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A Range-Based GARCH Model for Forecasting Volatility 
 

 
Dennis S. Mapa1

 
 
 

ABSTRACT 
 

A new variant of the ARCH class of models for forecasting the conditional 
variance, to be called the Generalized AutoRegressive Conditional 
Heteroskedasticity Parkinson Range (GARCH-PARK-R) Model, is proposed. The 
GARCH-PARK-R model, utilizing the extreme values, is a good alternative to the 
Realized Volatility that requires a large amount of intra-daily data, which remain 
relatively costly and are not readily available. The estimates of the GARCH-
PARK-R model are derived using the Quasi-Maximum Likelihood Estimation 
(QMLE). The results suggest that the GARCH-PARK-R model is a good middle 
ground between intra-daily models, such as the Realized Volatility and inter-daily 
models, such as the ARCH class.  The forecasting performance of the models is 
evaluated using the daily Philippine Peso-U.S. Dollar exchange rate from 
January 1997 to December 2003. 
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I.  INTRODUCTION 
 

Since the introduction of the seminal paper on AutoRegressive Conditional 

Heteroskedasticity (ARCH) process of Robert Engle in 1982, researches on 

financial econometrics have been dominated by extensions of the ARCH 

process. One particular difficulty experienced in evaluating the various ARCH-

type of models is the fact that volatility is not directly measurable – the 

conditional variance is unobservable. The absence of such a benchmark that we 

can use to compare forecasts of the various models makes it difficult to identify 

good models from bad ones.  

 

Anderson and Bollerslev (1998) introduced the concept of “realized volatility” 

from which evaluation of ARCH volatility models are to be made. Realized 
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volatility models are calculated from high-frequency intra-daily data, rather than 

inter-daily data. In their seminal paper, Anderson and Bollerslev collected 

information on the DM-Dollar and Yen-Dollar spot exchange rates for every five-

minute interval, resulting in a total of 288 5-minute observations per day! The 288 

observations were then used to compute for the variance of the exchange rate of 

a particular day. Although volatility is an instantaneous phenomenon, the concept 

of realized volatility is by far the closest we have to a “model-free” measure of 

volatility.   

 

Obviously, there is a trade-off when one is interested in estimating the conditional 

variance using realized volatility. While it may provide a model-free estimate of 

the unknown conditional variance, the data requirement (getting observation 

every 5 minutes, for instance) is simply enormous. In the case of the Philippines, 

the Philippine Stock Exchange (PSE) starts trading at 9:30 a.m. up to 12:00 

noon, for a total of 150 minutes of trading time or 30 5-minute observations. 

Given the low market activity, it is highly probable that the price of a particular 

stock will not move during that 5-minute period. The same problem might be 

encountered in the foreign exchange market in the Philippine Dealing System 

(PDS). Data problem may hinder the use of realized volatility for emerging 

markets such as the Philippines.    

 

An alternative approach to model volatility using intra-daily data is through the 

use of the range, the difference between the highest and lowest values for the 

day. The range is the popular measure of volatility (the standard deviation) in the 

area of quality control. The range is convenient to use, especially for researchers 

who do not have access to information on the trading floors of various markets, 

since major newspapers normally report the highest and lowest values of assets 

(stock prices, currencies, interest rates, etc.), together with the opening and 

closing prices.  
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This paper proposes the use of the Range, specifically the Parkinson Range, in 

estimating the conditional variance. The model will be called the Generalized 

AutoRegressive Conditional Heteroskedasticity Parkinson Range (GARCH-

PARK-R) model. This paper is organized as follows: section 1 serves as the 

introduction, section 2 discusses the ARCH process and its extensions. Section 3 

introduces the concept of realized volatility. The GARCH-PARK-R model and the 

estimation procedure are discussed in section 4. Section 5 provides the empirical 

results and section 6 concludes. 

 

II. The ARCH Process and its Extensions 
 

In this section, the ARCH process will be defined and some of its important 

properties discussed. Hopefully, doing it at this early stage will serve two 

purposes. First is to acquaint the readers of the ARCH process for them to fully 

appreciate the survey of the literature discussed.  Secondly, for them to have a 

better understanding of the important properties of the ARCH process that made 

it very attractive in modeling financial time series. 

 

Let {ut(θ), t ∈ (…,-1,0,1,…)} denote a discrete time stochastic process with the 

conditional mean and variance functions having parameterized by the finite 

dimensional vector θ ∈ Θ ⊆ ℜm and let θo denote the true value of the parameter.  

 

Let E[(•)| Ιt-1] or Et-1(•) denote the mathematical expectation conditioned on the 

information available at time (t-1), Ιt-1. 

 

Definition 1. In the relationship, ut = Ztσt, the stochastic process {ut(θ), t ∈ (-∞, ∞)} 

follows an ARCH process if: 

   

a. E (ut(θo) | Ιt-1) = 0, for t = 1,2, … 
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b. Var (ut(θo) | Ιt-1) = σt
2(θo)  depends non-trivially on the sigma 

field generated by the past observations, { ut-1
2(θo), ut-2

2(θo), …}. 

 

σt
2(θo) ≡ σt

2 is the conditional variance of the process, conditioned on the 

information set Ιt-1. The conditional variance is central to the ARCH process. 

 

Letting Zt (θo) = ut (θo)/σt (θo), t = 1,2, … we have the standardized process { Zt 

(θo) t ∈ (-∞, ∞)} and it follows that, 

 

(i) E [Zt (θo) | Ιt-1]  = 0  ∀ t  

(ii) Var [Zt (θo) | Ιt-1] = 1   ∀ t 

 

Thus, the conditional variance of Zt (.) is time invariant. Moreover, if we assume 

that the conditional distribution of Zt(.) is time invariant with a finite fourth 

moment, it follows from Jensen’s inequality that, 

 

E(ut
4) = E(Zt

4)E(σt
4) ≥ E(Zt

4) [E(σt
2)]2 = E(Zt

4) [E(ut
2)]2   

 

with the last equality holding only when the conditional variance is constant. 

Assuming that Zt(.) is normally distributed, it follows that the unconditional 

distribution of ut is leptokurtic.  

 

Engle (1982) has shown that for the first order or ARCH(1) process,  

 

σt
2 = αo + α1ut-1

2  (1) 

 

the unconditional variance and the fourth moment for this process are, 

respectively, given by, 



 5

1

02
1

)(
α

α
−

=tuE

 

( ) ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
=

2
1

2
1

2
1

2
04

31

1
1

3
)(

α

α
α

α
tuE

 

 

The condition for the variance to be finite is that α1 < 1 and for the fourth 

moment, 3α1
2 < 1.  

 

It implies that E(ut
4)/ E[(ut

2)]2 ≥ E(Zt
4). Thus, for the first order ARCH process, 
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This result implies that the ARCH (1) process is a heavy-tailed distribution, that 

is, the process generates data with fatter tails than the normal distribution. This 

particular characteristic of the ARCH process is relevant in modeling financial 

time series, like stock returns and asset prices, since these series tend to have 

thick-tailed distributions.   

 

In general, the ARCH (q) process can be defined as, 

)2(22
22

2
11

2
qtqttt uuu −−− ++++= αααωσ L

 

For this model to be well defined and have a positive conditional variance almost 

surely, the parameters must satisfy ω > 0 and α1, …, αq ≥ 0. We will see later that 

for the Generalized ARCH or the GARCH process, this condition can be made 

less stringent.  
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Following the natural extension of the ARMA process as a parsimonious 

representation of a higher order AR process, Bollerslev (1986) extended the work 

of Engle to the Generalized ARCH or GARCH process. In the GARCH (p,q) 

process defined as, 
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the conditional variance is a linear function of q lags of the squares of the error 

terms (ut
2) or the ARCH terms (also referred to as the “news” from the past) and 

p lags of the past values of the conditional variances (σt
2) or the GARCH terms, 

and a constant ω. The inequality restrictions are imposed to guarantee a positive 

conditional variance, almost surely.  

 

2.2.2. The Exponential GARCH (EGARCH) Process 

The GARCH process being an infinite or a higher order representation of the 

ARCH process captures the empirical regularities observed in the time series 

data such as thick-tailed distributions and volatility clustering. However, the 

GARCH process fails to explain the so-called “leverage effects” often observed in 

financial time series. The concept of leverage effects, first observed by Black 

(1976), refers to the tendency for changes in the stock prices to be negatively 

correlated with changes in the stock volatility. In other words, the effect of a 

shock on the volatility is asymmetric, or to put it differently, the impact of a “good 

news” (positive lagged residual) is different from the impact of the “bad news” 

(negative lagged residual).  
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The GARCH process, being symmetric, fails to capture this phenomenon since in 

the model, the conditional variance is a function only of the magnitudes of the 

lagged residuals and not their signs.  

A model that accounts for an asymmetric response to a shock was credited to 

Nelson (1991) and is called an Exponential GARCH or EGARCH model.  The 

specification for the conditional variance using the EGARCH (p,q) is, 
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The log of the conditional variance implies that the leverage effect is exponential 

rather than quadratic. A commonly used model is the EGARCH (1,1) given by,   
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The presence of the leverage effects is accounted for by γ, which makes the 

model asymmetric. The motivation behind having an asymmetric model for 

volatility is that it allows the volatility to respond more quickly to falls in the prices 

(bad news) rather than to the corresponding increases (good news). 

 

2.2.3. The Threshold GARCH (TARCH) Process 

Another model than accounts for the asymmetric effect of the “news” is the 

Threshold GARCH or TARCH model due independently to Zakoïan (1994) and 

Glosten, Jaganathan and Runkle (1993). The TARCH (p,q) specification is given 

by, 
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In the TARCH model, “good news”, ut-i > 0 and “bad news”, ut-i < 0 have different 

effects on the conditional variance. When γk ≠ 0, we conclude that the news 

impact is asymmetric and that there is a presence of leverage effects. When γk = 

0 for all k, the TARCH model is equivalent to the GARCH model. The difference 

between the TARCH and the EGARCH models is that in the former the leverage 

effect is quadratic while in the latter, the leverage effect is exponential. 

 

2.2.4. The Power ARCH (PARCH) Process 

Most of the ARCH-type of models discussed so far deal with the conditional 

variance in the specification. However, when one talks of volatility the appropriate 

measure is the standard deviation rather than the variance as noted by 

Barndorff-Nielsen and Shephard (2002). A GARCH model using the standard 

deviation was introduced independently by Taylor (1986) and Schwert (1989). In 

these models, the conditional standard deviation as a measure of volatility is 

being modeled instead of the conditional variance. This class of models is 

generalized by Ding et al. (1993) using the Power ARCH or PARCH model. The 

PARCH specification is given by, 
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Note that in the PARCH model, γ ≠ 0 implies asymmetric effects. The PARCH 

model reduces to the GARCH model when δ = 2 and γi = 0 for all i.  
 
 
III. The Realized Volatility 
 

Let Pn,t denote the price of an asset (say US$ 1 in Philippine Peso) at time n ≥ 0 

at day t, where n = 1,2,…,N and t=1,2,…,T. Note that when n=1, Pt is simply the 

inter-daily price of the asset (normally recorded as the closing price). Let pn,t = 

log(Pn,t), denote the natural logarithm of the price of the asset. The observed 

discrete time series of continuously compounded returns with N observations per 

day is given by,  

)7(,1,, tntntn ppr −−=
 

 When n=1, we simply ignore the subscript n and rt = pt – pt-1 = log(Pt) – log(Pt-1) 

where t= 2,…,T. In this case, rt is the time series of daily return and is also the 

covariance-stationary series. In (7), we assume that: 

 

(a) E(rn,t) = 0 

(b) E(rn,t rm,s) = 0 for n ≠ m and t ≠ s 

(c) E(rn,t
2 rm,s

2) < ∞ for n,m,s,t 

 

Assumption (a) implies that the mean return which follows from the fact that the 

log prices, pt, follow an i.i.d. random walk process without a drift, 
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Following (8), rn,t = pn,t – pn-1,t = εn,t and thus, E(rn,t) = E(εn,t) = 0. Assumption (b) 

follows from the fact that εn,t are i.i.d. and from (a) which gives us E(rn,t rm,s)=E(εn,t  

εm,s) = 0. Assumption (c) states that the variances and co-variances of the 

squared returns exist and are finite. This follows from the fact that E(rn,t
2 

rm,s
2)=E(εn,t

2 εm,s
2) < ∞ for n,m,s,t. 

 

From (7), the continuously compounded daily return (Campbell, Lo, and 

Mackinlay, 1997 p.11) is given by, 
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and the continuously compounded daily squared returns is, 
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Note that σt
2 =  Var(rt) = E(rt

2) since E(rt) = 0. From (10) and using assumption (b) 

of (7) above, we have, 
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Thus, the sum of the intra-daily squared returns is an unbiased estimator of the 

daily population variance. The sum of the intra-daily squared returns is known as 
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the realized volatility (also called the realized variance by Barndorff-Nielsen and 

Shephard (2002)). Given enough observations for a given trading day, the 

realized volatility can be computed and is a model-free estimate of the 

conditional variance. The properties of the realized volatility are discussed in 

Anderson, Bollerslev, Diebold and Labys (1999). In particular, the authors found 

that the realized volatility is a consistent estimator of the daily population 

variance, σt
2. 

 

 
IV. The GARCH-PARK-R Model 
 

While the concept of realized volatility does provide a highly efficient way of 

estimating the unknown conditional variance, the problem of generating 

information on the price of an asset every five minutes or so is simply enormous. 

An alternative measure is to use extreme values, the highest and lowest prices of 

an asset, to produce two intra-daily observations. The range, the difference 

between the highest and lowest log prices, is a good proxy for volatility. The 

range has the advantage of being available for researchers since high and low 

prices are available daily for a variety of financial time series such as price of 

individual stock, composite indices, Treasury bill rates, lending rates, currency 

prices and the like.  

 

The log range, Rt, is defined as, 
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where P(N),t is the highest price of the asset at day (or time) t and P(1),t is the 

lowest price of the asset at day t. 

 

The log range is superior over the usual measure of volatility based on daily data, 

the square return rt
2 = log(Pt) – log(Pt-1). Alizadeh, Brandt and Diebold (2001) 
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noted that the log range is a better measure of volatility in the sense that the log 

range has fewer measurement errors compared to the squared-returns. For 

instance, on a given day, the price of an asset fluctuates substantially throughout 

the day but its closing price happens to be very close to the previous closing 

price. If we use the inter-daily squared return, the value will be small despite the 

large intra-daily price fluctuations. The log range, using the highest and lowest 

values, reflects a more precise price fluctuations and can indicate that the 

volatility for the day is high.  

 

Moreover, the log range can be approximated by a Gaussian distribution quite 

well. The distribution of the range was first derived by Feller (1951) using a drift-

less Brownian motion process.  

 

As compared to the realized volatility, the log range has the advantage of being 

robust to certain market microstructure effects. These microstructure effects, 

such as the bid-ask spread, are noises that can affect the features of the time-

series. The bid-ask spread is a common type of microstructure effect. Most 

markets require liquidity, giving way to a practice of granting monopoly rights to 

the so-called “market makers.” Such monopoly rights, granted by the exchange, 

allow the market makers to post different prices for buying and selling, they buy 

at a bid price Pb and sell at a higher price Pa. The difference in the prices, Pa – Pb 

is known as the spread. Although in practice, such spread is rather small, its 

presence increases the volatility of the intra-daily squared returns, the input in the 

realized volatility, making the estimates biased upward. The log range, on the 

other hand, is not seriously affected by the bid-ask spread. There are other 

factors that create unnecessary noise in the intra-daily realized volatility such as 

regulatory rules imposed on the market. One such rule is the lifting of trading 

restrictions in the foreign exchange market for Japanese banks during the Tokyo 

lunch period resulting to higher volatility as documented by Anderson, Bollerslev 

and Das (1998).  
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Parkinson (1980) was the first to make use of the range in measuring volatility in 

the financial market. Parkinson developed the PARK daily volatility estimator 

based on the assumption that the intra-daily prices follow as Brownian motion. 

This study will make use of the PARK Range in modeling time-varying volatility. 

The model will be called the Generalized Auto-Regressive Conditional 

Heteroskedasticity Parkinson Range (GARCH-PARK-R) model. 

 

 

 

Consider the covariance-stationary time series {Rpt} where,  

 

)13(,,2,1
)2log(4

)log()log( ),1(),( Tt
PP

R ttN
Pt

K=
−

=

 

RPt is the PARK-Range of the asset at time t. Moreover, let RPt ≥ 0 for all t and 

that P(RPt < δ| RPt-1, RPt-2,…) > 0 for any δ > 0 and for all t. This condition states 

that the probability of observing zeros or near zeros in RPt is greater than zero.  

 

Let,  

μt = E[RPt| It-1] be the conditional mean of the PARK range 

and 

σt
2 = Var[RPt|It-1] be the conditional variance of the PARK range 

  

The motivation behind the GARCH-PARK-R model is the Auto-Regressive 

Conditional Duration (ACD) model of Engle and Russel (1998) used to model 

observations that arrive at irregular intervals.  
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The model in (14) is known as the GARCH-PARK-R process of orders p and q. 

The mean and variance of the PARK range are given by, 
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The GARCH-PARK-R model is similar to the Conditional Auto-Regressive Range 

(CARR) model suggested by Chou (2003). Two differences between this study 

and that of Chou’s are to be clarified. First, this study uses the Parkinson range 

to study volatility instead of the usual log range (Chou’s measure). The Parkinson 

range has been found to be a better estimator of volatility (standard deviation). 

The second difference is the use of the data, this study makes use of the daily 

data while Chou’s paper used weekly data. Weekly data may have distorted 

estimates due to the presence of aggregation effect that is why the author of this 

paper used the daily data instead. 

 

For the density function of εt in (14), this study follows the suggestion of Engle 

and Russel (1998) and Engle and Gallo (2003) of using the gamma density, 
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Since E(εt) = αβ = 1 (by assumption in (14)), it implies that α = 1/β. Thus (16) 

now becomes, 
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From (17), the conditional mean and variances of RPt are,  
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The density function in (17) approaches the Gaussian density as α increases. 

Moreover, the likelihood function is given by, 

 

( ) ( ) ( ) )18(exp1 1

1 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

Γ
∏= −−

= t

P
tP

T

t

t
t

R
RL

μ
αμα

α
ααα

 

If the parameter of interest are only those that define μt in (14), denoted by μt(θ), 

then the log likelihood can be simplified into, 
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Taking the derivative of the log likelihood function with respect to θ, we have, 
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The parameter vector θ in (20) can be estimated numerically using some iterative 

algorithms such as the Marquardt or the BHHH. 

 

An easier way of estimating the parameter vector θ is to apply the method of 

estimating the parameters of a GARCH (p,q) process. Recall that in the GARCH 

(p,q) process discussed in section 2,  
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For the GARCH-PARK-R process let, 
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Thus, an analogous method of estimating the parameter vector θ is to estimate 

the variance equation for the positive square root of the PARK R using GARCH 

(p,q) specification with zero in the mean specification. The Quasi-Maximum 

Likelihood estimators are consistent and distributed as Gaussian asymptotically 

even if the probability density function of the error is mis-specified following the 

results of Lee and Hansen and Lumsdaine for the GARCH (1,1) and Berkes et al 

for the GARCH (p,q) process. Obviously, if the correct specification is satisfied, 

for instance using the gamma distribution, the QMLE is the MLE and the 

estimators are asymptotically efficient. Therefore, a trade-off has to be made. 

This study will make use of the QMLE and aspire for consistency and asymptotic 

normality of the estimators. The data and the results of the empirical analysis are 

discussed in the next chapter.  

 

 

V. Empirical Results  
 

This chapter discusses the results of forecasting the conditional variance using 

the different ARCH and GARCH-PARK-R models.  In this study, a total of 77 

models were estimated: 68 ARCH-type models and 9 GARCH-PARK-R models. 

The model specifications are provided in Tables 1A and 1B below. 
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Table 1A. Specification for ARCH-type Models * 
Model Specification Model Specification 

1 ARCH (1) 10 TARCH (1,1) 

2 GARCH (1,1) 11 TARCH (1,2) 

3 GARCH (1,2) 12 TARCH (2,1) 

4 GARCH (2,1) 13 TARCH (2,2) 

5 GARCH (2,2) 14 PARCH (1,1) 

6 EGARCH (1,1) 15 PARCH (1,2) 

7 EGARCH (1,2) 16 PARCH (2,1) 

8 EGARCH (2,1) 17 PARCH (2,2) 

9 EGARCH (2,2)   

* The 17 models are estimated via the MLE using the Gaussian, Student’s t and the Generalized 

Error Distribution and using the QMLE resulting to 68 models. 

 

Table 1B. Specification for GARCH PARK R Models* 
Model Specification Model Specification 

1 ARCH (1) 6 EGARCH (1,1) 

2 GARCH (1,1) 7 EGARCH (1,2) 

3 GARCH (1,2) 8 EGARCH (2,1) 

4 GARCH (2,1) 9 EGARCH (2,2) 

5 GARCH (2,2)   

* The models are estimated using QMLE. 

 

These models were estimated to fit the daily returns of the peso-dollar exchange 

rate from January 02, 1997 to December 05, 2003, a total of 1730 observations.  

 

Following the approach of Hansen and Lunde (2001), the time series was divided 

into two sets, an estimation period and an evaluation period. 

 

t 43421 K43421 K
periodevaluationperiodestimation

n,,2,10,,1T−= +
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The parameters of the volatility models are estimated using the first T inter-daily 

observations and the estimates of the parameters are used to make forecasts of 

for the remaining n periods. The estimation period made use of daily returns from 

January 02, 1997 to December 27, 2002, a total of 1493 observations.   

 

In the evaluation period the daily volatility is estimated using the square of the 

Parkinson R, defined in (31). The square of the PARK R serves as the proxy for 

the unknown conditional variance.  The evaluation period makes use of daily 

returns from January 02, 2003 to December 05, 2003, a total of 237 

observations. 

 

 
5.2. Loss Functions 
  

Let h denote the number of competing forecasting models. The jth model provides 

a sequence of forecasts for the conditional variance, 

hjnjjj ,,2,1ˆ,,ˆ,ˆ 2
,

2
2,

2
1, KK =σσσ

 

 

that will be compared to the square of the Parkinson range, the proxy of the intra-

daily calculated volatility, 

 

nPP RR 22 ,,
1
K

 

The forecast of jth model leads to the observed loss, 
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In this study, five (5) different loss functions are used to evaluate the forecasting 

performance of the different models. The loss functions are: 
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The criteria (21) to (24) are the usual mean absolute deviations and mean square 

errors using the forecasts of the conditional standard deviation and the 

conditional variance. 

 

Criterion (25) is equivalent to the R2 criterion using the regression equation, 
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discussed in Engle and Patton (2001) and Taylor (1999).   

 

The results of the forecasting performance are provided in Table 2 of the 

Appendix of this study. The “best” 10 models are shown in Table 3 below. The 

best over-all ARCH model is the TARCH (2,2) model with the Student’s t as the 

underlying distribution. The second “best” model is the PARCH (2,2) model, also 

using the Student’s t distribution.  

 

Table 3. Forecasting Performance of the Top 10 ARCH Models  
MAD1 MAD2 MSE1 MSE2 R2LOG 

Model  Mean Model  Mean Model  Mean Model  Mean Model  Mean 
t 13 9.1000E-04 t 13 5.3400E-06 t 13 1.7100E-06 t 13 9.1500E-11 t 13 1.1105E+00
t 17 9.5000E-04 t 17 5.7200E-06 t 17 1.9000E-06 GED 7 9.6700E-11 t 17 1.1435E+00
GED 12 1.0320E-03 GED 12 6.2700E-06 GED 12 2.1200E-06 t 17 1.0900E-10 GED 15 1.3438E+00
GED 4 1.0360E-03 GED 4 6.3900E-06 GED 4 2.1800E-06 GED 12 1.1200E-10 GED 4 1.3476E+00
GED 15 1.0460E-03 GED 15 6.5400E-06 GED 5 2.2300E-06 GED 4 1.1500E-10 GED 5 1.3494E+00
GED 10 1.0480E-03 GED 5 6.5700E-06 GED 7 2.2300E-06 GED 5 1.2200E-10 GED 10 1.3549E+00
GED 11 1.0570E-03 GED 19 6.6100E-06 GED 15 2.2600E-06 GED 15 1.2600E-10 GED 12 1.3561E+00
GED 5 1.0580E-03 GED 11 6.6500E-06 GED 10 2.3100E-06 GED 6 1.2800E-10 GED 11 1.3590E+00
GED 14 1.0580E-03 GED 14 6.6800E-06 GED 11 2.3200E-06 GED 17 1.3000E-10 GED 14 1.3647E+00
GED 3 1.0800E-03 GED 3 6.8200E-06 GED 14 2.3200E-06 GED 10 1.3100E-10 GED 3 1.3876E+00

 

 

From Table 3, it is interesting to note that models using the Generalized Error 

Distribution performed relatively well using the five forecasting criteria, with 8 out 

of 17 models landing in the top 10 models. In general, the models with relatively 

superior forecasting performance, using the peso-dollar exchange rate, are those 

that accommodate the leverage effects such as the TARCH, PARCH and 

EGARCH. However, while the correct specification of the volatility is important, 

one must also consider the distribution used in estimating the parameters of the 

model.  

 

The results in Table 2 showed that volatility models that assumed the Gaussian 

distribution or those that used the QMLE performed worst compared to models 

that assumed the Student’s t or Generalized Error distributions. Therefore, it is 
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important to correctly specify the entire distribution and not only to focus on the 

specification of the volatility, even if it is the object of interest. A similar 

observation was made in the study of Hansen and Lunde (2001).   

 

Using the five criteria discussed above the forecasting performance of the 

GARCH – PARK – R models are given in Table 4. The top three models are 

GARCH (1,2), (2,1) and (1,1). It should be noted that while the GARCH (1,2) and 

the GARCH (2,1) have outperformed, albeit slightly, the GARCH (1,1), the latter 

is preferred since the coefficients α and β are significantly different from zero.  

 
Table 4. Forecasting Performance of the GARCH-PARK-R Models 

PARK R Model MAD1 MAD2 MSE1 MSE2 R2LOG 
  Mean  Mean  Mean  Mean  Mean 

GARCH (1,2) 9.2600E-04 5.2700E-06 1.4200E-06 7.3700E-11 1.0403E+00
GARCH (2,1) 9.3800E-04 5.3700E-06 1.4600E-06 7.6400E-11 1.0501E+00
GARCH (1,1) 9.4300E-04 5.4100E-06 1.4800E-06 7.7900E-11 1.0540E+00
GARCH (2,2) 9.4400E-04 5.4200E-06 1.4800E-06 7.8200E-11 1.0544E+00

EGARCH (1,1) 1.0600E-03 6.1600E-06 1.7400E-06 8.6600E-11 1.2204E+00
EGARCH (2,1) 1.0610E-03 6.1800E-06 1.7500E-06 8.7800E-11 1.2221E+00
EGARCH (1,2) 1.0620E-03 6.1900E-06 1.7600E-06 8.8800E-11 1.2231E+00

ARCH (1) 1.1760E-03 7.0300E-06 2.1300E-06 1.1300E-10 1.3375E+00
EGARCH (2,2) 1.2450E-03 7.5800E-06 2.4900E-06 1.3000E-10 1.4849E+00

 

 

As expected, the GARCH-PARK-R models performed better than most of the 

ARCH-type models. This is expected since the proxy for the conditional variance 

in the evaluation period is the square of the Parkinson range.  However, it is 

interesting to note that the forecasting performance of the “best” ARCH-type 

model, the TARCH (2,2) model with a student’s t distribution, is relatively near 

the “best” GARCH-PARK-R model. The results somewhat provide an assurance 

that volatility models using inter-daily data can forecast the conditional variance 

rather well (at least using the Parkinson range).  
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VI. Conclusion 
 

This paper introduced a relatively simple, yet efficient, model to describe the 

variation in volatility of the peso-dollar exchange rate using intra-daily returns. 

The Generalized Auto-Regressive Conditional Heteroskedasticity Parkinson 

Range (GARCH-PARK-R) model can actually produce volatility estimates that 

are relatively superior than the ARCH class of models using inter-daily returns. 

The GARCH-PARK-R model is a good alternative to the so-called Realized 

Volatility that makes use of large quantity of intra-daily data, something that is 

difficult to obtain in emerging markets such as the Philippines.      
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