ECDNSTOR

Working Paper

Small numbers matching markets: Unstable and inefficient due to overcompetition?

Discussion paper // European University Viadrina, Department of Business Administration and Economics, No. 270

Provided in cooperation with:

Europa-Universität Viadrina Frankfurt (Oder)

[^0]
Nutzungsbedingungen:

Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche,
räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen der unter
\rightarrow http://www.econstor.eu/dspace/Nutzungsbedingungen
nachzulesenden vollständigen Nutzungsbedingungen zu
vervielfältigen, mit denen die Nutzerin/der Nutzer sich durch die erste Nutzung einverstanden erklärt.

Terms of use:

The ZBW grants you, the user, the non-exclusive right to use the selected work free of charge, territorially unrestricted and within the time limit of the term of the property rights according to the terms specified at
\rightarrow http://www.econstor.eu/dspace/Nutzungsbedingungen
By the first use of the selected work the user agrees and declares to comply with these terms of use.

Email: bolle@euv-frankfurt-o.de
Email: otto @euv-frankfurt-o.de
15207 Frankfurt (Oder), Germany
insbesondere Wirtschaftstheorie (Mikroökonomie)
Postfach 1786
Europa-Universität Viadrina Frankfurt (Oder)
Lehrstuhl Volkswirtschaftslehre
KEYWORDS: Matching market, price negotiation, optimal allocation, altruism

әІІя Іәрәны

Small Numbers Matching Markets:
 inefficiency is possible). By defining the novel concept "altruistic core", we can explain the

 The extant literature on matching markets assumes ordinal preferences for matches, while
\mathcal{E}

 partner does. Because these preferences may be restricted to market behavior we prefer to

 II! 'əּ

 ио!̣эпро.диІ •I

 because they model a situation with ordinal rankings of partners. Their experiment reproduces a

 \& Pissarides, 2001, 2006; Fahr \& Sunde, 2004; Sunde 2007). (i.e., Crawford and Knoer, 1981; Bolle, 1985; Hosios, 1990; Fujita \& Ramey, 2006; Petrongolo market conditions such as the unemployment-vacancies structure and an information technology
 this and further simplifying assumptions (men and/or women are homogeneous). There are also (which is never empty in this problem). Becker (1974) investigates the marriage market under partners of a potential other match worse off. The set of such prices is equivalent to the core matches. Under these prices no other matches can be formed without making at least one of the

 experiments the partners in a match have to bargain about the distribution of their joint profit.
 For our investigation we will adopt this assumption of transferable utility. We want to find out

 for example, premature matches between hospitals and medical graduates, or between law clerks

 Gale and Shapley, 1962; Roth, 1984; Sasaki \& Toda, 1992; Wolfstetter, 1996; Nosaka, 2007;
 ${ }_{3}^{2}$ Kagel and Roth (2000) have conducted their experiments under the same information structure.

(1) (2)
 $w_{1}+f_{1}=\alpha, w_{2}+r_{2}=\delta, \quad w_{i}, f_{i} \geq 0$.

 Stable Set $=$ Neumann-Morgenstern solution. ${ }^{4}$ When matches $\mathrm{A}=\left\{\left(\mathrm{W}_{1}, \mathrm{~F}_{1}\right),\left(\mathrm{W}_{2}, \mathrm{~F}_{2}\right)\right\}$ are (defined later by Gillies, 1959) of the Matching Game is not empty. C is also equal to the unique matches $\}$. C is equal to the core, ${ }^{3}$ i.e. Koopmans and Beckmann (1957) showed that the core

 ano necessary information. the Shapley Value and of NBIT may be due to several reasons, one of these being the lack of information available, but we will not deal with this question directly. The weak performance of It may be an interesting question whether the bargaining process makes the necessary Value" and "Nash Bargaining with implicit threats (NBIT)" appear to require better information.

 $\tau^{\text {иопиешшоуи! јо }}$ The same applies for firms. In our experiments, we provided the subjects with exactly this type involved (W_{1} knows α and β) but not the productivities of matches of her competitor (γ and δ).

 иоџршиоғй
approaches" with unique predictions (or at least smaller solution sets).

 core. If inefficient matches are formed, we should find hardly any allocation in the anticore.

（10a）$f_{1}=w_{1}=\alpha / 2, f_{1}=w_{1}=\delta / 2$, or（10b）$\quad w_{1}=f_{2}=\beta / 2, w_{2}=f_{1}=\gamma / 2$
For $\mathrm{t}_{\mathrm{W} 1}=\mathrm{t}_{\mathrm{W} 2}=\mathrm{t}_{\mathrm{F} 1}=\mathrm{t}_{\mathrm{F} 2}=0$（threat $=$ ，，no match＂）the result is
（9a） $\mathrm{w}_{1}+\mathrm{f}_{1}=\alpha, \mathrm{w}_{2}+\mathrm{f}_{2}=\delta \quad$ or（9b）$\quad \mathrm{w}_{1}+\mathrm{f}_{2}=\beta, \mathrm{w}_{2}+\mathrm{f}_{1}=\gamma$ ．
here under the restriction that transfers are only possible within matches，i．e．
（8）$P=\left(w_{1}-t_{W_{1}}\right)\left(w_{2}-t_{W}\right)\left(f_{1}-t_{\mathrm{F} 1}\right)\left(\mathrm{f}_{2}-\mathrm{t}_{\mathrm{F} 2}\right)$ ， maximization of the Nash product firms（which are to be determined later）．The Nash Bargaining Solution results from the the matching market．Let $\mathrm{t}_{\mathrm{w}}, \mathrm{t}_{\mathrm{W} 2}, \mathrm{t}_{\mathrm{Fl}}, \mathrm{t}_{\mathrm{F} 2}$ be the threat values or＂outside options＂of workers and We now determine the Nash Bargaining Solution and a variant of it which is adapted to uoumios sulupp．ıng $4 S v_{N}$
the core．If $\alpha+\delta=\gamma+\beta$ then（4）and（6）as well as（5）and（7）coincide． Figure 1，the Shapley Values of Workers 1 and 2 are indicated as SV．They do not need to be in

 Appendix B）．We thus get a system of eight equations for the four threat values and the four offers Firm $1 \mathrm{f}_{1}^{* *}=\alpha-t_{\mathrm{W} 1}$ ．In the same way we can determine the other implicit threats（see

$[p-l+d-g]_{+}^{2}+m=z_{i}^{2} \quad(z 1)$ （ $\tau^{\prime}{ }^{\prime}{ }^{\prime} M$ ）доу иоب̣！puo

（00¢ ‘09I）	（0¢z ‘0¢z）	$0 \mathrm{t9}$
（00ع 091）	（0と－0と）	$\overline{09 t}$

（062 「0LI）	（0zを＇0tI）
（098＇0tI）	（0zを 0 ¢ ${ }^{\text {l }}$ ）
（00¢＇091）	

$[x-\ell+g-\rho] \frac{\tau}{\mathrm{I}}+{ }^{\prime} M={ }^{2} M \quad(\tau \mathrm{I})$

to confront the above purely strategic theories with the results of our experiment. results. In Section 5, we will explain inefficient matches by social preferences, but first we want investigating the bargaining process in detail. In this paper, however, we want to concentrate on players stick to inefficient matches. Boundedly rational behavior may be detected by boundedly rational or irrational behavior, from social preferences or, involuntarily, because other

$\gamma / 2)$ for matches B. In the case of efficient allocations in T1, T2, T4, and T5, NB and ES
coincide. the matches chosen. I.e. ($\mathrm{w}_{1}=\mathrm{f}_{1}=\alpha / 2, \mathrm{w}_{2}=\mathrm{f}_{2}=\delta / 2$) for matches A and ($\mathrm{w}_{1}=\mathrm{f}_{2}=\beta / 2, \mathrm{w}_{2}=\mathrm{f}_{1}=$

which is empty under the parameters of our treatment T4, but not so in treatments T5, T6.
$\frac{\tau}{\rho-l+g+x}>^{\prime} M>g-\rho \quad(t \mathrm{I})$ (13) is substituted by formed and are efficient. In both cases it describes the middle of the restrictions (1). Condition efficient matches (see Appendix B). Condition (12) remains unchanged if the matches B are Otherwise $w_{1}^{*}<t_{W 1} ; w_{2}^{*}<t_{W 2}$. With implicit threats, the Nash product is maximized with
 (12) and (13) indicate all possible Nash Bargaining Solutions with implicit threats. In

畣

$\frac{\tau}{\rho-l+g+x}>{ }^{\prime} M>\frac{\lambda}{g-l-x+\rho}$

 ∞

 negotiation phase of every treatment expired after ten minutes.

 the productivities of the two matches they could participate in, i.e. W_{1} was informed about α

 sequence of their roles in the six treatments. The instructions were then handed out (for the

observation.
 role $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~F}_{1}$, and F_{2} at least once. They took part either in the laboratory experiment (Lab) or subject was to interact with the same person more than three times. Every subject assumed each

 four subjects and assigned Worker $1\left(\mathrm{~W}_{1}\right)$, Worker $2\left(\mathrm{~W}_{2}\right)$, Firm $1\left(\mathrm{~F}_{1}\right)$, or Firm $2\left(\mathrm{~F}_{2}\right)$. The order

 рие s.әұюом омl ч!̣м иоп̣еm!

analyses the results of Lab and Class are pooled.
 communication between subjects increases the efficiency in every respect, but it does not
 are also more inefficient matches in the Lab (46%) than in the Class (34%). This difference is significant (Fisher test; p < .0001). Among the matches formed in Treatments 1, 2, 4, and 5 there

 strategic considerations do play a role because W_{2} is in a better position than F_{2} in Treatments 2, 4, and 6). Our first conclusion is that of the cases. ($\mathrm{f}_{1}<\mathrm{f}_{2}$ for 84.3% is smaller than the respective number in the case of the workers

 and W_{2} without consideration of the cases of zero income if no match is formed. (In appendix C ,

4. Results

 experiment.

-วdKı ploq u! ə.

 Table 2: Average results for W_{1} and W_{2} differentiated according to treatment, to matches A or
 fairness of one's negotiation partner.

differences are rather small and insignificant. Do they earn the same amount? Yes, they do. In the laboratory as well as in the classroom, the иоب!!!sod o! sunuld snsıan sıay..om
correlation coefficients with p <. 05 ($\mathrm{p}<.01$).
Table 5: Trend or learning effects in efficient/inefficient matches. * (**) indicates significant

 | ¢ | な |
| :---: | :---: | :---: |

the sequence presented to the subjects. spite of this, we look for influences of the variable "period", i.e. of the position of a treatment in

 ภицишәт
is a line in all treatments (except T4 where NBIT does not exist).

 in the case of inefficient matches, no results in Anticore B (in accordance with our expectations).
 area predicts (see Table 4). Selten's (1991) measure of predictive success for area theories is

 LIGN pun әıоว дчL
inefficient matches do NB and SV provide us with a satisfactory description of behavior results are larger than SV predicts. Therefore, not even if we disregard the contradictions by predicts. If matches A are efficient then 75% of the w_{1} results are smaller and 69% of the w_{2} in T4, T5, and $\mathrm{T} 678 \%$ of the w_{1} results are smaller and 87% of the w_{2} results are larger than NB most cases the bargaining results are not centered around NB or SV. In the (efficient) matches B и! ұеч ‘әәләмоч ‘мочs ว х!

 captured equally well by all models (AdjR^{2} between 0.2105 and 0.2256).

 ("match"). We computed both variants for all three models. incomes of all four participants ("group") or only that of the person she is matched with

(17) $U_{i}(x)=c_{i}+a_{i} x_{i}+b_{i} \sum_{j \neq i}$

 simple alternative to inequity theories we consider altruism in the formFor empirical purposes we specified $f\left(x_{i} / \sum_{j=1}^{n} x_{j}-\frac{1}{n}\right)=\left|x_{i} / \sum_{j=1}^{n} x_{j}-\frac{1}{n}\right|^{2}$. In addition, as a
(16) $\quad U_{i}(x)=c_{i} x_{i}-a_{i} f\left(x_{i} / \sum_{j=1}^{n} x_{j}-\frac{1}{n}\right)$

Second, Bolton and Ockenfels (2000, henceforth B\&O) assume
(15) $U_{i}(x)=c_{i} x_{i}-a_{i} \frac{1}{n-1} \sum_{j \neq i} \max \left\{x_{j}-x_{i}, 0\right\}-b_{i} \frac{1}{n-1} \sum_{j \neq i} \max \left\{x_{i}-x_{j}, 0\right\}$, $\mathrm{b}_{\mathrm{i}} \leq \mathrm{a}_{\mathrm{i}}$. Schmidt (1999, henceforth F\&S) suggest the utility function where it is assumed that $0<c_{i}$ and $0 \leq$ prominent models highlight the influence of inequality in outcome satisfaction. First, Fehr and answers (on a five point scale) could be explained by altruism or inequity theories. Two
 Figure 2: Percentage of participants with positive altruism coefficients depending on the number

 be used beyond their sign difficult to interpret. We think that the measurement of individual parameters is too imprecise to әле sұиәюџŋәо ұиеэц!

 inefficient results. Figure 2 shows that the sign of η_{i} has a considerable impact on the number of

 for i's own income (x_{i}) was $\mathrm{a}_{\mathrm{i}} \geq 0.001$ we determined $\eta_{i}=b_{i} / a_{i}$ as the normalized weight of "match" version, because only in this case complete information is guaranteed. If the coefficient

(21) $\mathrm{U}_{\mathrm{w} 1}{ }^{\prime}+\mathrm{U}_{\mathrm{F} 2}{ }^{\prime} \leq \mathrm{U}_{\mathrm{w} 1}+\mathrm{U}_{\mathrm{F} 2}$ and $\mathrm{U}_{\mathrm{w} 2}{ }^{\prime}+\mathrm{U}_{\mathrm{F} 1}{ }^{\prime} \leq \mathrm{U}_{\mathrm{w} 2}+\mathrm{U}_{\mathrm{F} 2}$
 characterized by allocations ($\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{f}_{1}, \mathrm{f}_{2}$) with
 formed then W_{1} enjoys the utilities $U_{w 1}^{\prime}$ where α is substituted by β, etc. describe W_{1} 's preferences. Respective utility functions apply for W_{2}, F_{1}, and F_{2}. If matches B are
(19) $U_{w 1}=w_{1}+\frac{a_{w 1}}{1-a_{w 1}} \alpha$.о
(18) $\tilde{U}_{w 1}=w_{1}+a_{w 1} f_{1}=\left(1-a_{w 1}\right) w_{1}+a_{w 1} \alpha$
addition to her own income, only that of her partner in the match. If a match A results then
 ${ }^{(* *)}$ indicates significant correlation coefficients with $\mathrm{p}<.1$ ($\mathrm{p}<.05$)

$\underset{\sim}{n}$

 with inefficient matches. Thus strong spite delivers an explanation for the occurrence of

 - $\underline{e}(g-\ell-\rho Z)=\tau Z_{\nabla}$

${ }^{\tau \tau} \nabla+g-\rho+{ }^{I} M<^{\tau_{M}} \mathcal{M}<{ }^{\mathrm{I}} \nabla+D-\ell+{ }^{\mathrm{I}} \mathrm{M} \quad(\varepsilon \tau)$ If matches B are formed, then

$\underline{p} 09 \varepsilon+0 t Z$	$\underline{p} \mathbf{0 9 \varepsilon}+\mathbf{0 8 I}$	$\underline{p} \mathbf{0 9 \varepsilon}+\mathbf{0 t} \boldsymbol{v}$	$\underline{p} 09 \varepsilon+08 \mathrm{I}$	$\underline{p} 08 t+09 \varepsilon$	$\underline{p} 08 t+0 t Z$	T	G

\mathbf{A}	\mathbf{L}	$\mathbf{1 2 0 - 1 2 0} \bar{a}$	$\mathbf{2 4 0 + 1 2 0} \bar{a}$	180	$360+240 \bar{a}$	$300+120 \bar{a}$	$240+120 \bar{a}$

 matches B is extremely large which prevents the high hit rate from being significant． shows that only T1 and T2 with matches B are rather unsatisfactory．The UAC of T6 with is due to the prominence of one point on the line．A closer look at the three insignificant cases （points in a grid with width of 1 ）of only 0.2% ．The hit rate of 20% even in this degenerate case \bar{a} ．Thus the UAC is equal to a line（and equal to the＂egoistic＂core）which has a relative area high values except in the case of T 3 with matches A ．There，the altruistic core does not vary with Selten＇s（1991）measure of predictive success（＝hit rate minus relative area of UAC）delivers there are significantly more results in the UAC than its area predicts．For the significant cases， $-1<\bar{a} \leq 0$ ．The UAC is defined as the union of all these altruistic cores．In 9 of the 12 cases and T6 all matches are efficient and altruistic cores exist for A and B matches and all results）is compared with the hit rates，i．e．the percentage of results in the UACs．Note that in T3 әโ！ example，we expect $\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ to lie between $\mathrm{w}_{2}=\mathrm{w}_{1}+180$ and $\mathrm{w}_{2}=\mathrm{w}_{1}+360(\bar{a}$ between 0 and altruistic cores（UAC）connected with the respective \bar{a}（see Table 7）．In T2 with matches A，for of mild and strong average spite within a group，we expect $\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ to lie in the union of all the consequences of mild spite $(-0.5 \leq \bar{a} \leq 0)$ and of strong spite $(-1<\bar{a} \leq-0.5)$ ．On the basis әи！̣шıəәр К
 does not contain any experimental result．

The main conclusions from our experimental matching markets are：

uo！ssnos！© pue uo！snjuog •9

the bargaining results pretty well． B the p－values are only 2% and 0.4% ）．Thus we still conclude that the altruistic core describes

 suggests according to a two－sided binomial test with $\mathrm{p}<.001$（ $\mathrm{p}<.02$ ）

 $\begin{array}{llllllllllllll}\text { Results in UAC } & 81.0^{*} & 33.3 & 66.7^{*} & 55.6 & 20.8^{*} & 100^{+} & 60.0^{+} & 95.2^{*} & 81.8^{*} & 100^{*} & 78.3^{*} & 84.6\end{array}$

$\varepsilon \mathrm{I}$	$\varepsilon 乙$	6 I	II	IZ	0 I	0 I	$\dagger 乙$	6	$\dagger Z$	ZI	IZ	N

LL T3

9L

University of Chicago and London, 299-344.

 Notes in Economics and Mathematical Systems, Managing Editors: Beckmann, M. and

Albers, W. (1986): Revealed Aspirations and Reciprocal Loyalty in Apex Games", in Lecture

Abdulkadiroglu, A. and Sönmez, T (1999): "House allocation with existing tenants", Journal of รәзиәәјәу to induce a strong competitive (spiteful) attitude in many people "flavor" of such preferences seems to depend, however, a lot on the situation. Bargaining seems experimental results concerning the interaction of a small number of agents. The dominating

 the bargaining process itself might provide insight. Here, we may find further explanations for concerns the influence of complete information. In addition, a closer look into the dynamics of competitors may reduce the deviation from the competitive equilibrium. Another question

 behavior, we describe them as overly-competitive. differences among our treatments. Because these preferences may be restricted to bargaining
 әиаәшпэо әч su!̣ן merging of the core concept with altruism resulting in the "altruistic core" is successful, developed "Nash bargaining with implicit threats") is generally supported by our data. The

Gale, D. and Shapley, L.S. (1962): "College Admission and the Stability of Marriage", American

 -698-LS8

Bolle, F. (1985): "Natural and Optimal Unemployment", Zeitschrift für die gesamte

Economic Theory, 70 (1), 93-110.
Sasaki, H. and Toda, M. (1992): "Two-Sided Matching Problems with Externalities", Journal of 88t-LSt ‘ح ‘6II sэ!иоиоэョ

Roth, A.E., Tayfun, S. and Utku, M. (2004): "Kidney Exchange", Quarterly Journal of 8ZSL-tZSI "0sZ

Roth, A.E. (1990): "New Physicians: A Natural Experiment in Market Organization", Science Problem", Journal of Economic Theory, 36 (2), 277-289.

Roth, A.E. (1985): "The College Admissions Problem Is Not Equivalent to the Marriage

Roth, A.E. (1984): "Misrepresentation and Stability in the Marriage Problem", Journal of

Petrongolo, B. and Pissarides, C. (2006): "Scale effects in markets with search", The Economic

Nosaka, H. (2007): "Specialization and competition in marriage models", Journal of Economic

Koopmans, T.J. and Beckmann, M. (1957): "Assignment problems and the location of economic Journal of Mathematical Economics, 21 (6), 509-521.

Kamecke, U. (1992): "On the uniqueness of the solution to a large linear assignment problem", Economics, 115(1), 201-235. Laboratory Experiment Motivated by a Natural Experiment", The Quarterly Journal of

Kagel, J.H. and Roth, A.E. (2000): "The Dynamics of Reorganization in Matching Markets: A 53(4), 435-446.

Huck, S. \& Normann, H.-T. \& Oechssler, J. (2004): "Two are few and four are many: number

Hosios, A.J. (1990): "On the efficiency of matching and related models of search and

$(\star \tau)$

Humboldt University)
 Experimental Economics 314.

 -L9I-ESI 'I66I 'IZ 'səวuә!̣s

 ио!̣ย!ољว

$$
\begin{aligned}
& \boldsymbol{g} \text { х!риада }
\end{aligned}
$$

equal to the unique Stable Set.
we cannot add any imputation to the core because it would be dominated. Therefore the core is cannot remove any imputation from the core because it could not be dominated. 2 . Shows that

 than under any core allocation. Therefore all payoff vectors in C are undominated.

 $\cdot \frac{\tau}{\rho-l+g+x}>+M>\frac{\tau}{g-l-x+g} \quad$ (8ع)
 $\cdot g+L_{M-}=2 \exists_{7} \quad(L \mathcal{E})$ $x-\ell+{ }^{\prime} M={ }^{\tau \mu}, \quad(9 \varepsilon)$ (35) $t_{F 1}=-w_{1}+\frac{1}{2}[\alpha+\beta+\gamma-\delta]$ $[\rho-x-l+g] \frac{\tau}{l}+{ }^{L} M={ }^{\prime} M_{l} \quad(\downarrow \varepsilon)$ The respective outside options are $[x-\ell+g-\Omega] \frac{\tau}{\mathrm{I}}+{ }^{1} M=^{{ }^{2} M} \quad(\varepsilon \varepsilon)$ only a linear condition for ($\mathrm{w}_{1}, \mathrm{w}_{2}$):
 Let us first regard the case where matches A are formed. Unfortunately, the system of the

$$
z \exists_{l}-g={ }_{*} L_{M} \quad(\mathrm{Ez} \mathrm{\varepsilon})
$$

$\tau M_{\beth}-\ell={ }_{*}^{1} \ddagger \quad\left(\mathbb{E}_{\text {I }} \mathcal{E}\right)$

$$
{ }^{1 M_{l}-g}={ }^{2} \mathrm{I} \quad(\mathrm{e} G Z)
$$

-(x!puәdde
 Firm 2 indifferent, i.e. Worker 1 offers the profit $\mathrm{f}_{2}^{*}=\beta-t_{w 1}$. If matches B result, Worker 1

 randomly by +/-5 Cents. The legend is the same in all treatments/matches and the shaded region
Results for Worker 1 (w1) and Worker 2 (w2). For illustration purposes the results are changed Appendix C
which is empty under the parameters of our treatment T4, but not so in treatments T5, T6.

$$
\text { (39) } \delta-\beta \leq w_{1} \leq \frac{\alpha+\beta+\gamma-\delta}{2}
$$

cases it describes the middle of the restrictions (1). Condition (38) is substituted by Condition (33) remains unchanged if the matches B are formed and are efficient. In both product must be smaller. T3 and T6 are degenerate cases but can be derived from $\alpha+\delta \rightarrow \beta+\gamma$. given threats and under the profitabilities $\alpha+\delta>\beta+\gamma$. With inefficient matches, the Nash consists of four equal factors $\frac{1}{2}[\alpha+\delta-\gamma-\beta]$. Thus, the Nash product is maximal under the

Is it possible that, with given outside options (threats) (20), (21), (22), (23), the Nash
$w_{1}^{*}<t_{W 1} ; w_{2}^{*}<t_{W 2}$. line is indicated as NBIT. The matches A can only be formed if they are efficient. Otherwise and (38) indicate all possible Nash Bargaining Solutions with implicit threats. In Figure 1 this

to set $\mathrm{t}_{\mathrm{F} 1}=0$ which leads to $\mathrm{w}_{1}=\frac{\alpha+\beta+\gamma-\delta}{2}$. We do not analyze the case $\delta+\alpha-\gamma-\beta>\alpha+\beta$

and the firm must first agree on the distribution of their joint profit
 hired by (matched with) firms. Matches are only possible between one worker and one firm.

 decisions you make as well as on your co-players' decisions. The following provides an

 $\boldsymbol{g}_{\text {x!puadd }}^{V}$

\boldsymbol{a} xipurdd $_{V}$

出

minutes, at which point all provisional agreements become binding.

Altruism (group) with $\mathrm{p}=.0015$ $(\mathrm{p}=.0003 ; \mathrm{p}=.0199 ; \mathrm{p}=.0269)$. For the Altruism model the parameter $\mathrm{x}_{\text {other }}$ is significant in addition, $\mathrm{x}_{\text {more }}$ in $\mathrm{F} \& \mathrm{~S}$ (group) and $\mathrm{x}_{\text {rel }}$ in $\mathrm{B} \& \mathrm{O}$ (group) as well as in $\mathrm{B} \& \mathrm{O}$ (match) are significant

Satisfaction $=1.85186+0.006193 x_{i}-0.00003834 x_{\text {other }} \quad\left[\mathrm{AdjR}^{2}=0.2108\right]$
Altruism (match): \quad Satisfaction $=1.533+0.063 x^{2}$
Satisfaction $=1.53453+0.006314 x_{i}+0.0009580 x_{\text {other }} \quad\left[\mathrm{AdjR}^{2}=0.2199\right]$ model are (with $x_{\text {other }}=\sum_{j \neq i} x_{j}$):
Altriism (group):
 different effects, in line with $\mathrm{F} \& S$, better describe experimental results. But the regression results

Satisfaction $\left.=1.972+0.00625 x_{i}-0.251\left(x_{\text {rel }}\right)^{0.1} \quad\left[\mathrm{AdjR}^{2}=0.2132\right)\right]$ $\mathrm{B} \& \mathrm{O}$ (match):
Satisfaction $=1.874+0.00644 x_{i}-4.761\left(x_{\text {rel }}\right)^{1.8} \quad\left[\mathrm{AdjR}^{2}=0.2139\right]$ $\mathrm{B} \& \mathrm{O}$ (group):
varied from 0.1 till 2.5 in steps of 0.1.
Regression results for $\mathrm{B} \& \mathrm{O}$ are with $x_{r e l}=\left|x_{i} / \sum_{i=1}^{n} x_{j}-\frac{1}{n}\right|$. The exponential parameter of $\mathrm{B} \& \mathrm{O}$ is
Satisfaction $=1.864+0.00622 x_{i}-0.000339\left(x_{\text {morer }}\right)-0.000343\left(x_{\text {less }}\right) \quad\left[\mathrm{AdjR}^{2}=0.2105\right]$
F\&S (match):
Satisfaction $=1.462+0.00916 x_{i}-0.00389\left(x_{\text {more }}\right)-0.0000508\left(x_{\text {less }}\right) \quad$ [AdjR $\left.{ }^{2}=0.2256\right]$
F\&S (group):
Regression results for F\&S are with $x_{\text {more }}=\sum_{j \neq i} \max \left\{x_{i}-x_{j}, 0\right\}$ and $x_{\text {less }}=\sum_{i \neq i} \max \left\{x_{j}-x_{i}, 0\right\}$ ${ }_{H}$ xipuradd $_{V}$

[^0]: Suggested citation: Otto, Philipp E.; Bolle, Friedel (2009) : Small numbers matching markets: Unstable and inefficient due to over-competition?, Discussion paper // European University Viadrina, Department of Business Administration and Economics, No. 270, http:// hdl.handle.net/10419/41403

