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1 Introduction

Let Z = (Y 01 ; X
0)0 be vector of modelling variables, fZig1i=1 be an independent and identically

distributed random sequence drawn from the unknown distribution F0, � a K � 1 unknown para-
meter vector and  (Z; �) a known vector-valued function of the same dimension.2 The only prior

restriction on F0 is that for some �0 2 B � RK

E [ (Z; �0)] = 0: (1)

Chamberlain (1987) showed that the maximal asymptotic precision with which �0 can be estimated

under (1) (subject to identi�cation and regularity conditions) is given by If (�0) = �00
�10 �0, with
�0 = E [@ (Z; �0) =@�0] and 
0 = V ( (Z; �0)) :3

Now consider the case where a random sequence from F0 is unavailable. Instead only a selected

sequence of samples is available. Let D be a binary selection indicator. When D = 1 we observe Y1
and X, when D = 0 we observe only X.4 This paper considers estimation of �0 under restriction

(1) and the following additional assumptions.

Assumption 1.1 (Random Sampling) fZi; Dig1i=1 is an independent and identically distributed
random sequence from F0.

Assumption 1.2 (Observed Data) For each unit we observe D; X and Y = DY1:

Assumption 1.3 (Conditional Independence) Y1 ? DjX:

Assumption 1.4 (Overlap) Let p0 (x) = Pr(D = 1jX = x), then 0 < � � p0 (x) � 1 for all

x 2 X � Rdim(x):

Restriction (1) and Assumptions 1.1 to 1.4 constitute a semiparametric model for the data.

Henceforth I refer to this model as the semiparametric missing data model or the missing at random

(MAR) setup. Robins, Rotnitzky and Zhao (1994, Proposition 2.3, p. 850) derived the e¢ cient

in�uence function for this problem and proposed a locally e¢ cient augmented inverse probability

weighting (AIPW) estimator (cf., Scharfstein, Rotnitzky and Robins, 1999; Bang and Robins, 2005;

Tsiatis, 2006). Cheng (1994), Hahn (1998), Hirano, Imbens and Ridder (2003), Imbens, Newey and

Ridder (2005), and Chen, Hong and Tarozzi (2008) develop globally e¢ cient estimators.

The �MAR setup�has been applied to a number of important econometric and statistical prob-

lems, including program evaluation as surveyed by Imbens (2004), non-classical measurement error

2Extending what follows to the overidenti�ed case is straightforward.
3Throughout upper case letters denote random variables, lower case letters speci�c realizations of them, and

calligraphic letters their support. I use the notation E [Aj c] = E [AjC = c], V (Aj c) = V ar (AjC = c) and
C (A;Bj c) = Cov (A;BjC = c) :

4An earlier version of this paper considered the slightly more general set-up with  (Z; �) =  1 (Y1; X; �) �
 0 (Y0; X; �) with (X;Y ) observed where Y = DY1 + (1�D)Y0: Results for this extended model, which contains the
standard causal inference model and the two-sample instrumental variables model as special cases (cf., Imbens, 2004;
Angrist and Krueger, 1992), follow directly and straightforwardly from those outlined below.
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(e.g., Robins, Hsieh and Newey, 1995; Chen, Hong and Tamer, 2005), missing regressors (e.g.,

Robins, Rotnitzky and Zhao, 1994), attrition in panel data (e.g., Robins, Rotnitzky and Zhao,

1995; Robins and Rotnitzky, 1995; Wooldridge, 2002), and M-estimation under variable probability

sampling (e.g., Wooldridge, 1999, 2007). Chen, Hong and Tarozzi (2004), Wooldridge (2007) and

Egel, Graham and Pinto (2008) discuss several other applications.

The maximal asymptotic precision with which �0 can be estimated under the MAR setup has

been characterized by Robins, Rotnitzky and Zhao (1994) and is given by

Im (�0) = �00��10 �0; (2)

with �0 = E
�
�0 (X) =p0 (X) + q (X;�0) q (X;�0)

0�, where �0 (x) = V( (Z; �0)jx) and q (x;�) =
E [ (Z; �) jx] :

The associated e¢ cient in�uence function, also due to Robins, Rotnitzky and Zhao (1994), is

given by

� (z; �0) = �
�1
0 �

�
d

p0 (x)
 (z; �0)�

q (x;�0)

p0 (x)
(d� p0 (x))

�
(3)

for � = (p; q0; �0)0 :

The calculation of (2) is now standard. Knowledge of (2) is useful because it quanti�es the

cost �in terms of asymptotic precision �of the missing data and because it can be used to verify

whether a speci�c estimator for �0 is e¢ cient. To simplify what follows I will explicitly assume that

Im (�0) is well-de�ned (i.e., that all its component expectations exist and are �nite, and that all its
component matrices are nonsingular).

This paper shows that the semiparametric e¢ ciency bound for �0 under the MAR setup, co-

incides with the bound for a particular augmented moment condition problem. The augmented

system consists of the inverse probability of observation weighted (IPW) original moment restric-

tion (1) and an additional conditional moment restriction which exhausts all other implications of

the MAR setup. This general equivalence result, while implicit in the form of the e¢ cient in�uence

function (3), is apparently new. It provides fresh intuitions for several �paradoxes�in the missing

data literature, including the well-known results that projection onto, or weighting by the inverse

of, a known propensity score results in ine¢ cient estimates (e.g., Hahn, 1998; Hirano, Imbens and

Ridder, 2003), that smoothness and exclusion priors on the propensity score do not increase the

precision with which �0 can be estimated (Robins, Hsieh and Newey, 1995; Robins and Rotnitzky,

1995; Hahn, 1998, 2004) and that weighting by a nonparametric estimate of the propensity score

results in an e¢ cient estimator (Hirano, Imbens and Ridder, 2003; cf., Hahn, 1998; Wooldridge,

2007; Prokhorov and Schmidt, 2009; Hitomo, Nishiyama and Okui, 2008).

This paper also analyzes the e¤ect of imposing additional semiparametric restrictions on the

conditional expectation function (CEF) q (x;�) = E [ (Z; �) jx]. If  (Z; �) = Y1 � �, as when the

target parameter is �0 = E [Y1] ; then such restrictions may arise from prior information on the

form of E [Y1jx]. Such restrictions may arise in other settings as well. For example, if the goal
is to estimate a vector of linear predictor coe¢ cients in the presence of missing regressors, then
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a semiparametric model for the CEFs of the missing regressors given always-observed variables

generates restrictions on the form of q (x;�) (cf., Robins, Rotnitzky and Zhao, 1994).5

Formally I consider the semiparametric model de�ned by restriction (1), Assumptions 1.1 to 1.4

and the additional assumption.

Assumption 1.5 (Functional Restriction) Partition X = (X 0
1; X

0
2)
0, then

E [ (Z; �0) jx] = q (x; �0; h0 (x2) ;�0)

where q (x; �; h (x2) ;�) is a known K�1 function, � a J�1 �nite dimensional unknown parameter,
and h (�) an unknown function mapping from a subset of X2 � Rdim(X2) into H � RP .

To the best of my knowledge the variance bound for this problem, the MAR setup with �func-

tional� restrictions, has not been previously calculated. In an innovative paper, Wang, Linton

and Härdle (2004) consider a special case of this model where  (Z; �) = Y1 � �. They impose

a partial linear structure, as in Engle et al (1986), on E [Y1jx] such that q (x; �0; h0 (x2) ;�0) =
x01�0 + h0 (x2) � �0. In making their variance bound calculation they assume that the conditional

distribution of Y1 given X is normal with a variance that does not depend on X. They do not

provide a bound for the general case but conjecture that it is �very complicated�(p. 338). The re-

sult given below extends their work to moment condition models, general forms for q (x; �; h (x2) ;�)

and, importantly, does not require that  (Z; �) be conditionally normally distributed and/or ho-

moscedastic.

Augmenting the MAR setup with Assumption 1.5 generates a middle ground between the fully

parametric likelihood-based approaches to missing data described by Little and Rubin (2002) and

those which leave E [ (Z; �0) jx] unrestricted (e.g., Cheng, 1994; Hahn, 1998; Hirano, Imbens and
Ridder, 2003). Likelihood-based approaches are very sensitive to misspeci�cation (cf., Imbens,

2004), while approaches which utilize only the basic MAR setup require high dimensional smoothing

which may deleteriously a¤ect small sample performance (cf., Wang, Linton and Härdle, 2004;

Ichimura and Linton, 2005). Assumption 1.5 is generally weaker than a parametric speci�cation

for the conditional distribution of  (Z; �0) given X, but at the same time reduces the dimension

of the nonparametric smoothing problem. Below I show how to e¢ ciently exploit prior information

on the form of E [ (Z; �0) jx]. I also provide conditions under which consistent estimation of �0 is
possible even if the exploited information is incorrect.

Section 2 reports the �rst result of the paper: an equivalence between the MAR setup and

a particular method-of-moments problem. Equivalence, which is suggested by the form of the

e¢ cient in�uence function derived by Robins, Rotnitzky and Zhao (1994), was previously noted for

special cases by Newey (1994a) and Hirano, Imbens and Ridder (2003). I discuss the connection

between their results and the general result provided below. I also highlight some implications of

the equivalence result for understanding various aspects of the MAR setup. Section 3 calculates

5The formation of predictive models of this type is the foundation of the imputation approach to missing data
described in Little and Rubin (2002).
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the variance bound for �0 when the MAR setup is augmented by Assumption 1.5. I discuss when

Assumption 1.5 is likely to be informative and also when consistent estimation is possible even if it

is erroneously maintained.

2 Equivalence result

Under the MAR setup the inverse probability weighted (IPW) moment condition

E
�

D

p0 (X)
 (Z; �0)

�
= 0; (4)

is valid (e.g., Hirano, Imbens and Ridder, 2003; Wooldridge, 2007). The conditional moment

restriction

E
�

D

p0 (X)
� 1
����X� = 0 8 X 2 X ; (5)

also holds and nonparametrically identi�es p0 (x) :While the terminology is inexact, in what follows

I call (4) the identifying moment and (5) the auxiliary moment.

Consider the case where p0 (x) is known such that (5) is truly an auxiliary moment. One e¢ cient

way to exploit the information (5) contains is to, following Newey (1994a) and Brown and Newey

(1998), reduce the sampling variation in (4) by subtracting from it the �tted value associated with

its regression onto the in�nite-dimensional vector of unconditional moment functions implied by

(5):6

s (Z; �0) =
D

p0 (X)
 (Z; �0)� E�

�
D

p0 (X)
 (Z; �0)

���� D

p0 (X)
� 1;X

�
=

D

p0 (X)
 (Z; �0)�

q (X;�0)

p0 (X)
(D � p0 (X)) :

That this population residual is equal to the e¢ cient score function derived by Robins, Rotnitzky

and Zhao (1994) strongly suggests an equivalence between the GMM problem de�ned by restrictions

(4) and (5) and the MAR setup outlined above. One way to formally show this is to verify that the

e¢ ciency bounds for �0 in the two problems coincide.7 The bound for �0 under the MAR set-up is

given (2) above, while under the moment problem it is established by the following theorem.

Theorem 2.1 (GMM Equivalence) Suppose that (i) the distribution of Z has a known, �nite

support, (ii) there is some �0 2 B � RK and �0 = (�1; : : : ; �L)0 where �l = p0 (xl) 2 [�; 1] for each l =
1; : : : ; L and some 0 < � < 1 (with X = fx1; : : : ; xLg the known support of X) such that restrictions

6The notation E� [Y jX;Z] denotes the (mean squared error minimizing) linear predictor of Y given X within a
subpopulation homogenous in Z:

E� [Y jX;Z] = X 0� (Z) ; � (Z) = E
�
XX 0��Z��1 � E [XY jZ] :

Wooldridge (1999b, Section 4) collects some useful results on conditional linear predictors. See also Newey (1990) and
Brown and Newey (1998).

7An alternative approach to showing equivalency would involve verifying Newey�s (2004) moment spanning condi-
tion for e¢ ciency.
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(4) and (5) hold, (iii) �0 and Im (�0) = �00��10 �0 are nonsingular and (iv) other regularity conditions
hold (cf., Chamberlain (1992b), Section 2), then Im (�0) is the Fisher information bound for �0:

Proof. See the supplemental materials.
The proof of Theorem 2.1 involves only some tedious algebra and a straightforward application

of Lemma 2 of Chamberlain (1987). Assuming that Z has known, �nite support makes the problem

fully parametric. The unknown parameters are the probabilities associated with each possible

realization of Z, the values of the propensity score at each of the L mass points of the distribution

of X, �0 = (�1; : : : ; �L)
0, and the parameter of interest, �0:

The multinomial assumption is not apparent in the form of Im (�0), which involves only condi-
tional expectations of certain functions of the data. This suggests that the bound holds in general

since any F0 which satis�es (4) and (5) can be arbitrarily well-approximated by a multinomial dis-

tribution also satisfying the restrictions. Chamberlain (1992a, Theorem 1) demonstrates that this

is indeed the case. Therefore Im (�0)�1 is the maximal asymptotic precision, in the sense of Hájek�s
(1972) local minimax approach to e¢ ciency, with which �0 can be estimated when the only prior

restrictions on F0 are (4) and (5). Since this variance bound coincides with (2) I conclude that (4)

and (5) exhaust all of the useful prior restrictions implied by the MAR setup.8

The connection between semiparametrically e¢ cient estimation of moment condition models

with missing data and augmented systems of moment restrictions has been noted previously for

the special case of data missing completely at random (MCAR). In that case Assumptions 1.1 to

1.4 hold with p0 (X) equal to a (perhaps known) constant. Newey (1994a) shows that an e¢ cient

estimate of �0 can be based on the pair of moment restrictions

E [D (Z; �0)] = 0; C (D; q (X;�0)) = 0;

with q (X;�) as de�ned above. Hirano, Imbens and Ridder (2003) discuss a related example with

X binary and the data also MCAR. In their example e¢ cient estimation is possible with only a

�nite number of unconditional moment restrictions. Theorem 2.1 provides a formal generalization

of the Newey (1994a) and Hirano, Imbens and Ridder (2003) examples to the missing at random

(MAR) case.

The method-of-moments formulation of the MAR setup provides a useful framework for un-

8A referee made the insightful observation that the moment condition model (4) and (5) and the MAR setup are
equivalent in the stronger sense that they impose identical restrictions on the observed data. This, of course, also
implies that they contain identical information on �0. The complete data vector is given by (D;X; Y1), with only
(D;X; Y ) = (D;X;DY1) observed. Since Y1 is not observed whenever D = 0 we are free specify its conditional

distribution given X and D = 0 as desired. Choosing Y1jX;D = 0
D� Y1jX;D = 1 ensures conditional independence

(Assumption 1.3). Manipulating the identifying moment (4) we then have, writing  (Z; �0) =  (X;Y1; �0),

E
�

D

p0 (X)
 (X;Y; �0)

�
= E

�
p0 (X)E

�
D

p0 (X)
 (X;DY1; �0)

����X;D = 1

��
= E [E [ (X;DY1; �0)jX;D = 1]] = E [E [ (X;Y1; �0)jX]] ;

which yields (1). Finally, the auxiliary restriction (5) ties down the conditional distribution of D given X and ensures
Assumption 1.4 is satis�ed. I thank Michael Jansson for several helpful discussions on this point.
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derstanding several apparent paradoxes found in the missing data literature. As a simple example

consider Hahn�s (1998, pp. 324 - 325) result that projection onto a known propensity score may

be harmful for estimation of �0 = E [Y1]. Formally he shows that, for p0 (x) = Q0 constant in x

and known, the complete-case estimator, b�cc =PN
i=1DiY1i=

PN
i=1Di; while consistent, is ine¢ cient.

Observe that for the constant propensity score case b�cc is the sample analog of the population so-
lution to (4). It consequently makes no use of any information contained in the auxiliary moment

(5). However, that moment will be informative for �0 if q (x;�0) = E [Y1jx] � �0 varies with x,

consistent with Hahn�s (1998) �nding that the e¢ ciency loss associated with b�cc is proportional to
V (q (X;�0)). Similar reasoning explains why weighting by the (inverse of) the known propensity
score is generally ine¢ cient (cf., Robins, Rotnitzky and Zhao, 1994; Hirano, Imbens and Ridder,

2003; Wooldridge, 2007). The known weights estimator ignores the information contained in (5).

That smoothness and exclusion priors on the propensity score do not lower the variance bound

also has a GMM interpretation. Consider the case where the propensity score belongs to a para-

metric family p (X; �0) : If �0 is known, then an e¢ cient GMM estimator based on (4) and (5) is

given by the solution to

1

N

NX
i=1

s
�
�0; bq; b�� = 1

N

NX
i=1

(
Di

p (Xi; �0)
 (Zi; b�)� bq(Xi; b�)

p (Xi; �0)
(Di � p (Xi; �0))

)
= 0;

with bq(x; b�) a consistent nonparametric estimate of E [ (Z; �0)jx]. Now consider the e¤ect of

replacing �0 with the consistent estimate b�. From Newey and McFadden (1994, Theorem 6.2),

this replacement does not change the �rst order asymptotic sampling distribution of b� because
E [@s (�0; q0; �0) =@�0] = 0: Furthermore, if the known propensity score is replaced by a consistent

nonparametric estimate, bp(x), then the sampling distribution of b� is also una¤ected (Newey 1994b,
Proposition 3, p. 1360). Since the M-estimate of �0 based on its e¢ cient score function has the

same asymptotic sampling distribution whether the propensity score is set equal to the truth or

instead to a noisy, but consistent, estimate, knowledge of its form cannot increase the precision with

which �0 may be estimated.

Another intuition for redundancy of knowledge of the propensity score can be found by in-

specting the information bound for the multinomial problem. Under the conditions of Theorem

2.1 calculations provided in the supplemental materials imply that the GMM estimates of �0 and

�0 (recall that �0 contains the values for the propensity score at each of the mass points of the

distribution of X) have an asymptotic sampling distribution of

p
N

 " b�b�
#
�
"
�0

�0

#!
D! N

 "
0

0

#
;

"
Im (�0)�1 0

0 Im (�0)�1

#!
;

with Im (�0) as de�ned in (2) and Im (�0) as de�ned in the supplement. As is well-known, under
block diagonality sampling error in b� does not a¤ect, at least to �rst order, the asymptotic sampling
properties of b�. While block diagonality is formally only a feature of the multinomial problem, the
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result nonetheless provides another useful intuition for understanding why prior knowledge of the

propensity score is not valuable asymptotically.

Finally the combination of redundancy of knowledge of the propensity score, and the structure of

the equivalent GMM problem, suggests why the IPW estimator based on a nonparametric estimate

of the propensity score is semiparametrically e¢ cient (Hirano, Imbens and Ridder, 2003): when a

nonparametric estimate of the propensity score is used the sample analog of both (4) and (5) are

satis�ed. In contrast the IPW estimator based on a parametric estimate of the propensity score will

only satisfy a �nite number of the moment conditions implied by (5), hence while it will be more

e¢ cient than the estimator which weights by the true propensity score (e.g., Wooldridge, 2007), it

will be less e¢ cient than the one proposed by Hirano, Imbens and Ridder (2003).

3 Semiparametric functional restrictions

Consider the MAR setup augmented by Assumption 1.5. To the best of my knowledge, the maximal

asymptotic precision with which �0 can be estimated in this model has not been previously char-

acterized. In order to calculate the bound for this problem I �rst consider the conditional moment

problem de�ned by (4) and (5) and

E [� (Z; �0; h0 (X2) ;�0) jX] = 0; (6)

with � (Z; �0; h0 (X2) ;�0) =  (Z; �0)�q (x; �0; h0 (x2) ;�0) : I apply Chamberlain�s (1992a) approach
to this problem to calculate a variance bound for �0. I then show that this bound coincides with

the semiparametric e¢ ciency bound for the problem de�ned by restriction (1) and Assumptions

1.1 to 1.5 using the methods of Bickel, Klaassen, Ritov and Wellner (1993). The value of �rst

considering the conditional moment problem is that it provides a conjecture for the form of the

e¢ cient in�uence function, therefore sidestepping the need to directly calculate what is evidently a

complicated projection.

To present these results I begin by letting q0 (X) = q (X; �0; h0 (X2) ;�0) ; � (Z;�0) =  (Z; �0)�
q0 (X) ;

�h0 (X2)
P�P

= E
�
D

�
@q0 (X)

@h0

�0
�0 (X)

�1
�
@q0 (X)

@h0

�����X2�
�h�0 (X2)
K�J

= E
�
D

�
@q0 (X)

@h0

�0
�0 (X)

�1
�
@q0 (X)

@�0

�����X2�
G0 (X)
K�J

=
@q0 (X)

@�0
�
�
@q0 (X)

@h0

�
�h0 (X2)

�1�h�0 (X2) ; H0 (X2)
K�P

= E
�
@q0 (X)

@h0

����X2�
I fm (�0)
J�J

= E
h
DG0 (X)

0�0 (X)
�1G0 (X)

i
;
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and

�0
K�K

= E
h
H0 (X2)�

h
0 (X2)

�1H0 (X2)
0
i
+ E [G0 (X)] I fm (�0)

�1 E [G0 (X)]0 + E
�
q0 (X) q0 (X)

0� :
The variance bound for �0 in the conditional moment problem de�ned by (4), (5) and (6) is

established by the following Theorem.

Theorem 3.1 (Efficiency with Functional Restrictions, Part 1) Suppose that (i) the

distribution of Z has a known, �nite support, (ii) there is some �0 2 B � RK ; �0 = (�1; : : : ; �L)
0

where �l = p0 (xl) 2 [�; 1] for each l = 1; : : : ; L and some 0 < � < 1 (with X = fx1; : : : ; xLg the
known support of X), �0 2 D � RJ and h0 (x2;m) = �0;m 2 L � RP for each m = 1; : : : ;M (with

X2 = fx2;1; : : : ; x2;Mg the known support of X2) such that restrictions (4), (5) and (6) hold, (iii) �0
and I fm (�0) = �00��10 �0 are nonsingular and (iv) other regularity conditions hold (cf., Chamberlain
1992b, Section 2), then I fm (�0) is the Fisher information bound for �0:

Proof. See the supplemental materials.
Note that if X1 = ? and X2 = X, such that E [ (Z; �0)jx] is unrestricted, then I fm (�0)

simpli�es to Im (�0) above. Therefore, Theorem 2.1 may be viewed as a special case of Theorem

3.1. As with Theorem 2.1, the validity of the bound for the non-multinomial case follows from

Theorem 1 of Chamberlain (1992a).

The form of �0 suggests a candidate e¢ cient in�uence function of

�f� (Z; �0; �0) = �
�1
0

�
DH0 (X2)�

h
0 (X2)

�1
�
@q0 (X)

@h0

�0
�0 (X)

�1 � (Z;�0) (7)

+ DE [G0 (X)] I fm (�0)
�1G0 (X)

0�0 (X)
�1 � (Z;�0) + q (X;�0)

o
:

where � =
�
h; �;H;�h;�h�;�; G

�
; with G = E [G (X)]. Note that each of the three components of

(7) are mutually uncorrelated. The next Theorem veri�es that (7) is the e¢ cient in�uence function

under the MAR setup with Assumption 1.5 also imposed.

Theorem 3.2 (Efficiency with Functional Restrictions, Part 2) The semiparametric

e¢ ciency bound for �0 in the problem de�ned by restriction (1) and Assumptions 1.1 to 1.5 is equal

to I fm (�0) with an e¢ cient in�uence function of �f� (Z; �0; �0).

Proof. See the supplemental materials.
Theorem 3.1 implies that Assumption 6 can be exploited to more e¢ ciently estimate �0. However

its use also carries risk, if false, yet nevertheless erroneously maintained by the data analyst, an

inconsistent estimate of �0 may result. This tension, between e¢ ciency and robustness, is formalized

by the next two Propositions which together provide guidance as to whether prior information of

the type given by Assumption 1.5 should be utilized in practice.
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The �rst Proposition characterizes the magnitude of the e¢ ciency gain associated with correctly

exploiting Assumption 1.5. De�ne:

�1 (Z; �0; �0)
K�1

= D

�
IK

p0 (X)
�H0 (X2)�h0 (X2)

�1
�
@q0 (X)

@h0

�0
�0 (X)

�1
�
� (Z;�0)

�2 (Z; �0; �0)
J�1

= DG0 (X)
0�0 (X)

�1 � (Z;�0) :

Proposition 3.1 Under (1) and Assumptions 1.1 to 1.5

Im (�0)�1 � I fm (�0)
�1 = ��10

�
V (�1)� C

�
�1; �

0
2

�
V (�2)�1C

�
�1; �

0
2

�0�
��100 � 0: (8)

Proof. See the supplemental materials.
Equation (8) has an intuitive interpretation. The �rst term in parentheses

V (�1) = E
�
�0 (X)

p0 (X)
�H0 (X2)�h0 (X2)

�1H0 (X2)
0
�
;

equals the asymptotic variance reduction that would be available by additionally imposing Assump-

tion 6 if �0 were known.

The additional (asymptotic) sampling uncertainty induced by having to estimate �0 is captured

by the second term

C (�1; �2)V (�2)�1C (�1; �2) = E [G0 (X)] I fm (�0)
�1 E [G0 (X)]0 ;

where I fm (�0) is the information bound for �0 in the semiparametric regression problem (cf., Cham-

berlain, 1992a):

D (Z; �0) = Dq (X; �0; h0 (X2) ;�0) +DV; E [V jX;D = 1] = E [V jX] = 0:

The more precisely determined �0, the greater the e¢ ciency gain from imposing Assumption 1.5.

The size of E [G0 (X)] also governs the magnitude of the e¢ ciency gain. Conditional on X2,�
@q0(X)
@h0

�
�h0 (X2)

�1�h�0 (X2) is a weighted linear predictor of
@q0(X)
@�0 given @q0(X)

@h0 in the D = 1

subpopulation. That is9�
@q0 (X)

@h0

�
�h0 (X2)

�1�h�0 (X2) = E��0(X)

�
@q0 (X)

@�0

���� @q0 (X)@h0
;X2; D = 1

�
;

and hence G0 (X) is equal to the di¤erence between
@q0(X)
@�0 and its predicted value based on a

9The notation E�!(X) [Y jX;Z;D = 1] denotes the weighted conditional linear predictor

E�!(X) [Y jX;Z;D = 1] = XE
�
DX! (X)�1X 0��Z��1 � E �DX! (X)�1 Y ��Z� :

This is the population analog of the �tted value from a generalized least squares regression in a subpopulation
homogenous in Z and with D = 1:

9



weighted least squares regression in the D = 1 subpopulation. The average of these di¤erences,

E [G0 (X)], is taken across the entire population; it will be large in absolute value when the dis-
tribution of X1 conditional on X2 di¤ers in the D = 1 versus D = 0 subpopulations. This will

occur whenever X1 is highly predictive for missingness (conditional on X2). In such situations the

e¢ ciency costs of sampling uncertainty in b� are greater (relative to the known �0 case) because
estimation of �0 requires greater levels of extrapolation.

An example clari�es the discussion given above. Assume that  (Z; �0) = Y1 � �0 with

q (X; �0; h0 (X2) ;�0) = X 0
1�0 + h0 (X2)� �0:

This is the model considered by Wang, Linton and Härdle (2004). In addition to being of importance

in its own right, it provides insight into the program evaluation problem (where the means of two

missing outcomes, as opposed to just one, need to be estimated). Wang, Linton and Härdle�s (2004)

prior restriction includes the condition that V (Y1jX) = �21 is constant inX: For clarity of exposition

I also assume homoscedasticity holds, but that this fact is not known by the econometrician. Let

e0 (X2) = E [p (X)jX2] = Pr (D = 1jX2) ; specializing the general results given above to this model
and evaluating (8) gives

Im (�0)�1 � I fm (�0)
�1

= �21

�
E
�
E
�

1

p (X)

����X2�� 1

e0 (X2)

�
�(E [E [X1jX2]� E [X1jX2; D = 1]])0 (E [E [X1jX2]� E [X1jX2; D = 1]])

E [e0 (X2)V (X1jX2; D = 1)]

�
� 0;

which shows that the e¢ ciency gain associated with correctly exploiting Assumption 1.5 re�ects

three forces. First, substantial convexity in p (X)�1, which will occur when overlap is limited,

increases the e¢ ciency gain.10 This gain re�ects the semiparametric restriction allowing for extrap-

olation in the presence of conditional covariate imbalance. The next two e¤ects re�ect the fact that

the �rst source of e¢ ciency gain is partially nulli�ed by having to estimate �0. If X1 varies strongly

given X2 in the D = 1 subpopulation then the information for �0 is large which, in turn, increases

the precision with which �0 may be estimated. On the other hand if there are large (average) dif-

ferences in the conditional mean of X1 given X2 across the D = 1 and D = 0 subpopulations, then

estimating �0 requires greater extrapolation which �when �0 is unknown �decreases the precision

with which it may be estimated.

Proposition 3.1 provides insight into when correctly imposing Assumption 1.5 is likely to be infor-

mative. A related question concerns the consequences of misspecifying the form of q (X; �; h (X2) ;�).

Under such misspeci�cation the conditional moment restriction (6) will be invalid. Nevertheless the

e¢ cient score function may continue to have an expectation of zero at � = �0. This suggest that

an M-estimator based on an estimate of the e¢ cient score function may be consistent even if As-

10When some subpopulations have low propensity scores E [ 1=p (X)jX2] � 1=E [p (X)jX2] will tend to be large
(Jensen�s Inequality).
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sumption 1.5 does not hold. The following proposition provides one set of conditions under which

such a robustness property holds.

Proposition 3.2 (Double Robustness) Let q� (X) = q (X; ��; h� (X2) ;�0) with �� and h� (X2)

arbitrary, �� (Z;�0) =  (Z; �0) � q� (X), and rede�ne �0 (X) = V (�� (Z;�0)jX) ; H0 (X2) =
E
h
@q�(X)
@h0

���X2i and �h0 (X2) ; �h�0 (X2), and G0 similarly. Under restriction (1) and Assumptions
1.1 to 1.4 �f� (Z; �; �0) is mean zero if either (i) � = �0; � = �0 and Assumption 1.5 holds or

(ii) � = �0; � = �� =
�
h�; ��;H0;�h0 ;�

h�
0 ;�0; G0

�
and (a) p0 (x) = e0 (x2) for all x 2 X ; (b)

�0 (x) = �0 (x2) for all x 2 X , and (c) at least one element of h� (x2) enters linearly in each row
of q� (X) :

Proof. See the supplemental materials.
Note that there is a tension between the robustness property of Proposition 3.2 and the e¢ ciency

gain associated with Assumption 1.5. Mean-zeroness of �f� (Z; �; �0) under misspeci�cation requires

that those variables entering q (X; �; h (X2) ;�0) parametrically do not a¤ect either the probability

of missingness or the conditional variance of the moment function (1). Under such conditions an

estimator based on �f� (Z; �; �0) will perform no better, at least asymptotically, than one based on

the e¢ cient score function derived by Robins, Rotnitzky and Zhao (1994). In particular we have:

Corollary 3.1 Under the conditions of part (ii) of Proposition 3.2

Im (�0)�1 � I fm (�0)
�1 = 0:

Proof. See the supplemental materials.
Collectively Propositions 3.1 and 3.2 suggest that estimation while maintaining Assumption 1.5

will be most valuable when the econometrician is highly con�dent in the imposed semiparametric

restriction.
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E¢ ciency bounds for missing data models
with semiparametric restrictions, supplemental material: proofs

This appendix contains proofs of the results contained in the main paper. All notation is as de�ned in the main
text unless explicitly noted otherwise. Equation numbering continues in sequence with that established in the main
text. To simplify notation let � denote the true parameter value �0 unless explicitly stated otherwise (similarly the
�0�subscript is removed from other objects, such as the propensity score, when doing so does not cause confusion).

A Proof of Theorem 2.1

The proof closely follows that of Theorem 1 in Chamberlain (1992) and consists of three steps.

Step 1: Demonstration of equivalence with an unconditional GMM problem The �rst step is to show that
restrictions (4) and (5) are, in the multinomial case, equivalent to a �nite set of unconditional moment restrictions.
Under the multinomial assumption we have X 2 fx1; : : : ; xLg for some L: Let the L� 1 vector B have a 1 in the lth

row if X = xl and zeros elsewhere and �l = Pr (X = xl) (observe that
PL
l=1 �l = 1). Denote the value of the selection

probability at X = xl by �l and de�ne � = f�1; : : : ; �Lg0 ; this vector gives the values of p (�) at each of the mass
points of X. Using this notation we can write p (X) = B0�:

Under the multinomial assumption restrictions (4) and (5) are equivalent to the L+K�1 vector of unconditional
moment restrictions

E [m (Z; �; �)] = E
�

m1 (Z; �)

m2 (Z; �; �)

�
= E

"
B
�
D
B0� � 1

�
D
B0� (Z; �)

#
= 0:

To verify that this is the case note that by iterated expectations

E [m1 (Z; �)] =

0BBB@
�1E

h�
D

p(X)
� 1
����X = x1

i
...

�LE
h�

D
p(X)

� 1
����X = xL

i
1CCCA ;

and hence E [m1 (Z; �)] = 0 if and only if E
h

D
p(X)

� 1
���Xi = 0 for all X 2 fx1; : : : ; xLg : We also have

E [m2 (Z; �; �)] = E
�

D

p (X)
 (Z; �)

�
= 0;

so E [m (Z; �; �)] = 0 if and only if (4) and (5) are satis�ed as claimed.

Step 2: Application of Lemma 2 of Chamberlain (1987) Chamberlain (1987, Lemma 2) shows that for Z a
multinomial random variable the variance bound for � under the sole restriction that E [m (Z; �; �)] = 0 is��

M 0V �1M
��1�

22

where
��

M 0V �1M
��1�

22

is the lower-right K �K block of
�
M 0V �1M

��1
with

V
def
� E

�
m (Z; �; �)m (Z; �; �)0

�
; M

def
� E

�
@m (Z; �; �)

@�0
;
@m (Z; �; �)

@�0

�
:

The application of Chamberlain�s result requires that M has full column rank and that V is non-singular. The
calculations made in Step 3 below demonstrate that these conditions are implied by the assumption that � has full
column rank, p (X) is bounded away from zero and non-singularity of �:
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Step 3: Calculation of the bound The �nal step is to solve for an explicit expression for
��

M 0V �1M
��1�

22

.

This requires some simple, albeit tedious, algebra. Partitioning V0

V
L+K�L+K

=

�
V11 V12
V 012 V22

�
;

we have the lower right-hand block, letting  =  (Z; �) and q (X) = E [ jX], given by

V22
K�K

= E
�
m2 (Z; �; �)m2 (Z; �; �)

0� (9)

= E

"
E
�
  0

��X�
p (X)

#

= E
�
V ( jX)
p (X)

+
1� p (X)

p (X)
q (X) q (X)0 + q (X) q (X)0

�
=
XL

l=1
�l

�
�l
�l
+
1� �l
�l

qlq
0
l + qlq

0
l

�
;

where ql = E [ (Z; �) jxl] and �l = V ( jxl) :
The upper right-hand block is similarly derived as

V12
L�K

= E
�
m1 (Z; �)m2 (Z; �; �)

0� (10)

= E

"
B

�
D

B0�
� 1
��

D (Z; �)

B0�

�0#

= E
�
B

�
1� p (X)

p (X)
q (X)0

��
=
�
�1
1��1
�1

q1 � � � �L
1��L
�L

qL

�0
:

Finally the upper left-hand block is given by

V11
L�L

= E
�
B

�
D

B0�
� 1
��

D

B0�
� 1
�
B0
�

(11)

= E
�
BB0

�
1� p (X)

p (X)

��
= diag

n
�1
1��1
�1

� � � �L
1��L
�L

o
:

Now partition M

M
L+K�L+K

=

�
M1� 0

M2� M2�

�
;

where, from similar calculations to those made above, we have

M1�
L�L

= �diag
n

�1
�1

� � � �L
�L

o
; M2�

K�L
= �

�
�1
q1
�1

� � � �L
qL
�L

�
; M2�

K�K
= �: (12)

Applying standard results on partitioned inverses then yields

M�1 =

 
M�1
1� 0

�M�1
2� M2�M

�1
1� M�1

2�

!
:

Note that the existence of M�1
1� and M�1

2� follows from the assumptions that p (X) is bounded away from zero and
the assumption that � has full column rank.

Redundancy of knowledge of the propensity score suggests that M�1VM�10 will be block diagonal. A su¢ cient
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condition for this is that (cf., Prokhorov and Schmidt, 2009)

V 012 =M2�M
�1
1� V11: (13)

To verify that this condition holds use (11) and (12) to show that

M2�M
�1
1� V11 =

�
�1
1��1
�1

q1 � � � �L
1��L
�L

qL

�
;

which equals V 012 as required. Exploiting the resulting simpli�cations yields

M�1VM�10 =

 
M�1
1� V11M

�1
1� 0

0 M�1
2�

�
V22 � V 012V

�1
11 V12

�
M�10
2�

!
;

and hence �
M�1VM�10

�
22
=M�1

2�

�
V22 � V 012V

�1
11 V12

�
M�10
2� :

By M2�M
�1
1� = (q1; : : : ; qL) and (13) we have V

0
12V

�1
11 V12 equal to

V
0

12V
�1
11 V12 =M2�M

�1
1� V11M

�10
1� M 0

2�

=

LX
l=1

�l
1� �l
�l

qlq
0
l

= E
�
1� p (X)

p (X)
q (X) q (X)0

�
;

and hence, using (9),

V22 � V 012V
�1
11 V12 = E

�
V ( jX)
p (X)

+ q (X) q (X)0
�
= �:

Using this result and taking the partitioned determinant gives

det (V ) = det (V11) det
�
V22 � V 012V

�1
11 V12

�
= E

�
1� p (X)

p (X)

�
det f�g ;

and hence V is non-singular under overlap (Assumption 1.4) and non-singularity of �:
Since M2� = � we have Im (�0) = �0��1� as claimed. For completeness the upper left-hand portion of the full

variance covariance matrix is given by

M�1
11 V11M

�10
11 = I�1m (�0) = diag

�
p (x1) (1� p (x1))

f (x1)
; � � � ; p (xL) (1� p (xL))

f (xL)

�

where f (x) =
PL
l=1 �l � 1 (x = xl) :

B Proof of Theorem 3.1

The �rst two steps of the proof of Theorem 3.1 are analogous to those of Theorem 2.1 and therefore omitted. The
actual calculation of the bound, while conceptually straightforward, is considerably more tedious. Details of this step
are provided here.

Assume that the marginal distributions of X1 and X2 have I andM points of support with probabilities �1; : : : ; �I
and &1; : : : ; &M . Let L = I�M and �im denote the joint probability Pr

�
X1 = x1;i; X2 = x2;m

�
. Let � = (�1; : : : ; �M )

0

be the values of h (�) at each of the mass points of X2 (for simplicity I assume that dim (h (x2)) = P = 1 in the
calculations below, but the results generalize). Let C be a M � 1 vector with a 1 in the mth row if X2 = x2;m and
zeros elsewhere. Finally it is convenient to use the shorthand 	 = q (X) q (X)0 : In what follows I use both the single
and double subscript notation to denote a point on the support of X as is convenient. We can map between the two
notations by observing that xim = xl for l = (i� 1)M +m.

For the multinomial case the conditional moment problem de�ned by (4), (5) and (6) is equivalent to the uncon-
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ditional problem

E [m (Z; �)] = E

24 m1 (Z; �)

m2 (Z; �; �; �; �)

m3 (Z; �; �)

35 = 0;
with � =

�
�0; �0; �0; �0

�0
and

m1 (Z; �)
L�1

= B

�
D

B0�
� 1
�
; m2 (Z; �; �; �; �)

LK�1
= (B 
 IK)

�
D

B0�

�
 (Z; �)� q(X; �; C0�;�)

��
;

m3 (Z; �; �)
K�1

=
D

B0�
 (Z; �) :

Partition V = E
�
m (Z; �)m (Z; �)0

�
as

V
L+KL+K�L+KL+K

=

0@ V11
V21 V22
V31 V32 V34

1A ;

where, using calculations similar to those given in the proof of Theorem 2.1, we have

V11
L�L

= diag

�
�1
1� �1
�1

; : : : ; �L
1� �L
�L

�
; V12

L�KL
= (0; : : : ; 0) ; V22

KL�KL
= diag

�
�1
�1
�1
; : : : ; �L

�L
�L

�
V31
K�L

=

�
�1
1� �1
�1

q1; : : : ; �L
1� �L
�L

qL

�
; V32

K�KL
=

�
�1
�1
�1
; : : : ; �L

�L
�L

�
; V33

K�K
=
XL

l=1
�l

�
�l
�l
+
1� �l
�l

qlq
0
l + qlq

0
l

�
:

We can partition the Jacobian matrix

M
L+KL+K�L+M+J+K

=

0@ M1� 0 0 0

0 M2� M2� 0

M3� 0 0 M3�

1A ;

where

M1�
L�L

= �diag
�
�1
�1
; : : : ;

�L
�L

�
; M2�

KL�M
= �

�
H 0
1; : : : ; H

0
I

�0
; M2�

KL�J
= �

0B@ �1r�q1
...

�Lr�qL

1CA
M3� = �

�
�1
q1
�1

� � � �L
qL
�L

�
; M3� = �:

where Hi = diag f�i1rhqi1; : : : ; �iMrhqiMg for i = 1; : : : ; I with qim = q(xim; �; h
�
x2;m

�
;�).

The variance bound for � is given by the lower right-hand K�K block of
�
M 0V �1M

��1
:We begin by calculating

V �1: Partition V

V =

�
B11 B12
B012 B22

�
;

with
B11

L+KL�L+KL
= diag

�
V11 V22

	
; B12

L+KL�K
=
�
V31 V32

�0
; B22 = V33:

Now partition V �1 as

V �10 =

�
C11 C12
C012 C22

�
; (14)

where the partitioned inverse formula gives

C11
L+KL�L+KL

= diag
�
V �111 V �122

	
+D0E [	]�1D; C012

K�L+KL
= �E [	]�1D; C22

K�K
= E [	]�1 ;
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with D =
�
A0 (�L 
 IK)

0 � = B012B
�1
11 and A =

�
q1 � � � qL

�0
a L�K matrix.

Expression (14) follows since

C22 =
�
B22 �B012B

�1
11 B12

��1
=
XL

l=1
�l

�
�l
�l
+
1� �l
�l

qlq
0
l + qlq

0
l

�
�
XL

l=1
�l

�
1� �l
�l

qlq
0
l +

�l
�l

�
=

�XL

l=1
�lqlq

0
l

��1
= E [	]�1 :

We also have C012 = �C22B012B�111 = �E [	]�1D and

C11 = B�111 +B�111 B12C22B
0
12B

�1
11 = diag

�
V �111 V �122

	
+D0E [	]�1D:

We now evaluate Ifm (�) =M 0V �1M to

0BB@
M 0
1�V

�1
11 M1�

0

0

0

0 0

M 0
2�

h
V �122 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M2� M 0

2�

h
V �122 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M2�

M 0
2�

h
V �122 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M2� M 0

2�

h
V �122 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M2�

�M 0
3�E [	]

�1 (�L 
 IK)
0M2� �M 0

3�E [	]
�1 (�L 
 IK)

0M2�

0

�M 0
2� (�L 
 IK)E [	]�1M3�

�M 0
2� (�L 
 IK)E [	]�1M3�

M 0
3�E [	]

�1M3�

1CCCA ;

where I have made use of the equality M 0
1�A =M 0

3�:

Observe that, as in the standard semiparametric missing data model, Ifm (�) satis�es Stein�s condition for redun-
dancy of knowledge of the propensity score for �: However the structure of the bound does indicate that knowledge
of the �nite dimensional parameters and nonparametric portions of the CEF of  (Z; �) given X does increase the
precision with which � can be estimated.

The variance bound for �0 is given by the lower right-hand K �K block of the inverse of this matrix. Because
of block diagonality we only need to consider the lower right-hand block. Partition this block as�

B11 B12
B012 B22

�
;

where B11, B12 and B22 are rede�ned to equal

B11 =

�
M 0
2�V

�1
22 M2� M 0

2�V
�1
22 M2�

M 0
2�V

�1
22 M2� M 0

2�V
�1
22 M2�

�
+

�
M 0
2� (�L 
 IK)

M 0
2� (�L 
 IK)

�
E [	]�1

�
(�L 
 IK)

0M2� (�L 
 IK)
0M2�

�
B12 =

�
M 0
2� (�L 
 IK)

M 0
2� (�L 
 IK)

�
E [	]�1M3� ; B33 =M 0

3�E [	]
�1M3� :
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The information bound is therefore given by

Ifm (�) = B22 �B012B
�1
11 B12

=M 0
3�E [	]

�1M3� �M 0
3�E [	0]

�1 � (�L 
 IK)
0M2� (�L 
 IK)

0M2�

�
�
��

M 0
2�V

�1
22 M2� M 0

2�V
�1
22 M2�

M 0
2�V

�1
22 M2� M 0

2�V
�1
22 M2�

�
+

�
M 0
2� (�L 
 IK)

M 0
2� (�L 
 IK)

�
E [	]�1

�
�
(�L 
 IK)

0M2� (�L 
 IK)
0M2�

�	�1� M 0
2� (�L 
 IK)

M 0
2� (�L 
 IK)

�
E [	]�1M3�

=M 0
3�

�
E [	] +

�
(�L 
 IK)

0M2� (�L 
 IK)
0M2�

�
�
�
M 0
2�V

�1
22 M2� M 0

2�V
�1
22 M2�

M 0
2�V

�1
22 M2� M 0

2�V
�1
22 M2�

��1�
M 0
2� (�L 
 IK)

M 0
2� (�L 
 IK)

�#�1
M3� ;

where I have used the identity A�1 �A�1U(B�1 + U 0A�1U)�1U 0A�1 =
�
A+ UBU 0

��1
:

Using the partitioned inverse formula and multiplying out the expression in [�] above then gives

Ifm (�) =M 0
3� � [E [	] + (�L 
 IK)

0
h
M2�

�
M 0
2�V

�1
22 M2�

�
M 0
2�

+

�
M2� �M2�

�
M 0
2�V

�1
22 M2�

��1
M 0
2�V

�1
22 M2�

�
�
�
M 0
2�V

�1
22 M2� �M 0

2�V
�1
22 M2�

�
M 0
2�V

�1
22 M2�

��1
M 0
2�V

�1
22 M2�

��1
�
�
M2� �M2�

�
M 0
2�V

�1
22 M2�

��1
M 0
2�V

�1
22 M2�

�0#
(�L 
 IK)

#�1
�M3� :

We can now use the explicit expressions for V0 and M0 give above to generate an interpretable bound. The
required calculations are tedious but straightforward (details are available from the author upon request), they give
an information bound of Ifm (�) as de�ned in the main text of the paper.

C Proof of Theorem 3.2

In calculating the e¢ ciency bound for the semiparametric missing data model de�ned by restriction (1) and Assump-
tions 1.1 to 1.5 above, I follow the general approach outlined by Bickel, Klaassen, Ritov and Wellner (1993) and,
especially, Newey (1990, Section 3). First, I characterize the nuisance tangent space. Second, I demonstrate pathwise
di¤erentiability of the parameter of interest, �: The e¢ cient in�uence function for this model equals the projection
of the pathwise derivative onto the tangent space. In the present example the direct calculation of this projection
appears to be particularly di¢ cult. However inspection of the variance bound associated with the conditional moment
problem de�ned by restrictions (4), (5) and (6) provides a conjecture for the form of the e¢ cient in�uence function.
The third and �nal step of the proof therefore involves demonstrating that (i) this conjectured in�uence function lies
in the model tangent space and (ii) that it is indeed the required projection (i.e., that it satis�es equation (9) in
Newey (1990, p. 106)). The result then follows from an application of Theorem 3.1 in Newey (1990).

Step 1: Characterization of the nuisance tangent space Recalling that Y = DY1, the joint density function
for (Y;X;D), making use of Assumption 1.3, is given by

f (y; x; d) = f (y1jx)d p (x)d [1� p(x)]1�df (x) :

Assumption 1.5 also requires that f (y1jx) satisfy the restrictionZ
� (z; �0; h0 (x2) ;�0) f (y1jx) dy1 = 0;

20



where  (z; �) =  (x; y1; �) and

� (z; �; h (x2) ;�) =  (x; y1; �)� q (x; �; h (x2) ;�) :

Consider a regular parametric submodel with f (y; x; d; �) = f (y; x; d) at � = �0. The submodel joint density is
given by

f (y; x; d; �) = f (y1jx; �)d p (x; �)d [1� p(x; �)]1�df (x; �) (15)

and satis�es the restriction Z
� (z; � (�) ; h (x2; �) ;�0) f (y1jx; �) dy1 = 0: (16)

The submodel score vector equals

s�(y; x; d; �) = ds� (y1jx; �) +
d� p (x; �)

p (x; �) [1� p (x; �)]
r�p (x; �) + t� (x; �) ; (17)

where

s�(y; x; d; �) = r� log f (y; x; d; �) ; s� (y1jx; �) = r� log f (y1jx; �) ; t� (x; �) = r� log f (x; �) :

By the usual mean zero property of (conditional) scores we have

E [s� (Y1jX)jX] = E [t� (X)] = 0; (18)

where suppression of � in a function means that it is evaluated at its population value (e.g., t� (x) = t� (x; �0)).
Condition (16) imposes additional restrictions on s� (Y1jX) beyond conditional mean zeroness. To see the

structure of these restrictions di¤erentiate (16) with respect to � through the integral and evaluate the result at
� = �0:

@q0 (X)

@�0
@� (�0)

@�0
+
@q0 (X)

@h0
@h (X2; �0)

@�0
= E

�
� (Z; �0; h0 (X2) ;�0) s� (Y1jX)0

��X� :
The conditional covariance between � (Z; �0; h0 (X2) ;�0) and s� (Y1jX) has a particular structure induced by the
semiparametric restrictions on the form of E [ (Z; �)jx] :

From (17), (18) and the above equality the tangent set is evidently

T = fds (y1jx) + a (x) [d� p (x)] + t (x)g ; (19)

where a (x) is unrestricted and t (x) and s (y1jx) satisfy

E [t (X)] = 0
E [s (Y1jX)jX] = 0

E
�
� (Z; �0; h0 (X2) ;�0) s (Y1jX)0

��X� = �@q0 (X)
@�0

�
c+

�
@q0 (X)

@h0

�
k (X2) ;

with c a constant matrix and k (x2) an unrestricted matrix-valued function of x2:

Step 2: Demonstration of pathwise di¤erentiability Under the parametric submodel � (�) is identi�ed by the
unconditional moment restriction

E� [ (Z;� (�))] = 0:

Di¤erentiating under the integral and evaluating at � = �0 gives

@� (�0)

@�0
= ���10 E

�
 (Z;�0)

@ log f (Y1; X; �0)

@�0

0�
:

To demonstrate pathwise di¤erentiability of � we require F (Y;X;D) such that

@� (�0)

@�0
= E

�
F (Y;X;D)s�(Y;X;D)

0� :
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It is easy to verify that the function

F (Y;X;D) = ���10
�

D

p0 (X)
� (Z; �0; h0 (X2) ;�0)

�
+ q (X; �0; h0 (X2) ;�0) ;

satis�es this condition (cf., Hahn 1998).

Step 3: Veri�cation that conjectured e¢ cient in�uence function equals the required projection Inspec-
tion of the variance bounds associated with the conditional moment problem suggests the candidate e¢ cient in�uence
given by (7) in the main text. I �rst verify that �f� (Z; �0; �0) lies in the model tangent space. The last term in (7)
plays the role of t (x). A zero plays the role of a (x) [d� p (x)]. Finally the �rst two terms in (7) play the role of
ds (y1jx) : To see this note that in addition to being both conditionally mean zero we have

E

"
� (Z;�0)

(
H0 (X2)�

h
0 (X2)

�1
�
@q0 (X)

@h0

�0
�0 (X)

�1 � (Z;�0)

#

+E [G0 (X)] Ifm (�0)�1G0 (X)0 � (X)�1 � (Z;�0)
o0����X�

=

�
@q0 (X)

@�0

�
c+

�
@q0 (X)

@h0

�
k (X2)

with

c = Ifm (�0)�1 E [G0 (X)]0

k (X2) = �
h
0 (X2)

�1
n
H0 (X2)

0 ��h�0 (X2) c
o
:

The candidate e¢ cient in�uence function therefore belongs to the model tangent space as required.
I next show that �f� (Z; �0; �0) is indeed the required projection by verifying that it satis�es

E
hn
F (Y;X;D)� �f� (Z; �0; �0)

o
t0
i
= 0, for all t 2T

(cf., equation (9) in Newey (1990, p. 106)). We have

F (Y;X;D)� �f� (Z; �0; �0) = �
�1
0 D

(
1

p0 (X)
�H0 (X2)�

h
0 (X2)

�1
�
@q0 (X)

@h0

�0
� (X)�1

�E [G0 (X)] Ifm (�0)�1G0 (X)0 � (X)�1
o
� (Z;�0) :

By the conditional independence of Y1 and D given X (Assumption 1.3) and conditional mean zeroness of � (Z;�0) it
is easy to show that F (Y;X;D)� �f� (Z; �0; �0) is orthogonal to any functions of the form a (x) [d� p (x)] and t (x) :
All that remains is to show orthogonality with ds (y1jx). We have

E
hn
F (Y;X;D)� �f� (Z; �0; �0)

o
Ds (Y1jX)0

i
= E

"
��10

(
IK �H0 (X2)�

h
0 (X2)

�1
�
@q0 (X)

@h0

�0 �
� (X)

p (X)

��1
�E [G0 (X)] Ifm (�0)�1G0 (X)0

�
� (X)

p (X)

��1)

�
��

@q0 (X)

@�0

�
c+

�
@q0 (X)

@h0

�
k (X2)

��
;

where I have made use of the special structure of the conditional covariance E
�
� (Z;�0) s� (Y1jX)0

��X� : Multiplying
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out terms yields

E
hn
F (Y;X;D)� �f� (Z; �0; �0)

o
Ds (Y1jX)

i
= ��10 E

��
@q0 (X)

@�0
c+H0 (X2) k (X2)

�H0 (X2)�
h
0 (X2)

�1�h�0 (X2) c�H0 (X2) k (X2)

� E [G0 (X)] Ifm (�0)�1��0 (X2) c

+ E [G0 (X)] Ifm (�0)�1�h�0 (X2)
0�h0 (X2)

�1�h�0 (X2) c

� E [G0 (X)] Ifm (�0)�1�h�0 (X2)
0 k (X2)

+E [G0 (X)] Ifm (�0)�1�h�0 (X2)
0 k (X2)

i
= ��10 fE [G0 (X)] c� E [G0 (X)] cg = 0;

where the �rst equality follows from iterated expectations and the second from the de�nitions of G0 (X) and Ifm (�0)
in the main text.

The result then follows from an application of Theorem 3.1 in Newey (1990).

D Proof of Proposition 3.1

The di¤erence in the variance bounds is given by

Im (�0)�1 � Ifm (�0)�1 = ��10 (�0 � �0) ��100 ;

with �0 and �0 as de�ned in the main text.
First observe that E [G0 (X)] has the covariance representation

E [G0 (X)] = E
�
@q0 (X)

@�0
�
�
@q0 (X)

@h0

�
�h0 (X2)

�1�h�0 (X2)

�
= C

�
�1; �

0
2

�
;

with �1 and �2 as de�ned in the main text. This follows since

E
�

D

p0 (X)
� (Z;�0) � (Z;�0)

0 �0 (X)
�1
�
@q0 (X)

@�0
�
�
@q0 (X)

@h0

�
�h0 (X2)

�1�h�0 (X2)

��
= E

�
@q0 (X)

@�0
�
�
@q0 (X)

@h0

�
�h0 (X2)

�1�h�0 (X2)

�
;

and also

E

"
DH0 (X2)�

h
0 (X2)

�1
�
@q0 (X)

@h0

�0
�0 (X)

�1 � (Z;�0) � (Z;�0)
0 �0 (X)

�1

�
�
@q0 (X)

@�0
�
�
@q0 (X)

@h0

�
�h0 (X2)

�1�h�0 (X2)

��
= 0:

Similar calculations yield the variance representations

V (�1) = E
�
�0 (X)

p0 (X)
�H0 (X2)�

h
0 (X2)

�1H0 (X2)
0
�
; V (�2) = E

h
DG0 (X)

0 �0 (X)
�1G0 (X)

i
;

with the result directly following.
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E Proof of Proposition 3.2

Part (i) follows from Theorem 3.2. For part (ii) condition (a) implies the equality.

E

"
DH0 (X2)�

h
0 (X2)

�1
�
@q� (X)
@h0

�0
�0 (X)

�1 �� (Z;�0)

�����X2
#

= H0 (X2)E

"�
@q� (X)
@h0

�0
�0 (X)

�1
�
@q� (X)
@h0

������X2
#�1

E

"�
@q� (X)
@h0

�0
�0 (X)

�1 �� (Z;�0)

�����X2
#
:

Condition (b) implies that �0 (X) = �0 (X2) : Let L (X2)L (X2)
0 = �0 (X2) be the Cholesky decomposition of

�0 (X2). This implies that the term to the right of the last equality equals

H0 (X2)E

"�
L (X2)

�1
�
@q� (X)
@h0

��0�
L (X2)

�1
�
@q� (X)
@h0

�������X2
#�1

E

"�
L (X2)

�1
�
@q� (X)
@h0

��0
L (X2)

�1 �� (Z;�0)

�����X2
#
:

Since all expectations in the above expression condition on X2; L (X2) may be treated as non-stochastic so that

L (X2)
�1H0 (X2) = E

�
L (X2)

�1
�
@q� (X)
@h0

�����X2� :
Recall that a linear predictor passes through the mean of the outcome variable at the means of the predictor variables
(when a constant is included). Condition (c) implies that each row of @q� (X) =@h0 includes such a constant and hence
that

L (X2)
�1 E [�� (Z;�0)jX2] = L (X2)

�1H0 (X2)

� E
"�

L (X2)
�1
�
@q� (X)
@h0

��0�
L (X2)

�1
�
@q� (X)
@h0

�������X2
#�1

� E
"�

L (X2)
�1
�
@q� (X)
@h0

��0 n
L (X2)

�1 � (Z;�0)
o�����X2

#
;

and therefore that

E

"
DH0 (X2)�

h
0 (X2)

�1
�
@q� (X)
@h0

�0
�0 (X)

�1 �� (Z;�0)

�����X2
#
= E [�� (Z;�0)] = �E [q� (X)] :

This implies that the �rst part of �f� (Z; ��; �0) has mean �E [q� (X)] :
Using conditions (a), (b), (c), and arguments analogous to those given immediately above we have

L (X2)
�1G0 (X) = L (X2)

�1 @q0 (X)
@�0

� L (X2)
�1
�
@q0 (X)

@h0

�
E

"�
L (X2)

�1
�
@q� (X)
@h0

��0�
L (X2)

�1
�
@q� (X)
@h0

�������X2
#�1

� E
"�

L (X2)
�1
�
@q� (X)
@h0

��0�
L (X2)

�1 @q0 (X)
@�0

������X2
#
;

so that E
h
L (X2)

�1G0 (X)
���X2i = L (X2)

�1 E [G0 (X)jX2] = 0. The law of iterated expectations then gives

E [G0 (X)] = 0: This implies that the second part of �f� (Z; ��; �0) is mean zero. The third part of �
f
� (Z; ��; �0)

has mean E [q� (X)]. The result follows as claimed.
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F Proof of Corollary 3.1

From the proof to Proposition 3.2 we have E [G0 (X)] = 0. So the result follows if

E
�
�0 (X)

p0 (X)
�H0 (X2)�

h
0 (X2)

�1H0 (X2)
0
�
= 0:

Under conditions (a) and (b) of part (ii) of Proposition 3.2 we have

E
�
�0 (X)

p0 (X)
�H0 (X2)�

h
0 (X2)

�1H0 (X2)
0
�

= E

24�0 (X2)
e0 (X2)

� 1

e0 (X2)
H0 (X2)E

"�
L (X2)

�1
�
@q� (X)
@h0

��0�
L (X2)

�1
�
@q� (X)
@h0

�������X2
#�1

H0 (X2)
0

35
= E

�
�0 (X2)

e0 (X2)
� L (X2)

e0 (X2)
E
�
L (X2)

�1
�
@q� (X)
@h0

�����X2�

�E
"�

L (X2)
�1
�
@q� (X)
@h0

��0�
L (X2)

�1
�
@q� (X)
@h0

�������X2
#�1

E
�
L (X2)

�1
�
@q� (X)
@h0

�����X2�0 L (X2)0
35 ;

where L (X2)L (X2)
0 = �0 (X2) as above. Observe that

E
�
L (X2)

�1
�
@q� (X)
@h0

�����X2�

� E
"�

L (X2)
�1
�
@q� (X)
@h0

��0�
L (X2)

�1
�
@q� (X)
@h0

�������X2
#�1

E
�
L (X2)

�1
�
@q� (X)
@h0

�����X2�0 ;
is equal to the multivariate conditional linear predictor of the K � K identity matrix given L (X2)

�1
�
@q�(X)
@h0

�
evaluated at E

h
L (X2)

�1
�
@q�(X)
@h0

����X2i; therefore this object equals IK and we have

E
�
�0 (X)

p0 (X)
�H0 (X2)�

h
0 (X2)

�1H0 (X2)
0
�
= E

�
�0 (X2)

e0 (X2)
� L (X2)L (X2)

0

e0 (X2)

�
= 0;

as required.
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