectively. Some alternative forms of the second term in (2.8) are
S(Ir ® G)f = Svec(GFT) = S(F @ 14)g, (2.9)

where g = vecG. A compact expression of the orthogonality conditions is thus
M3 — Svec(GFT) = 0. (2.10)

When the instruments consist of current and all lagged values: the canon-

ical case As an example, consider when the instrument matrix V; is naturally pre-



sented as a T X p matrix of T' observations on p variables (so that W; = vecV;) and
g, is orthogonal to the block of potential instruments from s =1 to s =t, i.e. the

orthogonality conditions are
E(zisey) =0t =1,...,T;s=1,...,t, (2.11)

where z is the s-th row of V. This can be viewed as a canonical case in the sense
that there exists a collection of contemporaneous instruments and their lagged val-
ues; it arises, for example, when the independent variables in the model are weakly
exogenous, such as the frequently used AR(1) dynamic panel data model with factor
residuals. Define my = E(z,x)) and g, = E(z;A]). The orthogonality conditions
are then

mglB —gsfr =0, t=1,..T;s=1,..t. (2.12)

These conditions can be stacked as

my 3 a1
miaf3 g1/
Mo 3 92 f2
Y N R ) (2.13)
mirf3 qfr
mar 3 92 fr
i mrr3 | | grfr i
More succinctly, this is
M3 — vech(GFT) =0, (2.14)

where M is the stacked m, terms and the vech operator is understood to act on
p x 1 submatrices. Let Sy be the selector matrix of Os and 1s that turns vec into vech

(acting on d x d matrices). Then
MpB —vech(GFT) = M3 — (St ® I,)vec(GFT) = 0, (2.15)

which is of the form of (2.10), with the selector matrix S given by S = Sr ® I,.



3 The unrestricted estimator FIVU

Define a moment function by
V(0,71 X)) = Z X;8(¢) — Svec(GF™), (3.1)

where 0 = (¢, g7, fT)T. Then by construction E(¥(#)) = 0 at the true value 6y. Our
aim is to estimate fy by minimising W(6, M)TCU (0, M) where M = SN ZTX,/N
is the matrix of empirical moments and C' is a given fixed matrix. As it stands, the

model is not identified since
MpB — Svec(GF") = MB — Svec(GUU'FT), (3.2)

for any n x n invertible U. One possible set of restrictions is to require some n x n
submatrix of F7 to be the identity matrix. It turns out that the identity restriction on
a submatrix of F' is not in general sufficient for full identification; further restrictions
are required. In what follows, we provide sufficient conditions for identification of the
full parameter vector @ and we establish some primitive conditions for the nuisance
parameters, g, and f, as well as the full parameter vector 6 in Appendix II.

Let 2 be the full set of possible parameter vectors.

ASSUMPTION 2. We assume that 6, belongs to the interior® of ©, C Q where
O, is obtainable by 0,1 restrictions on the G, F components of the vectors in 2,
together with some possible further restrictions excluding a closed set. We assume 6,
is identified on ©, in the sense that E(¥(f)) = 0 for € O, implies § = 6.

Let

r—g (%(9@) , (3.3)

and
A=E(¥(60)¥(6)"). (3-4)

where 0, consists of the free parameters in a restricted 6.

ASSUMPTION 3 We assume both I' and A exist and are of full rank.

5The interior is defined in the relative topology induced on ©, by the natural topology on €.



AsSUMPTION 4 We assume that the elements of Z; and X; have finite moments

up to order two, and that the function (3(.) is twice continuously differentiable.

Note that the full rank condition for I" itself implies that 6 is locally identified®.
The above set of assumptions is sufficient to make an appeal to standard GMM theory

in order to derive the asymptotic properties of FIVU. In our context the result is:

Theorem 1. DISTRIBUTION RESULT FOR FIVU. Let O, be a compact subset of ©,.

containing 0y in its interior and let

~

6(0.) = arg min W(9, MTCU(9, M), (3.5)
€0,
where M = vazl ZIX;/N and C is a given fized positive-definite matriz. Then 0

converges in probability to 6y and
VN(@@ - 6y) % N(0, (") (TTCACT)(ITCT) ™). (3.6)

Proof. This is well-known; see e.g. Newey and McFadden (1994) for further details.”
O

If C is chosen as A~! the covariance matrix of the asymptotic distribution is
(T'TA~T)~, in which case the estimator has certain optimality properties. These
distributional results hold as well if the unobserved A is replaced by an estimate
based on the Hansen (1982) two-step procedure. We shall call the estimator with the
Hansen version of A the GMM unrestricted factor instrumental variables estimator
FIVU (GMM). If instead C' is chosen as the identity matrix, so that U7¥ is minimised,
we call the estimator minimum-distance FIVU, denoted FIVU (MD).

Appendix IT establishes an identification scheme for FIVU. As a practical matter,
if one is interested only in estimates of ¢, it turns out that it is not essential to

impose identifying restrictions on the factors in estimation with FIVU as the value of

6This requires the moment function to be twice continuously differentiable, hence Assumption 4.

"It is easy to see that our assumptions imply the assumptions employed by Newey-McFadden,
except perhaps for their assumption of dominance, i.e. the norm of the moment function is dominated
by a function of M of finite expectation. In fact this follows easily in our case from compactness
and the existence of second moments.

10



¢ obtained by unrestricted estimation will coincide with the restricted estimate under

one further assumption:

ASSUMPTION 5 Assume there exists an open set © where 2 O © D O, where O
is dense in € such that for all § = (¢7, g%, f1)T € ©

SvecGFT = SvecG,F’ (3.7)

for some (¢7, g%, fI)T € ©,. Assume as well that V(0,, M)TCV(0,, M), 6, € ©,, is

bounded away from zero outside some given compact set.

Theorem 2. EQUIVALENCE OF UNRESTRICTED AND RESTRICTED ESTIMATION.
Under Assumptions 1-5 (Z(Q) — (E(@C) in probability. If, moreover,

OSvecGFT dSvecG, FF

Span T = Span T ,

(3.8)

where v = (g7, f1)T and v, is the subvector of free parameters, then the covariance
matriz of g/g(Q) inferred from the generalised inverse of (0V/007)TCOW /00 coincides
with the covariance matriz of $(0,) inferred from the inverse of (0¥ /967 COV /967 .

Proof. See Appendix I. O

To see the point of this result, consider a one-factor model with the identification
restriction fr = 1, obtainable by re-scaling g and f. It turns out the full-rank
condition for T requires as well g; # 0. Thus we take © = {0 = (¢, g7, f1)T; g1, fr #
0} and ©, = {0 = (¢7, g7, f1)T; g1 # 0, fr = 1}. The free parameters v, consist of
0 with fr removed. Fixing fr removes 0¥ /0 fr from 0V /00; the spanning condition
requires that such a deletion does not change the linear space spanned by the columns
of OV /ovT.

In Appendix II we demonstrate that Assumptions 1-5 are satisfied under the
identification scheme. We show as well that the pre-conditions for the equivalence of
restricted and unrestricted estimation hold. We provide sufficient conditions for the
identification of the AR(1) model in the multi-factor case.

11



Estimation for FIVU

The FIVU model is straightforward to estimate. Let B be the Choleski matrix of C'.

Then the objective function has the form
— 2 ,\ 2
Qp(6, M) = HB\I/(G, M)H — HB[MB— Svec(GFT)]H . (3.9)

When ([ is a linear function of the parameters ¢, then, if either G or F' is held
fixed, the expression B[]/\/[\ﬁ(gb) — Svec(GFT)] is a linear function of the remaining
parameters, and the conditional minimum of (3.9) may be found by a one-pass least-
squares procedure. One may then seek a joint minimum by iteration over G and F.
This appears to work well in practice. In Appendix III we obtain first and second
derivatives for the RHS in (3.9), so Gauss-Newton procedures are also available.
The condition (2.10) takes a particularly simple form when f; is the fixed-effects

factor, f; = 1 for all ¢t. In this case one has
Svec(GFT) = S(1r @ 1y)g. (3.10)

Therefore using (3.9), we obtain

which can be interpreted as a classical regression when M is replaced by its empirical
counterpart. When ([ is a linear function of ¢, a FIVU estimate may be obtained by

a one-pass least-squares estimate of (3.11).

Quasi-differencing

An alternative approach to FIVU is obtained by multi-quasi-differencing, which re-
moves the factor component from the right of (2.10). This is achieved by constructing
a matrix D = D(F) such that D(F)Svec(GFT) = 0. The orthogonality conditions
then become

D(FYMp = 0. (3.12)

To see how this is achieved, assume a single factor and consider the column vec-
tor Svec(gf?), consisting of scalar terms of the form g,f;. Consider the following

operations on Svec(gf7T):

12



1. Transform so that all coefficients of terms in the scalar g; are unity.
2. Choose one of the g; terms and use it to difference away the rest.
3. Eliminate the (single) remaining term in g¢;.

One now repeats these operations for the remaining g,. The key point is that all these
operations can be accomplished by left multiplication on Svec(gf”) by matrices of
the form D(F). Where there is more than one factor, vec(GFT) consists of sums of
terms of the form vec(gf7). Since the above operations preserve the structure of these
terms, the operations may be applied sequentially to the later terms to eliminate them
in their turn.

Quasi-differencing is the method employed by Holtz-Eakin, Newey and Rosen
(1988), Ahn, Lee and Schmidt (2001) and Nauges and Thomas (2003) for the one-
factor case, and Ahn, Lee and Schmidt (2006) for the multi-factor case, as well as
Arellano and Bond (1991) (mutatis mutandis). In general, this approach eliminates
dn parameters (the gs) at the same cost in moment conditions. As shown in Ap-
pendix I, such transformations of moment conditions produce estimators of the same
asymptotic efficiency as working with the untransformed moment conditions. This

result is summarised in the following theorem:

Theorem 3. ASYMPTOTIC EQUIVALENCE RESULT. Under Assumptions 1-4 FIVU
in model (2.1) is asymptotically equivalent to a Generalised Method of Moments esti-

mator based on quasi-differencing.
Proof. See Appendix 1. m

Remark. In the case of fixed-effects, simple first-differencing suffices to remove the
g terms. A one-pass OLS estimate of § (if a linear function of ¢) can be obtained
from (3.12), just as for FIVU. This is the standard first-differenced GMM estimator
proposed by Arellano and Bond (1991). It turns out the GMM versions of the estima-
tors are arithmetically the same provided corresponding estimates of the weighting
matrices are employed, i.e. the optimal weighting matrix is obtained from the FIVU

version by the D . DT transformation. This is discussed more fully in the appendix.

13



4 Parameter restrictions: the FIVR estimator

When elements of the z; occur as instruments, the model (2.1) implies restrictions
on the G parameters, the imposition of which will lead to greater efficiency. These
restrictions require:

ASSUMPTION 6 E(MNey =0) for all 4 and t.

To obtain the extra restrictions, multiply (2.1) through by \; and take expecta-

tions:

EM\zh)B=Qaf t=1,...T, (4.1)

where Q) = E(MAT). The key point is that, when the instrument set includes
elements of the z;, the terms in E()\;z}) include terms in various of the g, so that
the LHS of (4.1) is a linear function of the ensemble vector g. Some examples will

illustrate.

Example 1. One lagged dependent variable and a single factor The model

1S

Yit = QYit—1 + Aift + it (4.2)

Here x}, = (Yit, Yir—1), 87 = (1, —9), zi = Yur—1, 9s = E(yis—1\;). The linear restric-
tions (4.1) take the form
gs+1 = ngs + U2fs; (43)

where 02 = E(A\?), which can be written in a matrix as

—¢ 1 0 .. 0 a1
0 - 0
¢ N (4.4)
: : 1 :
0 0 .. —o 1 gr+1

Notice the appearance of the “out-of-sample” term gr, 1, which we regard as a constant

to be estimated.® Section this matrix equation into the form

8Strictly speaking, the value of g7 1is defined by the restriction it appears in (4.3). We adopt
this convention so as to have a neat formula for the full vector f.

14



{H eT}[ g ]:02f, (4.5)

gr+1

where er is the T-dimensional column vector with 1 in the 7% position. The restric-

tion has the form

Hg=o’f + der (0 € R). (4.6)

We shall call H = H(f3) the structure matrix; it is specific to the particular model

considered.

Example 2. One lagged dependent variable and two factors. In this case
gs = E(yis—1A]) is a 1 x 2 row vector and the restrictions have the form g, =
9> + Qu fs. The matrix of restrictions is as in Example 1 except that g is replaced
by vecGT and § € R?. Therefore, we have

(H® L) Prag = (It @ ) f + UG, (4.7)

where U is the 27T x 2 matrix with columns one and two being esr_; and esr respec-
tively, and P, ,, is the permutation matrix such that P, ,vecA = vecAT for m x n

matrices Z.

Example 3. One lagged dependent variable, one weakly exogenous variable
and one factor. The model is

Yit = QYir—1 + ary + Nif + i (4.8)

In this case the instrument vector is z1 = (yir_1,7:). Note the g, are two-
dimensional:

gsT = [9; 93 } = E([ Yis—1 i TisAi ]) (4.9)

The restrictions can be written gl ; = ¢g! + ag? + 0*f,. In matrix form we have

15



S

¢ a1 0 0 . o]l

0 —¢ —a 1 0 . .
0 0 —¢ —a 1 .. 0 .| = (4.10)

) 9r

: : : : : D 2

0 0 0 . —¢ —a 1| "

| 9741 ]
which can be written more generally as

Hg = o f + dear, ) eR. (4.11)

where the structure matrix H is now T" x 27T
One can obtain a transformation of (4.11) useful when f is known to be fixed-
effects. Since H will in general have a null-space of dimension 7', (4.11) determines
g only up to T free parameters. Section H into T" x T submatrices so that H =
[ H, H, } and section g conformably as g = [g,¢T]. Then the general solution to
(4.11) is given by
g1 = H{ ' (f + Sear — Ha(), (4.12)

where ¢ € RT is a free vector of parameters. One can now substitute for ¢ in (3.11).
For a given value of 3, the only unknowns are the parameters J and (, which can
be estimated by OLS. The RSS from this regression is the minimand of (3.9): thus
this procedure effects a concentration RSS = RSS(5). Finding estimates of the

structural parameters is reduced to minimising this function.
Example 4. Two lagged dependent variables and one factor. The model is

Yit = O1Yit—1 + P2lYir—2 + Nift + €t (4.13)

In this case the matrix of restrictions takes the form
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_ _ go
—d —o1 10 o 0]
0 - — 1 e
b2~ ol (4.14)
0 0 0 0
i —py —¢1 1 | gr
L gT+1 .
This is partitioned conformably into
Jo
[ —¢oe1 H er } g = 02f7 (4-15)
9T+1
with solution
Hg=0of+ [ er er } J (6 € R?). (4.16)

We turn to the general case. Assume there are no restrictions on F' such as fixed
effects. With F' unrestricted, it may be reparametrised in (2.1) so as to have Q, = I,,.

In general the family of restrictions given by (4.1) takes the form
H(B)Pyng = f+U6. (4.17)

Here H(3) is the nT x nd structure matrix as considered in the above examples,
U is a matrix of e elementary column vectors and ¢ is a vector of free parameters
corresponding to the “out-of-sample” observations in the above examples. Both H
and U depend on the structure of the model. The FIVR estimator (restricted FIV
estimator) chooses 6 to minimise (3.9) subject to (4.17). FIVR will in general have
fewer parameters to estimate than FIVU and as such it will be more efficient.

The term H(f3) is a linear function of # and one has
q
H(B) =Y Kifi=K(B® L), (4.18)
i=1

where K = [ K, ... K, ] . Note that the K, are given fixed nT" X nd matrices
depending on the structure of the model. Then H(3)Py,9 = K(I,® Ps,g9)3 and one
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can write the restrictions in the form
K(I,® Ping)B = f+US. (4.19)

Identification and Estimation for FIVR One does not need to develop a sep-
arate theory of identification for FIVR; this can be inferred from the FIVU results.
If Assumptions 1-5 hold, and given the equivalence of restricted and unrestricted
estimation, then the FIVU estimator may be obtained by minimising the criterion
function over the whole of parameter space. FIVR minimises the criterion over a
closed neighbourhood of 6, and this implies straightforwardly that the FIVR estima-
tor likewise has probability limit 6y. Since FIVR is obtained by a change of variables,
its covariance matrix may be obtained from the FIVU matrix by application of the
appropriate Jacobian (calculated in Appendix IIT). Of course, FIVR will be identified
in cases where FIVU is not, since FIVR estimates a restricted set of parameters. For
the AR(1) case there are (n® — n)/2 redundancies among the factor terms for FIVR.
For FIVU in contrast there are 2n? — n redundancies. Thus for n = 1, there are no
redundancies among the factor terms for FIVR, but one redundancy for FIVU.

The standard method of solving a minimisation problem subject to an exact con-
straint is to use the constraint to solve out for some of the choice variables and

substitute into the minimand. For f we have
f=K({,® Py,g9)8—Ub. (4.20)

Then one can minimise (3.9) over (8(¢), g,0), having substituted for f from (4.20).
In practice we use a Gauss-Newton procedure to find the minimum. Formulae for the
derivatives are given in Appendix III.

The FIVR estimator effects a more parsimonious parametrisation of the nuisance
parameters g, which should lead to more efficient GMM estimators of the parameters
of interest. Thus FIVR is strictly superior to FIVU and since FIVU is itself equivalent
to quasi-differencing methods it is superior to these as well. This is summarised in

the following theorem:

Theorem 4. DISTRIBUTION RESULT FOR FIVR. Under Assumptions 1-4, 6 and
model (2.1) FIVR is asymptotically more efficient than FIVU. Furthermore, it is

the efficient estimator in the class of estimators that make use of second moment

18



information.
Proof. See Appendix 1. m

Remark. When n = 1 and f, = 1 for t = 1,..., T, the set of linear restrictions (4.3)

becomes
gs+1 = dgs + 07 (4.21)

In this case, FIVR utilises the same set of orthogonality conditions as FIVU, T'(T +
1)/2 in total, but estimates only three parameters, namely ¢, g; and o?. Therefore,
FIVR makes efficient use of second moment information and intuitively we should
expect that it is asymptotically equivalent to the GMM estimator proposed by Ahn
and Schmidt (1995). Under stationary initial conditions there is an extra restriction
in that g = 02/(1 — ¢). In this case the number of parameters decreases by one
and a version of FIVR that uses this extra restriction is asymptotically equivalent
to the system GMM estimator proposed by Arellano and Bover (1995) and Blundell
and Bond (1998). Although not pursued in this paper, this extra restriction is clearly
testable.

5 Finite Sample Performance

In this section we investigate the performance of FIVU and FIVR using an AR(1)
with one- and two-factor residuals. For comparison, we also include in the experiments
the GMM estimators developed by Arellano and Bond (1991) and Ahn and Schmidt
(1995), denoted as AB and AS respectively. These estimators are not designed to
handle the general factor structure but given their popularity it is of practical inter-
est to see how far they go in resolving the problem. For FIVU minima are found
by an iterative OLS procedure, as described in the text; for FIVR we use Gauss-
Newton. Initial values for FIVU are specified as i.1.d.N(0, 1) for the factor variables
and 7.7.d.U(0, 1) for the AR(1) parameter. Convergence is deemed to have occurred
when the modulus of the gradient vector is less than 0.001. We re-initialise starting
values when the algorithm is perceived to be travelling slowly across the surface of
the objective function; we have found that it is usually better to start afresh than
to try to struggle through difficult terrain. Our procedures have occasionally found
local minima, especially for FIVU. To tackle this issue we re-initialise the starting

conditions 5 times and we pick up the one that minimises the criterion function. For
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FIVR we investigate a grid of values for ¢ and for each of these we estimate f us-
ing the first n principal components of x%3; we then obtain an initial estimate of g
by minimising the criterion function for the value of f and ¢ obtained before. We
pick up the value of ¢ that minimises the criterion function. Notice that identifying
restrictions on the factor parameters are not imposed.

The factor variates and the idiosyncratic residual, €;, are all i.i.d. normally
distributed with mean zero. This is not restrictive since in practice one can re-
move the non-zero mean for a n-factor structure by adding individual- and time-
specific effects. In particular, one can always reparameterise the error term u; =
MNfi+ew=n+7+ N —N(fy — f) + €, where g = M f and » = Af;. Simi-
larly, adding a global intercept will remove the non-zero mean of ¢;;. The variance
of both f; and ¢; is standardised to unity. Again, this is not restrictive because
Mo f) = (A\Fo) f; for any scalar o and so changing the variance of ); has the same
effect as changing the variance of f;. The variance of the factor loadings is determined
according to the ratio of the variance of the reduced form of the dependent variable,
Vit = AL (1 — @L) "1 fy + (1 — ¢L) ey, that is due to factor noise, A f;, over the total
noise. It is easy to show that this ratio equals F; = 03(03+1)~t. We report results for
F; € {0.2,0.5,0.8}. Thus, for example, F; = 0.2 means that 20% of the variance of
the total error is due to factor noise, and so on. We specify N = 200 and T" = 10 and
we choose the autoregressive parameter such that ¢ € {0.1,0.3,0.5,0.7,0.9}. Instru-
ments are the lagged dependent variable and its lags. We report the average and the
median (from 1000 repetitions) of the parameter on the lagged dependent variable.
As a measure of dispersion we report the standard deviation (in brackets beneath
the mean, denoted stdev) as well as the radius of the interval centred on the median
containing precisely 75% of the observations, divided by 1.15 (in brackets beneath the
median). This latter statistic, which we shall call the quasi-standard deviation (de-
noted g¢stdev), is an estimate of the population standard deviation if the distribution
is normal, with the advantage that it is more robust to the occurence of infrequent
outliers. Study of these outliers indicates that they are in large part associated with
multiple minima of the moment function, and can be made to disappear for different
starting conditions for the minimisation procedure. Table 1 reports some simulation

results for FIVU and FIVR.?

9To save space, results for ¢ = 0.3 and ¢ = 0.7 are not reported here. They are available from
the authors upon request.
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FIVU MD FIVU GMM FIVR MD FIVR GMM
¢ F Mean Median Mean Median Mean Median Mean Median

(stdev) (gstdev) (stdev) (gstdev) (stdev) (gstdev) (stdev) (gstdev)

0.1 0.2 .098 .098 .100 .099 .100 .100 .098 .098
(0.040) (0.034) (0.043) (0.043) (0.028) (0.026) (0.031) (0.031)

0.5 .098 .098 .100 .098 .099 .100 101 102
(0.057) (0.036) (0.043) (0.044) (0.028) (0.026) (0.027) (0.026)

0.8 .100 101 .098 .098 101 101 101 .100
(0.112) (0.035) (0.045) (0.040) (0.025) (0.025) (0.023) (0.023)

0.5 0.2 .497 498 498 498 498 498 499 .500
(0.042) (0.032) (0.043) (0.040) (0.027) (0.025) (0.027) (0.024)

0.5 .497 497 499 499 499 499 .501 501
(0.039) (0.032) (0.036) (0.035) (0.024) (0.023) (0.024) (0.023)

0.8 .496 499 .505 .502 499 498 .501 .501
(0.095) (0.032) (0.073) (0.038) (0.024) (0.024) (0.027) (0.026)

0.9 0.2 .891 .898 .898 897 .895 .896 .899 .900
(0.055) (0.019) (0.027) (0.018) (0.024) (0.015) (0.017) (0.014)

0.5 .899 .900 .898 .900 .900 .899 .900 901
(0.034) (0.018) (0.031) (0.018) (0.021) (0.014) (0.016) (0.013)

0.8 .893 .894 .896 .900 .899 .898 .900 901
(0.066) (0.020) (0.054) (0.018) (0.028) (0.014) (0.019) (0.013)

N =200; T =10; f; ~i.i.d.N(0,1); e; ~1.i.d.N(0, 1); 1,000 replications.
Table 1: Monte Carlo results for a panel AR(1)

It is clear that the bias of the estimators is negligible, while their dispersion is
small across the whole range of values for ¢ and F;. As expected, FIVR outperfoms
FIVU in terms of bias and RMSE;, in all circumstances. FIVU becomes slightly more
diffuse as F} grows larger while FIVR appears to be robust to different values of
Fy. The fact that for FIVU the difference between stdev and gstdev increases with
higher values of F} is consistent with increased frequency of multiple minima at these
values. In contrast, there is very little difference between the stdev and gstdev values
for FIVR. The GMM version of the estimators does better, in general, especially for
FIVR, although the gains appear to be small. Preliminary results show that the gains
in efficiency become more subtantial for higher values of N.!°

The following pictures illustrate the performance of the estimators FIVU and
FIVR relative to AB and AS. Tt is apparent that AB and AS exhibit large biases,
which increase with the value of ¢, even when the factor component constitutes a
small proportion of total noise, i.e. F} = 0.2. Thus, FIVU and FIVR completely
outperform AB and AS in terms of bias and RMSE, although RMSE for AS appears

10The results are available upon request.
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to be more stable at different values of ¢. The level of superiority of FIVU and FIVR
increases as the fraction of total noise that is due to the factor component rises to
80%. In this case the RMSE of FIVU is at most one third of that for AB and AS
while the RMSE of FIVR is at most one fifth of that for AS.
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Figure 5.1: Bias, F; = 0.2
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Figure 5.2: Bias, 1 = 0.8
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The following table presents results for a two-factor residual and F; = 0.8. Similar
conclusions are reached for F; = 0.2 and F}; = 0.5. We can see that the estimators
FIVU and FIVR perform well in terms of both bias and RMSE. Compared to the one-
factor residual case, the dispersion of FIVU slightly increases, while FIVR appears to

do well in all circumstances.
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FIVU MD FIVU GMM FIVR MD FIVR GMM
Mean Median Mean Median Mean Median Mean Median

(stdev) (gstdev) (stdev) (gstdev) (stdev) (gstdev) (stdev) (gstdev)
0.1 .098 .098 .097 .098 102 101 .100 .100
(0.057) (0.063) (0.061) (0.065) (0.028) (0.030) (0.029) (0.030)
0.5 .493 498 498 497 499 499 501 .500
(0.070) (0.050) (0.071) (0.049) (0.029) (0.027) (0.024) (0.022)
0.9 .886 .895 .889 .897 .896 .899 901 .900
(0.142) (0.034) (0.139) (0.031) (0.032) (0.029) (0.023) (0.021)

N =200; T =10; f; ~i.i.d.N(0,1); g5 ~i.i.d.N(0,1); Fy = 0.8; 1,000 replications.

Table 2: Monte Carlo results for a panel AR(1) with a two-factor residual

6 Concluding Remarks

The Generalised Method of Moments is a standard approach for estimating dynamic
panel data models with large N and T fixed. This approach has the advantage
that, compared to maximum likelihood, requires much weaker assumptions about the
initial conditions of the data generating process, and avoids full specification of the
serial correlation and heteroskedasticity properties of the error, or indeed any other
distributional assumptions. On the other hand, under cross-sectional dependence
these estimators are inconsistent as the moment conditions they utilise are false. In
this paper we develop a new GMM-type approach for consistent and asymptotically
efficient estimation of panel data models with multi-factor residuals. One novelty of
our approach is that we do not use quasi-differencing to remove the factor structure -
rather, we introduce new parameters to represent the unobserved covariances between
the instruments and the factor component of the residual. We develop estimators
that are asymptotically more efficient than the existing quasi-differencing methods
and behave well under a wide range of parametrisations, including a large value of
the autoregressive parameter.

In a companion paper we apply our method to an autoregressive process with
multi-factor residuals and individual fixed effects in order to estimate a model of
investment rates for a large panel of firms operating in the US. Using simulated
data we show that the proposed estimators perform well, unless the cross-sectional

dimension is small.
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Appendix I: Proofs of Theorems

Proof of Theorem 2

Assumption 5 guarantees that ¢(0) = $(0,). According to the boundedness assump-
tion, we may choose ©,. such that the objective function is bounded away from zero
outside of this set. Since the argmin over this set converges to true 6 in probability,
it follows that, for N sufficiently large, $(6,) = ¢(©,) with arbitrarily high prob-
ability. The result that ¢(€) — $(©.) now follows from the density of © in €.
The result for the covariance matrices follows from the following observation. Let
X and Y be matrices with the same number of rows. Then the sub-matrix in the
NW corner of the inverse or generalised inverse of [ XY ]T[ XY ]7 which is of
dimension that of X7 X, is (X7 My X)~!, where My is the projection that removes Y,
i.e. My = I-Y(YTY)7YT. This follows from the partitioned inverse formula. Thus
the covariance matrix of the parameters of interest is obtained by removing from I’
the linear space spanned by the columns corresponding to the nuisance variables; two
sets of nuisance variables generating the same span will yield the same covariance
matrix. QED

Proof of Theorem 3
Assume we have an M-dimensional moment function

wl (m, 9)
U= : , (6.1)

1/}M<m, 9)

where m is a collection of moments and 6 is a parameter vector. Consider the usual

GMM estimator of the true value based on W. This has asymptotic variance

var(d) = TTAT) Y, (6.2)

H¢Dense subset” means that one can find something in the subset arbitrarily close to any element
in the superset. For example the set of invertible square matrices is dense in the set of all square
matrices, because one can find an invertible matrix arbitrarily close to a given singular matrix. In
our context, certain arguments concerning identification will not go through if certain sub-matrices
of F and G are singular. For example in the AR(1), one factor case, we require g; # 0. Density
allows us to assume away ¢g; = 0 and thus obtain identification.
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where

r=F {%ﬂ A =BT, (6.3)

(both evaluated at the true value fy. Assume I" and A have full rank and let § =
(6T, vT)T be a decomposition of the parameter space into two subsets. The variables

¢ are the parameters of interest and the v are nuisance parameters. Let

v, v

Q= Era = 57 (6.4)

so that ' = [ Q R } . Since I is of full rank, so too are () and R. Assume that, for
some L x M matrix D(¢) of full rank L < M

D(9)¥(p,v) = V(o) for all ¢, v, (6.5)

i.e. D represents a set of transformations that eliminate the nuisance parameters v
at the cost of some loss of moment conditions. Then ¥ is a moment function and

inference about ¢ may be based on it. One has the asymptotic variance matrix
var(¢) = (ITATT) 71, (6.6)

where ' = E(0W(m, 0y)/0¢T) and A = E(VWT). Differentiating (6.5) with respect
to ¢ and using the fact that E(¥(m,60y)) = 0 one has

DQ=T. (6.7)

Differentiating (6.5) with respect to v one has
DR =0, (6.8)
where, in both cases, D is evaluated at #y. One has as well that
A = DAD”. (6.9)
The asymptotic covariance matrix of ¢ is now

var(¢) = [QT DT (DADT)'DQ] ™. (6.10)
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Make the transformations Dy = DAY2 Th = AT = [ QA Ra ] Then, using

results for partitioned inverses, one finds

var(3) = (QA(In — Pry)Qa) ™, (6.11)

where Pr, = Ra(RXRA)™'RL. One also has

UCLT(QZE) = (Qg‘PDAQA>717 (6'12)

where Pp, = DX(DaD%) " Da. Then var(¢) > var(¢) (as positive matrices) if and
only if

QX(IM — Pr, — Pp,)Qa > 0. (6.13)

Now condition (6.8) implies that the matrices inside the brackets are orthogonal
projections so the sandwich matrix is a projection of rank M — L — dim(R). There
are thus no losses in efficiency from eliminating the ¢ parameters in this way if
dim(§) = dim(R) = M — L, i.e. the number of eliminated parameters is equal to the

number of lost moment conditions. QED

Remark. In the case of fixed effects with linear 5 the moment conditions are linear of
the form
m+ Q¢+ R =0, (6.14)

where vector m and matrices () and R consist of observable moments. The parameters
¢ are here the gs from the development in the text. The first-differenced GMM
estimator proposed by Arellano and Bond introduces a differencing matrix of full

rank to eliminate R:

Dm + DQ¢ = 0. (6.15)

Both forms give rise to GMM estimates of the parameters of interest ¢ by a one-
pass regression, given estimates of the error-covariance-matrices. Let 2; and €25 be
such estimates for (6.14) and (6.15) respectively. Call these estimates compatible if
Qy = DOy DT. One might form compatible estimates by first developing an estimate
of the covariance matrix for (6.14) and then adjusting it appropriately for (6.15). The

following is true:
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Proposition. GMM estimates based on (6.14) and (6.15) are arithmetically equal if

they employ compatible estimates of the error-covariance matrices.

To prove this one shows
QTQ VI — P)g125072Q = QDT (DQODT) ' DQ (6.16)

for any conformable full-rank symmetric 2. This is will be so if (I—P)qg-1/25 = Pai/2p-
It is easy to see that Py 125FPq12p = 0, so that the projections are orthogonal.
Consideration of ranks now delivers the result.

In our context, this result shows the first differenced GMM of the fixed effects
model is precisely the FIVU estimator, given compatible covariance matrix esti-
mates. In practice, AB estimates and FIVU estimates need not be the same as
initial minimum-distance estimates of the structural parameters may differ when the

two equations are considered in isolation. In this case, equality is only asymptotic.

Proof of Theorem 4.

Let
v=uv(p,T), (6.17)

where v is defined above and 7 is a vector of nuisance parameters which has lower
dimension than v. We assume v(.) is linear in 7, i.e. v(¢,7) = V(¢)71, though
the argument to be presented would go through under the assumption of sufficient
differentiability at the true value. We consider the estimator ¢ based on the moment
conditions in terms of ¢,7. One has T = | Q + RJ RV ] where J = Ov(¢,7)/0¢T
so, as in (6.11)

var(€) = [(Q + RJ)A(In — Py, )(Q + RJ)a) " (6.18)

Since (Iyr — Pry)((Q + RJ)a) = (In — Pry )@ and Pr, > Pry),, one sees from
(6.11) that

~ —

var(¢) > var(o) (6.19)

with equality if and only if (Pr, — P(rv),)(Q + RJ)a = 0. Since in general there

is no particular reason for this equality to hold, it follows that a more parsimonious
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parametrisation of the nuisance parameters will typically deliver a more efficient es-
timator of the parameters of interest.!> QED

It is also straightforward to prove that FIVR is efficient in the class of estimators
that make use of second moment information, based on an argument similar to that
provided by Ahn and Schmidt (1995, section 4). Therefore this proof is omitted. In
summary, FIVR reaches the semi-parametric efficiency bound discussed by Newey
(1990) using standard results of Chamberlain (1987). Thus, FIVR is asymptotically
efficient relative to a QML estimator, but the estimators are equally efficient under

normality.

Appendix II: Identification for FIVU

We focus on the canonical case, where the set of instruments consists of current and
lagged values of the variables. Extension to the general case is straightforward. The
moment conditions take the form (2.14), M3 — vech(GF™) = 0. The problem is to
impose conditions on vechGF'so that the values of G and F can be uniquely inferred
from knowledge of vechGFT, at the same ensuring that the original vechGFTcan be
obtained from restricted G and F. Consider the representation of vechGFT as an

upper-triangular matrix:

afi g1fe o gufr
vechGF' = 92f2 o gQ.fT (6.20)
gr fr

One can impose the restriction that the last n columns of F7 be I,. We assume
n < (T 4+ 1)/2, so that an n x n block of terms exists above the main diagonal in
(6.20). If this is done, all g4, for s =1,...T —n + 1, may be inferred from the values
of the terms in (6.20). When s > T — n + 1 this is no longer so, as such terms as
97—niofr_ni1 are not observed. In this case we impose the restrictions that the last
s —T +mn — 1 columns of g5 are zero. This enables the unique inference of all the

gs in (6.20) i.e. the full G matrix. Consider now the problem of inferring f; when

12The condition will hold if J = 0 and QX Ra = 0. This will be so when the reparametrisation
can be accomplished independently of ¢ and the GMM estimates of the parameters of interest are
independent of the estimates of the nuisance parameters.
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t <T —n. The matrix
g1
Gifi=1| | It
gt

is observed. The number of rows of GG, is pt. When pt > n we impose the restriction
that the null space of G; be zero, the full-rank assumption on G;. When pt < n (which
need not occur), we set the last n — pt entries of G, to zero and impose the condition
that the appropriately truncated sub-matrix of G; be of full rank. This establishes

the identification of G and F. The scheme has the following characteristics:
1. The last n columns of F”form I,,.
2. There are additional zero restrictions on G and F'.
3. There is a collection of full-rank conditions on sub-matrices of G.

Let ©, be the collection of parameters such that 1-3 hold and © be the collection
such that both 3 holds and the matrix formed from the last n columns of F7T is of
full rank. The following facts are straightforward to show:

PROPERTIES OF THE IDENTIFICATION SCHEME.
Assume n < (T'+1)/2.
1. With ¢ held fized, any 0 €0, is identified from the moment conditions.

2. For any 0 €0, V(0) = V(0,) for some 0, €0,.0 is dense in the unrestricted

parameter set €.
3. OV /0v,has full rank where v, is the vector of free parameters in restricted G, .
4. For any 0 €O, V(0) = V(0,) for some 0, €0O,.
5. The spanning condition (3.8) holds.
These results establish all of Assumption 5 in the canonical case except the bound-

edness condition for # €0,. To see this, assume ¢ is restricted to a compact set.
Then

|B(MB(9) — vechGF" || > |||G]| || BvechGF"|| — | BMB(9)]],
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where [|G|| is the Hilbert-Schmidt norm of G and ||G||=1, where G = G/ ||G||. The
second term can be made arbitrarily large by choice of |G| provided || BvechGF ||can
be bounded away from zero. Now HBvech(_?FHz b Hvech@FH where b is the smallest
eigenvalue of B3, The identification restrictions on G are such that each element
of the matrix either appears as a separate term in vechGF or is zero. This implies
Hvech(_}FH > HC_?H = 1, thus delivering the result.

These conditions suffice to identify the factors; it remains to consider identification
for the full vector #. We shall give a condition for the one-factor case. We examine
when ' = 9¥/90T is of full-rank, assuming linear $3(.). TLocal identification will
follow from the full-rank of I". Write the moment condition (2.13) in terms of upper-

triangular matrices

mu B mpB ... mapf afi gife .. gifr
mazf) o mQ_Tﬁ — g2/ o g2fT — 0. (6.21)
mor 3 grfr

The identification restriction is here that fr = 1 and gr # 0, the latter being the
full-rank condition on sub-matrices of G. If this is so, and given that the full rank of
OW /Ovlis established, ' can fail to have full rank only if

Ovechg T Ovechg fT

T *\ * *

for some non-zero (¢, g*, f*), where M is the matrix comprised of the m,;, with their
first columns removed. In this expression f}. = 0 since the identification procedure

has removed the last column of ¥ /9 7. Making use of (2.9), this can be written
vechM' (I ® ¢*) = vechg® f* + vechgf**. (6.23)

One can give a condition under which this relationship cannot hold, and thus I’

calculated for the unrestricted elements of # must be of full rank. Assume 7" > 3. For

13This argument is facilitated by the assumption that B is the symmetric square root of the weight
matrix C rather than the Choleski matrix.

31



the 2 x 2 sub-matrix m of terms from the North-East of M one finds
m(l® ¢*) = g" 1 +gf7, (6.24)

where the terms on the right now each consist of two elements of the original vectors
on the right of (6.23), dated 1,2 for both g vectors and T'— 1, T for the f vectors.
Exploiting the conditions fr = 1, f# = 0, one can show that (m® — fr_m®)¢* =

2)

fr 19 where m() and m® are the first and second blocks of 7 = ¢ — 1 columns

of m, respectively. Thus I' being not of full-rank implies that the sub-vector g €
Span(m® — fr_1m®) i.e the 2p x 1 vector g is a linear combination of the r columns
of mM — fr_ym®. Thus:

IDENTIFICATION IN THE CANONICAL CASE WITH ONE FACTOR Assume T > 3.

Then T has full rank in the case of one factor and linear 5(.) if g1 # 0, fr =1 and

[ 9 ] ¢ Span(m®™ — fr_im®) (6.25)
92

at the true values of the parameters.

As a specific example of the canonical case, consider a single lagged dependent
variable, with this (and its lags) as the instrument and assume 0 < |¢| < 1. The
model is

Tip = QTy—1 + Nife + it (6.26)

If one assumes that the observed data are generated by a process beginning in the

distant past, this can be solved as

Tit = )\l([ - ¢L)71ft + ([ — QﬁL)ilEit (627)
Aiff A e, (6.28)

where the f¢ = (I — ¢L)™' f; are re-defined factors and 7;; is a stationary AR(1) (if

the e;; are homoscedastic). If we assume \; and ¢, are independent, it follows that

M}, = B(zj1ma) = o3 fife + o2l s =1, t=1,...,T. (6.29)
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One has as well that
gs = E(\iwis—1) = 03 5. (6.30)

Using these formulae, one can show I' has full rank unless

i ¢
5[] oo

If this condition is false the structural parameter of the AR(1) model is identified.
There is a somewhat more complicated version of (6.25) for the multi-factor case.
If this condition is satisfied then Assumptions 1-5 can be taken to hold (save for A
being full rank) and hence the distributional result; since the spanning condition has
been demonstrated, the equivalence of restricted and unrestricted estimation may be
invoked in the canonical case. One caveat is that the condition (6.25) is not in terms
of primitive parameters (i.e. those giving a complete description of the stochastic
process generating the data) so it is possible in principle that the condition is in fact

vacuous. We have shown this is not the case for the AR(1).

Appendix III: Derivatives

We shall derive the gradient function and the Hessian for a number of FIV models.
The notation will be as follows. If A(f) is a (column) vector-valued function of 6 then
DyA(0) = 0A/OOT . Tf A is a matrix then DyA(f) = dvecA/OOT. The chain rule takes
the form Dy(A(B(0))) = Dyec(A(B))DyB. The product rule is

Do(A(0)B(0)) = (B" @ I,)DsA + (I, ® A) Dy B, (6.32)
where A is m x p and B is p x q. The gradient vector is defined as VyA = (DyA)7T.

FIVU gradient vector

In this case the minimand is

Qp =VY"B"BV, (6.33)

where

U = MB — SvecGFT. (6.34)
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This is optimised with respect to 8 = (¢7, f1g7)T. One has DyQp = 29T BT BDyW
and, using (2.9)

Dy = [ (MDy3 —S(IrG) —S(F®l) |. (6.35)
The gradient vector is then calculated as

VQp = 2(De¥)" BT BU. (6.36)

FIVR gradient vector

As a general principle, the derivatives of the restricted models can be obtained from
the FIVU derivatives by use of appropriate Jacobian matrices. Assume the restrictions
effect a re-parametrisation 0 = 0(¢) and let J¢(6) = D0 be the Jacobian. Then

(VRQB(f))T = 5@3/85T = 3QB/89TJ£(9) = (VUQB)T*J&(Q)' (6-37)

The FIVR minimisation is in terms of the £ vector consisting of ¢, g, where

f=HPF;,g—Ud. The Jacobian matrix is given by

Ir 07“><nd OTXU
J = K(Iq (%9 Pd,ng>D¢ﬁ H(ﬁ)Pd,n U . (638)
Ondxr Ind Ondxu

FIVR when one factor is fixed effects.

It is sometimes of interest to specify that one of the factors (say the first) is fixed
effects. If this is done then the re-parametrisation of f so as to have Qdr = I, can no
longer be achieved: the most that can be done is to have Qr = 021, for a scale term
o2. In this case, the optimisation is now with respect to ¢, o2, f°, 8, ¢ where f° stands

for the unrestricted factor terms.

Second derivatives

Write Q5 = v"u where ©w = BV. For any parameter vector # one has

T
VQB:2%%M (6.39)
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SO

D;Qp = DyVQgp (6.40)
ou”
T ou” T
= 2[(u ®Idim9)D9(W)+(D9u) (Dou). (6.42)

Denote the first term within the brackets V/(6). One can show that

dimu

V=> wDju. (6.43)
=1

For both FIVU and FIVR the u vector is linear in the stochastic term ]\//Tﬁ (when

{3 is a linear function of ¢) so the second derivatives are non-stochastic functions of

0. Since the u vector is zero in expectation at the true 6y in MoM models we have
that, evaluated at 6,

E(DjQp) = E((Dgu)" (Dgu)), (6.44)

which suggests that the non-negative matrix (Dgu)? (Dpu) may give a good approxi-

mation to the Hessian close to convergence.

FIVU second derivatives in the canonical case.

For the FIVU residual vector ¥, write * = BT BW¥ and section it into p x 1 sub-

matrices so that ¥* = (U137, .. \II;T(TH)/Q)T. Create a T' x T upper semi-triangular

matrix V* from these sub-matrices so that vechV* = U* (Note that V* is a pT' x T

matrix of scalars.) Then one can show

Orxr OanT 07'><7LpT
V(Q) = OnTXr OnTXnT In & V*T . (645)
Oin ]n ® Vv OinanT

The Hessian for FIVU is thus
DiQp =V + (Dgu)" (Dyu). (6.46)

It is easy to see that the eigenvalues of V' are &,/p1;,7 = 1,...,nT (plus zero), where

the y; are the eigenvalues of V*TV*. Thus the positivity of the Hessian is not assured
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in (6.46). In fact, observe that the second term is independent of ¢ (see (6.35)),
whereas the first term is not. If one imagines a scale increase in ¢ then eventually the
first term will grow as the square of the expansion factor and the resulting Hessian
will have saddlepoints. This shows that an original bad approximation to ¢ will lead

to problems with algorithms based on the unmodified Hessian.

Concentrations.

For FIVU one has
u= BY = B(M3 — SvecGFT). (6.47)

By use of (2.9) one has

wu=B|M -8(IreG) | s

:B[J\? —S(F®]d)][ﬂ]. (6.48)
g

These relationships imply that, given F' one can minimise the criterion function by
a one-pass linear regression, and similarly for G. Iterating these procedures will pro-
duce a declining sequence of values of the criterion which usually in practice converges
to a local minimum. As a general rule in FIVU estimation we use these concentrations
as they are much swifter than line-search methods based on the Hessian. No such
concentrations are available for FIVR as, after substituting out for f, the resulting

residual vector u is quadratic in g, so there we are forced to rely on Hessian methods.
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