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Abstract

We study the properties of the well known Replicator Dynamics when applied to a finitely re-
peated version of the Prisoners’ Dilemma game. We characterize the behavior of such dynamics
under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the
basin of attraction of defection shrinks as the number of repetitions increases. After discussing
the difficulties involved in trying to relax the “strongly simplifying assumptions” above, we ap-
proach the same model by means of simulations based on genetic algorithms. The resulting
simulations describe a behavior of the system very close to the one predicted by the replicator
dynamics without imposing any of the assumptions of the mathematical model. Our main con-
clusion is that mathematical and computational models are good complements for research in
social sciences. Indeed, while computational models are extremely useful to extend the scope of
the analysis to complex scenarios hard to analyze mathematically, formal models can be useful
to verify and to explain the outcomes of computational models.
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1 Introduction

In the growing field of Agent-Based computer simulations applied to social sciences,
model replication is considered a key issue. Indeed, asserting whether the observed re-
sults of a particular simulation of a model are correct or generalizable is a difficult task
when no formal (i.e. mathematical) proof is provided. Only replication, comparison,
alignment, and other related techniques can shed some light on the validity of simu-
lations. See Axelrod (1997) for a methodological motivation on this and Hegselmann
& Will (2008), Will (2009), and Macy & Sato (2010) for an inspirational debate. The
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work by Izquierdo et al. (2009), for instance, shows that the alignment of computa-
tional and mathematical models can “assist researchers in understanding the dynamics
of simulation models” (Izquierdo et al., 2009). Our work contains one such compari-
son. We put side-by-side two different analysis (mathematical and computational) of
the same model: the evolution of strategies in the repeated prisoners’ dilemma.

We first consider, based on Imhof ez al. (2005), the case in which the evolutionary
system is described by a deterministic dynamic system that uses expected values. Using
strong simplifying assumptions the model can be solved, and a complete description of
how the process behaves is provided.

The second approach, based on Miller (1996), is a computational simulation in
which finite automata are used to represent the strategies played, and a decentralized
adaptive process based on the models of genetic algorithms simulates the stochastic
evolutionary process. With this technique we can relax some of the strong assumptions
used in the first approach and still obtain the same basic results.

We like to think that the limitations of the first approach (mathematical) provide
a good motivation for the second approach (Computer-Based simulations). Indeed,
although both approaches address the same problem, we show that the use of compu-
tational techniques allows us to relax hypothesis and overcome the limitations of the
mathematical approach. On the other hand, it is shown that the mathematical model is
extremely useful in order to explain the behavior and the causality of the results of the
computational model

The choice of the repeated prisoners’ dilemma to conduct the experiment described
above is not arbitrary. It is a well know and largely studied game, and many things
about it have been learned thanks to the tools of formal game theory. But when the
game is studied from an evolutionary perspective, the results are not always clear. The
findings in Boyd & Lorberbaum (1987) and Binmore & Samuelson (1992), for in-
stance, show that evolutionary stable solutions may fail to exists in many versions of
the game. On the other hand, experiments and simulations like those reported in Axel-
rod (1985), Axelrod & Hamilton (1981), Nowak & Sigmund (1992), or Miller (1996),
seem to suggest that Tit-for-tat (and other similar strategies) prevail in most scenar-
ios. Thus, the interest of our research is putting these two approaches, mathematical
and computational, side-by-side to achieve a better understanding of the evolutionary
behavior of players in the repeated prisoners’ dilemma

2 The Mathematical Model

The basic stage game (Prisoners’ Dilemma) that players will play repeatedly is given
by
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We now consider the repeated version of the game played a finite number of rounds
R. In order to have a tractable model, we only consider three possible strategies (as in
Imhof et al. (2005)):
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e D: Always defect
e C: Always cooperate
e T': Tit-for-Tat

as they are the three strategies that have deserved a higher attention in almost all the
literature dealing with the Repeated Prisoner’s Dilemma from an evolutionary point
of view. The fact that we only consider 3 possible strategies clearly imposes a strong
restriction to the analysis, as we will discuss later. Given the above, the repeated game
can be represented as follows

C D T
C [3R,3R 0,5R 3R,3R
D [ 5R,0 R.R 5+(R-1),(R—1)
T [3R3R | (R—1),5+(R—1) 3R,3R

Thus, for instance, when a D-type strategy meets a T-type strategy, the former gets
5 in the first round and then 1 in each subsequent round (5 + (R — 1) in total), while the
later gets O first and then 1 in each subsequent round (R — 1 in total).

2.1 The Replicator Dynamics analysis

Let p;(C) be the probability that, at time ¢, a player in this population is an “always
cooperate” type, and the same for p,(D) and p,(T). We thus have that p,(C) + p,(D) +
p(T)=1Vr.

The replicator dynamics states that the rate of change of such probabilities is a
function of the relative performance of each strategy with respect to the average per-
formance of the population. In this sense, given p;(C), p:(D), p:(T), the expected
payoff at time # for each strategy (E;7(-)) is:

E;m(C) = 3Rp:(C) +0p:(D) +3Rp,(T) = 3R(F(C) + p:(T))

E;7(D) = 5Rp:(C)+Rp,(D) + (5+ (R—1))pi(T)

En(T) =3Rp,(C) + (R—1)p:(D) +3Rp:(T) = 3R(P(C) + p«(T)) + (R—1)p:(D)
and thus the average payoff will be:
Eqt=En(C)p:(C)+En(D)p(D) +Ex(T)p(T)

Notice that since p;(C) + p;(D) + p;(T) = 1 V¢ only two dimensions matter.
Hence, the replicator dynamics in this case is given by:

8p,(C)
ot

= pi(C)(E;r(C) — Ei)
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8p,(D)
ot

The corresponding vector field showing the trajectories of the system is represented
in Figure 1, where the points a and b given by
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= p/(D)(E;n(D) — E,T)
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Fig. 1: Vector Field

The horizontal and vertical axis in Figure 1 correspond to p,(C) and p;(D) respec-
tively. Thus, the three vertexes of the triangle ((1,0), (0,1), and (0.0)), correspond to
the states p;(C) =1, p;(D) = 1, and p,(T) = 1 respectively.

The trajectories that represent the evolution of the system are divided in two areas or
basins of attraction, one for Defection and another for Cooperation. Thus, depending
on the location in the simplex of the initial probabilities at # = 0, (po(C), po(D)), the
system will evolve according to the corresponding path towards defection (the vertex
(0,1)) or cooperation (somewhere along the line (0,0) — (1,0)). It is clear that the
basin of attraction of cooperation grows as R becomes large. Indeed, we have that
a—landb—1asR—

Stationary points (rest points) of the system are marked red:
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e (0,1), that corresponds to everybody playing always defect p;(D) = 1,
e (0,a), which is a singular point,

e all the points in the line that goes from (0,0) to (1,0) that correspond to points
with no defectants, that is, p;(D) =0 and p,(C)+ p:(T) = 1.

Notice that only the point (0, 1) corresponding to p;(D) = 1 is asymptotically stable in
the sense that if the system is slightly perturbed away from (0, 1), any trajectory will
bring it back to the same point. The singular point (0,a), which is not asymptotically
stable, can only be reached if the system starts somewhere in the line that goes from
(0,a) to (b,0), which occurs with zero probability. Finally, points in the line (0,0) —
(1,0) are stationary but not stable.

An important result is that the relative size of these basins of attraction depends
on the number of repetition R. That is, if the system starts at random, the probability
of reaching the point (0,1) (p(0,1), everybody defecting) or the line (0,0) — (1,0)
(p((0,0) — (1,0)), everybody cooperating) depends on R.

P((0.0) = (10) = (R=H(=2)
p01) = 1-CR=D(E=2)

Thus, we can compute the expected per-round payoff (ET) as a function of R.

2R—4 R-2 2R—4 R-2

ﬁ)(ﬁ).3+(1_(7)(

Emt= -~
( 2R—-3"'R—1

))-1

Figure 2 shows the behavior of such expected per-round payoff as a function of R.
We observe that it grows rapidly as the number of repetitions (R) increases. In fact,
ET —+3asR— oo
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Fig. 2: Expected Payoff as a function of R

3 The Computational Model

Given the analysis above, the dynamics seem to suggest that there is room for coop-
eration. At least for a broad range of initial conditions, the trajectories lead to some
point in the horizontal axis corresponding to a population consisting of only C and T
strategies.

Nevertheless, such analysis is extremely partial since we are only considering 3
strategies at a time, namely C,D, and T. One can easily see that extending this approach
(mathematical) to a more general case (with more strategies considered) is a difficult
task as it would be extremely difficult to study the behavior of a dynamic system with
more than 2 dimension

To overcome this limitation, we develop a computer simulation' in which the strate-
gies are represented by finite automata of size four (encoded as binary strings of 0’s and
1’s) and a Genetic Algorithm routine is used to simulate the evolutionary process as in
Miller (1996). The algorithm was run for 5000 generations starting from an initial ran-
dom population of 100 strategies using the standard single-cut crossover operator and
with a probability of per-bit mutation of 0.005. In most of the cases, the results of such
simulations produce the outcome in Figure 3, in which the evolution of the (per round)

average payoff is displayed.

! The software used for this simulation consists of a set of routines written in ANSI C. It is available from
http://ideas.repec.org/c/aub/grecss/001.05.html
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Fig. 3: Evolution of the average per-round payoff when Cooperation is the result

Because the final average payoff is 3 we can conclude that all players follow a
cooperative strategy.

In other cases, though, cooperation is not the final result as the evolution of the
average payoff results as in Figure 4, which corresponds to the case of all the players
defecting.
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Fig. 4: Evolution of the average per-round payoff when Defection is the result

In both cases, though, the resemblance between the vector field in Figure 1 and the
evolution of payoffs in Figures 3 and 4 is very appealing:

e When the final result is cooperation (as in Figure 3), both in the replicator dy-
namic analysis and in the simulations, the evolutionary process seems to favor
the growth of Defectant strategies at first, and then these disappear and Cooper-
ative strategies start to replicate to end up with the payoff corresponding to the
cooperative behavior.

e On the contrary, when the final result is defection (as in Figure 4), the evolution
goes “monotonically” towards that point.

How often each of these two results occurs in the simulations ? Given that in the
mathematical model we have found that the answer to this question depends upon the
number of repetitions R, we check whether R also has an effect in the computational
model. In this sense, Figure 5 complements Figure 2 by showing how the final ob-
served average payoff of the simulations? (the payoff of generation 5000) depends on
R. For robustness, we perform such exercise with two different crossover rules (the
“canonical” single-cut crossover and a fifty-fifty crossover®) and with no crossover

2 For each value of R we run 1000 simulations and compute the average payoff of the last generation
(5000)

3 Fifty-fifty crossover consists of generating new binary strings in such a way that each “locus” of the new
string has 0.5 probability of being a copy of the corresponding locus of the “father” string and 0.5 probability

L)

of that of the “mather’s” string
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Fig. 5: Expected and observed payoffs as a function of R

Figure 5 shows to what extent the behavior of the simulations (curves marked “x”
and “*”’) resembles what we obtained mathematically in the previous section (‘“Theo-
retical” curve). We observe that, as the number of repetitions R grows, the higher is
the probability of reaching cooperation at the end and hence, the higher is the average
payoff, both theoretical and empirically.

In this sense, it seems that the use of Genetic Algorithms to simulate the evolution-
ary process closely matches the behavior predicted by the replicator dynamics while
avoiding the strong limitation of considering only 3 possible strategies.

To test “how close” these results (mathematical and computational) are, Figures 6
and 7 show how statistically significant is the hypothesis that the mean of the average
payoffs of the computational model equals the theoretical expected payoff of the math-
ematical model. To this purpose the dotted line corresponds to the lower end of a 95%
confidence interval

We observe that, specially in the case of the “canonical” single-cut crossover and
except for a few atypical observations, the results are significantly close.

4 Conclusions

We have studied the evolution of strategies in the well known Repeated Prisoner’s
Dilemma using two different approaches: one mathematical based on the replicator
dynamics and one computational based on genetic algorithms. We show that the results
obtained from the two approaches coincide to a great extent in the sense that,
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Fig. 6: Confidence analysis for the case of the Single Cut crossover
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1. The two approaches produce the same two possible outcomes: evolution towards
defection or evolution towards cooperation.

2. In the two approaches, the path towards the equilibrium are similar: monotonic
when going towards defection, non-monotonic when going towards cooperation

3. In the two approaches, the percentage of times each of the two possible results
occurs is also similar and depends on the number of repetitions of the game.

The scope of these conclusions, though, might be somehow limited. The reason is
that, while in the mathematical model only three strategies are considered (Always
cooperate, Always defect, and Tit-for-tat), the computational model deals with finite
automata of size 4, which can represent a very large number of different strategies.
Nevertheless, one generally observes that from a starting random population of strate-
gies (represented by finite automata), the genetic algorithm rapidly reduces the number
of “working” strategies and, at the end, only strategies similar to the three used in the
mathematical model appear. Also, in Vila (2008) we discuss other genetic algorithm
operators that can deal with this issue, and the results are not different from the ones
presented here. Another limitation of the present analysis is that it focuses exclusively
on the Repeated Prisoner’s Dilemma. On the one hand this might be considered a
good research strategy as such game has been extensively analyzed and it is very easy
to put in contrast the results obtained here with other results in the literature. On the
other hand the same technique should be tested with other games to verify the con-
clusions drawn in this paper, which is the topic of future research. Nevertheless, in
Vila (2008) a similar approach (combining mathematical and computational models)
has been used to study a model of Bertrand competition with strategic sellers and buy-
ers and the results there corroborate the main findings here: the outcomes from the
replicator dynamics model and from the genetic algorithms model coincide to a high
degree.

The results of this research seem to suggest that, in our opinion, mathematical and
computational models are good complements for research in social sciences. Indeed,
while on the one hand computational models are extremely useful to extend the scope
of the analysis to complex scenarios hard to analyze mathematically, on the other hand
formal models can be extremely useful to verify and to explain the outcomes of com-
putational models without the need of resorting to verbal or ad-hoc explanations. For
instance, in the particular example studied in this paper, a researcher looking only at
the results of the computational model might conclude that the model is somehow in-
conclusive. Indeed, for the same set of initial conditions the simulation may end in “all
cooperating” or “all defecting”, as we have seen in section 3 (Figures 3 and 4). Only
the knowledge of a formal mathematical model that is aligned with the computational
model can rigorously explain this apparently puzzling result.
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