
Price dynamics in a Markovian limit order market
Rama CONT & Adrien de LARRARD

December 2010. Revised: Feb 2012.

We propose and study a simple stochastic model for the dynamics of a limit order book, in which arrivals
of market order, limit orders and order cancelations are described in terms of a Markovian queueing system.
Through its analytical tractability, the model allows to obtain analytical expressions for various quantities of
interest such as the distribution of the duration between price changes, the distribution and autocorrelation
of price changes, and the probability of an upward move in the price, conditional on the state of the order
book. We study the diffusion limit of the price process and express the volatility of price changes in terms
of parameters describing the arrival rates of buy and sell orders and cancelations. These analytical results
provide some insight into the relation between order flow and price dynamics in order-driven markets.
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1. Introduction

An increasing number of stocks are traded in electronic, order-driven markets, in which orders
to buy and sell are centralized in a limit order book available to market participants and market
orders are executed against the best available offers in the limit order book. The dynamics of prices
in such markets are not only interesting from the viewpoint of market participants –for trading
and order execution (Alfonsi et al. (2010), Predoiu et al. (2011))– but also from a fundamental
perspective, since they provide a rare glimpse into the dynamics of supply and demand and their
role in price formation.

Equilibrium models of price formation in limit order markets (Parlour (1998), Rosu (2009)) have
shown that the evolution of the price in such markets is rather complex and depends on the state of
the order book. On the other hand, empirical studies on limit order books (Bouchaud et al. (2008),
Farmer et al. (2004), Gourieroux et al. (1999), Hollifield et al. (2004), Smith et al. (2003)) provide an
extensive list of statistical features of order book dynamics that are challenging to incorporate in a
single model. While most of these studies have focused on unconditional/steady–state distributions
of various features of the order book, empirical studies ( Harris and Panchapagesan (2005), Cont
et al. (2010a)) show that the state of the order book contains information on short-term price
movements so it is of interest to provide forecasts of various quantities conditional on the state of
the order book. Providing analytically tractable models which enable to compute and/or reproduce
conditional quantities which are relevant for trading and intraday risk management has proven to
be challenging, given the complex relation between order book dynamics and price behavior.

The search for tractable models of limit order markets has led to the development of stochastic
models which aim to retain the main statistical features of limit order books while remaining
computationally manageable. Stochastic models also serve to illustrate how far one can go in
reproducing the dynamic properties of a limit order book without resorting to detailed behavioral
assumptions about market participants or introducing unobservable parameters describing agent
preferences, as in more detailed market microstructure models.

Starting from a description of order arrivals and cancelations as point processes, the dynamics
of a limit order book is naturally described in the language of queueing theory. Engle and Lunde
(2003) formulate a bivariate point process to jointly analyze trade and quote arrivals. Cont et al.
(2010b) model the dynamics of a limit order book as a tractable multiclass queueing system and
compute various transition probabilities of the price conditional on the state of the order book,
using Laplace transform methods.

1.1. Summary

We propose a Markovian model of a limit order market, which captures some salient features of
the dynamics of market orders and limit orders and their influence on price dynamics, yet is even
simpler than the model of Cont et al. (2010b) and enables a wide range of properties of the price
process to be computed analytically.

Our approach is motivated by the observation that, if one is primarily interested in the dynamics
of the price, it is sufficient to focus on the dynamics of the (best) bid and ask queues. Indeed,
empirical evidence shows that most of the order flow is directed at the best bid and ask prices
(Biais et al. (1995)) and the imbalance between the order flow at the bid and at the ask appears
to be the main driver of price changes (Cont et al. (2010a)).

Motivated by this remark, we propose a parsimonious model in which the limit order book is
represented by the number of limit orders (qbt , qat ) sitting at the bid and the ask, represented as a
system of two interacting queues. The remaining levels of the order book are treated as a ‘reservoir’
of limit orders represented by the distribution of the size of the queues at the ’next-to-best’ price
levels.
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Through its analytical tractability, the Markovian version of our model allows to obtain analytical
expressions for various quantities of interest such as the distribution of the duration until the
next price change, the distribution and autocorrelation of price changes, and the probability of an
upward move in the price, conditional on the state of the order book. Compared with econometric
models of high frequency data Engle and Russell (1998), Engle and Lunde (2003) where the link
between durations and price changes is specified exogenously, our model links these quantities in an
endogenous manner, and provides a first step towards joint ’structural’ modeling of high frequency
dynamics of prices and order flow.

A second important observation is that order arrivals and cancelations are very frequent and
occur at millisecond time scale, whereas, in many applications such as order execution, the metric
of success is the volume-weighted average price (VWAP) so one is interested in the dynamics of
order flow over a large time scale, typically tens of seconds or minutes. As shown in Table 1.1,
thousands of order book events may occur over such time scales. This observation enables us to
use asymptotic methods to study the link between price volatility and order flow in this model by
studying the diffusion limit of the price process. In particular, we prove a functional central limit
theorem for the price process and express the volatility of price changes in terms of parameters
describing the arrival rates of buy and sell orders and cancelations. For example, we show (Theorem
1) that the variance of intraday price changes in a ’balanced’ limit order market is given by the
following simple relation:

σ2 =
πδ2λ

D(f)

where δ is the ’tick size’, λ is the intensity of order arrivals and D(f) is a measure of market depth.
These analytical results provide insights into the relation between order flow and price dynamics
in order-driven markets. Comparison of these results with empirical data shows the main insights
of the model to be correct.

Average no. of Price changes
orders in 10s in 1 day

Citigroup 4469 12499
General Electric 2356 7862
General Motors 1275 9016

Table 1 Average number of orders in 10 seconds and number of price changes (June 26th, 2008).

1.2. Outline

The chapter is organized as follows. Section 2 introduces a reduced-form representation of a limit
order book and presents a Markovian model in which limit orders, market orders and cancelations
occur according to Poisson processes. Section 3 presents various analytical results for this model: we
compute the distribution of the duration until the next price change (section 3.1), the probability
of upward move in the price (section 3.2) and the dynamics of the price (section 3.4). In Section 4,
we show that the price exhibits diffusive behavior at longer time scales and express the variance of
price changes in terms of the parameters describing the order flow, thus establishing a link between
volatility and order flow statistics.
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2. A Markov model of limit order book dynamics

2.1. A stylized representation of a limit order book

Empirical studies of limit order markets suggest that the major component of the order flow occurs
at the (best) bid and ask price levels (see e.g. Biais et al. (1995)). All electronic trading venues also
allow to place limit orders pegged to the best available price (National Best Bid Offer, or NBBO);
market makers used these pegged orders to liquidate their inventories. Furthermore, studies on the
price impact of order book events show that the net effect of orders on the bid and ask queue
sizes is the main factor driving price variations (Cont et al. (2010a)). These observations, together
with the fact that queue sizes at the best bid and ask of the consolidated order book are more
easily obtainable (from records on trades and quotes) than information on deeper levels of the
order book, motivate a reduced-form modeling approach in which we represent the state of the
limit order book by
• the bid price sbt and the ask price sat
• the size of the bid queue qbt representing the outstanding limit buy orders at the bid, and
• the size of the ask queue qat representing the outstanding limit sell orders at the ask

Figure 1 summarizes this representation.
If the stock is traded in several venues, the quantities qb and qa represent the best bids and offers

in the consolidated order book, obtained by aggregating over all (visible) trading venues. At every
time t, qbt (resp. qat ) corresponds to all visible orders available at the bid price sbt (resp. sat ) across
all exchanges.

qa

qb

δ

Quantities

sb

Price

sa

Figure 1 Simplified representation of a limit order book.

The state of the order book is modified by order book events: limit orders (at the bid or ask),
market orders and cancelations (see Cont et al. (2010b,a), Smith et al. (2003)). A limit buy (resp.
sell) order of size x increases the size of the bid (resp. ask) queue by x, while a market buy (resp.
sell) order decreases the corresponding queue size by x. Cancelation of x orders in a given queue
reduces the queue size by x. Given that we are interested in the queue sizes at the best bid/ask
levels, market orders and cancelations have the same effect on the queue sizes (qbt , qat ).

The bid and ask prices are multiples of the tick size δ. When either the bid or ask queue is
depleted by market orders and cancelations, the price moves up or down to the next level of
the order book. The price processes sbt , sat is thus a piecewise constant process whose transitions
correspond to hitting times of the axes {(0, y), y ∈N}∪ {(x,0), x∈N} by the process qt = (qbt , qat ).

If the order book contains no ‘gaps’ (empty levels), these price increments are equal to one tick:
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• when the bid queue is depleted, the (bid) price decreases by one tick.
• when the ask queue is depleted, the (ask) price increases by one tick.

If there are gaps in the order book, this results in ’jumps’ (i.e. variations of more than one tick) in
the price dynamics. We will ignore this feature in what follows but it is not hard to generalize our
results to include it.

The quantity sat − sbt is the bid-ask spread, which may be one or several ticks. As shown in Table
2, for liquid stocks the bid-ask spread is equal to one tick for more than 98% of observations.

Bid-ask spread 1 tick 2 tick ≥ 3 tick
Citigroup 98.82 1.18 0
General Electric 98.80 1.18 0.02
General Motors 98.71 1.15 0.14

Table 2 Percentage of observations with a given bid-ask spread (June 26th, 2008).

When either the bid or ask queue is depleted, the bid-ask spread widens immediately to more
than one tick. Once the spread has increased, a flow of limit sell (resp. buy) orders quickly fills
the gap and the spread reduces again to one tick. When a limit order is placed inside the spread,
all the limit orders pegged to the NBBO price move in less than a millisecond to the price level
corresponding to this new order. Once this happens, both the bid price and the ask price have
increased (resp. decreased) by one tick.

The histograms in Figure 2 show that this ’closing’ of the spread takes place very quickly: as
shown in Figure 2 (left) the lifetime of a spread larger than one tick is of the order of a couple of
milliseconds, which is negligible compared to the lifetime of a spread equal to one tick (Figure 2,
right). In our model we assume that the second step occurs infinitely fast: once the bid-ask spread
widens, it returns immediately to one tick. For the example of Dow Jones stocks (Figure 2), this is
a reasonable assumption since the widening of the spread lasts only a few milliseconds. This simply
means that we are not trying to describe/model how the orders flow inside the bid-ask spread at
the millisecond time scale and, when we describe the state of the order book after a price change
we have in mind the state of the order book after the bid-ask spread has returned to one tick.

Figure 2 Left: Average lifetime, in milliseconds of a spread larger than one tick for Dow Jones stocks. Right:
Average lifetime, in milliseconds of a spread equal to one tick.

Under this assumption, each time one of the queues is depleted, both the bid queue and the
ask queues move to a new position and the bid-ask spread remains equal to one tick after the
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price change. Thus, under our assumptions the bid-ask spread is equal to one tick, i.e. sat = sbt + δ,
resulting in a further reduction of dimension in the model.

Once either the bid or the ask queue are depleted, the bid and ask queues assume new values.
Instead of keeping track of arrival, cancelation and execution of orders at all price levels (as in
Cont et al. (2010b), Smith et al. (2003)), we treat the queue sizes after a price change as stationary
variables drawn from a certain distribution f on N2 which represents, in a statistical sense, the depth
of the order book after a price change: f(x, y) represents the probability of observing (qbt , qat ) = (x, y)
right after a price increase. Similarly, we denote f̃(x, y) the probability of observing (qbt , qat ) = (x, y)
right after a price decrease. More precisely, denoting by Ft the history of prices and order book
events on [0, t],
• if qat− = 0 then (qbt , qat ) is a random variable with distribution f , independent from Ft−.
• if qbt− = 0 then (qbt , qat ) is a random variable with distribution f̃ , independent from Ft−.

The distributions f and f̃ summarize the interaction of the queues at the best bid/ask levels with
the rest of the order book, viewed here as a ’reservoir’ of limit orders. Figure 3 shows the (joint)
empirical distribution of bid and ask queue sizes after a price move for Citigroup stock on June
26th 2008.

In summary, state of the limit order book is thus described by a continuous-time process Xt =
(sbt , qbt , qat ) which takes values in the discrete state space δZ×N2, with piecewise constant sample
paths whose transitions correspond to the order book events. Denoting by (T ai , i ≥ 1) (resp. T bi )
the durations between two consecutive orders arriving at the ask (resp. the bid) and V a

i (resp. V b
i )

the size of the associated change in queue size, the above assumptions translate into the following
dynamics for Xt = (sbt , qbt , qat ):
• If an order or cancelation arrives on the ask side at time T :

(sbT , q
b
T , q

a
T ) = (sbT−, q

b
T−, q

a
T−+V a

i )1qa
T−>−V

a
i

+ (sbT−+ δ,Rb
i ,R

a
i )1qaT−≤−V ai ,

• If an order or cancelation arrives on the bid side i.e. T ∈ {T bi , i≥ 1}:

(sbT , q
b
T , q

a
T ) = (sbT−, q

b
T−+V b

i , q
a
T−)1qb

T−>−V
b
i

+ (sbT−− δ, R̃b
i , R̃

a
i )1qb

T−≤−V
b
i
,

and (Ri)i≥1 = (Rb
i ,R

a
i )i≥1 is a sequence of IID variables with (joint) distribution f , and (R̃i)i≥1 =

(R̃b
i , R̃

a
i )i≥1 is a sequence of IID variables with (joint) distribution f̃ .

2.2. A Markov model for order book dynamics

To give a complete statistical description of the dynamics of the limit order book, we need to
describe the distributional properties of the sequences T ai , T bi , V a

i , V
b
i describing the timing and size

of order book events.
We assume that these events occur according to independent Poisson processes:
• Market buy (resp. sell) orders arrive at independent, exponential times with rate µ,
• Limit buy (resp. sell) orders at the (best) bid (resp. ask) arrive at independent, exponential

times with rate λ,
• Cancelations occur at independent, exponential times with rate θ.
• These events are mutually independent.
• All orders sizes are equal (assumed to be 1 without loss of generality).

Denoting by (T ai , i ≥ 1) (resp. T bi ) the durations between two consecutive queue changes at the
ask (resp. the bid) and V a

i (resp. V b
i ) the size of the associated change in queue size, the above

assumptions translate into the following properties for the sequences T ai , T bi , V a
i , V

b
i :

(i) (T ai )i≥0 is a sequence of independent random variables with exponential distribution with
parameter λ+ θ+µ,
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(ii) (T bi )i≥0 is a sequence of independent random variables with exponential distribution with
parameter λ+ θ+µ,

(iii) (V a
i )i≥0 is a sequence of independent random variables with

P[V a
i = 1] =

λ

λ+µ+ θ
and P[V a

i =−1] =
µ+ θ

λ+µ+ θ
, (1)

(iv) (V b
i )i≥0 is a sequence of independent random variables with

P[V b
i = 1] =

λ

λ+µ+ θ
and P[V b

i =−1] =
µ+ θ

λ+µ+ θ
(2)

• These sequences are independent.

Figure 3 Joint density of bid and ask queue sizes after a price move (Citigroup, June 26th 2008).

Under these assumptions qt = (qbt , qat ) is thus a Markov process, taking values in N2, whose
transitions correspond to the order book events {T ai , i≥ 1}∪ {T bi , i≥ 1}:
• At the arrival of a new limit buy (resp. sell) order the bid (resp. ask) queue increases by one

unit. This occurs at rate λ.
• At each cancelation or market order, which occurs at rate θ+µ, either:

(a) the corresponding queue decreases by one unit if it is > 1, or
(b) if the ask queue is depleted then qt is a random variable with distribution f .
(c) if the bid queue is depleted then qt is a random variable with distribution f̃ .

The values of λ and µ+θ are readily estimated from high-frequency records of trades and quotes
(see Cont et al. (2010b) for a description of the estimation procedure). Table 3 gives examples of
such parameter estimates for the stocks mentioned above. We note that in all cases λ< µ+ θ but
that the difference is small: |(µ+ θ)−λ| � λ.

Remark 1 (Independence assumptions). The IID assumption for the sequences (Rn), (R̃n) is
only used in Section 4. The results of Section 3 do not depend on this assumption.
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λ̂ µ̂+ θ̂ µ̂+θ̂−λ̂
λ̂

Citigroup 2204 2331 0.0576
General Electric 317 325 0.0252
General Motors 102 104 0.0196

Table 3 Estimates for the intensity of limit orders and market orders+cancellations, in number of batches per
second (each batch representing 100 shares) on June 26th, 2008).

2.3. Quantities of interest

In applications, one is interested in computing various quantities that intervene in high frequency
trading such as:
• the conditional distribution of the duration between price moves, given the state of the order

book (Section 3.1),
• the probability of a price increase, given the state of the order book (Section 3.2),
• the dynamics of the price autocorrelations and distribution and autocorrelations of price

changes (section 3.4), and
• the volatility of the price (section 4).

We will show that all these quantities may be characterized analytically in this model, in terms of
order flow statistics.

3. Analytical results

The high-frequency dynamics of the price may be described in terms of durations between successive
price changes and the magnitude of these price changes. It is of interest to examine what information
the current state of the (consolidated) order book gives about the dynamics of the price. We
now proceed to show how the model presented above may be used to compute the conditional
distributions of durations and price changes, given the current state of the order book, in terms of
the arrival rates of market orders, limit orders and cancelations. The results of this section do not
depend on the assumptions on the sequences (Rn), (R̃n).

3.1. Duration until the next price change

We consider first the distribution of the duration until the next price change, starting from a given
configuration (x, y) of the order book. We define
• σa the first time when the ask queue (qat , t≥ 0) is depleted,
• σb the first time when the bid queue (qbt , t≥ 0) is depleted

Since the queue sizes are constant between events, one can express these stopping times as:

σa = inf{T a1 + ...+T ai , q
a
Ta1 +...+Tai −

+V a
i = 0} σb = inf{T b1 + ...+T bi , q

b
T b1 +...+T bi −

+V b
i = 0}

The price (st, t≥ 0) moves when the queue qt = (qbt , qat ) hits one of the axes: the duration until the
next price move is thus

τ = σa ∧σb.

The following theorem gives the distribution of the duration τ , conditional on the initial queue
sizes:

Proposition 1 (Distribution of duration until next price move). The distribution of τ
conditioned on the state of the order book is given by:

P[τ > t|qb0 = x, qa0 = y] =

√
(
µ+ θ

λ
)x+yψx,λ,θ+µ(t)ψy,λ,θ+µ(t) (3)
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where ψn,λ,θ+µ(t) =
∫ ∞
t

n

u
In(2

√
λ(θ+µ)u)e−u(λ+θ+µ)du (4)

and In is the modified Bessel function of the first kind. The conditional law of τ has a regularly
varying tail
• with tail exponent 2 if λ< µ+ θ
• with tail exponent 1 if λ= µ+ θ. In particular, if λ= µ+ θ, E[τ |qb0 = x, qa0 = y] =∞ whenever

x> 0, y > 0.

Proof. Since (qat , t≥ 0) follows a birth and death process with birth rate λ and death rate µ+θ,
L(s,x) := E[e−sσa |qa0 = x] satisfies:

L(s,x) =
λL(s,x+ 1) + (µ+ θ)L(s,x− 1)

λ+µ+ θ+ s
.

We can find the roots of the polynomial: λX2− (λ+µ+ θ+ s)X+µ+ θ; one root is > 1, the other
is < 1; since L(s,0) = 1 and limx→∞L(s,x) = 0,

L(s,x) = (
(λ+µ+ θ+ s)−

√
((λ+µ+ θ+ s))2− 4λ(µ+ θ)

2λ
)x.

Moreover if we use the relation P[τ > t|qb0 = x, qa0 = y] = P[σb > t|qb0 = x]P[σa > t|qa0 = y],

P[τ > t|qb0 = x, qa0 = y] =
∫ ∞
t

L̂(u,x)du
∫ ∞
t

L̂(u, y)du.

This Laplace transform may be inverted (see (Feller 1971, XIV.7)) and the inversion yields

L̂(t, x) =
x

t

√
(
µ+ θ

λ
)x Ix(2

√
λ(θ+µ)t)e−t(λ+θ+µ),

which gives us the expected result.
The above result allows in particular to study the tail behavior of the conditional distribution

of τ :
• If λ< µ+ θ:

L(s,x) = α(s)x ∼
s→0

1− x(λ+µ+ θ)
2λ(µ+ θ−λ)

s,

so Karamata’s Tauberian theorem (Feller 1971, XIII.5) yields

P[σa > t|qa0 = x] ∼
t→∞

x(λ+µ+ θ)
2λ(µ+ θ−λ)

1
t
;

therefore the conditional law of the duration τ is a regularly varying with tail index 2

P[τ > t|qb0 = x, qa0 = y] ∼
t→∞

xy(λ+µ+ θ)2

λ2(µ+ θ−λ)2

1
4t2

. (5)

• If the order flow is balanced i.e. λ= µ+ θ then

L(s,x) = α(s)x ∼
s→0

1− x√
λ

√
s,

the law of σa is regularly-varying with tail index 1/2 and

P[σa > t|qa0 = x] ∼
t→∞

x√
πλ

1√
t
.

The duration then follows a heavy-tailed distribution with infinite first moment:

P[τ > t|qb0 = x, qa0 = y] ∼
t→∞

xy

πλ

1
t
; (6)
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Figure 4 Above: P (τ > t|qb0 = 4, qa0 = 5) as a function of t for λ = 12, µ+ θ = 13. Below: same figure in log-log
coordinates. Note the Pareto tail which decays as t−2.

The expression given in (3) is easily computed by discretizing the integral in (4). Plotting (3) for
a fine grid of values of t typically takes less than a second on a laptop. Figure 3 gives a numerical
example, with λ = 12 sec−1, µ+ θ = 13 sec−1, qa0 = 4, qb0 = 5 (queue sizes are given in multiples of
average batch size).
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3.2. Probability of price increase: balanced limit order book

Starting from a given configuration of the limit order book, the probability that the next price move
is an increase is given by the probability that the process (qbt , qat ) hits the x-axis before the y-axis
When λ= µ+ θ, i.e. when the flow of limit orders is balanced by the flow of market orders and
cancelations, this probability can be computed analytically in terms of hitting time distributions
of a random walk in the orthant:

Proposition 2. For (n,p) ∈N2, the probability pup1 (n,p) that the next price move is an increase,
conditioned on having the n orders on the bid side and p orders on the ask side is:

pup1 (n,p) =
1
π

∫ π

0

(2− cos(t)−
√

(2− cos(t))2− 1)p
sin(nt) cos( t

2
)

sin( t
2
)

dt. (7)

Proof. One can notice that

∀t≤ τ, qt =MN2λt

where (Mn, n≥ 0) is a symmetric random walk in the positive orthant Z2
+ killed at the boundary

and (N2λt, t≥ 0) is a Poisson process with parameter 2λ. Hence the probability of an upward move
in the price starting from a configuration qbt = n, qat = p for the order book is equal to the probability
that the random walk M starting from (n,p) hits the x-axis before the y-axis. The generator of the
bivariate random walk (Mn, n≥ 1) is the discrete Laplacian so pup1 (n,p) = P[σa <σb|qb0− = n, qa0− = p]
satisfies, for all n≥ 1 and p≥ 1,

4pup1 (n,p) = pup1 (n+ 1, p) + pup1 (n− 1, p) + pup1 (n,p+ 1) + pup1 (n,p− 1), (8)

with the boundary conditions: pup1 (0, p) = 0 for all p≥ 1 and pup1 (n,0) = 1 for all n≥ 1. This problem
is known as the discrete Dirichlet problem; solutions of (8) are called discrete harmonic functions.
(Lawler and Limic 2010, Ch. 8) show that for all t≥ 0, the functions

ft(x, y) = exr(t) sin(yt), and f̃t(x, y) = e−xr(t) sin(yt) with r(t) = cosh−1(2− cos t)

are solutions of (8). In (Lawler and Limic 2010, Corollary 8.1.8) it is shown that the probability
that a simple random walk (Mk, k≥ 1) starting at (n,p)∈Z+×Z+ reaches the axes at (x,0) is

2
π

∫ π

0

e−r(t)p sin(nt) sin(tx)dt,

therefore

pup1 (n,p) =
∞∑
k=1

2
π

∫ π

0

e−r(t)p sin(tn) sin(tk)dt.

Since
m∑
k=1

sin(kt) =
sin(mt

2
) sin( (m+1)t

2
)

sin(t/2)
=

cos( t
2
)− cos((m+ 1

2
)t)

2 sin(t/2)
,

using integration by parts we see that the second term leads to the integral:∫ π

0

e−r(t)p sin(nt)
sin(t/2)︸ ︷︷ ︸

g(t)

cos((m+ 1/2)t)dt=− 1
m+ 1

2

∫ π

0

g′(t) sin((m+
1
2

)t)dt →
m→∞

0.

since g′ is bounded. So finally:

pup1 (n,p) =
1
π

∫ π

0

e−r(t)p sin(tn)
cos( t

2
)

sin( t
2
)
dt.

Noting that e−r(t) = (2− cos(t)−
√

(2− cos(t))2− 1) we obtain the result.
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Figure 5 Above: Conditional probability of a price increase, as a function of the bid and ask queue size. Below:
comparison with empirical transition frequencies for CitiGroup stock price tick-by-tick data on June
26, 2008.

Note that the conditional probabilities (7) are, in the case of a balanced order book, independent
of the parameters describing the order flow.
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The expression (7) is easily computed numerically: Figure 3.2 displays the shape of the function
pup1 . Comparison with empirical data for CitiGroup stock (June 2008) shows good agreement be-
tween the theoretical value (7) and the empirical transition frequencies of the price conditional on
the state of the consolidated order book.

3.3. Probability of price increase: asymmetric order flow

In this subsection we relax the symmetry assumptions above and allow the intensity of limit and
market orders at the bid and the ask to be different; more precisely we assume that:
• Limit orders at the ask arrive at independent, exponential time with parameter λa

• Market orders and cancelations at the ask arrive at independent, exponential time with pa-
rameter µa + θa

• Limit orders at the bid arrive at independent, exponential time with parameter λb

• Market orders and cancelations at the bid arrive at independent, exponential time with pa-
rameter µb + θb

and that these Poisson processes are independent. The dynamics of bid and ask queues may be
then represented as

qt =MNΛt
for Λ = λa +µa + θa +λb +µb + θb,

where NΛt is a Poisson process with intensity Λ and (Mn, n ≥ 0) is a random walk on Z2 killed
when it hits either the x-axis or the y-axis whose the transition probabilities are:

p0,1 =
λa

Λ
p1,0 =

λb

Λ
p0,−1 =

µa + θa

Λ
p−1,0 =

µb + θb

Λ
. (9)

The following result generalizes Proposition 2 for an asymmetric order flow.

Proposition 3. Given (qb, qa) = (n,p), the probability pup1 (n,p) that the next price move in an
increase in:

pup1 (n,p) = 1− 1
π

(
µa + θa

λa

)p 2[λa(µa + θa)]1/2

µa + θa +λa

∫ π

0

Z(t)n sin(pt) sin(t)×

×2λbZt− (Λ− 2[λa(µa + θa)]1/2 cos(t))

Λ 2[(µa+θa)λa]1/2

λb+µb+θb
cos(t)−Λ

Λdt√
(Λ− 2[(µa + θa)λa]1/2 cos(t))2− 4(µb + θb)λb

,

where (Zt, t≥ 0) is the function defined by:

∀t≥ 0, Zt =
Λ− 2[(µa + θa)λa]1/2 cos(t)−

√
(Λ− 2[(µa + θa)λa]1/2 cos(t))2− 4λb(θb +µb)

2λa
.

Proof. Using results from Kurkova and Raschel (2011), it is shown in Raschel (2012) that the
probability that M starting from (n,p) hits the x-axis before the y-axis is given by

1− 1
π

(
p0,−1

p0,1

)p 2[p0,1p0,−1]1/2

p0,1 + p0,−1

∫ π

0

Z(t)n sin(pt) sin(t)×

×2p1,0Zt− (1− 2[p0,1p0,−1]1/2 cos(t))
2[p0,1p0,−1]1/2

p0,1+p0,−1
cos(t)− 1

dt√
(1− 2[p0,1p0,−1]1/2 cos(t))2− 4p1,0p−1,0

,

where (Zt, t≥ 0) is the function defined by:
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∀t≥ 0, Zt =
1− 2[p0,1p0,−1]1/2 cos(t)−

√
(1− 2[p0,1p0,−1]1/2 cos(t))2− 4p1,0p−1,0

2p1,0

.

Applying this formula to the random walk whose transition probabilities are given in Equation
(9) we obtain that the probability of a price increase at the next price move, starting from a
configuration qbt = n, qat = p of the queues is equal to the probability that the random walk M
starting from (n,p) hits the x-axis before the y-axis; thus, it is given by equation (3).

3.4. Dynamics of the price

The high-frequency dynamics of the price is described by a piecewise constant, right continuous
process (st, t≥ 0) whose jumps times correspond to times when the order book process (qt, t≥ 0)
hits one of the axes. Denote by (τ1, τ2, ...) the successive durations between price changes. The
number of price changes that occur during [0, t] is given by

Nt := max{ n≥ 0, τ1 + ...+ τn ≤ t }

At t = τi, sτi = sτi− + 1 if qτai− = 0 and sτi = sτi− − 1 if qτbi− = 0. (X1,X2,X3, ...,Xn, ...) are the
successive moves in the price which, in general, are not independent random variables. We have

st =ZNt where Zn =
n∑
i=1

Xi

is the price after n price changes have occurred. Hence, for all t≥ 0, st =ZNt . We are interested in
the n-step ahead distribution of the price change:

pupn (x, y) = P[Xn = +δ | (qb0, q
a
0) = (x, y)] (10)

For n= 1 this corresponds to the probability pup1 (x, y) = p1(x, y) of an upward price move, computed
in Theorem 2. To simplify the analysis we use, in this Section and the next one, the following
symmetry assumption:

Assumption 1 (Bid-ask symmetry). f̃(x, y) = f(y,x).

A key quantity for studying the dynamics of the price is the probability of two successive price
changes in the same direction,

pcont = P[Xk+1 = δ|Xk = δ] = P[Xk+1 =−δ|Xk =−δ] (11)

which may be expressed in terms of the distribution of queue sizes f after a price change:

Proposition 4. Let pcont = P[X2 = δ|X1 = δ] = P[X2 = −δ|X1 = −δ] be the probability of two
successive price moves in the same direction.
• pcont =

∑∞
i=1

∑∞
j=1 f(i, j)pup1 (i, j).

• ∀k≥ 1, E[Xk|qb0 = x, qa0 = y] = (2pup1 (x, y)− 1)(2pcont− 1)k−1.
• cov(X1,X2|qb0 = x, qa0 = y) = δ2(2pcont− 1)(1− (2pup1 (x, y)− 1)2).
• Conditional on the current state of the limit order book, the n-step ahead distribution of the

price change is given by:

pupn (x, y) := P[Xn = δ|qb0 = x, qa0 = y] =
1 + (2pcont− 1)n−1(2pup1 (x, y)− 1)

2
. (12)
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Proof. First, let us prove that P[X2 = δ|X1 = δ] = P[X2 =−δ|X1 =−δ]:

P[X2 = δ|X1 = δ] =
∞∑
i=1

∞∑
j=1

f(i, j)pup1 (i, j),

where pup1 is given in 7, by symmetry of the bid and the ask, for all (n,p) ∈ N2, pup1 (n,p) = 1−
pup1 (p,n). By assumption 1, for all (i, j)∈N2, f(i, j) = f̃(j, i). Therefore,

P[X2 = δ|X1 = δ] =
∞∑
i=1

∞∑
j=1

f(i, j)(1− pup1 (j, i)),

P[X2 = δ|X1 = δ] =
∞∑
i=1

∞∑
j=1

f̃(j, i)(1− pup1 (j, i)),

P[X2 = δ|X1 = δ] = P[X2 =−δ|X1 =−δ].
pupn = pupn (x, y) defined by (12) is then characterized by the following relation:(

pupn
1− pupn

)
=
(

pcont 1− pcont
1− pcont pcont

)(
pn−1

1− pn−1

)
,

hence (
pupn

1− pupn

)
=
(

pcont 1− pcont
1− pcont pcont

)n−1(
p1

1− p1

)
.

The eigenvalues of this matrix are 1 and 2pcont− 1:(
pcont 1− pcont

1− pcont pcont

)
=
(

1 1
1 −1

)(
1 0
0 2pcont− 1

)(
1/2 1/2
1/2 −1/2

)
.

Therefore
pupn (x, y) =

1 + (2pcont− 1)n−1(2p1(x, y)− 1)
2

.

Moreover for all n≥ 2,

E[Xn|qb0 = x, qa0 = y] = (2pupn (x, y)− 1) = (2pcont− 1)n−1(2p1(x, y)− 1).

and the correlation between two consecutive price moves is given by:

cov(X1,X2|qb0 = x, qa0 = y) = E[X1X2|qb0 = x, qa0 = y]−E[X1|qb0 = x, qa0 = y]E[X2|qb0 = x, qa0 = y]
= δ2(2pcont− 1)− δ2(2p1(x, y)− 1)(2p2(x, y)− 1),

cov(X1,X2|qb0 = x, qa0 = y) = δ2(2pcont−1)−(2p1(x, y)−1)2(2pcont−1) = (2pcont−1)(1−(2p1(x, y)−1)2).
(13)

Remark 2 (Negative autocorrelation of price changes at first lag). It is empiri-
cally observed that high frequency price movements have a negative autocorrelation at the first
lag; this observation is often attributed to the ’bid-ask’ bounce of transaction prices, but in fact it
also holds for the time series of bid or ask prices Cont (2001). Our model links the value of this
autocorrelation at first lag to the properties of the distribution f of order book depth. As observed
from (13), the sign of the cov(X1,X2|qb0, qa0) does not depend on the initial configuration (qb0, qa0) of
the bid/ask queues, so cov(Xk,Xk+1) = cov(X1,X2)< 0 if and only if

pcont =
∞∑
i=1

∞∑
j=1

f(i, j)pup1 (i, j)< 1/2
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where f is the joint distribution of queue sizes after a price increase. This condition is satisfied for
most high-frequency data sets of Dow Jones stocks we have examined. For example, for CitiGroup
stock we find

pcont =
∞∑
i=1

∞∑
j=1

f(i, j)pup1 (i, j)' 0.35

This asymmetry of f corresponds to the fact that, after an upward price move, the new bid queue is
generally smaller than the ask queue since the ask queue corresponds to the limit order previously
sitting at second best ask level, while the bid queue results from the accumulation of orders over
the very short period since the last price move. Under this condition, high frequency increments
of the price are negatively correlated: an increase in the price is more likely to be followed by a
decrease in the price.

Remark 3. The sequence of price increments (X1,X2, ...) is uncorrelated if and only if

pcont =
∑
i,j≥1

f(i, j)pup1 (i, j) = 1/2

3.5. “Efficient” price

Various authors (see e.g. Robert and Rosenbaum (2011)) have considered models in which the
evolution of transaction prices is based on a non-observed (semi)martingale ŝ, sometimes called
the “efficient” price: the observed price is then either a noisy version of ŝ or the value of ŝ rounded
to the nearest tick.

Given the probability pup1 (qbt , qat ) that the next price move is an “uptick” (Equation (7)), we can
construct an auxiliary process ŝ whose value ŝt represents the expected value of the price after its
next move:

∀t≥ 0, ŝt = (st + δ)pup1 (qbt , q
a
t ) + (st− δ)

(
1− pup1 (qbt , q

a
t )
)
,

ŝt = st + δ(2pup1 (qbt , q
a
t )− 1),

(ŝt, t≥ 0) is a continuous-time stochastic process with values between st− δ and st + δ:

∀t≥ 0, st− δ≤ ŝt ≤ st + δ.

The process ŝ incorporates the information on the price st and the state of the order book (qb, qa)
insofar as it affects the next price move. The following result shows

Proposition 5. If pcont = 1/2 then (ŝt, t≥ 0) is a martingale.

Remark 4. This condition is verified in particular if ∀(i, j)∈N2, f(i, j) = f(j, i) but more gener-
ally if ∑

i,j≥1

pup1 (i, j)f(i, j) =
1
2

Proof. Let (τ1, τ2, ..., τk) the sequence of times when the price s moves and (X1, ...,Xn) the
sequence of consecutive price moves. Since pcont = 1/2, (X1, ...,Xk, ...) is a sequence of I.I.D bernoulli
random variables with parameter 1/2. Therefore we have the following property:

∀(i, j)∈N2, i < j, E[sτj |Fτi ] = sτi .

The function pup1 , from equation (7), satisfies the equation Lpup1 = 0, where L is the generator
of the process (qb, qa). Hence pup1 is an harmonic function for the process (qb, qa), and the process
(pup1 (qbt , qat ), t≥ 0) is a martingale. We proved that

∀ s≤ t < τ1, E[ŝt|Fs] = ŝs.
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By recurrence on k, one can easily notice that

∀ k ≥ 1, ∀τk ≤ t < τk+1, E[ŝt|Fτ1 ] = ŝτ1 .

Assuming s≤ τ1 ≤ t,

E[ŝt|Fs] = E[ŝt|Fs,X1 = 1]P[X1 = 1|Fs] + E[ŝt|Fs,X1 =−1]P[X1 =−1|Fs],
= E[ŝt|Fs,X1 = 1]pup1 (qbt , q

a
t ) + E[ŝt|Fs,X1 =−1](1− pup1 (qbt , q

a
t )),

= (ss + δ)pup1 (qbs, q
a
s ) + ss(1− pup1 (qbs, q

a
s )),

= ss + δ(2pup1 (qbs, q
a
s )− 1) = ŝs,

which completes the proof.
Contrarily to the ’latent price’ models alluded to above, here ŝ is a function of the state variables

(st, qbt , qat ) and thus is observable, provided one observes trades and quotes.

Remark 5. When pcont 6= 1/2, the process (ŝt, t≥ 0) fails to possess the martingale property. When
pcont < 1/2, the jump of ŝ is negative after a price increase and positive after a price decrease.

4. Diffusion limit of the price process

As discussed in Section 3.4, the high frequency dynamics of the price is described by a piecewise
constant stochastic process st =ZNt where

Zn =X1 + ...+Xn and Nt = sup{k; τ1 + ...+ τk ≤ t}

is the number of price changes during [0, t].
However, over time scales much larger than the interval between individual order book events,

prices are observed to have diffusive dynamics and modeled as such. To establish the link between
the high frequency dynamics and the diffusive behavior at longer time scales, we shall consider
a time scale tn over which the average number of order book events is of order n and exhibit
conditions under which the scaled price process

(snt :=
stn√
n
, t≥ 0)n≥1

satisfies a functional central limit theorem i.e. converges in distribution to a non-degenerate process
(pt, t≥ 0) as n→∞. The choice of the time scale tn is such that

τ1 + ...+ τn
tn

has a well-defined limit: it is imposed by the distributional properties of the durations which, as
observed in Section 3.1, are heavy tailed. In this section, we show that, under a symmetry condition,
this limit can be identified as a diffusion process whose diffusion coefficient may be computed from
the statistics of the order flow driving the limit order book.

Assume λ+θ≤ µ and that the joint distribution f of the queue sizes after a price move satisfies:

D(f) =
∞∑
i=1

∞∑
j=1

ijf(i, j)<∞ (14)

The quantity D(f) represents a measure of market depth: more precisely,
√
D(f) is the geometric

average of the size of the bid queue and the size of the ask queue after a price change.

ha
l-0

05
52

25
2,

 v
er

si
on

 4
 - 

22
 M

ar
 2

01
2



Rama Cont & Adrien de Larrard: Price dynamics in a Markovian limit order market
18

In this section we assume that f is symmetric: ∀i, j ≥ 0, f(i, j) = f(j, i). Under this assumption,
price increments form a sequence (Xi, i≥ 0) of independent random variables with distribution:

P[X1 = δ] = P[X1 =−δ] =
1
2
.

We will show that the limit p is then a diffusion process which describes the dynamics of the price
at lower frequencies. In particular, we will compute the volatility of this diffusion limit and relate
it to the properties of the order flow.

In the following D denotes the space of right continuous paths ω : [0,∞)→R2 with left limits,
equipped with the Skorokhod topology J1, and ⇒ will designate weak convergence on (D, J1) (see
Billingsley (1968), Whitt (2002) for a discussion).

4.1. Balanced order book

We first consider the case of a balanced order flow for which the intensity of market orders and
cancelations is equal to the intensity of limit orders. The study of high-frequency quote data
indicates that this is an empirically relevant case for many liquid stocks: as shown in Table 3,
the imbalance between arrival of limit orders on one hand and market orders/ cancelations on the
other hand is around 5% or less for these stocks.

For balanced order flow, we proved in Section 3.1 that the distribution of price duration τ
conditioned on observing i shares at the bid and j shares at the ask at t= 0 has a tail index 1:

P[τ > t|qb0 = i, qa0 = j]∼ ij

πλt
; (15)

The unconditional distribution of price durations keeps a tail index of one:

P[τ > t] t→∞∼
∑∞

i=1

∑∞
j=1 ijf(i, j)
πλt

=
D(f)
πλt

. (16)

The sequence of durations between consecutive move of the price consecutive (τ1, τ2, τ3, ...) is a
sequence of IID random variables with tail index 1. The following lemma 1 gives a central limit
theorem for this sequence of durations.

Lemma 1. The sequence of durations (τ1, τ2, τ3, ...) satisfies

τ1 + τ2 + ...+ τk
k logk

k→∞⇒ D(f)
πλ

.

Proof. The sequence (τ1, τ2, τ3, ...) is a sequence of i.i.d, regularly varying random variables,
with tail index equal to 1. Let L(s) be the Laplace transform of the distribution of τ2:

L(s) = 1− s
∫ ∞

0

exp(−st)P[τ > t]dt.

Since
1

log(n)

∫ n

0

exp(−st/n log(n))P[τ > t]dt→ D(f)
πλ

using an integration by parts we obtain

1
log(n)

∫ ∞
n

exp(−st/n log(n))P[τ > t]dt→ 0.

Therefore
s

n log(n)

∫ ∞
0

exp(− st

n logn
)P[τ > t]dt=

D(f)
πλ

s

n
+ o(

1
n

)
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which implies

(L(s/pup1 (n)))n = (1 +
D(f)
πλ

+ o(
1
n

))n→ exp (−D(f)
πλ

).

So one can conclude that
τ1 + τ2 + ...+ τn

n logn
⇒D D(f)

πλ
.

Using the rescaling t 7→ tn = tn logn, the process Ntn counting the number of price change in the
interval [0, n logn] satisfies the implicit equation:

tn
Ntn logNtn

n→∞∼ D(f)
πλ

. (17)

Hence if one defines ρ : (1,∞)→ (1,∞) the inverse function of t 7→ t log t:

∀t > 1, ρ(t) logρ(t) = t, (18)

and knowing that ρ(t)∼t→∞ t
log(t)

, one can notice that the asymptotic number of price change
occurring during [0, tn] is approximately:

Ntn ∼ ρ
(
πλtn
D(f)

)
∼ πλtn
D(f) log(πλtn/D(f))

as n→∞, (19)

Ntn ∼
πλtn logn

D(f) log(n logn)
∼ πλt

D(f)
n as n→∞. (20)

Equation (20) shows that the number of price move occurring during [0, tn logn] is an order of n
for large n, and proportional to the ratio of the order intensity λ to the order book depth D(f).
Since each price change is ±δ, this factor πλ

D(f)
also shows up in the expression of price volatility:

Theorem 1. If λ= µ+ θ, (
stn logn√

n
, t≥ 0

)
n→∞⇒

(
δ

√
πλ

D(f)
Wt, t≥ 0

)
where δ is the tick size, D(f) is given by (14) and W is a standard Brownian motion.

Proof. Let tn = tn logn. One can decompose the process (
stn logn√

n
, t≥ 0) as

stn logn√
n

=
Z([tnπλ/D(f)])δ√

n
+
(
Z(Ntn)δ√

n
− Z([tnπλ/D(f)])δ√

n

)
(21)

Since (X1,X2, ...) is a sequence of IID random variables with mean zero, one can apply the
Donsker’s invariance principle to the sequence of processes

(
Z([tπλn/D(f)])δ√

n
, t≥ 0)n≥1⇒

(
δ

√
πλ

D(f)
Wt, t≥ 0

)
as n→∞, (22)

where the convergence is in distribution on the Skorokhod space. As shown in (20),

Ntn logn
n→∞∼ ntπλ

D(f)
,

therefore for t≥ 0, (
Z(Ntn)δ√

n
− Z([tnπλ/D(f)])δ√

n

)
n→∞⇒ 0. (23)
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Hence the finite dimensional distributions of the sequence of processes(
Z(Ntn)δ√

n
− Z(tπλ/D(f))δ√

n
, t≥ 0

)
n≥1

(24)

converge to a point mass at zero. Since this sequence of processes is tight on (D, J1), this sequence
of processes converges weakly to zero on (D, J1) (see Whitt (2002)). So finally

(
stn logn√

n
, t≥ 0

)
n→∞⇒ δ

√
πλ

D(f)
W. (25)

4.2. Empirical test using high-frequency data

Theorem 1 relates the ’coarse-grained’ volatility of intraday returns at lower frequencies to the
high-frequency arrival rates of orders. Denote by τ0 = 1/λ the typical time scale separating order
book events. Typically τ0 is of the order of milliseconds. In plain terms, Theorem 1 states that,
observed over a time scale τ2 >> τ0 (say, 10 minutes), the price has a diffusive behavior with a
diffusion coefficient given by

σn = δ

√
nπλ

D(f)
(26)

where δ is the tick size, n is an integer verifying n lnn τ0 = τ2 which represents the average number
of orders during an interval τ2 and

√
D(f), the geometric mean of the size of the bid queue and

the size of the ask queue after a price change, is a measure of market depth.
Formula (26) links properties of the price to the properties of the order flow. the left hand side

represents the variance of price changes, whereas the right hand side only involves the tick size and
quantities: it yields an estimator for price volatility which may be computed without observing the
price!

The relation (26) has an intuitive interpretation. It shows that, in two ’balanced’ limit order
markets with the same tick size and same rate of arrival of orders at the next bid/ask, the market
with higher depth of the next-to-best queues will lead to lower price volatility.

More precisely, this formula shows that the microstructure of order flow affects price volatility
through the ratio λ/D(f) where λ is the rate of execution/cancelation of limit orders and D(f),
given by (14), is a measure of market depth: in fact, our model predicts a proportionality between
the variance of price increments and this ratio. This is an empirically testable prediction.

Figure 4.2 compares, for stocks in the Dow Jones index, the standard deviation of 10-minute price
increments with

√
λ/D(f). We observe that, indeed, stocks with a higher value of the ratio λ/D(f)

have a higher variance, and standard deviation of price increments increases roughly proportionally
to
√
λ/D(f).

Remark 6. When the intensity of all orders coming in the limit order book is multiplied by the
same factor x,
• The intensity of limit orders becomes λx
• The intensity of market orders and cancelations becomes (µ+ θ)x
• The depth of the limit order book increases by a factor x, so D(f) increases by a factor x2.

Substituting in the above formula, we then see that price volatility is decreased by a factor
√

1
x
. In-

terestingly, Rosu (2009) shows the same dependence in 1/
√
x of price volatility using an equilibrium

approach.
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Figure 6
√
λ/D(f), estimated from tick-by-tick order flow (vertical axis) vs standard deviation of 10-minute price

increments (horizontal axis) for stocks in the Dow Jones Index, estimated from high frequency data on
June 26, 2008. Each point represents one stock. Red line indicates the best linear approximation.

4.3. Case when market orders and cancelations dominate

We now consider the case in which the flow of market orders and cancelations dominates that of
limit orders: λ < θ + µ. In this case, price changes are more frequent since the order queues are
depleted at a faster rate than they are replenished by limit orders. We also obtain a diffusion limit
though with a different scaling:

Theorem 2. Let λ< θ+µ and assume that the probability distribution f satisfies

m(λ, θ+µ,f) =
∞∑
i=1

∞∑
j=1

m(λ, θ+µ, i, j)f(i, j)<∞,

where for all (x, y)∈ (N∗)2,

m(λ, θ+µ,x, y) =
∫ ∞

0

dt

∫ ∞
t

ψx,λ,µ+θ(u)du
∫ ∞
t

ψy,λ,µ+θ(u)du

where ψx,λ,µ+θ is given by (4). Then(
snt√
n
, t≥ 0

)
n→∞⇒

(√
1

m(λ, θ+µ,f)
δWt, t≥ 0

)

where W is a standard Brownian motion.

Proof. The sequence (τ2, τ3, ...) is a sequence of i.i.d random variables with finite mean equal
to m(λ, θ+µ,f). We apply the law of large numbers:

τ1 + τ2 + ...+ τn
n

→m(λ, θ+µ,f) as n→∞.
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Therefore,
∀t≥ 0, Ntn∼[

tn

m(λ, θ+µ,f)
] as n→∞.

The rest of the proof follows the lines of the proof of theorem 1. We start to decompose for all
n≥ 1 the process ( s[nt]√

n
, t≥ 0) in two terms:

s[nt]√
n

=
δZ[nt/m(λ,θ+µ,f)]√

n
+ (

δZNnt√
n
−
δZ[nt/m(λ,θ+µ,f)]√

n
) (27)

By Donsker theorem,(
δZ[nt/m(λ,θ+µ,f)]√

n
, t≥ 0

)
⇒

(
1√

m(λ, θ+µ,f)
δWt, t≥ 0

)
as n→∞. (28)

The second term of the decomposition converges to zero:

(
δZNnt√

n
−
δZ[nt/m(λ,θ+µ,f)]√

n
, t≥ 0) n→∞⇒ 0, (29)

which concludes the proof.
Variance of price change at intermediate frequency Theorem 2 leads to an expression of the

variance of the price at a time scale τ � τ0, where τ0(∼ ms) is the average interval between order
book events:

σ2 =
τ

τ0

1
m(λ, θ+µ,f)

δ2 (30)

Here, m(λ, θ + µ,f) represents the expected hitting time of the axes by the Markovian queuing
system q with parameters (λ, θ+µ) and random initial condition with distribution f .

This equation relates the variance of price changes (over a time scale τ2) to the tick size and the
statistical properties of the order flow.

4.4. Conclusion

We have exhibited a simple model of a limit order market in which order book events are described
in terms of a Markovian queueing system. The analytical tractability of our model allow us to
compute various quantities of interest such as
• the distribution of the duration until the next price change,
• the distribution of price changes, and
• the diffusion limit of the price process and its volatility.

in terms of parameters describing the order flow. These results provide analytical insights into the
relation between price dynamics and order flow, in particular the relation between liquidity and
volatility, in a limit order market.

We view this stylized model as a first step in the analytical study of realistic stochastic models of
order book dynamics. Yet, comparison with empirical data shows that even our simple modeling set-
up is capable of yielding useful analytical insights into the relation between volatility and order flow,
worthy of being further pursued. Moreover, the connection with two-dimensional queueing systems
allow us to use the rich analytical theory developed for these systems (see Cohen and Boxma
(1983)) to compute many other quantities. We hope to pursue further some of these ramifications
in future work.

A relevant question is to examine which of the above results are robust to departures from the
model assumptions and whether the intuitions conveyed by our model remain valid in a more
general context where one or more of these assumptions are dropped. This issue is further studied
in Cont and de Larrard (2011) where we explore a more general queueing model relaxing some of
the assumptions above.
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