
MPRA
Munich Personal RePEc Archive

IV Estimation of Panels with Factor
Residuals

Robertson, Donald; Sarafidis, Vasilis and Symons, James

University of Cambridge, University of Sydney, UCLA

25. October 2010

Online at http://mpra.ub.uni-muenchen.de/26166/

MPRA Paper No. 26166, posted 25. October 2010 / 03:25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6620539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/26166/


IV Estimation of Panels with Factor Residuals

Donald Robertson, Vasilis Sara�dis and James Symons∗

October 25, 2010

Abstract

This paper considers panel data regression models with weakly exogenous or

endogenous regressors and residuals generated by a multi-factor error structure.

In this case, the standard dynamic panel estimators fail to provide consistent

estimates of the parameters. We propose a new estimation approach, based

on instrumental variables, which retains the traditional attractive features of

method of moments estimators. One novelty of our approach is that we in-

troduce new parameters to represent the unobserved covariances between the

instruments and the factor component of the residual; these parameters are typ-

ically estimable when N is large. Some important estimation and identi�cation

issues are studied in detail. The �nite-sample performance of the proposed esti-

mators is investigated using simulated data. The results show that the method

produces reliable estimates of the parameters over various parametrizations and

is robust to large values of the autoregressive parameter and/or the variance of

the factor loadings.

KEYWORDS: Method of Moments, Dynamic Panel Data, Factor Residu-

als.
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1 Introduction

This paper develops a new approach, based on instrumental variables, for consistent

and asymptotically e�cient estimation of panel data models with errors generated by

a multi-factor structure. The factor structure is an attractive framework as it permits

general forms of unobserved heterogeneity that may otherwise contaminate estima-

tion and statistical inference. There are several ways factor residuals can come about,

depending on the application in mind. In macroeconometric panels, the factors may

be thought of as economy-wide shocks that a�ect all individuals, albeit with di�erent

intensities; essentially, this allows cross-sections to inhabit a common environment,

to which they may respond di�erently. In microeconometric panels, the factor struc-

ture may capture di�erent sources of unobserved individual-speci�c heterogeneity, the

impact of which varies intertemporally in an arbitrary way. For instance, in stud-

ies of production functions, the factor loadings may capture distinct components of

technical e�ciency of a given �rm that vary through time. In models of earnings

determination, the factor loadings may re�ect several di�erent unobserved skills of an

individual, with the factors representing the economy-wide price of these skills, which

is not necessarily constant over time. Systematic changes in tastes (weltanshaung) is

another plausible example. In some circumstances such variables could be measured

and directly included in the model, but often the details of measurement might be

di�cult, contentious and, in any case, outside the focus of the analysis.1 In such cases

it is inviting to allow the model residual to be composed of one or more unspeci�ed

factors, themselves to be estimated. One can interpret such a procedure as allowing

some degree of cross-sectional dependence in the model residuals.2

Consider the simplest case of a one-factor, one-regressor model in the standard

form

x1it = φx2it + λift + εit t = 1, ..., T i = 1, ..., N. (1.1)

In some cases the values of ft, or λi, are assumed to be known, such as when �tting

i-speci�c, or t-speci�c intercepts (�xed-e�ects), or polynomial time-trends, but here

we shall treat the ft as vectors of parameters to be estimated. In this case, one can

�t this model by non-linear least-squares, based on principal components analysis;

1For example, how does one measure monetary shocks? Does one look at interest rates or
monetary aggregates? Which monetary aggregates? How does one handle �nancial innovation?

2An overview of the current literature on panel data models with error cross-sectional dependence
is provided by Sara�dis and Wansbeek (2010).
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see e.g. Bai (2009). Pesaran (2006) suggests the alternative of augmenting the re-

gression model by the cross-sectional averages of the variables, x1it and x2it, which

will span the unobserved factors for large N . Both these methods require that the

set of regressors is strongly exogenous with respect to the idiosyncratic error com-

ponent, εit, and N , T are both large. In the present paper we focus on the case

where N is large, T �xed and the model includes regressors that are not strongly

exogenous. This is an empirically relevant scenario in many applied circumstances.

For example, our framework allows models with lags of the dependent variable on the

right-hand side, as in partial adjustment models for labour supply, Euler equations

for household consumption, and empirical growth models. In these models the coe�-

cient of the lagged dependent variable captures inertia, habit formation and costs of

adjustment and therefore has structural signi�cance. Furthermore, since underlying

economic behaviour is intrinsically dynamic, past residual errors might in�uence the

current value of explanatory variables even when lagged dependent variables are not

directly present in the model, leading to weak exogeneity. For instance, in panels of

observations on economies, expectational errors are likely to work through the whole

economy over time, and it is natural to expect that a given variable is often not im-

mune from this process. Finally, our framework also permits models with endogenous

regressors, due to errors of measurement and/or simultaneity, and so it possesses an

appealing generality.

When the values of ft, or λi, are known, as in the �xed e�ects speci�cation, a

popular strategy to estimate models with weakly exogenous, or endogenous regressors

has been to use the Generalised Method of Moments (GMM), analysed in the dynamic

panel data context by Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano

and Bover (1995), Blundell and Bond (1998) and others. Among the many economic

applications where GMM has been used include estimation of (i) production functions

and technological spillovers (e.g. Blundell and Bond, 2000), (ii) the demand for

money (e.g. Bover and Watson, 2005) (iii) the responsiveness of labor supply to

wages (e.g. Ziliak, 1997), (iv) the structure and pro�tability of the banking sector

(e.g. Tregenna, 2009) and the empirical growth literature (e.g. Presbitero, 2008). In

all these applications the set of regressors includes weakly exogenous variables, the

cross-sectional dimension is fairly large while T is relatively small.3

3In particular, Blundell and Bond (2000) use a panel of 509 R&D-performing US manufacturing
companies, Bover and Watson (2005) use data on 5,649 �rms operating in Spain, Ziliak (1997)

3



However, as shown by Sara�dis and Robertson (2009) and Sara�dis, Yamagata

and Robertson (2009), all these procedures fail to provide consistent estimates of the

parameters when the errors are generated by a multi-factor structure. Intuitively,

this is because the standard moment conditions used are invalidated in this case.

Panel data models with a single-factor structure and a small number of time-series

observations have been studied by Holtz-Eakin, Newey and Rosen (1988), Ahn, Lee

and Schmidt (2001) and Nauges and Thomas (2003). All these studies utilise some

form of quasi-di�erencing that eliminates the factor from the residuals. More recently,

Ahn, Lee and Schmidt (2006) in a seminal paper develop a GMM estimator that

allows for multiple factors using multi-quasi-di�erencing. In this paper we develop

an instrumental variables approach that does not involve quasi-di�erencing and is,

in general, more e�cient than the existing quasi-di�erencing-type GMM estimators

because it exploits extra restrictions implied by the model.

The basic intuition behind our solution is as follows. Assume in the above model

we have some variable (instrument) zit for which E(zitεit) = 0. This implies an

orthogonality condition

E(zitx1it) = φE(zitx2it) + gtft, (1.2)

where gt = E(zitλi). We treat the gs as parameters to be estimated. Replacing the

E(.) terms by their sample moments, one has T such orthogonality conditions and

2T + 1 parameters to be estimated (φ and the gs and fs): too many to be identi�ed.

However, if all lags of zit are instruments, the number of orthogonality conditions

is expanded to T (T + 1)/2, while the number of parameters remains the same; one

has now more conditions than parameters for T > 3, so one can hope for unique

estimates. We shall call estimators in this class Factor Instrumental Variables (FIV)

estimators. FIV estimators have been introduced by Robertson and Symons (2007);

the present treatment greatly improves and extends that paper. FIV estimators have

the traditional attraction of MoM estimators in that they exploit only the orthog-

onality conditions, which may in fact be the implication of an underlying economic

theory, and make no use of subsidiary assumptions such as homoskedasticity or other

assumed distributional properties of the error process. The method is general in the

surveys 534 individuals, Tregenna (2007) considers 644 banking institutions, while Presbitero (2008)
utilises data from 144 countries. T ranges from 5 to 27 in these applications.
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sense that all that is required is the existence of some instrument zit with orthogo-

nality conditions at su�ciently many periods other than t to identify the introduced

g parameters.

In most practical circumstances the instrument set will include lags of the de-

pendent and independent variables of the model. In this case, a number of linear

restrictions can be demonstrated to hold among the parameters (φ and the gs and

fs) of the model. Greater e�ciency can be obtained if these are imposed in estima-

tion. We call this the FIVR (restricted FIV) in contrast to the estimator obtained

when these restrictions are not imposed, FIVU (unrestricted FIV).

We remark that our approach is valid under the �xed-e�ects framework as well.

In this case, FIVU is asymptotically equivalent to the GMM estimator proposed by

Arellano and Bond (1991) and FIVR is asymptotically equivalent to the GMM esti-

mator proposed by Ahn and Schmidt (1995) for the �xed e�ects case. Furthermore,

within FIVR it is straighforward to impose mean-stationarity on the initial condi-

tions, in which case FIVR is asymptotically equivalent to the system GMM estimator

(Arellano and Bover, 1995 and Blundell and Bond, 1998). Thus, FIV estimators o�er

a unifying treatment of existing dynamic panel estimators.

2 Stochastic Framework

We assume we have a population of vectors Yi of common dimension which obey

xTitβ = λTi ft + εit, t = 1, ..., T, (2.1)

where variables subscripted i are formed from subvectors of Yi. The q-vector β is

assumed to be a function of r free parameters φ:

β = β(φ).

In the work below we shall usually take β = (1,−φT )T where φ is an r-vector of

parameters We assume an n-factor model i.e. λi is a stochastic n × 1 vector (the

factor loadings) and ft is an n × 1 vector of parameters (the factors) at time t; εit

is a purely idiosyncratic disturbance.4 The sampling structure is that we have N

4We shall treat n as known. The results presented below are not a�ected when the number of
factors is unknown and is estimated consistently. A formal proof for this argument is provided by
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su�ciently independent draws, indexed by i, from the population of Yi. The following

assumptions are made:

Assumption 1. Existence of instruments. We assume potential instruments

are given by a vector Wi of dimension d; these instruments may correspond to the

variables of the model or be extraneous variables. In each period t, ct instruments

are available, expressed in vector form as follows:

Wit = StWi, (2.2)

for which E(Witεit) = 0. Here St is the selector matrix of 0s and 1s that picks out from

all potential instruments Wi those that apply at date t. The matrix St has dimension

ct × d where ct is the number of orthogonality conditions associated with εit. Thus,

for example, in the event that the model has a single strongly exogenous independent

variable, Wi would consist of all values of this variable, from t = 1 to t = T and

St would be the identity matrix IT . In the event that the independent variable were

only weakly exogenous, then the selector matrix would pick out values dated t and

earlier. Mixed cases can occur naturally, such as when the covariates consist of (say)

a weakly exogenous variable and an endogenous variable. In this case, Wi is a 2T × 1

matrix and the selector matrix will pick out current and lagged values of the weakly

exogenous variable, as well as the appropriate dates for the second variable.

Proposition. Assume E(εitλ
T
i ) = 0. If xit is weakly exogenous and all lags of

xit belong to the instrument set then E(εisεit) = 0, s 6= t.

The point of the proposition is that in these circumstances the orthogonality of

the disturbances is guaranteed by Assumption 1, so that they do not add to moment

conditions beyond those implied by this assumption.

The model (2.1) can be stacked over t to take the form

Xiβ = (IT ⊗ λTi )f + εi, (2.3)

Bai (2003, footnote 5). A consistent estimate of the number of factors in this context can be obtained
using a sequential method based on Sargan's overidentifying restrictions test statistic. The intuition
is that when the number of factors �tted is smaller than the true value, Sargan's statistic will reject
the null hypothesis for N su�ciently large. Alternatively, one can estimate the number of factors
consistently using an information based criterion. Ahn, Lee and Schmidt (2006) provide speci�c
details and proofs for both methods. See also Sara�dis and Yamagata (2010) for a discussion.
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where f = vecF T , F T = [f1, ..., fT ]. The corresponding instrument matrix Zi is

de�ned by

ZT
i =


Wi1 0 .. 0

0 Wi2 0

:
. . .

0 0 .. WiT

 , (2.4)

where one has E(ZT
i εi) = 0, where εi denotes the column vector of εit. Note that Z

T
i

is c × T , where c =
∑t=T

t=1 ct is the total number of orthogonality conditions. From

(2.2) we have

ZT
i = S(IT ⊗Wi), (2.5)

where

S =


S1 0 .. 0

0 S2 .. 0

: : : :

0 0 .. ST

 . (2.6)

The matrix S has dimension c×Td. The orthogonality condition for the instruments

is now

E(ZT
i Xiβ − ZT

i (IT ⊗ λTi )f) = 0. (2.7)

By use of (2.5) this can be written as

Mβ − S(IT ⊗G)f = 0, (2.8)

where M = E(ZT
i Xi) and G = E(Wiλ

T
i ). Matrices M and G have dimensions c × q

and d× n respectively. Some alternative forms of the second term in (2.8) are

S(IT ⊗G)f = Svec(GF T ) = S(F ⊗ Id)g, (2.9)

where g = vecG. A compact expression of the orthogonality conditions is thus

Mβ − Svec(GF T ) = 0. (2.10)

When the instruments consist of current and all lagged values: the canon-

ical case As an example, consider when the instrument matrix Vi is naturally pre-
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sented as a T × p matrix of T observations on p variables (so that Wi = vecVi) and

εit is orthogonal to the block of potential instruments from s = 1 to s = t, i.e. the

orthogonality conditions are

E(zisεit) = 0 t = 1, ..., T ; s = 1, ..., t, (2.11)

where zTis is the s-th row of Vi. This can be viewed as a canonical case in the sense

that there exists a collection of contemporaneous instruments and their lagged val-

ues; it arises, for example, when the independent variables in the model are weakly

exogenous, such as the frequently used AR(1) dynamic panel data model with factor

residuals. De�ne mst = E(zisx
T
it) and gs = E(zisλ

T
i ). The orthogonality conditions

are then

mstβ − gsft = 0, t = 1, ..., T ; s = 1, ..., t. (2.12)

These conditions can be stacked as

m11β

m12β

m22β

:

m1Tβ

m2Tβ

:

mTTβ


−



g1f1

g1f2

g2f2

:

g1fT

g2fT

:

gTfT


= 0. (2.13)

More succinctly, this is

Mβ − vech(GF T ) = 0, (2.14)

where M is the stacked mst terms and the vech operator is understood to act on

p×1 submatrices. Let Sd be the selector matrix of 0s and 1s that turns vec into vech

(acting on d× d matrices). Then

Mβ − vech(GF T ) = Mβ − (ST ⊗ Ip)vec(GF T ) = 0, (2.15)

which is of the form of (2.10), with the selector matrix S given by S = ST ⊗ Ip.
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3 The unrestricted estimator FIVU

De�ne a moment function by

Ψ(θ, ZT
i Xi) = ZT

i Xiβ(φ)− Svec(GF T ), (3.1)

where θ = (φT , gT , fT )T . Then by construction E(Ψ(θ)) = 0 at the true value θ0. Our

aim is to estimate θ0 by minimising Ψ(θ, M̂)TCΨ(θ, M̂) where M̂ =
∑N

i=1 Z
T
i Xi/N

is the matrix of empirical moments and C is a given �xed matrix. As it stands, the

model is not identi�ed since

Mβ − Svec(GF T ) = Mβ − Svec(GUU−1F T ), (3.2)

for any n × n invertible U . One possible set of restrictions is to require some n × n
submatrix of F T to be the identity matrix. It turns out that the identity restriction on

a submatrix of F is not in general su�cient for full identi�cation; further restrictions

are required. In what follows, we provide su�cient conditions for identi�cation of the

full parameter vector θ and we establish some primitive conditions for the nuisance

parameters, g, and f , as well as the full parameter vector θ in Appendix II.

Let Ω be the full set of possible parameter vectors.

Assumption 2. We assume that θ0 belongs to the interior5 of Θr ⊆ Ω where

Θr is obtainable by 0, 1 restrictions on the G,F components of the vectors in Ω,

together with some possible further restrictions excluding a closed set. We assume θ0

is identi�ed on Θr in the sense that E(Ψ(θ)) = 0 for θ ∈ Θr implies θ = θ0.

Let

Γ = E

(
∂Ψ

∂θTr
(θ0)

)
, (3.3)

and

∆ = E
(
Ψ(θ0)Ψ(θ0)T

)
, (3.4)

where θr consists of the free parameters in a restricted θ.

Assumption 3 We assume both Γ and ∆ exist and are of full rank.

5The interior is de�ned in the relative topology induced on Θr by the natural topology on Ω.
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Assumption 4 We assume that the elements of Zi and Xi have �nite moments

up to order two, and that the function β(.) is twice continuously di�erentiable.

Note that the full rank condition for Γ itself implies that θ0 is locally identi�ed6.

The above set of assumptions is su�cient to make an appeal to standard GMM theory

in order to derive the asymptotic properties of FIVU. In our context the result is:

Theorem 1. Distribution result for FIVU. Let Θc be a compact subset of Θr

containing θ0 in its interior and let

θ̂(Θc) = arg min
θ∈Θc

Ψ(θ, M̂)TCΨ(θ, M̂), (3.5)

where M̂ =
∑N

i=1 Z
T
i Xi/N and C is a given �xed positive-de�nite matrix. Then θ̂

converges in probability to θ0 and

√
N(θ̂ − θ0)

d→ N(0, (ΓTCΓ)−1(ΓTC∆CΓ)(ΓTCΓ)−1). (3.6)

Proof. This is well-known; see e.g. Newey and McFadden (1994) for further details.7

If C is chosen as ∆−1 the covariance matrix of the asymptotic distribution is

(ΓT∆−1Γ)−1, in which case the estimator has certain optimality properties. These

distributional results hold as well if the unobserved ∆ is replaced by an estimate

based on the Hansen (1982) two-step procedure. We shall call the estimator with the

Hansen version of ∆ the GMM unrestricted factor instrumental variables estimator

FIVU (GMM). If instead C is chosen as the identity matrix, so that ΨTΨ is minimised,

we call the estimator minimum-distance FIVU, denoted FIVU (MD).

Appendix II establishes an identi�cation scheme for FIVU. As a practical matter,

if one is interested only in estimates of φ, it turns out that it is not essential to

impose identifying restrictions on the factors in estimation with FIVU as the value of

6This requires the moment function to be twice continuously di�erentiable, hence Assumption 4.
7It is easy to see that our assumptions imply the assumptions employed by Newey-McFadden,

except perhaps for their assumption of dominance, i.e. the norm of the moment function is dominated
by a function of M̂ of �nite expectation. In fact this follows easily in our case from compactness
and the existence of second moments.
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φ obtained by unrestricted estimation will coincide with the restricted estimate under

one further assumption:

Assumption 5 Assume there exists an open set Θ where Ω ⊇ Θ ⊇ Θr where Θ

is dense in Ω such that for all θ = (φT , gT , fT )T ∈ Θ

SvecGF T = SvecGrF
T
r (3.7)

for some (φT , gTr , f
T
r )T ∈ Θr. Assume as well that Ψ(θr,M)TCΨ(θr,M), θr ∈ Θr, is

bounded away from zero outside some given compact set.

Theorem 2. Equivalence of unrestricted and restricted estimation.

Under Assumptions 1-5 φ̂(Ω)→ φ̂(Θc) in probability. If, moreover,

Span
∂SvecGF T

∂νT
= Span

∂SvecGrF
T
r

∂νTr
, (3.8)

where ν = (gT , fT )T and νr is the subvector of free parameters, then the covariance

matrix of φ̂(Ω) inferred from the generalised inverse of (∂Ψ/∂θT )TC∂Ψ/∂θT coincides

with the covariance matrix of φ̂(Θr) inferred from the inverse of (∂Ψ/∂θTr )TC∂Ψ/∂θTr .

Proof. See Appendix I.

To see the point of this result, consider a one-factor model with the identi�cation

restriction fT = 1, obtainable by re-scaling g and f . It turns out the full-rank

condition for Γ requires as well g1 6= 0. Thus we take Θ = {θ = (φT , gT , fT )T ; g1, fT 6=
0} and Θr = {θ = (φT , gT , fT )T ; g1 6= 0, fT = 1}. The free parameters νr consist of

θ with fT removed. Fixing fT removes ∂Ψ/∂fT from ∂Ψ/∂θ; the spanning condition

requires that such a deletion does not change the linear space spanned by the columns

of ∂Ψ/∂νT .

In Appendix II we demonstrate that Assumptions 1-5 are satis�ed under the

identi�cation scheme. We show as well that the pre-conditions for the equivalence of

restricted and unrestricted estimation hold. We provide su�cient conditions for the

identi�cation of the AR(1) model in the multi-factor case.
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Estimation for FIVU

The FIVU model is straightforward to estimate. Let B be the Choleski matrix of C.

Then the objective function has the form

QB(θ, M̂) =
∥∥∥BΨ(θ, M̂)

∥∥∥2

=
∥∥∥B[M̂β − Svec(GF T )]

∥∥∥2

. (3.9)

When β is a linear function of the parameters φ, then, if either G or F is held

�xed, the expression B[M̂β(φ) − Svec(GF T )] is a linear function of the remaining

parameters, and the conditional minimum of (3.9) may be found by a one-pass least-

squares procedure. One may then seek a joint minimum by iteration over G and F .

This appears to work well in practice. In Appendix III we obtain �rst and second

derivatives for the RHS in (3.9), so Gauss-Newton procedures are also available.

The condition (2.10) takes a particularly simple form when ft is the �xed-e�ects

factor, ft ≡ 1 for all t. In this case one has

Svec(GF T ) = S(ιT ⊗ Id)g. (3.10)

Therefore using (3.9), we obtain

BMβ −BS(ιT ⊗ Id)g = 0, (3.11)

which can be interpreted as a classical regression when M is replaced by its empirical

counterpart. When β is a linear function of φ, a FIVU estimate may be obtained by

a one-pass least-squares estimate of (3.11).

Quasi-di�erencing

An alternative approach to FIVU is obtained by multi-quasi-di�erencing, which re-

moves the factor component from the right of (2.10). This is achieved by constructing

a matrix D = D(F ) such that D(F )Svec(GF T ) = 0. The orthogonality conditions

then become

D(F )Mβ = 0. (3.12)

To see how this is achieved, assume a single factor and consider the column vec-

tor Svec(gfT ), consisting of scalar terms of the form gsft. Consider the following

operations on Svec(gfT ):

12



1. Transform so that all coe�cients of terms in the scalar g1 are unity.

2. Choose one of the g1 terms and use it to di�erence away the rest.

3. Eliminate the (single) remaining term in g1.

One now repeats these operations for the remaining gs. The key point is that all these

operations can be accomplished by left multiplication on Svec(gfT ) by matrices of

the form D(F ). Where there is more than one factor, vec(GF T ) consists of sums of

terms of the form vec(gfT ). Since the above operations preserve the structure of these

terms, the operations may be applied sequentially to the later terms to eliminate them

in their turn.

Quasi-di�erencing is the method employed by Holtz-Eakin, Newey and Rosen

(1988), Ahn, Lee and Schmidt (2001) and Nauges and Thomas (2003) for the one-

factor case, and Ahn, Lee and Schmidt (2006) for the multi-factor case, as well as

Arellano and Bond (1991) (mutatis mutandis). In general, this approach eliminates

dn parameters (the gs) at the same cost in moment conditions. As shown in Ap-

pendix I, such transformations of moment conditions produce estimators of the same

asymptotic e�ciency as working with the untransformed moment conditions. This

result is summarised in the following theorem:

Theorem 3. Asymptotic equivalence result. Under Assumptions 1-4 FIVU

in model (2.1) is asymptotically equivalent to a Generalised Method of Moments esti-

mator based on quasi-di�erencing.

Proof. See Appendix I.

Remark. In the case of �xed-e�ects, simple �rst-di�erencing su�ces to remove the

g terms. A one-pass OLS estimate of β (if a linear function of φ) can be obtained

from (3.12), just as for FIVU. This is the standard �rst-di�erenced GMM estimator

proposed by Arellano and Bond (1991). It turns out the GMM versions of the estima-

tors are arithmetically the same provided corresponding estimates of the weighting

matrices are employed, i.e. the optimal weighting matrix is obtained from the FIVU

version by the D . DT transformation. This is discussed more fully in the appendix.
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4 Parameter restrictions: the FIVR estimator

When elements of the xit occur as instruments, the model (2.1) implies restrictions

on the G parameters, the imposition of which will lead to greater e�ciency. These

restrictions require:

Assumption 6 E(λiεit = 0) for all i and t.

To obtain the extra restrictions, multiply (2.1) through by λi and take expecta-

tions:

E(λix
T
it)β = ΩΛft t = 1, ..., T, (4.1)

where ΩΛ = E(λiλ
T
i ). The key point is that, when the instrument set includes

elements of the xit, the terms in E(λix
T
it) include terms in various of the gs so that

the LHS of (4.1) is a linear function of the ensemble vector g. Some examples will

illustrate.

Example 1. One lagged dependent variable and a single factor The model

is

yit = φyit−1 + λift + εit. (4.2)

Here xTit = (yit, yit−1), βT = (1,−φ), zit = yit−1, gs = E(yis−1λi). The linear restric-

tions (4.1) take the form

gs+1 = φgs + σ2fs, (4.3)

where σ2 = E(λ2
i ), which can be written in a matrix as

−φ 1 0 .. 0

0 −φ : 0

: : : 1 :

0 0 .. −φ 1




g1

g2

:

gT+1

 = σ2f. (4.4)

Notice the appearance of the �out-of-sample� term gT+1, which we regard as a constant

to be estimated.8 Section this matrix equation into the form

8Strictly speaking, the value of gT+1is de�ned by the restriction it appears in (4.3). We adopt
this convention so as to have a neat formula for the full vector f .
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[
H eT

] [ g

gT+1

]
= σ2f, (4.5)

where eT is the T -dimensional column vector with 1 in the T th position. The restric-

tion has the form

Hg = σ2f + δeT (δ ∈ R). (4.6)

We shall call H = H(β) the structure matrix; it is speci�c to the particular model

considered.

Example 2. One lagged dependent variable and two factors. In this case

gs = E(yis−1λ
T
i ) is a 1 × 2 row vector and the restrictions have the form gTs+1 =

φgTs + ΩΛfs. The matrix of restrictions is as in Example 1 except that g is replaced

by vecGT and δ ∈ R2. Therefore, we have

(H ⊗ I2)PT,2g = (IT ⊗ Ωλ)f + Uδ, (4.7)

where U is the 2T × 2 matrix with columns one and two being e2T−1 and e2T respec-

tively, and Pm,n is the permutation matrix such that Pm,nvecA = vecAT for m × n
matrices Z.

Example 3. One lagged dependent variable, one weakly exogenous variable

and one factor. The model is

yit = φyit−1 + αrit + λift + εit. (4.8)

In this case the instrument vector is zTit = (yit−1, rit). Note the gs are two-

dimensional:

gTs =
[
g1
s g2

s

]
= E(

[
yis−1λi risλi

]
). (4.9)

The restrictions can be written g1
s+1 = φg1

s + αg2
s + σ2fs. In matrix form we have
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
−φ −α 1 0 0 .. 0

0 −φ −α 1 0 .. 0

0 0 −φ −α 1 .. 0

: : : : : : :

0 0 0 .. −φ −α 1





g1
1

g2
1

:

g1
T

g2
T

g1
T+1


= σ2f, (4.10)

which can be written more generally as

Hg = σ2f + δe2T, δ ∈ R. (4.11)

where the structure matrix H is now T × 2T.

One can obtain a transformation of (4.11) useful when f is known to be �xed-

e�ects. Since H will in general have a null-space of dimension T , (4.11) determines

g only up to T free parameters. Section H into T × T submatrices so that H =[
H1 H2

]
and section g conformably as g = [gT1 , ζ

T ]. Then the general solution to

(4.11) is given by

g1 = H−1
1 (f + δe2T −H2ζ), (4.12)

where ζ ∈ RT is a free vector of parameters. One can now substitute for g in (3.11).

For a given value of β, the only unknowns are the parameters δ and ζ, which can

be estimated by OLS. The RSS from this regression is the minimand of (3.9): thus

this procedure e�ects a concentration RSS = RSS(β). Finding estimates of the

structural parameters is reduced to minimising this function.

Example 4. Two lagged dependent variables and one factor. The model is

yit = φ1yit−1 + φ2yit−2 + λift + εit. (4.13)

In this case the matrix of restrictions takes the form
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
−φ2 −φ1 1 0 · · · 0

0 −φ2 −φ1 1 . . .
...

0 0 0
. . . . . . 0

...
...

... −φ2 −φ1 1





g0

g1

g2

:

gT

gT+1


= σ2f. (4.14)

This is partitioned conformably into

[
−φ2e1 H eT

] g0

g

gT+1

 = σ2f, (4.15)

with solution

Hg = σ2f +
[
e1 eT

]
δ (δ ∈ R2). (4.16)

We turn to the general case. Assume there are no restrictions on F such as �xed

e�ects. With F unrestricted, it may be reparametrised in (2.1) so as to have Ωλ = In.

In general the family of restrictions given by (4.1) takes the form

H(β)Pd,ng = f + Uδ. (4.17)

Here H(β) is the nT × nd structure matrix as considered in the above examples,

U is a matrix of e elementary column vectors and δ is a vector of free parameters

corresponding to the �out-of-sample� observations in the above examples. Both H

and U depend on the structure of the model. The FIVR estimator (restricted FIV

estimator) chooses θ to minimise (3.9) subject to (4.17). FIVR will in general have

fewer parameters to estimate than FIVU and as such it will be more e�cient.

The term H(β) is a linear function of β and one has

H(β) =

q∑
i=1

Kiβi = K(β ⊗ Ind), (4.18)

where K =
[
K1 ... Kq

]
. Note that the Ki are given �xed nT × nd matrices

depending on the structure of the model. Then H(β)Pd,ng = K(Iq⊗Pd,ng)β and one
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can write the restrictions in the form

K(Iq ⊗ Pd,ng)β = f + Uδ. (4.19)

Identi�cation and Estimation for FIVR One does not need to develop a sep-

arate theory of identi�cation for FIVR; this can be inferred from the FIVU results.

If Assumptions 1-5 hold, and given the equivalence of restricted and unrestricted

estimation, then the FIVU estimator may be obtained by minimising the criterion

function over the whole of parameter space. FIVR minimises the criterion over a

closed neighbourhood of θ0 and this implies straightforwardly that the FIVR estima-

tor likewise has probability limit θ0. Since FIVR is obtained by a change of variables,

its covariance matrix may be obtained from the FIVU matrix by application of the

appropriate Jacobian (calculated in Appendix III). Of course, FIVR will be identi�ed

in cases where FIVU is not, since FIVR estimates a restricted set of parameters. For

the AR(1) case there are (n2 − n)/2 redundancies among the factor terms for FIVR.

For FIVU in contrast there are 2n2 − n redundancies. Thus for n = 1, there are no

redundancies among the factor terms for FIVR, but one redundancy for FIVU.

The standard method of solving a minimisation problem subject to an exact con-

straint is to use the constraint to solve out for some of the choice variables and

substitute into the minimand. For f we have

f = K(Iq ⊗ Pd,ng)β − Uδ. (4.20)

Then one can minimise (3.9) over (β(φ), g, δ), having substituted for f from (4.20).

In practice we use a Gauss-Newton procedure to �nd the minimum. Formulae for the

derivatives are given in Appendix III.

The FIVR estimator e�ects a more parsimonious parametrisation of the nuisance

parameters g, which should lead to more e�cient GMM estimators of the parameters

of interest. Thus FIVR is strictly superior to FIVU and since FIVU is itself equivalent

to quasi-di�erencing methods it is superior to these as well. This is summarised in

the following theorem:

Theorem 4. Distribution result for fivr. Under Assumptions 1-4, 6 and

model (2.1) FIVR is asymptotically more e�cient than FIVU. Furthermore, it is

the e�cient estimator in the class of estimators that make use of second moment
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information.

Proof. See Appendix I.

Remark. When n = 1 and ft = 1 for t = 1, ..., T , the set of linear restrictions (4.3)

becomes

gs+1 = φgs + σ2. (4.21)

In this case, FIVR utilises the same set of orthogonality conditions as FIVU, T (T +

1)/2 in total, but estimates only three parameters, namely φ, g1 and σ2. Therefore,

FIVR makes e�cient use of second moment information and intuitively we should

expect that it is asymptotically equivalent to the GMM estimator proposed by Ahn

and Schmidt (1995). Under stationary initial conditions there is an extra restriction

in that g1 = σ2/(1 − φ). In this case the number of parameters decreases by one

and a version of FIVR that uses this extra restriction is asymptotically equivalent

to the system GMM estimator proposed by Arellano and Bover (1995) and Blundell

and Bond (1998). Although not pursued in this paper, this extra restriction is clearly

testable.

5 Finite Sample Performance

In this section we investigate the performance of FIVU and FIVR using an AR(1)

with one- and two-factor residuals. For comparison, we also include in the experiments

the GMM estimators developed by Arellano and Bond (1991) and Ahn and Schmidt

(1995), denoted as AB and AS respectively. These estimators are not designed to

handle the general factor structure but given their popularity it is of practical inter-

est to see how far they go in resolving the problem. For FIVU minima are found

by an iterative OLS procedure, as described in the text; for FIVR we use Gauss-

Newton. Initial values for FIVU are speci�ed as i.i.d.N(0, 1) for the factor variables

and i.i.d.U(0, 1) for the AR(1) parameter. Convergence is deemed to have occurred

when the modulus of the gradient vector is less than 0.001. We re-initialise starting

values when the algorithm is perceived to be travelling slowly across the surface of

the objective function; we have found that it is usually better to start afresh than

to try to struggle through di�cult terrain. Our procedures have occasionally found

local minima, especially for FIVU. To tackle this issue we re-initialise the starting

conditions 5 times and we pick up the one that minimises the criterion function. For
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FIVR we investigate a grid of values for φ and for each of these we estimate f us-

ing the �rst n principal components of xTitβ; we then obtain an initial estimate of g

by minimising the criterion function for the value of f and φ obtained before. We

pick up the value of φ that minimises the criterion function. Notice that identifying

restrictions on the factor parameters are not imposed.

The factor variates and the idiosyncratic residual, εit, are all i.i.d. normally

distributed with mean zero. This is not restrictive since in practice one can re-

move the non-zero mean for a n-factor structure by adding individual- and time-

speci�c e�ects. In particular, one can always reparameterise the error term uit =

λTi ft + εit = ηi + τt + (λi − λ̄)T (ft − f̄) + εit, where ηi = λTi f̄ and τt = λ̄ft. Simi-

larly, adding a global intercept will remove the non-zero mean of εit. The variance

of both ft and εit is standardised to unity. Again, this is not restrictive because

λTi (σft) = (λTi σ)ft for any scalar σ and so changing the variance of λi has the same

e�ect as changing the variance of ft. The variance of the factor loadings is determined

according to the ratio of the variance of the reduced form of the dependent variable,

yit = λTi (1− φL)−1ft + (1− φL)−1εit, that is due to factor noise, λ
T
i ft, over the total

noise. It is easy to show that this ratio equals F1 = σ2
λ(σ

2
λ+1)−1. We report results for

F1 ∈ {0.2, 0.5, 0.8}. Thus, for example, F1 = 0.2 means that 20% of the variance of

the total error is due to factor noise, and so on. We specify N = 200 and T = 10 and

we choose the autoregressive parameter such that φ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Instru-
ments are the lagged dependent variable and its lags. We report the average and the

median (from 1000 repetitions) of the parameter on the lagged dependent variable.

As a measure of dispersion we report the standard deviation (in brackets beneath

the mean, denoted stdev) as well as the radius of the interval centred on the median

containing precisely 75% of the observations, divided by 1.15 (in brackets beneath the

median). This latter statistic, which we shall call the quasi-standard deviation (de-

noted qstdev), is an estimate of the population standard deviation if the distribution

is normal, with the advantage that it is more robust to the occurence of infrequent

outliers. Study of these outliers indicates that they are in large part associated with

multiple minima of the moment function, and can be made to disappear for di�erent

starting conditions for the minimisation procedure. Table 1 reports some simulation

results for FIVU and FIVR.9

9To save space, results for φ = 0.3 and φ = 0.7 are not reported here. They are available from
the authors upon request.
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FIVU MD FIVU GMM FIVR MD FIVR GMM
φ F1 Mean

(stdev)
Median

(qstdev)
Mean
(stdev)

Median
(qstdev)

Mean
(stdev)

Median
(qstdev)

Mean
(stdev)

Median
(qstdev)

0.1 0.2 .098
(0.040)

.098
(0.034)

.100
(0.043)

.099
(0.043)

.100
(0.028)

.100
(0.026)

.098
(0.031)

.098
(0.031)

0.5 .098
(0.057)

.098
(0.036)

.100
(0.043)

.098
(0.044)

.099
(0.028)

.100
(0.026)

.101
(0.027)

.102
(0.026)

0.8 .100
(0.112)

.101
(0.035)

.098
(0.045)

.098
(0.040)

.101
(0.025)

.101
(0.025)

.101
(0.023)

.100
(0.023)

0.5 0.2 .497
(0.042)

.498
(0.032)

.498
(0.043)

.498
(0.040)

.498
(0.027)

.498
(0.025)

.499
(0.027)

.500
(0.024)

0.5 .497
(0.039)

.497
(0.032)

.499
(0.036)

.499
(0.035)

.499
(0.024)

.499
(0.023)

.501
(0.024)

.501
(0.023)

0.8 .496
(0.095)

.499
(0.032)

.505
(0.073)

.502
(0.038)

.499
(0.024)

.498
(0.024)

.501
(0.027)

.501
(0.026)

0.9 0.2 .891
(0.055)

.898
(0.019)

.898
(0.027)

.897
(0.018)

.895
(0.024)

.896
(0.015)

.899
(0.017)

.900
(0.014)

0.5 .899
(0.034)

.900
(0.018)

.898
(0.031)

.900
(0.018)

.900
(0.021)

.899
(0.014)

.900
(0.016)

.901
(0.013)

0.8 .893
(0.066)

.894
(0.020)

.896
(0.054)

.900
(0.018)

.899
(0.028)

.898
(0.014)

.900
(0.019)

.901
(0.013)

N = 200; T = 10; ft ∼ i.i.d.N(0, 1); εit ∼i.i.d.N(0, 1); 1,000 replications.

Table 1: Monte Carlo results for a panel AR(1)

It is clear that the bias of the estimators is negligible, while their dispersion is

small across the whole range of values for φ and F1. As expected, FIVR outperfoms

FIVU in terms of bias and RMSE, in all circumstances. FIVU becomes slightly more

di�use as F1 grows larger while FIVR appears to be robust to di�erent values of

F1. The fact that for FIVU the di�erence between stdev and qstdev increases with

higher values of F1 is consistent with increased frequency of multiple minima at these

values. In contrast, there is very little di�erence between the stdev and qstdev values

for FIVR. The GMM version of the estimators does better, in general, especially for

FIVR, although the gains appear to be small. Preliminary results show that the gains

in e�ciency become more subtantial for higher values of N .10

The following pictures illustrate the performance of the estimators FIVU and

FIVR relative to AB and AS. It is apparent that AB and AS exhibit large biases,

which increase with the value of φ, even when the factor component constitutes a

small proportion of total noise, i.e. F1 = 0.2. Thus, FIVU and FIVR completely

outperform AB and AS in terms of bias and RMSE, although RMSE for AS appears

10The results are available upon request.
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to be more stable at di�erent values of φ. The level of superiority of FIVU and FIVR

increases as the fraction of total noise that is due to the factor component rises to

80%. In this case the RMSE of FIVU is at most one third of that for AB and AS

while the RMSE of FIVR is at most one �fth of that for AS.

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.1 0.3 0.5 0.7 0.9

AB FIVU AS FIVR

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.1 0.3 0.5 0.7 0.9

AB FIVU AS FIVR

Figure 5.1: Bias, F1 = 0.2
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Figure 5.2: Bias, F1 = 0.8
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Figure 5.3: RMSE, F1 = 0.2
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Figure 5.4: RMSE, F1 = 0.8

The following table presents results for a two-factor residual and F1 = 0.8. Similar

conclusions are reached for F1 = 0.2 and F1 = 0.5. We can see that the estimators

FIVU and FIVR perform well in terms of both bias and RMSE. Compared to the one-

factor residual case, the dispersion of FIVU slightly increases, while FIVR appears to

do well in all circumstances.
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FIVU MD FIVU GMM FIVR MD FIVR GMM
φ Mean

(stdev)
Median

(qstdev)
Mean
(stdev)

Median
(qstdev)

Mean
(stdev)

Median
(qstdev)

Mean
(stdev)

Median
(qstdev)

0.1 .098
(0.057)

.098
(0.063)

.097
(0.061)

.098
(0.065)

.102
(0.028)

.101
(0.030)

.100
(0.029)

.100
(0.030)

0.5 .493
(0.070)

.498
(0.050)

.498
(0.071)

.497
(0.049)

.499
(0.029)

.499
(0.027)

.501
(0.024)

.500
(0.022)

0.9 .886
(0.142)

.895
(0.034)

.889
(0.139)

.897
(0.031)

.896
(0.032)

.899
(0.029)

.901
(0.023)

.900
(0.021)

N = 200; T = 10; ft ∼ i.i.d.N(0, 1); εit ∼i.i.d.N(0, 1); F1 = 0.8; 1,000 replications.

Table 2: Monte Carlo results for a panel AR(1) with a two-factor residual

6 Concluding Remarks

The Generalised Method of Moments is a standard approach for estimating dynamic

panel data models with large N and T �xed. This approach has the advantage

that, compared to maximum likelihood, requires much weaker assumptions about the

initial conditions of the data generating process, and avoids full speci�cation of the

serial correlation and heteroskedasticity properties of the error, or indeed any other

distributional assumptions. On the other hand, under cross-sectional dependence

these estimators are inconsistent as the moment conditions they utilise are false. In

this paper we develop a new GMM-type approach for consistent and asymptotically

e�cient estimation of panel data models with multi-factor residuals. One novelty of

our approach is that we do not use quasi-di�erencing to remove the factor structure -

rather, we introduce new parameters to represent the unobserved covariances between

the instruments and the factor component of the residual. We develop estimators

that are asymptotically more e�cient than the existing quasi-di�erencing methods

and behave well under a wide range of parametrisations, including a large value of

the autoregressive parameter.

In a companion paper we apply our method to an autoregressive process with

multi-factor residuals and individual �xed e�ects in order to estimate a model of

investment rates for a large panel of �rms operating in the US. Using simulated

data we show that the proposed estimators perform well, unless the cross-sectional

dimension is small.
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Appendix I: Proofs of Theorems

Proof of Theorem 2

Assumption 5 guarantees that φ̂(Θ) = φ̂(Θr). According to the boundedness assump-

tion, we may choose Θc such that the objective function is bounded away from zero

outside of this set. Since the argmin over this set converges to true θ in probability,

it follows that, for N su�ciently large, φ̂(Θc) = φ̂(Θr) with arbitrarily high prob-

ability. The result that φ̂(Ω) → φ̂(Θc) now follows from the density of Θ in Ω.11

The result for the covariance matrices follows from the following observation. Let

X and Y be matrices with the same number of rows. Then the sub-matrix in the

NW corner of the inverse or generalised inverse of
[
X Y

]
T
[
X Y

]
, which is of

dimension that of XTX, is (XTMYX)−1, whereMY is the projection that removes Y ,

i.e. MY = I−Y (Y TY )−1Y T . This follows from the partitioned inverse formula. Thus

the covariance matrix of the parameters of interest is obtained by removing from Γ

the linear space spanned by the columns corresponding to the nuisance variables; two

sets of nuisance variables generating the same span will yield the same covariance

matrix. QED

Proof of Theorem 3

Assume we have an M -dimensional moment function

Ψ =


ψ1(m, θ)

...

ψM(m, θ)

 , (6.1)

where m is a collection of moments and θ is a parameter vector. Consider the usual

GMM estimator of the true value based on Ψ. This has asymptotic variance

var(θ̂) = (ΓT∆−1Γ)−1, (6.2)

11�Dense subset� means that one can �nd something in the subset arbitrarily close to any element
in the superset. For example the set of invertible square matrices is dense in the set of all square
matrices, because one can �nd an invertible matrix arbitrarily close to a given singular matrix. In
our context, certain arguments concerning identi�cation will not go through if certain sub-matrices
of F and G are singular. For example in the AR(1), one factor case, we require g1 6= 0. Density
allows us to assume away g1 = 0 and thus obtain identi�cation.
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where

Γ = E

[
∂Ψ

∂θT

]
∆ = E(ΨΨT ), (6.3)

(both evaluated at the true value θ0. Assume Γ and ∆ have full rank and let θ =

(φT , νT )T be a decomposition of the parameter space into two subsets. The variables

φ are the parameters of interest and the ν are nuisance parameters. Let

Q =
∂Ψ

∂φT
R =

∂Ψ

∂νT
(6.4)

so that Γ =
[
Q R

]
. Since Γ is of full rank, so too are Q and R. Assume that, for

some L×M matrix D(φ) of full rank L ≤M

D(φ)Ψ(φ, ν) = Ψ̄(φ) for all φ, ν, (6.5)

i.e. D represents a set of transformations that eliminate the nuisance parameters ν

at the cost of some loss of moment conditions. Then Ψ̄ is a moment function and

inference about φ may be based on it. One has the asymptotic variance matrix

var(φ̄) = (Γ̄T ∆̄−1Γ̄)−1, (6.6)

where Γ̄ = E(∂Ψ̄(m, θ0)/∂φT ) and ∆̄ = E(Ψ̄Ψ̄T ). Di�erentiating (6.5) with respect

to φ and using the fact that E(Ψ(m, θ0)) = 0 one has

DQ = Γ̄. (6.7)

Di�erentiating (6.5) with respect to ν one has

DR = 0, (6.8)

where, in both cases, D is evaluated at θ0. One has as well that

∆̄ = D∆DT . (6.9)

The asymptotic covariance matrix of φ̄ is now

var(φ̄) = [QTDT (D∆DT )−1DQ]−1. (6.10)
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Make the transformations D∆ = D∆1/2, Γ∆ = ∆−1/2Γ =
[
Q∆ R∆

]
. Then, using

results for partitioned inverses, one �nds

var(φ̂) = (QT
∆(IM − PR∆

)Q∆)−1, (6.11)

where PR∆
= R∆(RT

∆R∆)−1RT
∆. One also has

var(φ̄) = (QT
∆PD∆

Q∆)−1, (6.12)

where PD∆
= DT

∆(D∆D
T
∆)−1D∆. Then var(φ̄) > var(φ̂) (as positive matrices) if and

only if

QT
∆(IM − PR∆

− PD∆
)Q∆ > 0. (6.13)

Now condition (6.8) implies that the matrices inside the brackets are orthogonal

projections so the sandwich matrix is a projection of rank M − L − dim(R). There

are thus no losses in e�ciency from eliminating the φ parameters in this way if

dim(ξ) = dim(R) = M − L, i.e. the number of eliminated parameters is equal to the

number of lost moment conditions. QED

Remark. In the case of �xed e�ects with linear β the moment conditions are linear of

the form

m+Qφ+Rξ = 0, (6.14)

where vectorm and matrices Q and R consist of observable moments. The parameters

ξ are here the gs from the development in the text. The �rst-di�erenced GMM

estimator proposed by Arellano and Bond introduces a di�erencing matrix of full

rank to eliminate R:

Dm+DQφ = 0. (6.15)

Both forms give rise to GMM estimates of the parameters of interest φ by a one-

pass regression, given estimates of the error-covariance-matrices. Let Ω1 and Ω2 be

such estimates for (6.14) and (6.15) respectively. Call these estimates compatible if

Ω2 = DΩ1D
T . One might form compatible estimates by �rst developing an estimate

of the covariance matrix for (6.14) and then adjusting it appropriately for (6.15). The

following is true:
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Proposition. GMM estimates based on (6.14) and (6.15) are arithmetically equal if

they employ compatible estimates of the error-covariance matrices.

To prove this one shows

QTΩ−1/2(I − P )Ω−1/2RΩ−1/2Q = QDT (DΩDT )−1DQ (6.16)

for any conformable full-rank symmetric Ω. This is will be so if (I−P )Ω−1/2R = PΩ1/2D.

It is easy to see that PΩ−1/2RPΩ1/2D = 0, so that the projections are orthogonal.

Consideration of ranks now delivers the result.

In our context, this result shows the �rst di�erenced GMM of the �xed e�ects

model is precisely the FIVU estimator, given compatible covariance matrix esti-

mates. In practice, AB estimates and FIVU estimates need not be the same as

initial minimum-distance estimates of the structural parameters may di�er when the

two equations are considered in isolation. In this case, equality is only asymptotic.

Proof of Theorem 4.

Let

ν = ν(φ, τ), (6.17)

where ν is de�ned above and τ is a vector of nuisance parameters which has lower

dimension than ν. We assume ν(.) is linear in τ , i.e. ν(φ, τ) = V (φ)τ , though

the argument to be presented would go through under the assumption of su�cient

di�erentiability at the true value. We consider the estimator φ̄ based on the moment

conditions in terms of φ, τ . One has Γ =
[
Q+RJ RV

]
where J = ∂ν(φ, τ)/∂φT

so, as in (6.11)

var(ξ) = [(Q+RJ)T∆(IM − P(RV )∆
)(Q+RJ)∆)]−1. (6.18)

Since (IM − PR∆
)((Q+RJ)∆) = (IM − PR∆

)Q and PR∆
> P(RV )∆

, one sees from

(6.11) that

var(φ̂) ≥ var(φ̄) (6.19)

with equality if and only if (PR∆
− P(RV )∆

)(Q + RJ)∆ = 0. Since in general there

is no particular reason for this equality to hold, it follows that a more parsimonious
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parametrisation of the nuisance parameters will typically deliver a more e�cient es-

timator of the parameters of interest.12 QED

It is also straightforward to prove that FIVR is e�cient in the class of estimators

that make use of second moment information, based on an argument similar to that

provided by Ahn and Schmidt (1995, section 4). Therefore this proof is omitted. In

summary, FIVR reaches the semi-parametric e�ciency bound discussed by Newey

(1990) using standard results of Chamberlain (1987). Thus, FIVR is asymptotically

e�cient relative to a QML estimator, but the estimators are equally e�cient under

normality.

Appendix II: Identi�cation for FIVU

We focus on the canonical case, where the set of instruments consists of current and

lagged values of the variables. Extension to the general case is straightforward. The

moment conditions take the form (2.14), Mβ − vech(GF T ) = 0. The problem is to

impose conditions on vechGF T so that the values of G and F can be uniquely inferred

from knowledge of vechGF T , at the same ensuring that the original vechGF T can be

obtained from restricted G and F . Consider the representation of vechGF T as an

upper-triangular matrix:

vechGF T ≡


g1f1 g1f2 . . . g1fT

g2f2 . . . g2fT
. . .

...

gTfT

 . (6.20)

One can impose the restriction that the last n columns of F T be In. We assume

n ≤ (T + 1)/2, so that an n × n block of terms exists above the main diagonal in

(6.20). If this is done, all gs, for s =1,. . . T − n+ 1, may be inferred from the values

of the terms in (6.20). When s > T − n + 1 this is no longer so, as such terms as

gT−n+2fT−n+1 are not observed. In this case we impose the restrictions that the last

s − T + n − 1 columns of gs are zero. This enables the unique inference of all the

gs in (6.20) i.e. the full G matrix. Consider now the problem of inferring ft when

12The condition will hold if J = 0 and QT
∆R∆ = 0. This will be so when the reparametrisation

can be accomplished independently of φ and the GMM estimates of the parameters of interest are
independent of the estimates of the nuisance parameters.
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t ≤ T − n. The matrix

Gtft =


g1

...

gt

 ft
is observed. The number of rows of Gt is pt. When pt ≥ n we impose the restriction

that the null space of Gt be zero, the full-rank assumption on Gt. When pt < n (which

need not occur), we set the last n− pt entries of Gt to zero and impose the condition

that the appropriately truncated sub-matrix of Gt be of full rank. This establishes

the identi�cation of G and F. The scheme has the following characteristics:

1. The last n columns of F T form In.

2. There are additional zero restrictions on G and F .

3. There is a collection of full-rank conditions on sub-matrices of G.

Let Θr be the collection of parameters such that 1-3 hold and Θ be the collection

such that both 3 holds and the matrix formed from the last n columns of F T is of

full rank. The following facts are straightforward to show:

Properties of the identification scheme.

Assume n ≤ (T + 1)/2.

1. With φ held �xed, any θ ∈Θr is identi�ed from the moment conditions.

2. For any θ ∈Θ, Ψ(θ) = Ψ(θr) for some θr ∈Θr.Θ is dense in the unrestricted

parameter set Ω.

3. ∂Ψ/∂νrhas full rank where νr is the vector of free parameters in restricted G,F .

4. For any θ ∈Θ, Ψ(θ) = Ψ(θr) for some θr ∈Θr.

5. The spanning condition (3.8) holds.

These results establish all of Assumption 5 in the canonical case except the bound-

edness condition for θ ∈Θr. To see this, assume φ is restricted to a compact set.

Then

∥∥B(Mβ(φ)− vechGF T
∥∥ ≥ ∣∣‖G‖∥∥BvechḠF T

∥∥− ‖BMβ(φ)‖
∣∣ ,

30



where ‖G‖ is the Hilbert-Schmidt norm of G and
∥∥Ḡ∥∥=1, where Ḡ = G/

∥∥Ḡ∥∥. The
second term can be made arbitrarily large by choice of ‖G‖ provided

∥∥BvechḠF∥∥can
be bounded away from zero. Now

∥∥BvechḠF∥∥≥ b
∥∥vechḠF∥∥ where b is the smallest

eigenvalue of B13. The identi�cation restrictions on G are such that each element

of the matrix either appears as a separate term in vechḠF or is zero. This implies∥∥vechḠF∥∥ ≥ ∥∥Ḡ∥∥ = 1, thus delivering the result.

These conditions su�ce to identify the factors; it remains to consider identi�cation

for the full vector θ. We shall give a condition for the one-factor case. We examine

when Γ = ∂Ψ/∂θTr is of full-rank, assuming linear β(.). Local identi�cation will

follow from the full-rank of Γ. Write the moment condition (2.13) in terms of upper-

triangular matrices


m11β m12β . . . m1Tβ

m22β . . . m2Tβ
. . .

...

mTTβ

−

g1f1 g1f2 . . . g1fT

g2f2 . . . g2fT
. . .

...

gTfT

 = 0. (6.21)

The identi�cation restriction is here that fT = 1 and gT 6= 0, the latter being the

full-rank condition on sub-matrices of G. If this is so, and given that the full rank of

∂Ψ/∂νTr is established, Γ can fail to have full rank only if

vechM †(IT ⊗ φ∗) =
∂vechgfT

∂gT
g∗ +

∂vechgfT

∂fT
f ∗ (6.22)

for some non-zero (φ, g∗, f ∗), where M † is the matrix comprised of the mst with their

�rst columns removed. In this expression f ∗T = 0 since the identi�cation procedure

has removed the last column of ∂Ψ/∂fT . Making use of (2.9), this can be written

vechM †(IT ⊗ φ∗) = vechg∗fT + vechgf ∗T . (6.23)

One can give a condition under which this relationship cannot hold, and thus Γ

calculated for the unrestricted elements of θ must be of full rank. Assume T ≥ 3. For

13This argument is facilitated by the assumption that B is the symmetric square root of the weight
matrix C rather than the Choleski matrix.
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the 2× 2 sub-matrix m of terms from the North-East of M † one �nds

m(I2 ⊗ φ∗) = g∗fT + gf ∗T , (6.24)

where the terms on the right now each consist of two elements of the original vectors

on the right of (6.23), dated 1, 2 for both g vectors and T − 1, T for the f vectors.

Exploiting the conditions fT = 1, f ∗T = 0, one can show that (m(1) − fT−1m
(2))φ∗ =

f ∗T−1g where m(1) and m(2) are the �rst and second blocks of r = q − 1 columns

of m, respectively. Thus Γ being not of full-rank implies that the sub-vector g ∈
Span(m(1)−fT−1m

(2)) i.e the 2p×1 vector g is a linear combination of the r columns

of m(1) − fT−1m
(2). Thus:

Identification in the canonical case with one factor Assume T ≥ 3.

Then Γ has full rank in the case of one factor and linear β(.) if g1 6= 0, fT = 1 and[
g1

g2

]
/∈ Span(m(1) − fT−1m

(2)) (6.25)

at the true values of the parameters.

As a speci�c example of the canonical case, consider a single lagged dependent

variable, with this (and its lags) as the instrument and assume 0 < |φ| < 1. The

model is

xit = φxit−1 + λift + εit. (6.26)

If one assumes that the observed data are generated by a process beginning in the

distant past, this can be solved as

xit = λi(I − φL)−1ft + (I − φL)−1εit (6.27)

= λif
c
t + ηit, (6.28)

where the f ct = (I − φL)−1ft are re-de�ned factors and ηit is a stationary AR(1) (if

the εit are homoscedastic). If we assume λi and εit are independent, it follows that

M †
st = E(xis−1xit) = σ2

λf
c
t f

c
s−1 + σ2

ηφ
|t−s+1|s = 1, . . . , t; t = 1, . . . , T. (6.29)
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One has as well that

gs = E(λixis−1) = σ2
λf

c
s−1. (6.30)

Using these formulae, one can show Γ has full rank unless[
f c0

f c1

]
∝

[
φ

1

]
. (6.31)

If this condition is false the structural parameter of the AR(1) model is identi�ed.

There is a somewhat more complicated version of (6.25) for the multi-factor case.

If this condition is satis�ed then Assumptions 1-5 can be taken to hold (save for ∆

being full rank) and hence the distributional result; since the spanning condition has

been demonstrated, the equivalence of restricted and unrestricted estimation may be

invoked in the canonical case. One caveat is that the condition (6.25) is not in terms

of primitive parameters (i.e. those giving a complete description of the stochastic

process generating the data) so it is possible in principle that the condition is in fact

vacuous. We have shown this is not the case for the AR(1).

Appendix III: Derivatives

We shall derive the gradient function and the Hessian for a number of FIV models.

The notation will be as follows. If A(θ) is a (column) vector-valued function of θ then

DθA(θ) = ∂A/∂θT . If A is a matrix then DθA(θ) = ∂vecA/∂θT . The chain rule takes

the form Dθ(A(B(θ))) = DvecB(A(B))DθB. The product rule is

Dθ(A(θ)B(θ)) = (BT ⊗ Im)DθA+ (Iq ⊗ A)DθB, (6.32)

where A is m× p and B is p× q. The gradient vector is de�ned as ∇θA = (DθA)T .

FIVU gradient vector

In this case the minimand is

QB = ΨTBTBΨ, (6.33)

where

Ψ = M̂β − SvecGF T . (6.34)
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This is optimised with respect to θ = (φT , fTgT )T .One hasDθQB = 2ΨTBTBDθΨ

and, using (2.9)

DθΨ =
[

(M̂Dφβ −S(IT ⊗G) −S(F ⊗ Id)
]
. (6.35)

The gradient vector is then calculated as

∇QB = 2(DθΨ)TBTBΨ. (6.36)

FIVR gradient vector

As a general principle, the derivatives of the restricted models can be obtained from

the FIVU derivatives by use of appropriate Jacobian matrices. Assume the restrictions

e�ect a re-parametrisation θ = θ(ξ) and let Jξ(θ) = Dξθ be the Jacobian. Then

(∇RQB(ξ))T = ∂QB/∂ξ
T = ∂QB/∂θ

TJξ(θ) = (∇UQB)TJξ(θ). (6.37)

The FIVR minimisation is in terms of the ξ vector consisting of φ, g, δ where

f = HPd,ng − Uδ. The Jacobian matrix is given by

J =

 Ir 0r×nd 0r×u

K(Iq ⊗ Pd,ng)Dφβ H(β)Pd,n −U
0nd×r Ind 0nd×u

 . (6.38)

FIVR when one factor is �xed e�ects.

It is sometimes of interest to specify that one of the factors (say the �rst) is �xed

e�ects. If this is done then the re-parametrisation of f so as to have ΩΓ = Ip can no

longer be achieved: the most that can be done is to have ΩΓ = σ2Ip for a scale term

σ2. In this case, the optimisation is now with respect to φ, σ2, f 0, δ, ζ where f 0 stands

for the unrestricted factor terms.

Second derivatives

Write QB = uTu where u = BΨ. For any parameter vector θ one has

∇QB = 2
∂uT

∂θ
u, (6.39)
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so

D2
θQB = Dθ∇QB (6.40)

= 2Dθ[
∂uT

∂θ
u] (6.41)

= 2[(uT ⊗ Idim θ)Dθ(
∂uT

∂θ
) + (Dθu)T (Dθu). (6.42)

Denote the �rst term within the brackets V (θ). One can show that

V =
dimu∑
i=1

uiD
2
θui. (6.43)

For both FIVU and FIVR the u vector is linear in the stochastic term M̂β (when

β is a linear function of φ) so the second derivatives are non-stochastic functions of

θ. Since the u vector is zero in expectation at the true θ0 in MoM models we have

that, evaluated at θ0,

E(D2
θQB) = E((Dθu)T (Dθu)), (6.44)

which suggests that the non-negative matrix (Dθu)T (Dθu) may give a good approxi-

mation to the Hessian close to convergence.

FIVU second derivatives in the canonical case.

For the FIVU residual vector Ψ, write Ψ∗ = BTBΨ and section it into p × 1 sub-

matrices so that Ψ∗ = (Ψ∗T1 , ...,Ψ∗TT (T+1)/2)T . Create a T × T upper semi-triangular

matrix V ∗ from these sub-matrices so that vechV ∗ = Ψ∗. (Note that V ∗ is a pT × T
matrix of scalars.) Then one can show

V (θ) =

 0r×r 0r×nT 0r×npT

0nT×r 0nT×nT In ⊗ V ∗T

0npT In ⊗ V ∗ 0npT×npT

 . (6.45)

The Hessian for FIVU is thus

D2
θQB = V + (Dθu)T (Dθu). (6.46)

It is easy to see that the eigenvalues of V are ±√µi, i = 1, ..., nT (plus zero), where

the µi are the eigenvalues of V
∗TV ∗. Thus the positivity of the Hessian is not assured
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in (6.46). In fact, observe that the second term is independent of φ (see (6.35)),

whereas the �rst term is not. If one imagines a scale increase in φ then eventually the

�rst term will grow as the square of the expansion factor and the resulting Hessian

will have saddlepoints. This shows that an original bad approximation to φ will lead

to problems with algorithms based on the unmodi�ed Hessian.

Concentrations.

For FIVU one has

u = BΨ = B(M̂β − SvecGF T ). (6.47)

By use of (2.9) one has

u = B
[
M̂ −S(IT ⊗G)

] [ β

f

]
= B

[
M̂ −S(F ⊗ Id)

] [ β

g

]
. (6.48)

These relationships imply that, given F one can minimise the criterion function by

a one-pass linear regression, and similarly for G. Iterating these procedures will pro-

duce a declining sequence of values of the criterion which usually in practice converges

to a local minimum. As a general rule in FIVU estimation we use these concentrations

as they are much swifter than line-search methods based on the Hessian. No such

concentrations are available for FIVR as, after substituting out for f , the resulting

residual vector u is quadratic in g, so there we are forced to rely on Hessian methods.
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